Sublinear Algorithms for
Hierarchical Clustering

Sanjeev Khanna
University of Pennsylvania

Joint work with Arpit Agarwal (Columbia), Huan Li (Penn), and
Prathamesh Patil (Penn).

Hierarchical Clustering

A technique to cluster data into
a multilevel hierarchy based on AV
similarity. e
- A
) {
ki
\. . |
ki
y y

Hierarchical Clustering

A technique to cluster data into
a multilevel hierarchy based on
similarity. It arranges data as a
rooted tree such that

-- the root represents the entire data
set, and each leaf corresponds to a
unique data point.

-- each internal node corresponds to a
cluster containing its descendant leaves

Hierarchical Clustering

A technique to cluster data into
a multilevel hierarchy based on
similarity. It arranges data as a
rooted tree such that:

-- the root represents the entire data

set, and each leaf corresponds to a
unique data point.
-- each internal node corresponds to a

cluster containing its descendant leaves

o | Do

Clusters data at multiple levels of

E)

=

granularity simultaneously.

The Hierarchical Clustering Problem

Dasgupta (2016) introduced the following formalization:

= Input: A weighted graph whose vertices correspond to
data points and whose edges capture similarity between
the data points.

= The cost of any HC tree T is given by
COSt(T) = Zsphts S—(S,Sy) iNT (|S| " Wq (Sl;ST))
where w; (S}, S;) = total weight of edges going from S; to S,..

Goal: Find a tree that minimizes this cost.

The Hierarchical Clustering Problem

The cost function incentivizes cutting high weight similarity
edges deeper down the tree.

Why this Cost Function?

s Dasgupta (2016) motivates this cost function as having
several desirable properties :

= When the data consists of a collection of connected components,

an optimal tree starts by building a hierarchy that separates the
components.

= When the input graph is a clique, all trees should have the same
cost — no particular cluster hierarchy is to be favored.

= It recovers the desirable solution for some models of planted
cluster partitions.

s Cohen-Addad et al. (2019) take an axiomatic approach to
characterize good cost functions in general.

= We will focus on the Dasgupta objective in this talk.

The Hierarchical Clustering Problem

= The problem of finding the best HC tree is NP-hard.
s Assuming Small Set Expansion (SSE) conjecture, no
O (1)-approximation possible [Charikar-Chatziafratis 17].
= A natural algorithm called recursive sparsest cut gives
O (a)—-approximation where a = 0(\/@) is the sparsest

cut approximation guarantee [Charikar-Chatziafratis 17],
[Cohen-Addad et al. 19].

Useful fact: At expense of an 0 (1)-loss in approximation
ratio, we can assume that each binary partition is roughly
balanced.

Sublinear Algorithms

Can we match the best-known approximation guarantees for
hierarchical clustering via sublinear algorithms?

Based on the computational platform, we may want sublinear
query/time, space, or communication algorithms.

We will consider all three resources.

Sublinear Space Algorithms

Streaming Model of Computation

= The graphis presented as a stream of edges.

= The algorithm has limited memory to store information
about the edges seen in the stream.

= A natural model when the input is either generated on the
fly”” or is stored on a sequential access device, like a disk.

= The algorithm no longer has random access to the input.

Goal is to design algorithms that use space that is much
smaller than the size of the graph.

Sublinear Query/Time Algorithms

Query Model of Computation

= Degree queries: What is the degree of a vertex v?
s Pair queries: Is (u, v) an edge?
= Neighbor queries: Who is the k;, neighbor of a vertex v?

Goal is to design algorithms that compute by performing only
a few queries — much smaller than the size of the graph.

Additional goal: efficiently process the queries to recover a
good HC tree.

Sublinear Communication Algorithms

MPC Model of Computation (Massively Parallel Computation)

= The edges of the graph are partitioned across multiple
machines in an arbitrary manner.

= Each machine has small memory — much smaller than the
input.

= Computation proceeds in rounds where in each round, a
machine can send and receive limited information to other
machines (not exceeding its memory).

Goal is to compute in a small number of rounds using only
machines with small memory.

Our Results

= There are efficient sublinear algorithms for hierarchical
clustering in all three models of computation.

= There are also nearly matching lower bounds that show
these algorithms are essentially best possible.

Notation: We will use n to denote the number of vertices and
m to denote the number of edges.

