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Motivation
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Estimate a graph parameter:
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Roadmap

Focus on:

simple graph problems and properties

sparse graphs

1. Simulation of greedy algorithms

2. Partitioning oracles

3. Random walks



Graph Access Model

Allowed operations:

Can obtain a random vertex

Can query the degree deg(v) of a specific vertex v

For each vertex v and each i ∈ {1, 2, . . . , deg(v)},
can obtain the i-th neighbor of v

Essentially: query access to adjacency lists
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Example: Vertex Cover

Goal: find smallest set S of vertices such that each edge
has endpoint in S

Best polynomial time algorithm: 2-approximation

Here:
VC− ǫn ≤ (computed value) ≤ 2 · VC+ ǫn

where VC = minimum vertex cover size
n = number of vertices
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Essential Technique

We develop a local computation technique

Multiple applications:

vertex cover approximation

maximum matching approximation

computing nice partitions of graphs

local distributed algorithms

approximate planarity verification

local computation algorithms

Will present and apply a less general version:

local computation of maximal independent set
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Main Tool:

Constructing a Maximal

Independent Set Locally



Oracle for Maximal Independent Set

Want to construct oracle O:

O has query access to G = (V,E)

O provides query access to maximal independent set I ⊆ V

I is not a function of queries
it is a function of G and random bits

Yes/No

v ∈ I?

Oracle O

Goal: Minimize the query processing time



Challenge of Locality
Simplest algorithm for Maximal Independent Set I:

Start with I = ∅

Consider vertices v one by one:
If no neighbor of v in I, add v to I

Want to simulate this algorithm locally:
Check what happened to earlier neighbors

Problem: long chains of dependencies

Solution: consider vertices in random order
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Local MIS Simulation
Nguyen, O. (2008)

Main idea:

select maximal independent set greedily

consider vertices in random order

Random order ≡ random numbers r(v) assigned to each vertex

To check if v ∈ I

recursively check if neighbors w s.t. r(w) < r(v) are in I

v ∈ I ⇐⇒ none of them in I

E[#visited vertices] and query complexity of order 2O(d)
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Improvement
Heuristic:

Consider neighbors w of v in ascending order of r(w)

Once you find w ∈ I, v 6∈ I
(i.e., don’t check other neighbors)

.60
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.55

.42

.91

.77

.82

?

Yoshida, Yamamoto, Ito (STOC 2009):

E permutations, start vertex [#recursive calls] ≤ 1 +
m

n

Which gives:

expected query complexity for random vertex = O(d2)
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Greedily find a maximal matching M
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Sublinear-Time Algorithm

General Idea:

construct oracle O that answers queries: Is e ∈ E in M?
for a fixed maximal matching M

maximal matching
≡

maximal independent set in the line graph

approximate the number of vertices matched in M up to

±ǫn by checking for O(1/ǫ2) vertices if they are matched

#queries to O = (#tested nodes) · (max-degree) = O(d/ǫ2)

This gives:

VC− ǫn ≤ (computed value) ≤ 2 · VC+ ǫn

Running time: 2O(d)/ǫ2
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VC− ǫn ≤ output ≤ 2 · VC + ǫn

Parnas, Ron (2007): dO(log(d)/ǫ3) queries

via simulation of local distributed algorithms

Marko, Ron (2007): dO(log(d/ǫ)) queries

via Luby’s algorithm

Nguyen, O. (2008): 2O(d)/ǫ2 queries

the algorithm and proof presented here

Yoshida, Yamamoto, Ito (2009): O(d4/ǫ2) queries

the Nguyen, O. algorithm + analysis of the heuristic

O., Ron, Rosen, Rubinfeld (2012): Õ(d/ǫ3) queries

further refinements of NO and YYI

sampling from the neighbor sets

near optimal: Ω(d) lower bound due to Parnas, Ron (2007)



Better Approximation

for Maximum Matching



Maximum Matching

Goal: find a set of disjoint edges of maximum cardinality



Review of Properties

Augmenting Path: a path that improves matching

M = matching, M∗ = maximum matching

Fact: There are |M∗| − |M | disjoint augmenting paths for M

Fact:
No augmenting paths of length < 2k+ 1 ⇒ |M | ≥ k

k+1 |M
∗|

To get (1 + ǫ)-approximation, set k = ⌈1/ǫ⌉
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Standard Algorithm

Lemma [Hopcroft, Karp 1973]:

M = matching with no augmenting paths of length < t

P = maximal set of vertex-disjoint augmenting paths
of length t for M

M ′ = M with all paths in P applied

Claim: M ′ has only augmenting paths of length > t

Algorithm:
M := empty matching
for i = 1 to k:

find maximal set of disjoint augmenting paths of length 2i− 1
apply all paths to M

return M
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Transformation
Standard Algorithm:

