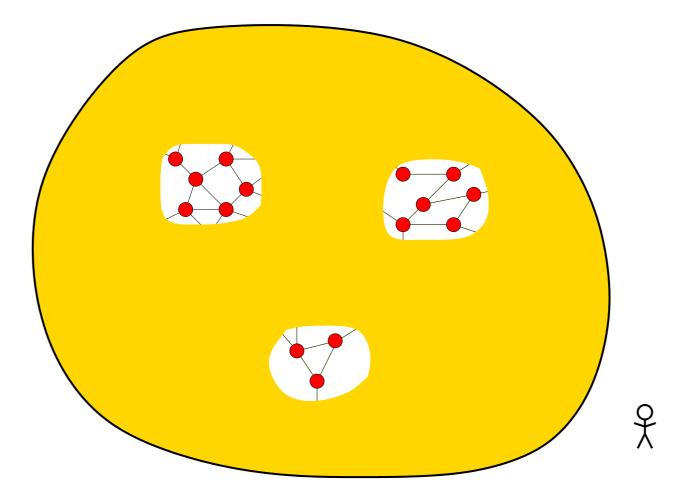
Random Local Exploration Techniques for Sublinear-Time Algorithms

> Krzysztof Onak IBM Research

Sublinear-Time Algorithms

Sublinear-Time Algorithms

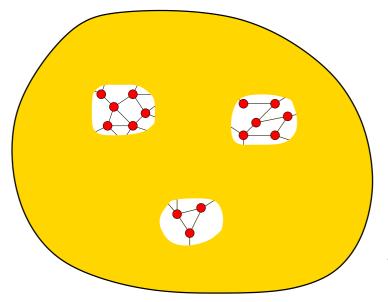


Sublinear-time algorithms:

Fast answer based on inspecting a tiny fraction of the input

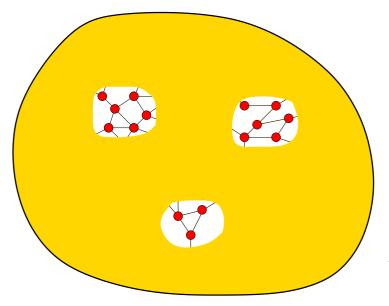
Motivation

- Existing big graph:
 - social network
 - bank transactions
 - network connections
- Goal: quickly learn something about it



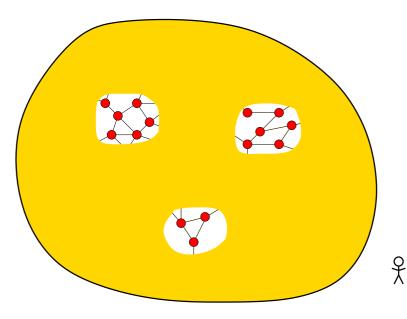
Motivation

- Existing big graph:
 - social network
 - bank transactions
 - network connections
- Goal: quickly learn something about it
- Check if it has a specific property:
 - expander?
 - clusterable?
 - bipartite?



Motivation

- Existing big graph:
 - social network
 - bank transactions
 - network connections
- Goal: quickly learn something about it
- Check if it has a specific property:
 - expander?
 - clusterable?
 - bipartite?
- Estimate a graph parameter:
 - number of triangles
 - dominating set
 - vertex cover



Roadmap

Focus on:

- simple graph problems and properties
- sparse graphs
- 1. Simulation of greedy algorithms
- 2. Partitioning oracles
- 3. Random walks

Allowed operations:

Can obtain a random vertex

Allowed operations:

- Can obtain a random vertex
- Can query the degree deg(v) of a specific vertex v

Allowed operations:

- Can obtain a random vertex
- Can query the degree deg(v) of a specific vertex v
- ✓ For each vertex v and each $i \in \{1, 2, ..., deg(v)\}$, can obtain the *i*-th neighbor of v

Allowed operations:

- Can obtain a random vertex
- Can query the degree deg(v) of a specific vertex v
- For each vertex *v* and each *i* ∈ $\{1, 2, ..., deg(v)\}$,
 can obtain the *i*-th neighbor of *v*

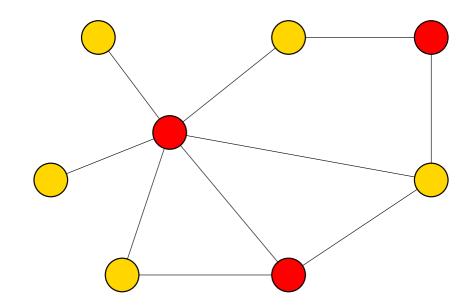
Essentially: query access to adjacency lists

Roadmap

- 1. Simulation of greedy algorithms
- 2. Partitioning oracles
- 3. Random walks

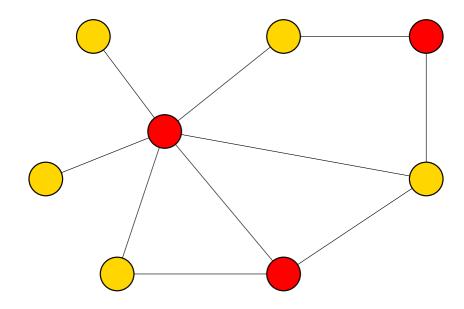
Example: Vertex Cover

Goal: find smallest set S of vertices such that each edge has endpoint in S



Example: Vertex Cover

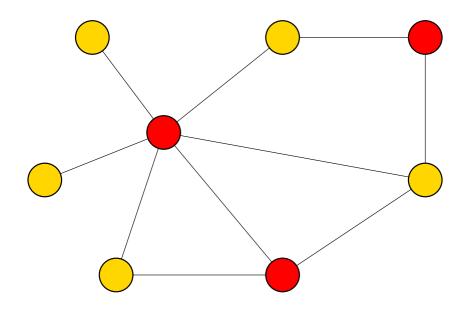
Goal: find smallest set S of vertices such that each edge has endpoint in S



Best polynomial time algorithm: 2-approximation

Example: Vertex Cover

Goal: find smallest set S of vertices such that each edge has endpoint in S



Best polynomial time algorithm: 2-approximation

Here:

 $VC - \epsilon n \leq$ (computed value) $\leq 2 \cdot VC + \epsilon n$

where VC = minimum vertex cover size n = number of vertices

Essential Technique

We develop a local computation technique

Essential Technique

- We develop a local computation technique
- Multiple applications:
 - vertex cover approximation
 - maximum matching approximation
 - computing nice partitions of graphs
 - local distributed algorithms
 - approximate planarity verification
 - local computation algorithms

Essential Technique

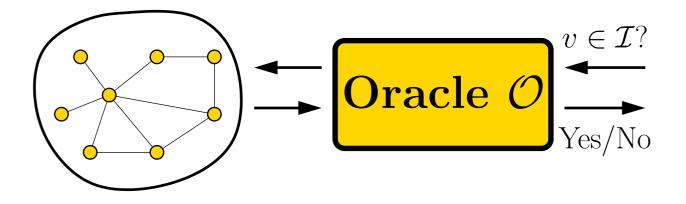
- We develop a local computation technique
- Multiple applications:
 - vertex cover approximation
 - maximum matching approximation
 - computing nice partitions of graphs
 - local distributed algorithms
 - approximate planarity verification
 - local computation algorithms
- Will present and apply a less general version:
 local computation of maximal independent set

Main Tool: Constructing a Maximal Independent Set Locally

Oracle for Maximal Independent Set

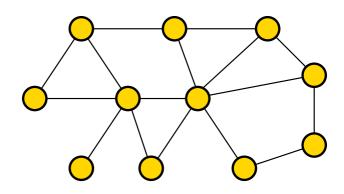
Want to construct oracle \mathcal{O} :

- \mathcal{O} has query access to G = (V, E)
- \mathcal{O} provides query access to maximal independent set $\mathcal{I} \subseteq V$
- $\ \, \checkmark \ \, J \ \, is not a function of queries \\ it is a function of G and random bits \\$

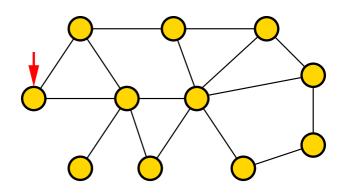


Goal: Minimize the query processing time

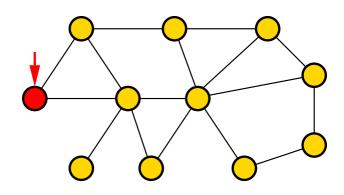
- Simplest algorithm for Maximal Independent Set *I*:
 - Start with $\mathcal{I} = \emptyset$
 - Consider vertices v one by one:
 - If no neighbor of v in \mathcal{I} , add v to \mathcal{I}



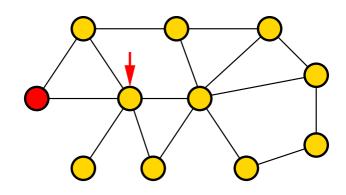
- Simplest algorithm for Maximal Independent Set *I*:
 - Start with $\mathcal{I} = \emptyset$
 - Consider vertices v one by one:
 - If no neighbor of v in \mathcal{I} , add v to \mathcal{I}



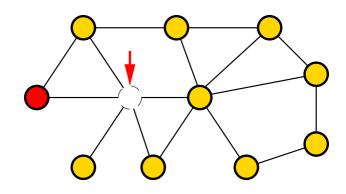
- Simplest algorithm for Maximal Independent Set *I*:
 - Start with $\mathcal{I} = \emptyset$
 - Consider vertices v one by one:
 - If no neighbor of v in \mathcal{I} , add v to \mathcal{I}



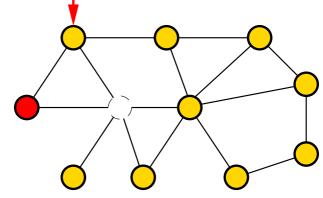
- Simplest algorithm for Maximal Independent Set *I*:
 - Start with $\mathcal{I} = \emptyset$
 - Consider vertices v one by one:
 - If no neighbor of v in \mathcal{I} , add v to \mathcal{I}