Results o0: Sublinear Space
Algorithms

Theorem o: Given a weighted graph G as a stream of edges,
there is an O(n) space algorithm to find a (1 + 0(1))-
approximate hierarchical clustering of G.

= The approximation guarantee above is better than
0(\/@) because the model allows unbounded
computation time. It is 0(\/@) in poly-time.

= [tis also easy to show that ()(n) space is necessary to
obtain any O(1)-approximation.

= The algorithm also works for dynamic streams.

Results 1: Sublinear Communication
Algorithms (MPC Model)

Theorem 1: Given a weighted graph G with edges partitioned
across machines with 0(n) memory, can find a (1 + 0(1))-
approximate hierarchical clustering of G in 2 rounds.

Theorem 2: No randomized 1-round protocol using machines
with n*/3~€ memory for any € > 0, can output an 0(1) -
approximate hierarchical clustering even on unweighted
graphs.

Results 2: Sublinear Query/Time
Algorithms

Theorem 3: Given an unweighted graph G with m edges, there
is an algorithm that outputs a (1 + 0(1))—-approximate
hierarchical clustering of G using

= O(n+m) queries if m < n*/3,

s O(n+m/a®)queriesif m = a.n*/3 for some a > 1.

The query bound starts becoming sublinear once m exceeds
n*/3, and then drops to O(n) queries once m > n3/2,

Results 2: Sublinear Query/Time
Algorithms

= By investing an additional n1**t°(1) time over the query

complexity, we can get an 0(\/log n/t)-approximate
solution [Sherman 09] and [Chen, Kyng, Liu, Peng, Probst
Gutenberg, Sachdeva 22].

= We can get similar guarantees for the weighted case,
assuming a suitable graph representation.

Theorem 4: The query complexity achieved by the algorithm
in Theorem 3 is essentially optimal for every edge density.

Related Recent Work

Assadi, Chatziafratis, Lacki, Mirrokkni, and Wang (2022)

= Focuses on estimating the HC value in sublinear in n space,
and shows several negative results.

= Also gives algorithms for finding a ©(1)-approximate HC
tree in the streaming and the MPC model - this is slightly
weaker than (1 + o(1))—-approximation that we get.

Kapralov, Kumar, Lattanzi, Mousavifar (2022)

= Focuses on estimating the HC value in sublinear queries in
(k, €)-clusterable graphs: input is k expanders with outer
conductance bounded by €.

1
s 0(y/log k)—-approximation in poly(k). n5+0(6)queries.

Sublinear Algorithms

Graph Sparsification for HC

Given any HC tree T, the cost of T' is given by
COSt(G)T) = Zspllts 5—(S1,S;) iNT (|S| " Wg (Sl;ST))
where w; (S}, S;-) = total weight of edges going from S; to S,..

Natural idea: Work with an approximate cut sparsifier of (.
For any pair of disjoint sets X, Y, we can express w;(X,Y) in
terms of cutsin G:

1 — J— -
we (S1, Sr) = 5. (Wa (S, S1) + we (Sr, Sr) = we (S U Sy, 51 U Sy)).

Problem: Expressing w (S}, S;) as difference of approximately
preserved values, can result in unbounded error.

Graph Sparsification for HC

1 S I -
we(S1, Sr) = 5. (Wa (S, S1) + we (Sy, Sp) = we (S U Sy, 51 U).

Observation: If we fix any HC tree, the negative term at any
node appears with a strictly larger positive coefficient at the
parent of the node.

(A) Al.5 . (w (B, B) + wg(C,C) —wg(4,4))

(B)) |Bl.5-(w(D,D) +we(E, E) — wg(B,B))

Note that |4]| > |B|.
oG Bl

Graph Sparsification for HC

Upshot: The cost of any tree T can be written as

1 = - —
ZSpIItS S_)(Sl:-sr) in T E (|ST'| WG (Slr Sl) + |Sl|' WG(ST'JST')) + Zv WG(U, v))
We get a blackbox reduction to cut sparsifiers.

To geta (1 + o(1))-approximate hierarchical clustering, it
suffices to construct a (1 + o(1))-approximate cut sparsifier.

Now we can just focus on accomplishing this task in various
models of computation.