Constant−Time Algorithm:

augmenting
Eliminate

paths

of length 1

augmenting
Eliminate

paths

of length 3

augmenting
Eliminate

paths

of length 5

augmenting
Eliminate

paths

of length 7

⇒ M1 ⇒ ⇒ M2 ⇒ ⇒ M3 ⇒∅ ⇒ ⇒ M4

no

paths

of length≤ 1

no

paths

of length≤ 7

approximationsampling

no

paths

of length≤ 3

no

paths

of length≤ 5

Oracle O1:

augmenting augmenting augmenting augmenting

Oracle O2: Oracle O3: Oracle O4:

Oracle Oi:

provides query access to Mi

simulates applying to Mi−1 a maximal set of disjoint
augmenting paths of length 2i− 1



Transformation

Sample graph considered by O2:

Oi’s graph has degree dO(i)



Query Complexity
Can’t apply the previous approach!

every query may disclose some information about the
random numbers

algorithm could use it to form a malicious query

Locality Lemma:

for q queries, needs to visit at most q2 · 2O(d4)/δ vertices
with probability 1− δ

Query complexity: 2d
O(1/ǫ)

queries for (1, ǫn)-approximation

Yoshida, Yamamoto, Ito (2009)

Query complexity: dO(1/ǫ2)

uniform on higher level ⇒ close to uniform on lower
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Roadmap

1. Simulation of greedy algorithms

2. Partitioning oracles

3. Random walks



Hyperfinite Graphs

(ǫ, δ)-partition

(All graphs of degree O(1))

(ǫ, δ)-hyperfinite graphs: can remove ǫ|V | edges and get
components of size at most δ

hyperfinite family of graphs: there is ρ such that all
graphs are (ǫ, ρ(ǫ))-hyperfinite for all ǫ > 0



Hyperfinite Graphs

(ǫ, δ)-partition

(All graphs of degree O(1))

(ǫ, δ)-hyperfinite graphs: can remove ǫ|V | edges and get
components of size at most δ

hyperfinite family of graphs: there is ρ such that all
graphs are (ǫ, ρ(ǫ))-hyperfinite for all ǫ > 0



Taxonomy

Subexponential

Minor−Free Graphs

Hyperfinite Graphs

Growth
Polynomial

Growth



Using a Partition

If someone gave us a (ǫ/2, δ)-partition:

Algorithm

Sample O(1/ǫ2) vertices

Compute minimum vertex cover for the sampled
components

Return the fraction of the sampled vertices in the covers

This gives ±ǫ approximation to VC(G)/n in constant time:

Cut edges change VC(G) by at most ǫn/2

Can compute vertex cover separately for each
component
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Algorithm

We can compute the partition without looking
at the entire graph

New Tool: Partitioning Oracles
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Partitioning Oracle
Hassidim, Kelner, Nguyen, O. (2009)

Oracle
vertex v

P (v)

C = fixed hyperfinite class

oracle has query access to G = (V,E)
(G need not be in C)

oracle provides query access to partition P of V ;
for each v, oracle returns P (v) ⊆ V s.t. v ∈ P (v)

Properties of P :

each |P (v)| = O(1)

If G ∈ C, number of cut edges ≤ ǫn w.p. 99
100

partition P (·) is not a function of queries,
it is a function of graph structure and random bits
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Partitioning Oracle
Hassidim, Kelner, Nguyen, O. (2009)

Oracle
vertex v

P (v)

C = fixed hyperfinite class

oracle has query access to G = (V,E)
(G need not be in C)

oracle provides query access to partition P of V ;
for each v, oracle returns P (v) ⊆ V s.t. v ∈ P (v)
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each |P (v)| = O(1)

If G ∈ C, number of cut edges ≤ ǫn w.p. 99
100

partition P (·) is not a function of queries,
it is a function of graph structure and random bits



Oracle Implementations

Generic oracle for any hyperfinite class of graphs

Query complexity: 2d
O(ρ(ǫ3/C))

for some constant C

Via local simulation of a greedy partitioning
procedure (uses [Nguyen, O. 2008])

For minor-free graphs:

Query complexity:

Via techniques from distributed algorithms
[Czygrinow, Hańćkowiak, Wawrzyniak 2008]

For ρ(ǫ) ≤ poly(1/ǫ):

Query complexity: 2poly(d/ǫ)

Constant Treewidth:

Query complexity: poly(d/ǫ)

Edelman, Hassidim, Nguyen, O. (2011)
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Generic oracle for any hyperfinite class of graphs

Query complexity: 2d
O(ρ(ǫ3/C))

for some constant C

For minor-free graphs:

Query complexity: dO(log2(1/ǫ))

Via techniques from distributed algorithms
[Czygrinow, Hańćkowiak, Wawrzyniak 2008]

Improved by Levi and Ron (2013)

For ρ(ǫ) ≤ poly(1/ǫ):

Query complexity: 2poly(d/ǫ)

Constant Treewidth:
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Edelman, Hassidim, Nguyen, O. (2011)
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Generic oracle for any hyperfinite class of graphs

Query complexity: 2d
O(ρ(ǫ3/C))

for some constant C

For minor-free graphs:

Query complexity: dO(log2(1/ǫ))

For ρ(ǫ) ≤ poly(1/ǫ):

Query complexity: 2poly(d/ǫ)

Via methods from distributed algorithms and
partitioning methods of Andersen and Peres (2009)