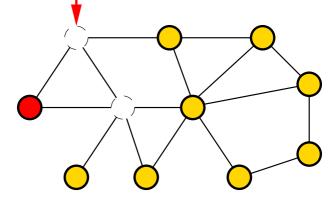
- Simplest algorithm for Maximal Independent Set *I*:
 - Start with $\mathcal{I} = \emptyset$
 - Consider vertices v one by one:
 - If no neighbor of v in \mathcal{I} , add v to \mathcal{I}



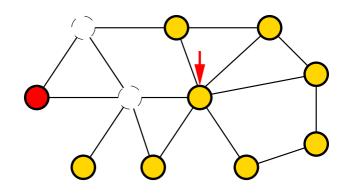
- Simplest algorithm for Maximal Independent Set *I*:
 - Start with $\mathcal{I} = \emptyset$
 - Consider vertices v one by one:
 - If no neighbor of v in \mathcal{I} , add v to \mathcal{I}



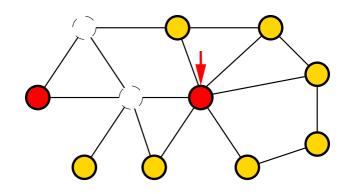
- Simplest algorithm for Maximal Independent Set *I*:
 - Start with $\mathcal{I} = \emptyset$
 - Consider vertices v one by one:
 - If no neighbor of v in \mathcal{I} , add v to \mathcal{I}



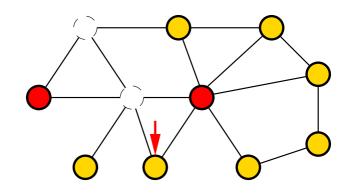
- Simplest algorithm for Maximal Independent Set *I*:
 - Start with $\mathcal{I} = \emptyset$
 - Consider vertices v one by one:
 - If no neighbor of v in \mathcal{I} , add v to \mathcal{I}



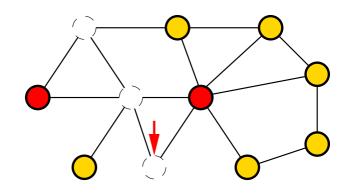
- Simplest algorithm for Maximal Independent Set *I*:
 - Start with $\mathcal{I} = \emptyset$
 - Consider vertices v one by one:
 - If no neighbor of v in \mathcal{I} , add v to \mathcal{I}



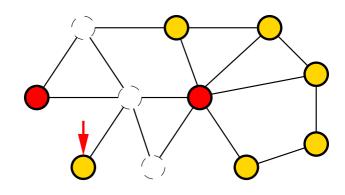
- Simplest algorithm for Maximal Independent Set *I*:
 - Start with $\mathcal{I} = \emptyset$
 - Consider vertices v one by one:
 - If no neighbor of v in \mathcal{I} , add v to \mathcal{I}



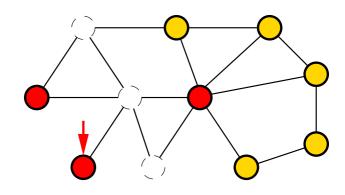
- Simplest algorithm for Maximal Independent Set *I*:
 - Start with $\mathcal{I} = \emptyset$
 - Consider vertices v one by one:
 - If no neighbor of v in \mathcal{I} , add v to \mathcal{I}



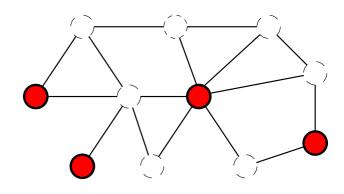
- Simplest algorithm for Maximal Independent Set *I*:
 - Start with $\mathcal{I} = \emptyset$
 - Consider vertices v one by one:
 - If no neighbor of v in \mathcal{I} , add v to \mathcal{I}



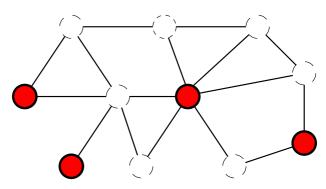
- Simplest algorithm for Maximal Independent Set *I*:
 - Start with $\mathcal{I} = \emptyset$
 - Consider vertices v one by one:
 - If no neighbor of v in \mathcal{I} , add v to \mathcal{I}



- Simplest algorithm for Maximal Independent Set *I*:
 - Start with $\mathcal{I} = \emptyset$
 - Consider vertices v one by one:
 - If no neighbor of v in \mathcal{I} , add v to \mathcal{I}

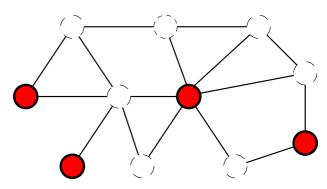


- Simplest algorithm for Maximal Independent Set *I*:
 - Start with $\mathcal{I} = \emptyset$
 - Consider vertices v one by one:
 - If no neighbor of v in \mathcal{I} , add v to \mathcal{I}

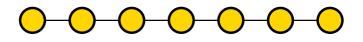


Want to simulate this algorithm locally: Check what happened to earlier neighbors

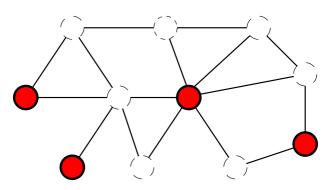
- Simplest algorithm for Maximal Independent Set *I*:
 - Start with $\mathcal{I} = \emptyset$
 - Consider vertices v one by one:
 - If no neighbor of v in \mathcal{I} , add v to \mathcal{I}



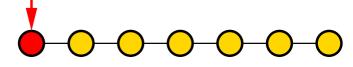
- Want to simulate this algorithm locally: Check what happened to earlier neighbors
- Problem: long chains of dependencies



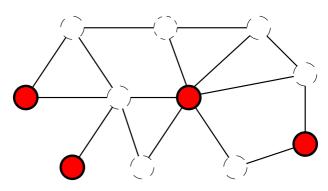
- Simplest algorithm for Maximal Independent Set *I*:
 - Start with $\mathcal{I} = \emptyset$
 - Consider vertices v one by one:
 - If no neighbor of v in \mathcal{I} , add v to \mathcal{I}



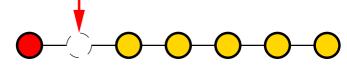
- Want to simulate this algorithm locally: Check what happened to earlier neighbors
- Problem: long chains of dependencies



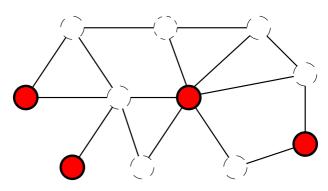
- Simplest algorithm for Maximal Independent Set *I*:
 - Start with $\mathcal{I} = \emptyset$
 - Consider vertices v one by one:
 - If no neighbor of v in \mathcal{I} , add v to \mathcal{I}



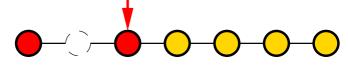
- Want to simulate this algorithm locally: Check what happened to earlier neighbors
- Problem: long chains of dependencies



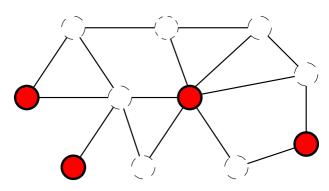
- Simplest algorithm for Maximal Independent Set *I*:
 - Start with $\mathcal{I} = \emptyset$
 - Consider vertices v one by one:
 - If no neighbor of v in \mathcal{I} , add v to \mathcal{I}



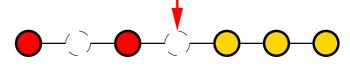
- Want to simulate this algorithm locally: Check what happened to earlier neighbors
- Problem: long chains of dependencies



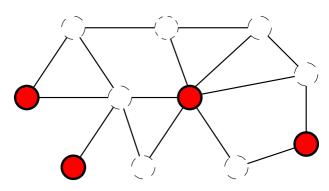
- Simplest algorithm for Maximal Independent Set *I*:
 - Start with $\mathcal{I} = \emptyset$
 - Consider vertices v one by one:
 - If no neighbor of v in \mathcal{I} , add v to \mathcal{I}



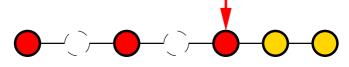
- Want to simulate this algorithm locally: Check what happened to earlier neighbors
- Problem: long chains of dependencies



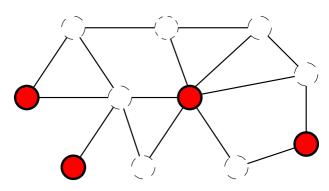
- Simplest algorithm for Maximal Independent Set *I*:
 - Start with $\mathcal{I} = \emptyset$
 - Consider vertices v one by one:
 - If no neighbor of v in \mathcal{I} , add v to \mathcal{I}



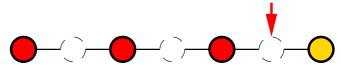
- Want to simulate this algorithm locally: Check what happened to earlier neighbors
- Problem: long chains of dependencies



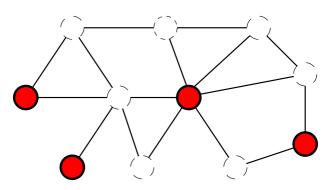
- Simplest algorithm for Maximal Independent Set *I*:
 - Start with $\mathcal{I} = \emptyset$
 - Consider vertices v one by one:
 - If no neighbor of v in \mathcal{I} , add v to \mathcal{I}



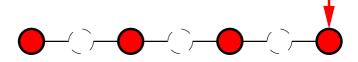
- Want to simulate this algorithm locally: Check what happened to earlier neighbors
- Problem: long chains of dependencies



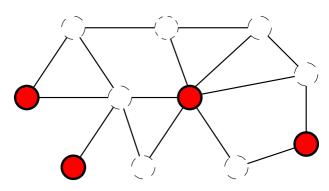
- Simplest algorithm for Maximal Independent Set *I*:
 - Start with $\mathcal{I} = \emptyset$
 - Consider vertices v one by one:
 - If no neighbor of v in \mathcal{I} , add v to \mathcal{I}



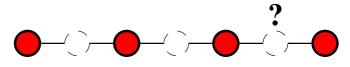
- Want to simulate this algorithm locally: Check what happened to earlier neighbors
- Problem: long chains of dependencies