Immediate Applications

Corollary (Thm 0): There is an O(n) space dynamic streaming
algorithm that outputs a (1 + 0(1)) —approximate
hierarchical clustering of a weighted graph.

Corollary (Thm 1): There is a 2-round MPC algorithm with O(n)
space per machine that outputs a (1 + o(1))-approximate
hierarchical clustering of a weighted graph.

Both results basically follow from [Ahn, Guha, McGregor 12].

Application to Sublinear Time?

Constructing a cut sparsifier necessarily requires ()(m) queries
(even for connectivity).

We will work with a relaxed notion of cut sparsifiers that will
prove much easier to construct.

A Relaxed Notion of Cut Sparsifiers

Agraph H(V, E")is an (€, §)-sparsifier of a graph G(V, E) if for
any cut (S, S), we have

(1—e)ws(S) <wy(S) < (A + e)we(S) + 8. min{|S|, |S]}
The usual notion of cut sparsifiers gives an (¢, 0)-sparsifier.

Lemma: If H is an (€, §)-sparsifier of a graph G then for any HC
tree T, we have
(1 — €)costs(T) < costy(T) < (1 + €)costs(T) + 0(6.1%)

High-level Plan for Sublinear Time

We will focus on unweighted graphs.

= Show that larger the 9§, the easier it is to compute an
(€, 6)-sparsifier.

= But how large can we make 4 to stillgeta (1 + 0(1)) -
approximation?

= ldentify an easy to compute lower bound C for optimal HC
cost,andseto = o (n%) toget (1 + o(1))—-approximation.

High-level Plan for Sublinear Time

Lemma: The cost of hierarchical clustering on any unweighted

2
graph G with n vertices and m edges is Q(m?).

Example: Suppose G is any graph with m >» n3/? edges, then
optimal tree cost is > nZ.

Soif we set § = 0(1), then the 0(5.n?) additive error term is
negligible because optimal tree cost is »> nZ.

Let us focus on this density regime, and we will design a
0(n/s?) query algorithm to construct an (¢, 0(1))-sparsifier.

Constructing an (¢, 0(1))-sparsifier

[Spielman-Srivastava 11]
One way to construct an (g, 0)-sparsifier of G:

sample O(n log n/e*) times each edge e = (u, v) with
probability p, proportional to R (u, v) = effective resistance
between u and v.

Difficulty: How to estimate effective resistances in sublinear
time?

Fix: Add a constant degree expander G' to G.

Constructing an (¢, 0(1))-sparsifier

Observation: Any (¢, 0)-sparsifier for the graph H = G U G’
is an (¢, 0(1))-sparsifier for the graph G.

For any cut (S,5), its size in any (¢, 0)-sparsifier of H

= isatleast (1 —¢e)wg(S), and
s atmost (1 + e)wg(S) + 0(1 + €). min{|S|, |S|}

New Goal: Construct an (¢, 0)-sparsifier of the graph H.

An (e, 0)-sparsifier of the Graph H

What have we gained by shifting the focus to H instead of G?

Observation: For any edge e = (u, v), its effective resistance
R(u,v) in H satisfies

1 O(logn)

min{ dy (@), dn ()]~ T) S S G, dn ()

R(u,v) >

min{ dp W, dp @) © coY

An (e, 0)-sparsifier of the Graph H

O(logn)
min{ dy (w),dy (v)}
In a constant degree expander, for any 2 sets X and Y, there
are =~ min{|X|, |Y|} edge-disjoint paths of O (logn) length
between X and Y [Frieze 01].

More interesting direction: R(u,v) <

O(logn)

-

X = N(w) Y = N@)

Constructing an (¢, 0(1))-sparsifier

We now have a very simple algorithm to construct an (¢, 0)-
sparsifier for the graph H = G U G'.

Repeat the following for O(n/e?) steps:
= sample arandom vertex v.

= sample arandom edge incident on v, and add it to the
sparsifier.

Thus in 0(n/e?) queries, we get a sparsified graph that gives
a (1 + e€)—approximation to hierarchical clustering whenever
the input graph contains m > n3/? edges.

General Case: An (€, 8)-sparsifier

Add constant degree expander G’ with edges of weight §.