Constant Treewidth:

Query complexity: poly(d/ǫ)

Edelman, Hassidim, Nguyen, O. (2011)
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Two Applications

1. Approximately learning hyperfinite graphs

Then solve an arbitrary problem on
almost the same graph

2. Testing minor-closed properties

Simpler proof of the result due to Benjamini,
Schramm, and Shapira (2008)

Much faster tester
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Application 1: Learning

Input graphs can be decomposed into constant size
components by cutting few edges

Algorithm:

sample large constant number of vertices

query their components

approximately learn the distribution of components

component size ≤ k ⇒ ≤2k
2

different component types

Can learn a graph close to the input by sampling

2k
2

·O(1/ǫ2) vertices

Application: solve any testing or approximation problem
on almost the same graph

First proof: Newman and Sohler (2011)
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Application 2: Testing

Testing H-minor-freeness in the sparse graph model
of Goldreich and Ron (1997)

Input: query access to constant degree graph G
& parameter ǫ > 0

Goal: w.p. 2/3
accept H-minor-free graphs
reject graphs far from H-minor-freeness: ≥ ǫn edges
must be removed to achieve H-minor-freeness

Time and query complexity:

Goldreich, Ron (1997): cycle-freeness in poly(1/ǫ) time

Benjamini, Schramm, Shapira (2008): any minor in 22
2poly(1/ǫ)

time

Via partitioning oracles: 2polylog(1/ǫ) and simpler proof
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Application 2: Testing

Example: Testing planarity
(i.e., K5- and K3,3-minor-freeness)

Algorithm (given partitioning oracle for planar graphs
that usually cuts ≤ ǫn/2 edges):

Estimate the number of cut edges by sampling

If greater than ǫn/2, reject

Check a few random components if planar

If any non-planar found, reject
otherwise, accept

Why it works:

planar: few edges cut in the partition

ǫ-far: either many edges cut
or many copies of K3,3 or K5
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Simplest Oracle



Iterative Procedure

Global procedure:
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Local simulation

Same technique as for MIS:

Random numbers assigned to vertices generate a
random permutation

To find a component of v:

recursively check what happened to close vertices
with lower numbers

if v still in graph, try to carve out a component
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Roadmap

1. Simulation of greedy algorithms

2. Partitioning oracles

3. Random walks



Random Walks and Expansion

Applications:

Testing expansion

Testing graph clusterability

If a graph is an expander, short random walks should
result in near uniform distribution

Program suggested by Goldreich and Ron (2000)
(this lead to the development of distribution testing)

Resolved by a few teams in 2007: Czumaj and Sohler;
Kale and Seshadhri; Nachmias and Shapira

More recently Czumaj, Peng, and Sohler (2014) gave
tester for k-clusterability
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Detection via Random Walks

Applications:

Testing bipartiteness (= finding odd-length cycles)

Finding graph minors

Can be found in an expander

Implicit expander decomposition in which random walks
likely to stay in their components

Run ∼n1/2 random walks from a few places

Testing bipartiteness: Goldreich, Ron (1998)

Finding graph minors:
Czumaj, Goldreich, Ron, Seshadhri, Shapira, Sohler (2010)

Fichtenberg, Levi, Vasudev, Wötzel (2017)

Kumar, Seshadhri, Stolman (2018)
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Detection in Minor-Free Graphs

Task: Find odd-length cycle in planar graph
far from bipartiteness

For bounded degree planar graph, partitioning oracles
solve the problem

Much less clear in unbounded graphs

O(1)-length random walk finds odd-length cycle with
constant probability
(Czumaj, Monemizadeh, Onak, Sohler 2011)

Complicated analysis based on shrinking cycles

Later this week: extensions to some other properties
(Czumaj, Sohler)



Detection in Minor-Free Graphs

Task: Find odd-length cycle in planar graph
far from bipartiteness

For bounded degree planar graph, partitioning oracles
solve the problem

Much less clear in unbounded graphs

O(1)-length random walk finds odd-length cycle with
constant probability
(Czumaj, Monemizadeh, Onak, Sohler 2011)

Complicated analysis based on shrinking cycles

Later this week: extensions to some other properties
(Czumaj, Sohler)



Detection in Minor-Free Graphs

Task: Find odd-length cycle in planar graph
far from bipartiteness

For bounded degree planar graph, partitioning oracles
solve the problem

Much less clear in unbounded graphs

O(1)-length random walk finds odd-length cycle with
constant probability
(Czumaj, Monemizadeh, Onak, Sohler 2011)

Complicated analysis based on shrinking cycles

Later this week: extensions to some other properties
(Czumaj, Sohler)



Detection in Minor-Free Graphs

Task: Find odd-length cycle in planar graph
far from bipartiteness

For bounded degree planar graph, partitioning oracles
solve the problem

Much less clear in unbounded graphs

O(1)-length random walk finds odd-length cycle with
constant probability
(Czumaj, Monemizadeh, Onak, Sohler 2011)

Complicated analysis based on shrinking cycles

Later this week: extensions to some other properties
(Czumaj, Sohler)



Questions?
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