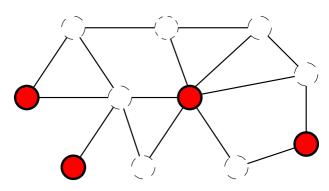
- Simplest algorithm for Maximal Independent Set *I*:
 - Start with $\mathcal{I} = \emptyset$
 - Consider vertices v one by one:
 - If no neighbor of v in \mathcal{I} , add v to \mathcal{I}



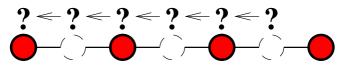
- Want to simulate this algorithm locally: Check what happened to earlier neighbors
- Problem: long chains of dependencies



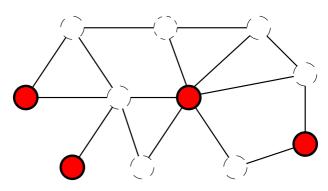
- Simplest algorithm for Maximal Independent Set *I*:
 - Start with $\mathcal{I} = \emptyset$
 - Consider vertices v one by one:
 - If no neighbor of v in \mathcal{I} , add v to \mathcal{I}



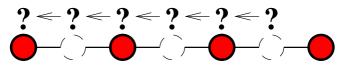
- Want to simulate this algorithm locally: Check what happened to earlier neighbors
- Problem: long chains of dependencies



- Simplest algorithm for Maximal Independent Set *I*:
 - Start with $\mathcal{I} = \emptyset$
 - Consider vertices v one by one:
 - If no neighbor of v in \mathcal{I} , add v to \mathcal{I}



- Want to simulate this algorithm locally: Check what happened to earlier neighbors
- Problem: long chains of dependencies

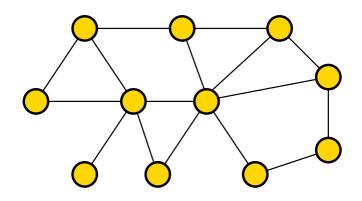


Solution: consider vertices in random order

Main idea:

- select maximal independent set greedily
- consider vertices in random order

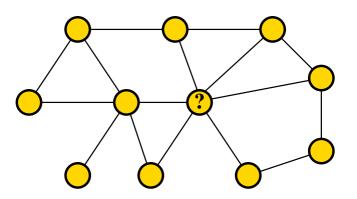
Random order \equiv random numbers r(v) assigned to each vertex



Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

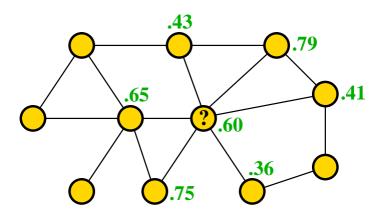


- ▶ recursively check if neighbors w s.t. r(w) < r(v) are in \mathcal{I}
- $v \in \mathcal{I} \iff$ none of them in \mathcal{I}

Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

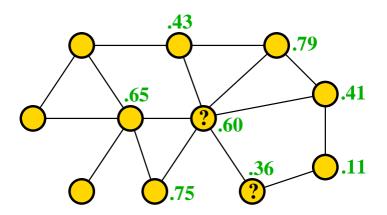


- ▶ recursively check if neighbors w s.t. r(w) < r(v) are in \mathcal{I}
- $v \in \mathcal{I} \iff$ none of them in \mathcal{I}

Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

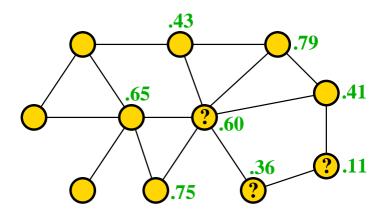


- recursively check if neighbors w s.t. r(w) < r(v) are in \mathcal{I}
- $v \in \mathcal{I} \iff$ none of them in \mathcal{I}

Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

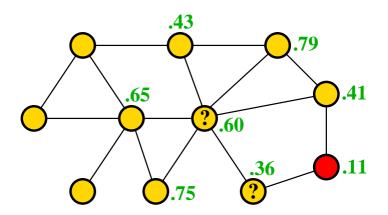


- recursively check if neighbors w s.t. r(w) < r(v) are in \mathcal{I}
- $v \in \mathcal{I} \iff$ none of them in \mathcal{I}

Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

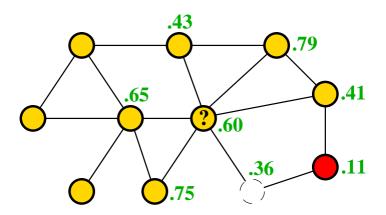


- ▶ recursively check if neighbors w s.t. r(w) < r(v) are in \mathcal{I}
- $v \in \mathcal{I} \iff$ none of them in \mathcal{I}

Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

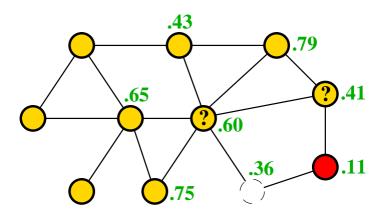


- recursively check if neighbors w s.t. r(w) < r(v) are in \mathcal{I}
- $v \in \mathcal{I} \iff$ none of them in \mathcal{I}

Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

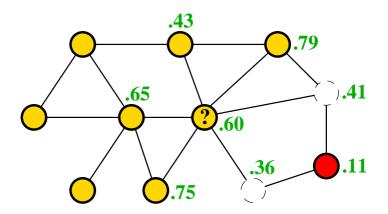


- recursively check if neighbors w s.t. r(w) < r(v) are in \mathcal{I}
- $v \in \mathcal{I} \iff$ none of them in \mathcal{I}

Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

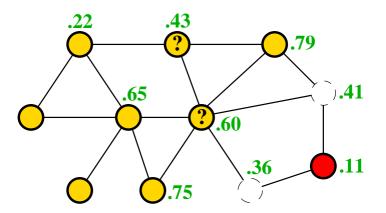


- recursively check if neighbors w s.t. r(w) < r(v) are in \mathcal{I}
- $v \in \mathcal{I} \iff$ none of them in \mathcal{I}

Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

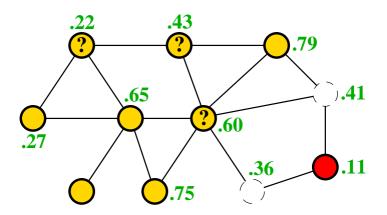


- recursively check if neighbors w s.t. r(w) < r(v) are in \mathcal{I}
- $v \in \mathcal{I} \iff$ none of them in \mathcal{I}

Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

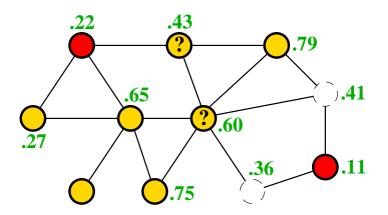


- recursively check if neighbors w s.t. r(w) < r(v) are in \mathcal{I}
- $v \in \mathcal{I} \iff$ none of them in \mathcal{I}

Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

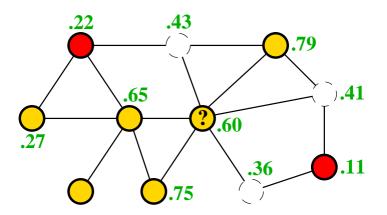


- recursively check if neighbors w s.t. r(w) < r(v) are in \mathcal{I}
- $v \in \mathcal{I} \iff$ none of them in \mathcal{I}

Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

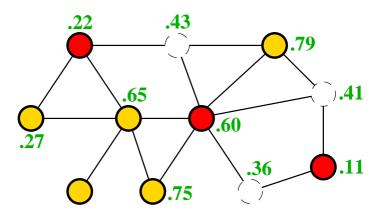


- recursively check if neighbors w s.t. r(w) < r(v) are in \mathcal{I}
- $v \in \mathcal{I} \iff$ none of them in \mathcal{I}

Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

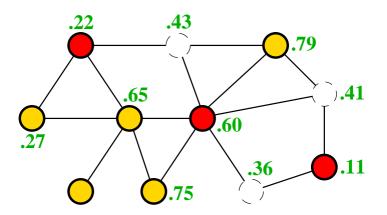


- recursively check if neighbors w s.t. r(w) < r(v) are in \mathcal{I}
- $v \in \mathcal{I} \iff$ none of them in \mathcal{I}

Main idea:

- select maximal independent set greedily
- consider vertices in random order

Random order \equiv random numbers r(v) assigned to each vertex

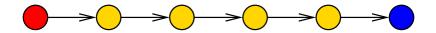


To check if $v \in \mathcal{I}$

- recursively check if neighbors w s.t. r(w) < r(v) are in \mathcal{I}
- $v \in \mathcal{I} \iff$ none of them in \mathcal{I}

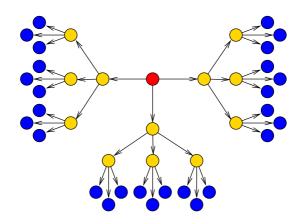
E[#visited vertices] and query complexity of order $2^{O(d)}$

• $\Pr[\text{a given path of length } k \text{ is explored}] = 1/(k+1)!$



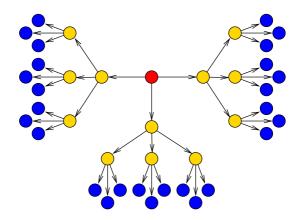
• $\Pr[a \text{ given path of length } k \text{ is explored}] = 1/(k+1)!$

• (number of vertices at distance k) $\leq d^k$



• $\Pr[a \text{ given path of length } k \text{ is explored}] = 1/(k+1)!$

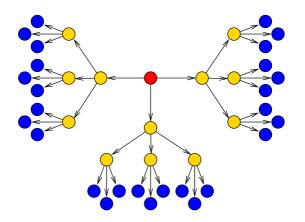
• (number of vertices at distance k) $\leq d^k$



• E[number of vertices explored at distance $k] \le d^k/(k+1)!$

• $\Pr[a \text{ given path of length } k \text{ is explored}] = 1/(k+1)!$

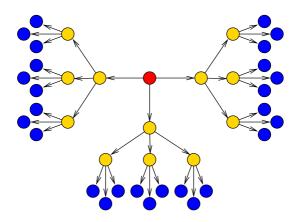
• (number of vertices at distance k) $\leq d^k$