Observation: For any edge (u,v) in H = G U G', we have

1 O (logn)

1
min{ dy), dy (@)} = 7 = Hinl), du(@)) 3

Now construct an (€, 0)-sparsifier for the graph H = G U G’ by
sampling as before for 0(n/8e?) steps.

A variation of this expander idea was used by [Lee 14] for
efficiently answering a single cut query with bounded additive
error — we need this guarantee to hold for all cut queries.

Lower Bounds

Query Lower Bounds

Theorem: Forany y € (0, %2), there is a family of unweighted
graphs with m = ©(n'*") edges such that any randomized
algorithm that outputs an O(1)-approximate hierarchical
clustering for this family, requires n™int1+v,2=2v}=0(1) queries.

The lower bound
s remains m! =M as m increases from n to n*/3; and

= then gradually decreases from n*/370(1) to n1=0(1) 35
m increases from n*/3 to n3/2,

We will illustrate the lower bound idea for y = 1/3, and show
a lower bound of n*/37°(M) queries.

n*/3-0(1) Query Lower Bound for m = n*/3

n°M) edges
n?/3 randomly matched /
pairs of cliques
Knl/B Kn1/3
Kn1/3 Kn1/3

Kn1/3 Kn1/3

An Optimal Tree

Optimal clustering cost: @(n>/3)

Lower Bound Idea

Consider any 0(1) —approximation algorithm A.

= Assume w.l.o.g. that the top-level partition is roughly
balanced in the solution output by A.

= A must not cut too many clique matching edges at the top
partition since penalty for each edge cut is n. So A must
“discover” most of the meta-matching among the cliques.

= It takes about n?/37°(1) queries to discover match of a
given clique under M.

= We need to discover Q(n?/3) matches in M, giving us an
n*/3=°(Mquery lower bound.

MPC Lower Bound

Theorem 2: No randomized 1-round protocol using machines

with n*/3~€ memory for any € > 0, can output an 0(1) -
approximate hierarchical clustering even on unweighted
graphs.

= The input graph is partitioned across ~ n'/3 machines with
n*/3=€ memory for an arbitrarily small € > 0.

= We want to rule out recovery of an 0(1)-approximate HC
tree in one round of communication.

MPC Lower Bound

|V1| — |V2| = Nn.

Union of ~ n1/3

bipartite cliques
of size = n?/3

G[Vl] -
Union of = n?/3
bipartite cliques
of size =~ n!/3
G[Va] : g %

nl/3—¢ nl/3—¢€ nl/3—¢ nl/3—¢

So 0(n°/3) edges are partitioned across ~ n'/3 machines.

MPC Lower Bound

n2/3—e n2/3—e
- 5 " p Key idea: each machine
O——70) N7 gets a graph isomorphic to
7| () &
K XLR KX

We do this by tiling the

GVl : XS
OO bi-cliques in G|V] by
graphs that are isomorphic
N to G[Vz]
,nl/3—e n1/3—e n1/3—€ n1/3—e

A machine can not tell locally whether it received the
blue cliques, the red cliques, or the graph G[V5] itself.

MPC Lower Bound

n2/3—€
- > - % Key idea: each machine
N4 OR—A0) gets a graph isomorphic to
V/ﬂ
)) &
GIVil ~ SR We do this by tiling the
ey bi-cliques in G[V;] by
graphs that are isomorphic
< g to G[V5].
,nl/3—e n1/3—e n1/3—e n1/3—e

Any O(1)-approximate solution must discover how
the vertices are partitioned across the cliquesin G[V5].

MPC Lower Bound

Key idea: each machine
gets a graph isomorphic to
G[Vs].

We do this by tiling the

G|Vq] :

Vi) bi-cliques in G[V;] by
graphs that are isomorphic
to G[Vz]

n1/3—6 n1/3—€ n1/3—€ n1/3—e

So each of the n'/3 machines needs to send
Q(n) bits of information to the coordinator - this is
much more than the coordinator’s memory.

Concluding Remarks

= We designed near-optimal sublinear algorithms for

hierarchical clustering in the query model, streaming, and
MPC model.

= The main algorithmic ingredient:

= arelaxed notion of cut sparsifiers that is easy to compute in various
computational models.
= We also establish lower bounds that almost match the
performance of our algorithms.

= Aninteresting direction is to understand if there is a
separation between the queries needed to estimate the
value and finding a clustering in general graphs.

Thank you !