- E[number of vertices explored at distance k] $\leq d^k/(k+1)$!
- E[number of explored vertices $] \le \sum_{k=0}^{\infty} d^k / (k+1)! \le e^d / d$

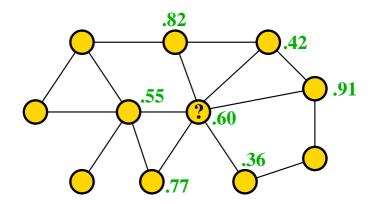
• $\Pr[a \text{ given path of length } k \text{ is explored}] = 1/(k+1)!$

● (number of vertices at distance k) $\leq d^k$

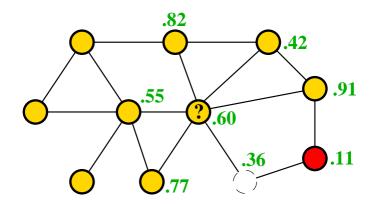


- E[number of vertices explored at distance k] $\leq d^k/(k+1)!$
- E[number of explored vertices $] \le \sum_{k=0}^{\infty} d^k / (k+1)! \le e^d / d$
- Expected query complexity = $O(d) \cdot e^d/d = O(e^d)$

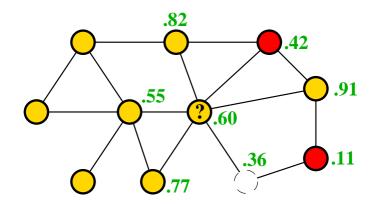
- Consider neighbors w of v in ascending order of r(w)
- Once you find $w \in \mathcal{I}, v \notin \mathcal{I}$ (i.e., don't check other neighbors)



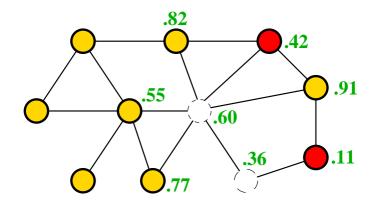
- Consider neighbors w of v in ascending order of r(w)
- Once you find $w \in \mathcal{I}, v \notin \mathcal{I}$ (i.e., don't check other neighbors)



- Consider neighbors w of v in ascending order of r(w)
- Once you find $w \in \mathcal{I}, v \notin \mathcal{I}$ (i.e., don't check other neighbors)

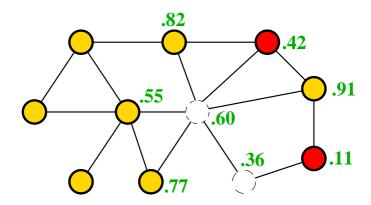


- Consider neighbors w of v in ascending order of r(w)
- Once you find $w \in \mathcal{I}, v \notin \mathcal{I}$ (i.e., don't check other neighbors)



Heuristic:

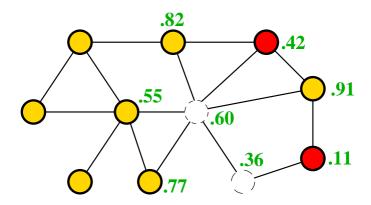
- Consider neighbors w of v in ascending order of r(w)
- Once you find $w \in \mathcal{I}, v \notin \mathcal{I}$ (i.e., don't check other neighbors)



Yoshida, Yamamoto, Ito (STOC 2009): E permutations, start vertex [#recursive calls] $\leq 1 + \frac{m}{n}$

Heuristic:

- Consider neighbors w of v in ascending order of r(w)
- Once you find $w \in \mathcal{I}, v \notin \mathcal{I}$ (i.e., don't check other neighbors)



Yoshida, Yamamoto, Ito (STOC 2009):

 $E_{\text{permutations, start vertex}} [\text{#recursive calls}] \le 1 + \frac{m}{n}$

Which gives:

expected query complexity for random vertex = $O(d^2)$

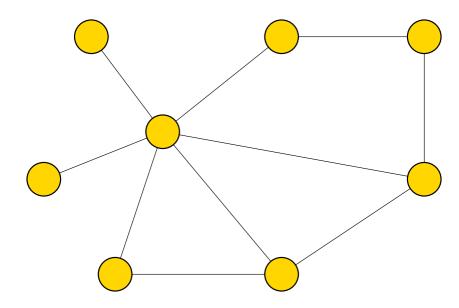
Algorithm for Vertex Cover

Vertex Cover

Goal: find smallest set S of nodes such that each edge has endpoint in S

Classical 2-approximation algorithm [Gavril & Yannakakis]:

- Greedily find a maximal matching M
- \checkmark Output the set of nodes matched in M

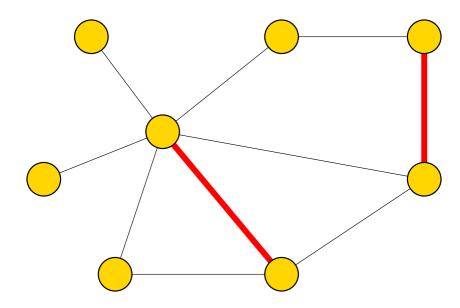


Vertex Cover

Goal: find smallest set S of nodes such that each edge has endpoint in S

Classical 2-approximation algorithm [Gavril & Yannakakis]:

- Greedily find a maximal matching *M*
- \checkmark Output the set of nodes matched in M



Vertex Cover

Goal: find smallest set S of nodes such that each edge has endpoint in S

Classical 2-approximation algorithm [Gavril & Yannakakis]:

- \checkmark Greedily find a maximal matching M
- Output the set of nodes matched in M



General Idea:

■ construct oracle \mathcal{O} that answers queries: Is $e \in E$ in M?
 for a fixed maximal matching M

General Idea:

• construct oracle \mathcal{O} that answers queries: Is $e \in E$ in M? for a fixed maximal matching M

maximal matching

maximal independent set in the line graph

General Idea:

• construct oracle \mathcal{O} that answers queries: Is $e \in E$ in M? for a fixed maximal matching M

maximal matching

maximal independent set in the line graph

• approximate the number of vertices matched in M up to $\pm \epsilon n$ by checking for $O(1/\epsilon^2)$ vertices if they are matched

#queries to $\mathcal{O} = (\text{#tested nodes}) \cdot (\text{max-degree}) = O(d/\epsilon^2)$

General Idea:

• construct oracle \mathcal{O} that answers queries: Is $e \in E$ in M? for a fixed maximal matching M

maximal matching

maximal independent set in the line graph

• approximate the number of vertices matched in M up to $\pm \epsilon n$ by checking for $O(1/\epsilon^2)$ vertices if they are matched

#queries to $\mathcal{O} = (\text{#tested nodes}) \cdot (\text{max-degree}) = O(d/\epsilon^2)$

This gives:

 $VC - \epsilon n \le (computed value) \le 2 \cdot VC + \epsilon n$

General Idea:

• construct oracle \mathcal{O} that answers queries: Is $e \in E$ in M? for a fixed maximal matching M

maximal matching

maximal independent set in the line graph

• approximate the number of vertices matched in M up to $\pm \epsilon n$ by checking for $O(1/\epsilon^2)$ vertices if they are matched

#queries to $\mathcal{O} = (\text{#tested nodes}) \cdot (\text{max-degree}) = O(d/\epsilon^2)$

This gives:

 $VC - \epsilon n \le (computed value) \le 2 \cdot VC + \epsilon n$

Running time: $2^{O(d)}/\epsilon^2$

$VC - \epsilon n \leq output \leq 2 \cdot VC + \epsilon n$

- Parnas, Ron (2007): $d^{O(\log(d)/\epsilon^3)}$ queries
- via simulation of local distributed algorithms
- Marko, Ron (2007): $d^{O(\log(d/\epsilon))}$ queries
 - via Luby's algorithm
- Nguyen, O. (2008): $2^{O(d)}/\epsilon^2$ queries
- the algorithm and proof presented here

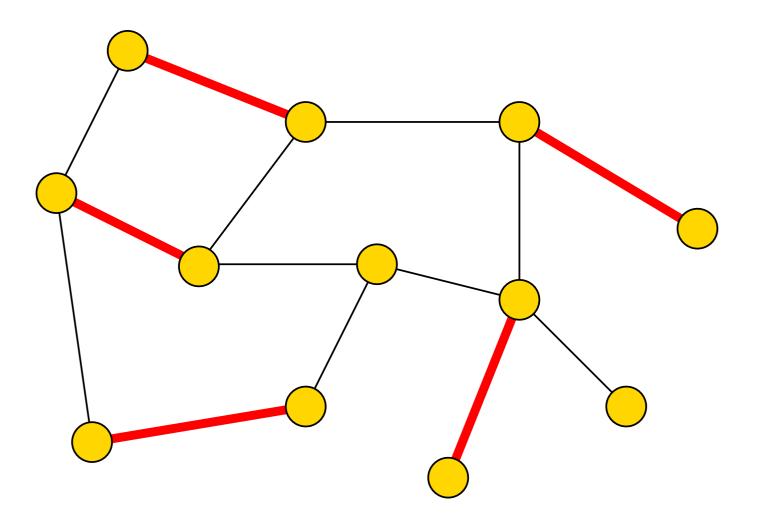
Yoshida, Yamamoto, Ito (2009): $O(d^4/\epsilon^2)$ queries

- the Nguyen, O. algorithm + analysis of the heuristic
- O., Ron, Rosen, Rubinfeld (2012): $\tilde{O}(d/\epsilon^3)$ queries
 - further refinements of NO and YYI
 - sampling from the neighbor sets
 - **•** near optimal: $\Omega(d)$ lower bound due to Parnas, Ron (2007)

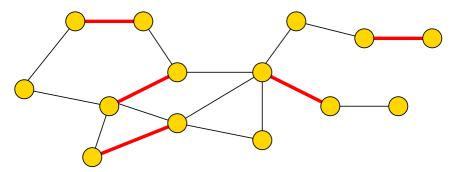
Better Approximation for Maximum Matching

Maximum Matching

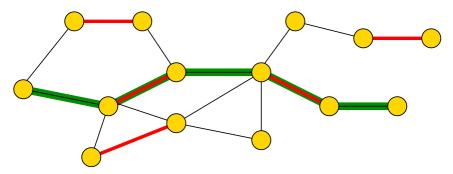
Goal: find a set of disjoint edges of maximum cardinality



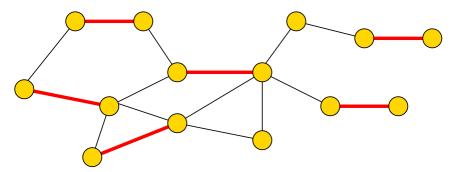
Augmenting Path: a path that improves matching



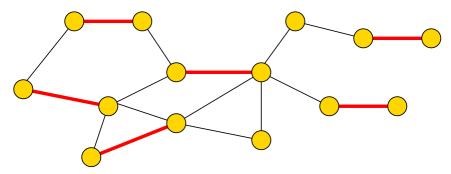
Augmenting Path: a path that improves matching



Augmenting Path: a path that improves matching



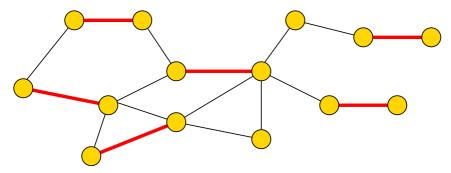
Augmenting Path: a path that improves matching



 $M = \text{matching}, M^* = \text{maximum matching}$

Fact: There are $|M^*| - |M|$ disjoint augmenting paths for M

Augmenting Path: a path that improves matching



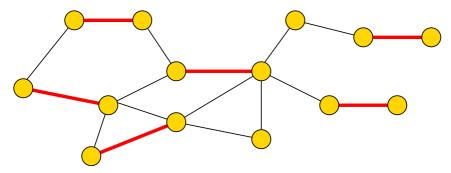
 $M = \text{matching}, M^* = \text{maximum matching}$

Fact: There are $|M^*| - |M|$ disjoint augmenting paths for M

Fact:

No augmenting paths of length $< 2k+1 \Rightarrow |M| \ge \frac{k}{k+1}|M^*|$

Augmenting Path: a path that improves matching



 $M = \text{matching}, M^* = \text{maximum matching}$

Fact: There are $|M^*| - |M|$ disjoint augmenting paths for M

Fact:

No augmenting paths of length $< 2k+1 \Rightarrow |M| \ge \frac{k}{k+1}|M^*|$

To get $(1 + \epsilon)$ -approximation, set $k = \lceil 1/\epsilon \rceil$

Standard Algorithm

Lemma [Hopcroft, Karp 1973]:

- M = matching with no augmenting paths of length < t
- P =maximal set of vertex-disjoint augmenting paths of length t for M
- M' = M with all paths in *P* applied
- Claim: M' has only augmenting paths of length > t

Standard Algorithm

Lemma [Hopcroft, Karp 1973]:

- M = matching with no augmenting paths of length < t
- P =maximal set of vertex-disjoint augmenting paths of length t for M
- M' = M with all paths in *P* applied

Claim: M' has only augmenting paths of length > t

Algorithm:

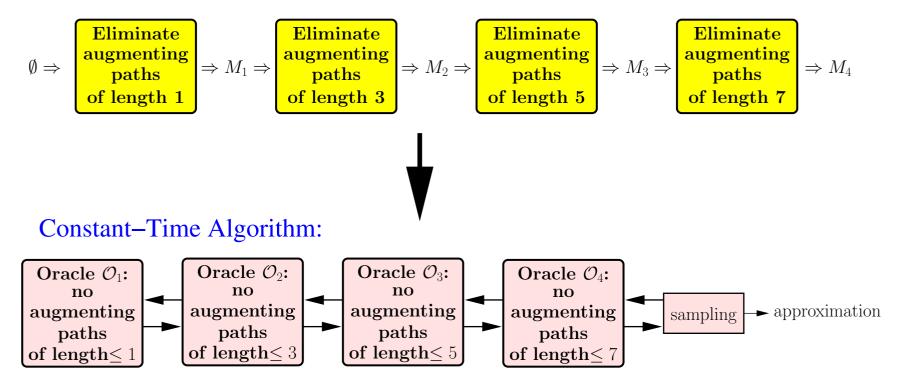
M := empty matching

for i = 1 to k:

find maximal set of disjoint augmenting paths of length 2i-1 apply all paths to M return M

Transformation

Standard Algorithm:

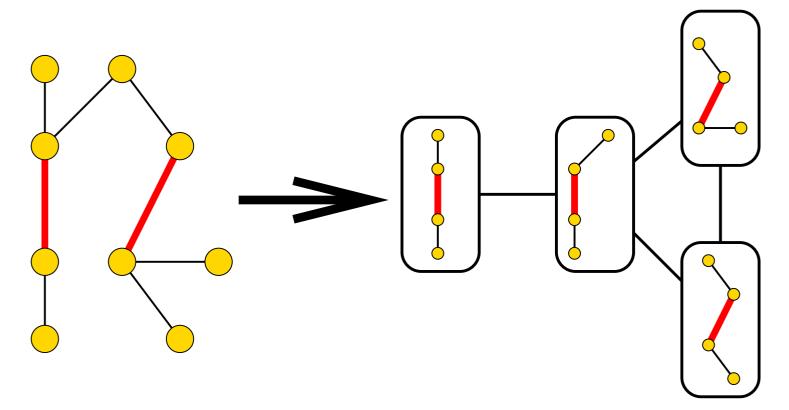


Oracle \mathcal{O}_i :

- provides query access to M_i
- simulates applying to M_{i-1} a maximal set of disjoint augmenting paths of length 2i 1

Transformation

Sample graph considered by \mathcal{O}_2 :



 \mathcal{O}_i 's graph has degree $d^{O(i)}$

Can't apply the previous approach!

- every query may disclose some information about the random numbers
- algorithm could use it to form a malicious query

Can't apply the previous approach!

- every query may disclose some information about the random numbers
- algorithm could use it to form a malicious query

Locality Lemma:

for q queries, needs to visit at most $q^2 \cdot 2^{O(d^4)}/\delta$ vertices with probability $1 - \delta$

Can't apply the previous approach!

- every query may disclose some information about the random numbers
- algorithm could use it to form a malicious query

Locality Lemma:

for q queries, needs to visit at most $q^2 \cdot 2^{O(d^4)}/\delta$ vertices with probability $1-\delta$

Query complexity: $2^{d^{O(1/\epsilon)}}$ queries for $(1, \epsilon n)$ -approximation

Can't apply the previous approach!

- every query may disclose some information about the random numbers
- algorithm could use it to form a malicious query

Locality Lemma:

for q queries, needs to visit at most $q^2 \cdot 2^{O(d^4)}/\delta$ vertices with probability $1-\delta$

Query complexity: $2^{d^{O(1/\epsilon)}}$ queries for $(1, \epsilon n)$ -approximation

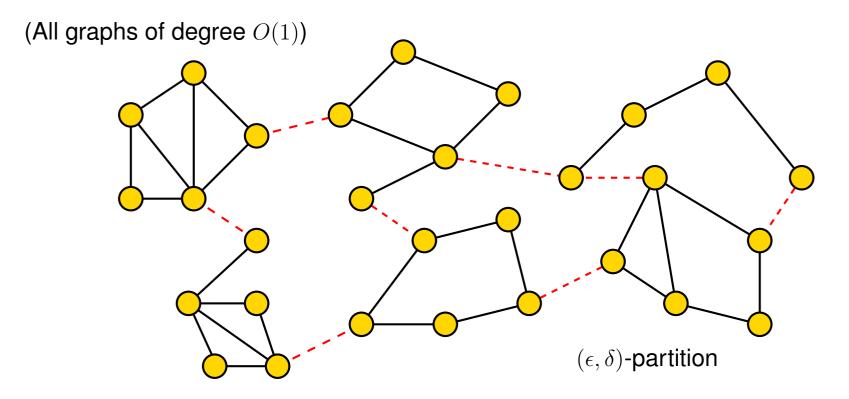
Yoshida, Yamamoto, Ito (2009)

- Query complexity: $d^{O(1/\epsilon^2)}$
- uniform on higher level \Rightarrow close to uniform on lower

Roadmap

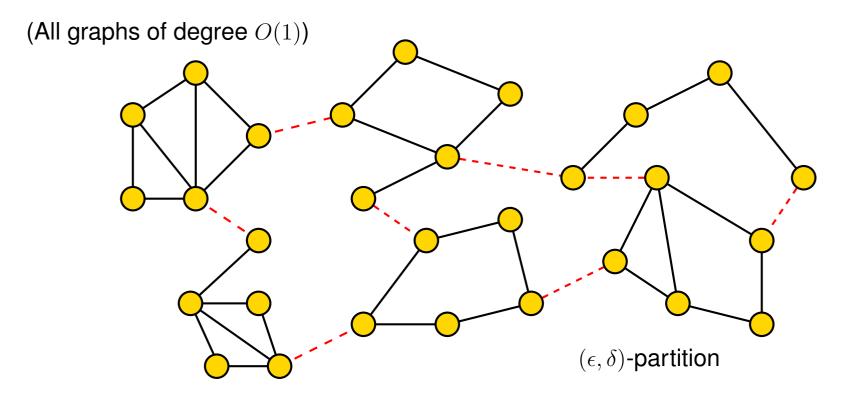
- 1. Simulation of greedy algorithms
- 2. Partitioning oracles
- 3. Random walks

Hyperfinite Graphs



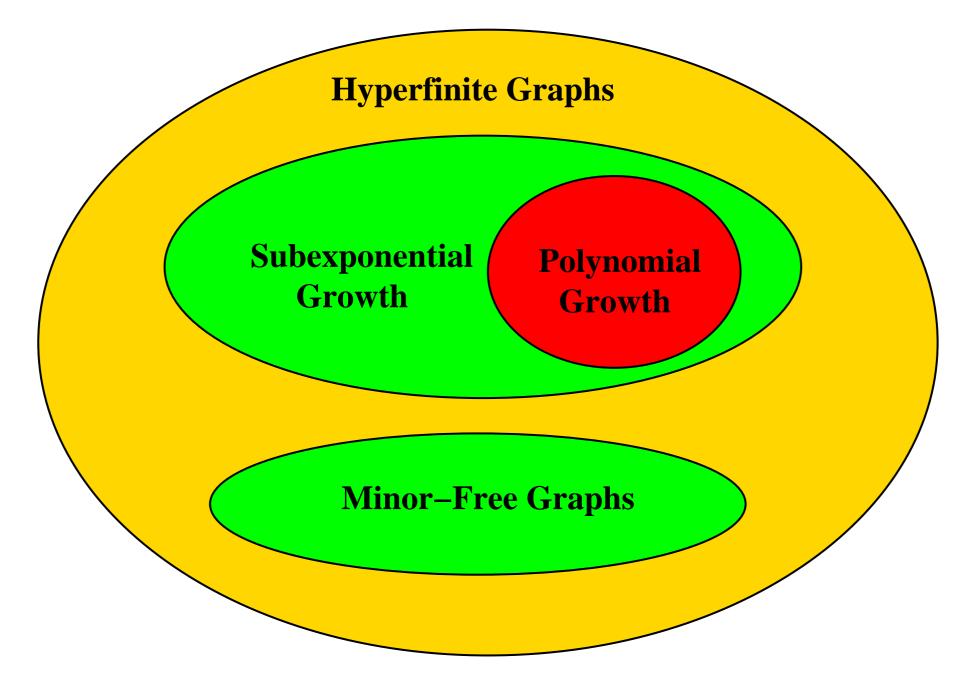
• (ϵ, δ)-hyperfinite graphs: can remove $\epsilon |V|$ edges and get components of size at most δ

Hyperfinite Graphs

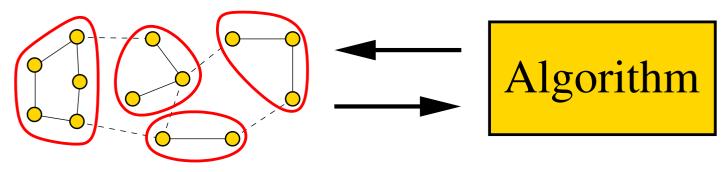


- (ϵ, δ)-hyperfinite graphs: can remove $\epsilon |V|$ edges and get components of size at most δ
- hyperfinite family of graphs: there is ρ such that all graphs are $(\epsilon, \rho(\epsilon))$ -hyperfinite for all $\epsilon > 0$

Taxonomy



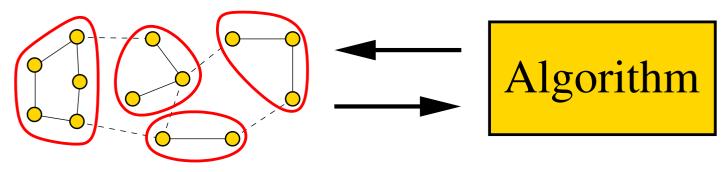
If someone gave us a $(\epsilon/2, \delta)$ -partition:



• Sample $O(1/\epsilon^2)$ vertices

- Compute minimum vertex cover for the sampled components
- Return the fraction of the sampled vertices in the covers

If someone gave us a $(\epsilon/2, \delta)$ -partition:



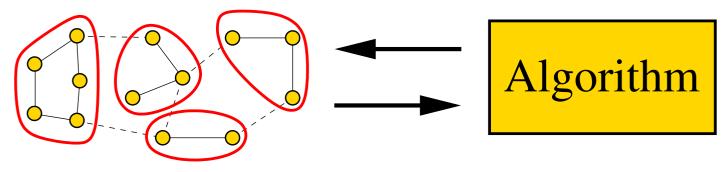
• Sample $O(1/\epsilon^2)$ vertices

- Compute minimum vertex cover for the sampled components
- Return the fraction of the sampled vertices in the covers

This gives $\pm \epsilon$ approximation to VC(G)/n in constant time:

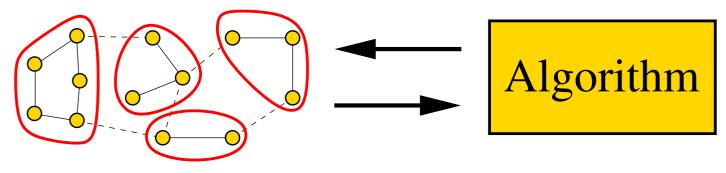
- Cut edges change VC(G) by at most $\epsilon n/2$
- Can compute vertex cover separately for each component

If someone gave us a $(\epsilon/2, \delta)$ -partition:



We can compute the partition without looking at the entire graph

If someone gave us a $(\epsilon/2, \delta)$ -partition:

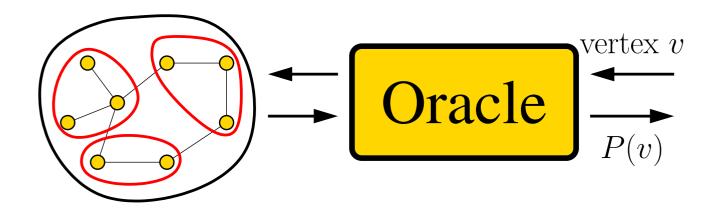


We can compute the partition without looking at the entire graph

New Tool: Partitioning Oracles

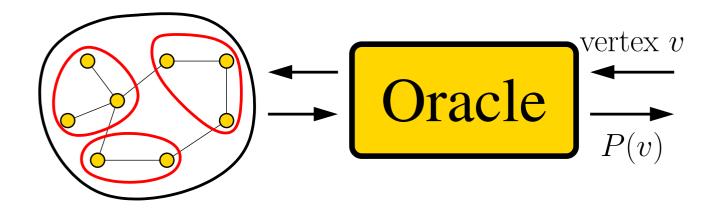
Partitioning Oracle Hassidim, Kelner, Nguyen, O. (2009)

- $\mathcal{C} = fixed hyperfinite class$
- oracle has query access to G = (V, E)(*G* need not be in *C*)



Partitioning Oracle Hassidim, Kelner, Nguyen, O. (2009)

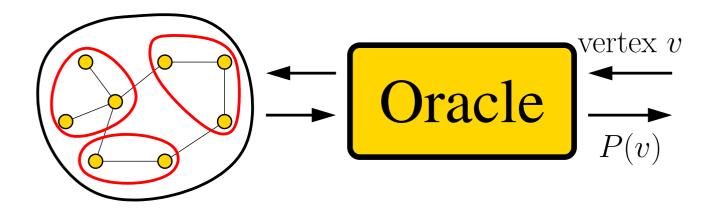
- $\mathcal{C} = fixed hyperfinite class$
- I oracle has query access to G = (V, E)(G need not be in C)
- oracle provides query access to partition *P* of *V*;
 for each *v*, oracle returns P(v) ⊆ V s.t. v ∈ P(v)



Partitioning Oracle Hassidim, Kelner, Nguyen, O. (2009)

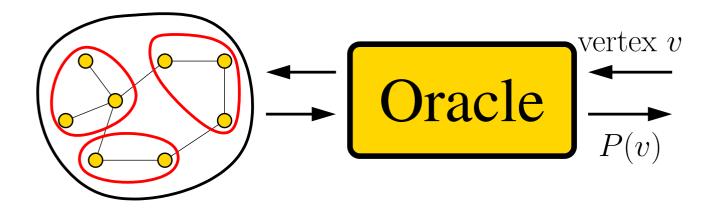
- $\mathcal{C} = fixed hyperfinite class$
- I oracle has query access to G = (V, E)(G need not be in C)
- oracle provides query access to partition *P* of *V*;
 for each *v*, oracle returns P(v) ⊆ V s.t. v ∈ P(v)
- Properties of P:

• each
$$|P(v)| = O(1)$$



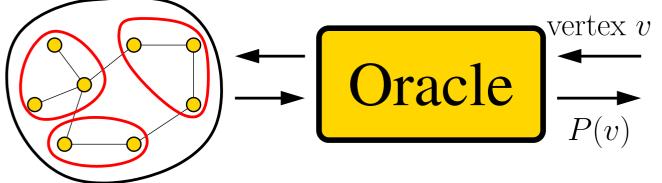
Partitioning Oracle Hassidim, Kelner, Nguyen, O. (2009)

- $\mathcal{C} = fixed hyperfinite class$
- oracle has query access to G = (V, E)(G need not be in C)
- oracle provides query access to partition *P* of *V*;
 for each *v*, oracle returns P(v) ⊆ V s.t. v ∈ P(v)
- Properties of P:
 - each |P(v)| = O(1)
 - If $G \in \mathcal{C}$, number of cut edges $\leq \epsilon n$ w.p. $\frac{99}{100}$



Partitioning Oracle Hassidim, Kelner, Nguyen, O. (2009)

- $\mathcal{C} = fixed hyperfinite class$
- oracle has query access to G = (V, E)(G need not be in C)
- oracle provides query access to partition *P* of *V*;
 for each *v*, oracle returns P(v) ⊆ V s.t. v ∈ P(v)
- Properties of P:
 - each |P(v)| = O(1)
 - If $G \in \mathcal{C}$, number of cut edges $\leq \epsilon n$ w.p. $\frac{99}{100}$
 - partition $P(\cdot)$ is not a function of queries, it is a function of graph structure and random bits



- Generic oracle for any hyperfinite class of graphs
 - Query complexity: $2^{d^{O(\rho(\epsilon^3/C))}}$ for some constant C
 - Via local simulation of a greedy partitioning procedure (uses [Nguyen, O. 2008])

- Generic oracle for any hyperfinite class of graphs
 - Query complexity: $2^{d^{O(\rho(\epsilon^3/C))}}$ for some constant C
- For minor-free graphs:
 - Query complexity: $d^{\text{poly}(1/\epsilon)}$
 - Via techniques from distributed algorithms
 [Czygrinow, Hańćkowiak, Wawrzyniak 2008]

- Generic oracle for any hyperfinite class of graphs
 - Query complexity: $2^{d^{O(\rho(\epsilon^3/C))}}$ for some constant C
- For minor-free graphs:
 - Query complexity: $d^{O(\log^2(1/\epsilon))}$
 - Via techniques from distributed algorithms
 [Czygrinow, Hańćkowiak, Wawrzyniak 2008]
 - Improved by Levi and Ron (2013)

- Generic oracle for any hyperfinite class of graphs
 - Query complexity: $2^{d^{O(\rho(\epsilon^3/C))}}$ for some constant C
- For minor-free graphs:
 - Query complexity: $d^{O(\log^2(1/\epsilon))}$
- For $\rho(\epsilon) \le \operatorname{poly}(1/\epsilon)$:
 - Query complexity: $2^{\text{poly}(d/\epsilon)}$
 - Via methods from distributed algorithms and partitioning methods of Andersen and Peres (2009)

- Generic oracle for any hyperfinite class of graphs
 - Query complexity: $2^{d^{O(\rho(\epsilon^3/C))}}$ for some constant C
- For minor-free graphs:
 - Query complexity: $d^{O(\log^2(1/\epsilon))}$
- For $\rho(\epsilon) \le \operatorname{poly}(1/\epsilon)$:
 - Query complexity: $2^{\text{poly}(d/\epsilon)}$
- Constant Treewidth:
 - Query complexity: $poly(d/\epsilon)$
 - Edelman, Hassidim, Nguyen, O. (2011)

Two Applications

- 1. Approximately learning hyperfinite graphs
 - Then solve an arbitrary problem on almost the same graph

Two Applications

- 1. Approximately learning hyperfinite graphs
 - Then solve an arbitrary problem on almost the same graph
- 2. Testing minor-closed properties
 - Simpler proof of the result due to Benjamini, Schramm, and Shapira (2008)
 - Much faster tester

Application 1: Learning

- Input graphs can be decomposed into constant size components by cutting few edges
- Algorithm:
 - sample large constant number of vertices
 - query their components
 - approximately learn the distribution of components

Application 1: Learning

- Input graphs can be decomposed into constant size components by cutting few edges
- Algorithm:
 - sample large constant number of vertices
 - query their components
 - approximately learn the distribution of components
- component size $\leq k \Rightarrow \leq 2^{k^2}$ different component types
- Can learn a graph close to the input by sampling $2^{k^2} \cdot O(1/\epsilon^2)$ vertices

Application 1: Learning

- Input graphs can be decomposed into constant size components by cutting few edges
- Algorithm:
 - sample large constant number of vertices
 - query their components
 - approximately learn the distribution of components
- component size $\leq k \Rightarrow \leq 2^{k^2}$ different component types
- Can learn a graph close to the input by sampling $2^{k^2} \cdot O(1/\epsilon^2)$ vertices
- Application: solve any testing or approximation problem on almost the same graph
- First proof: Newman and Sohler (2011)

Testing *H*-minor-freeness in the sparse graph model of Goldreich and Ron (1997)

- Input: query access to constant degree graph G & parameter $\epsilon > 0$
- **Goal:** w.p. 2/3
 - accept *H*-minor-free graphs
 - reject graphs far from H-minor-freeness: $\geq \epsilon n$ edges must be removed to achieve H-minor-freeness

Testing *H*-minor-freeness in the sparse graph model of Goldreich and Ron (1997)

- Input: query access to constant degree graph G & parameter $\epsilon > 0$
- **Goal:** w.p. 2/3
 - accept *H*-minor-free graphs
 - reject graphs far from H-minor-freeness: $\geq \epsilon n$ edges must be removed to achieve H-minor-freeness

Time and query complexity:

- Goldreich, Ron (1997): cycle-freeness in $poly(1/\epsilon)$ time
- **•** Benjamini, Schramm, Shapira (2008): any minor in $2^{2^{2^{\operatorname{poly}(1/\epsilon)}}}$ time

Testing *H*-minor-freeness in the sparse graph model of Goldreich and Ron (1997)

- Input: query access to constant degree graph G & parameter $\epsilon > 0$
- **Goal:** w.p. 2/3
 - accept *H*-minor-free graphs
 - reject graphs far from H-minor-freeness: $\geq \epsilon n$ edges must be removed to achieve H-minor-freeness

Time and query complexity:

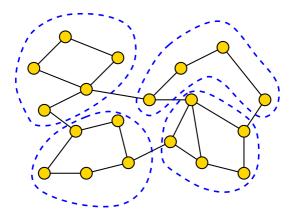
- Goldreich, Ron (1997): cycle-freeness in $poly(1/\epsilon)$ time
- **Benjamini, Schramm, Shapira (2008):** any minor in $2^{2^{2^{\text{poly}(1/\epsilon)}}}$ time
- Via partitioning oracles: $2^{\text{polylog}(1/\epsilon)}$ and simpler proof

Example: Testing planarity (i.e., K_5 - and $K_{3,3}$ -minor-freeness)

Example: Testing planarity

(i.e., K_5 - and $K_{3,3}$ -minor-freeness)

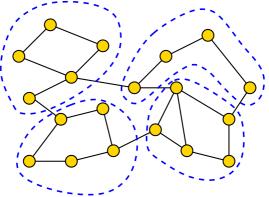
- ▲ Algorithm (given partitioning oracle for planar graphs that usually cuts $\leq \epsilon n/2$ edges):
 - Estimate the number of cut edges by sampling
 - If greater than $\epsilon n/2$, reject
 - Check a few random components if planar
 - If any non-planar found, reject otherwise, accept



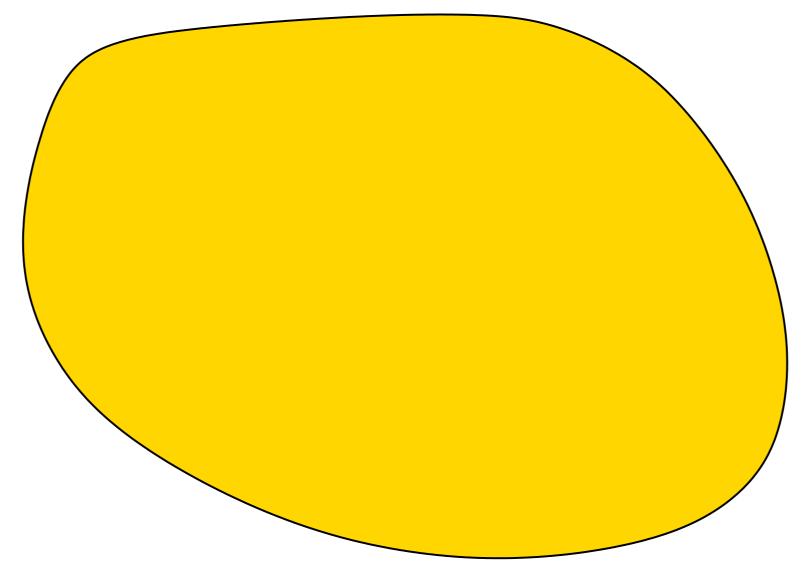
Example: Testing planarity

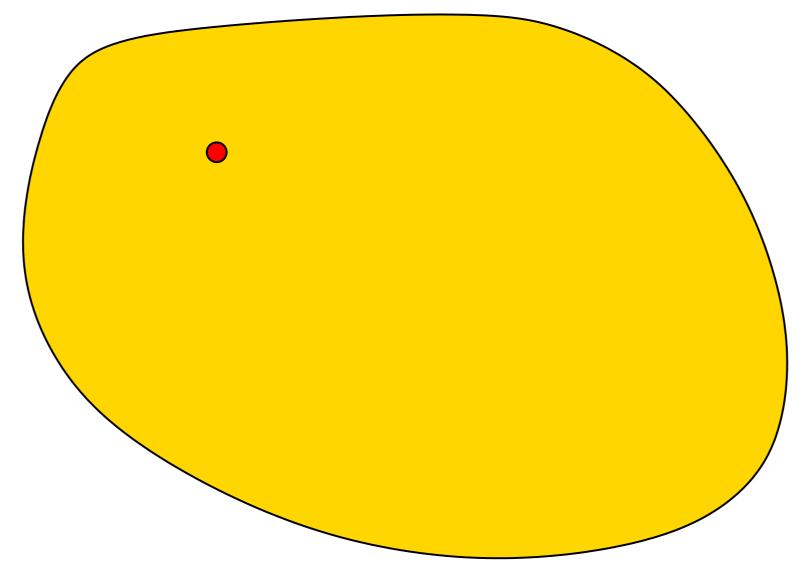
(i.e., K_5 - and $K_{3,3}$ -minor-freeness)

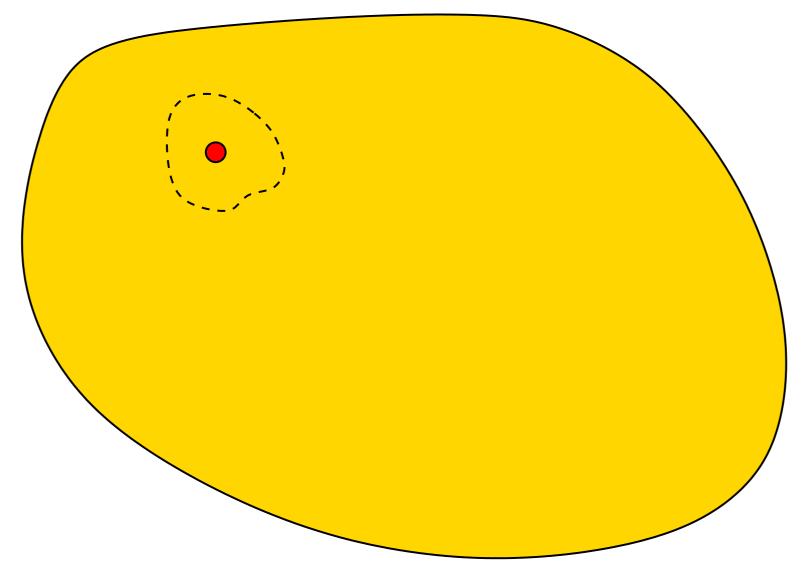
- ▲ Algorithm (given partitioning oracle for planar graphs that usually cuts $\leq \epsilon n/2$ edges):
 - Estimate the number of cut edges by sampling
 - If greater than $\epsilon n/2$, reject
 - Check a few random components if planar
 - If any non-planar found, reject otherwise, accept
- Why it works:
 - planar: few edges cut in the partition
 - ϵ -far: either many edges cut or many copies of $K_{3,3}$ or K_5

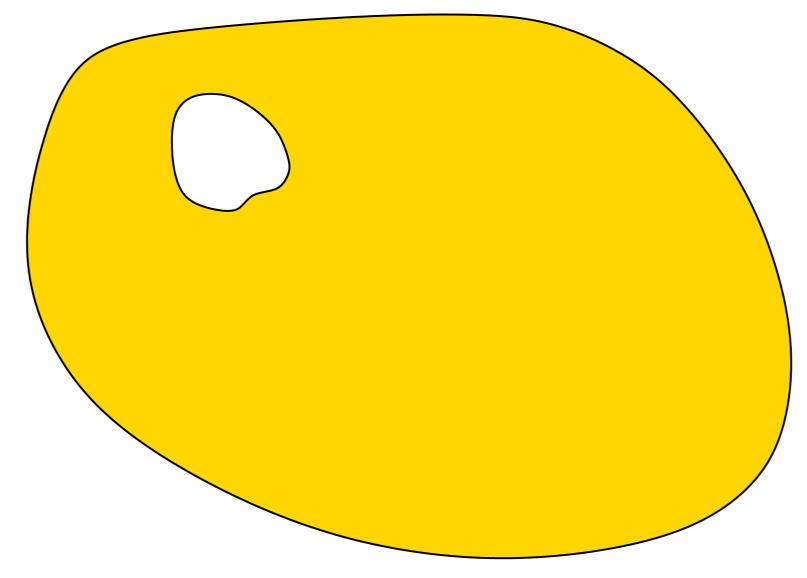


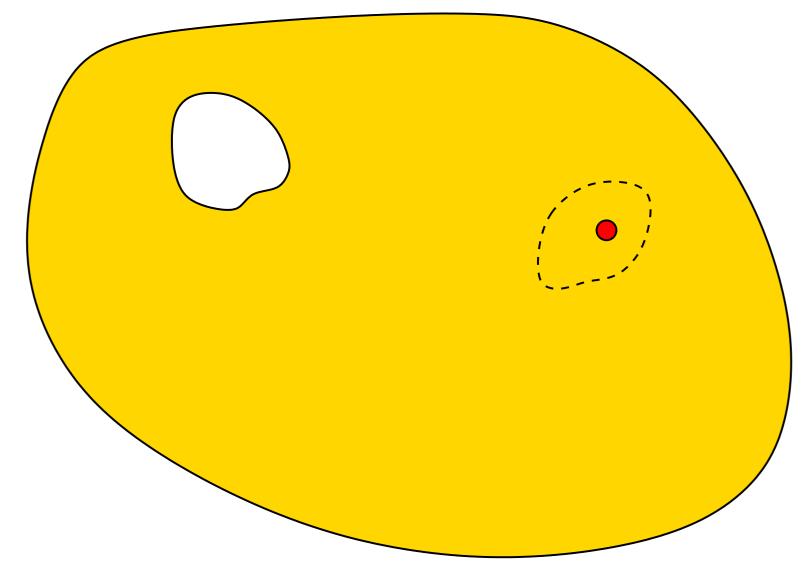
Simplest Oracle

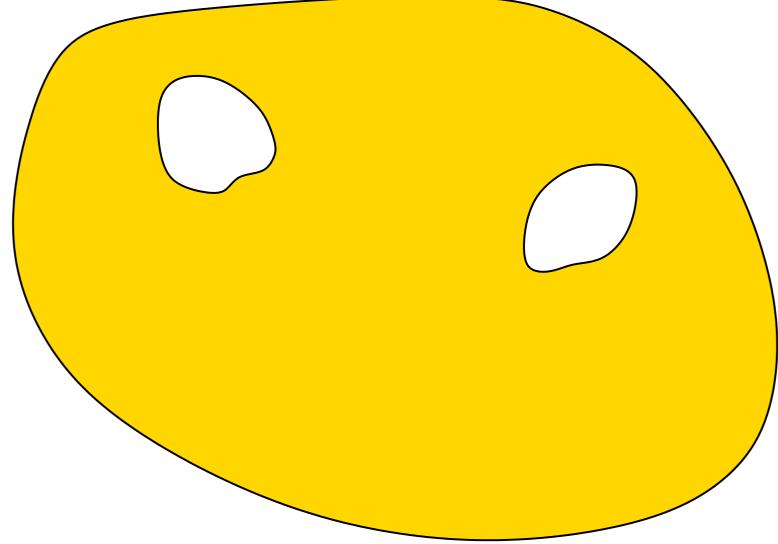


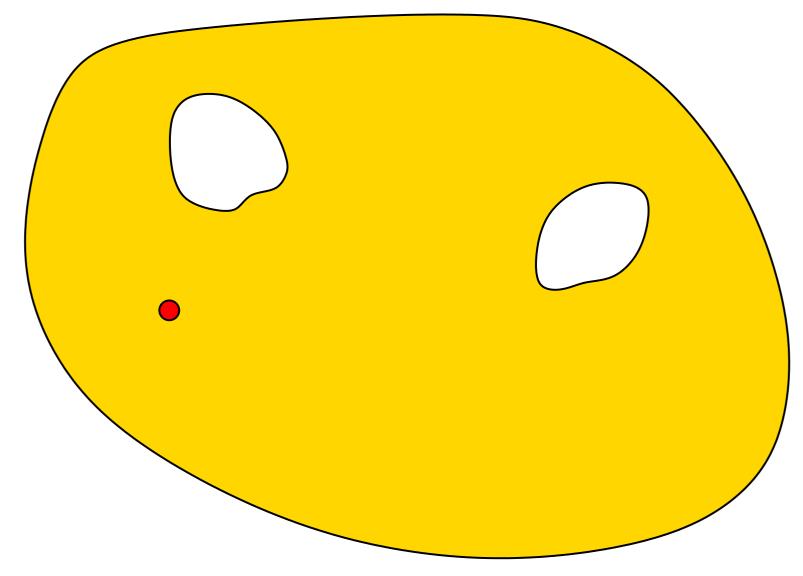






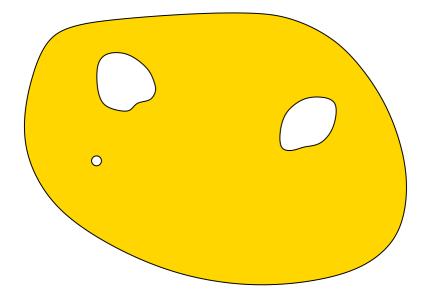






Global procedure: \bigcirc

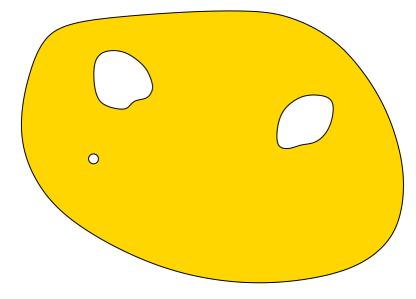
Local simulation



Same technique as for MIS:

Random numbers assigned to vertices generate a random permutation

Local simulation



Same technique as for MIS:

- Random numbers assigned to vertices generate a random permutation
- To find a component of v:
 - recursively check what happened to close vertices with lower numbers
 - if v still in graph, try to carve out a component

Roadmap

- 1. Simulation of greedy algorithms
- 2. Partitioning oracles
- 3. Random walks

- Testing expansion
- Testing graph clusterability

- Testing expansion
- Testing graph clusterability
- If a graph is an expander, short random walks should result in near uniform distribution
- Program suggested by Goldreich and Ron (2000) (this lead to the development of distribution testing)

- Testing expansion
- Testing graph clusterability
- If a graph is an expander, short random walks should result in near uniform distribution
- Program suggested by Goldreich and Ron (2000) (this lead to the development of distribution testing)
- Resolved by a few teams in 2007: Czumaj and Sohler; Kale and Seshadhri; Nachmias and Shapira

- Testing expansion
- Testing graph clusterability
- If a graph is an expander, short random walks should result in near uniform distribution
- Program suggested by Goldreich and Ron (2000) (this lead to the development of distribution testing)
- Resolved by a few teams in 2007: Czumaj and Sohler; Kale and Seshadhri; Nachmias and Shapira
- More recently Czumaj, Peng, and Sohler (2014) gave tester for k-clusterability

Detection via Random Walks

- Testing bipartiteness (= finding odd-length cycles)
- Finding graph minors

Detection via Random Walks

- Testing bipartiteness (= finding odd-length cycles)
- Finding graph minors
- Can be found in an expander
- Implicit expander decomposition in which random walks likely to stay in their components
- Run $\sim n^{1/2}$ random walks from a few places

Detection via Random Walks

- Testing bipartiteness (= finding odd-length cycles)
- Finding graph minors
- Can be found in an expander
- Implicit expander decomposition in which random walks likely to stay in their components
- Run $\sim n^{1/2}$ random walks from a few places
- Testing bipartiteness: Goldreich, Ron (1998)
- Finding graph minors:
 Czumaj, Goldreich, Ron, Seshadhri, Shapira, Sohler (2010)
 Fichtenberg, Levi, Vasudev, Wötzel (2017)
 Kumar, Seshadhri, Stolman (2018)

Task: Find odd-length cycle in planar graph far from bipartiteness

- Task: Find odd-length cycle in planar graph far from bipartiteness
- For bounded degree planar graph, partitioning oracles solve the problem
- Much less clear in unbounded graphs

- Task: Find odd-length cycle in planar graph far from bipartiteness
- For bounded degree planar graph, partitioning oracles solve the problem
- Much less clear in unbounded graphs
- O(1)-length random walk finds odd-length cycle with constant probability
 (Czumaj, Monemizadeh, Onak, Sohler 2011)
- Complicated analysis based on shrinking cycles

- Task: Find odd-length cycle in planar graph far from bipartiteness
- For bounded degree planar graph, partitioning oracles solve the problem
- Much less clear in unbounded graphs
- O(1)-length random walk finds odd-length cycle with constant probability
 (Czumaj, Monemizadeh, Onak, Sohler 2011)
- Complicated analysis based on shrinking cycles
- Later this week: extensions to some other properties (Czumaj, Sohler)

Questions?