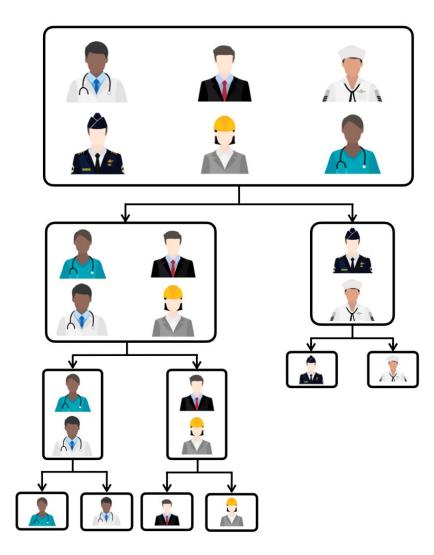
Sublinear Algorithms for Hierarchical Clustering

> Sanjeev Khanna University of Pennsylvania

Joint work with Arpit Agarwal (Columbia), Huan Li (Penn), and Prathamesh Patil (Penn).

Hierarchical Clustering

A technique to cluster data into a multilevel hierarchy based on similarity.

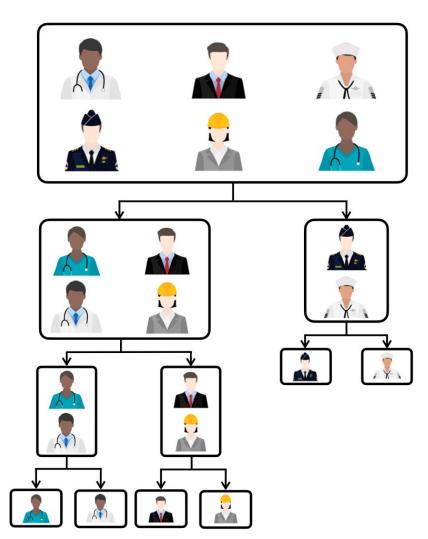


Hierarchical Clustering

A technique to cluster data into a multilevel hierarchy based on similarity. It arranges data as a rooted tree such that

-- the root represents the entire data set, and each leaf corresponds to a unique data point.

-- each internal node corresponds to a cluster containing its descendant leaves



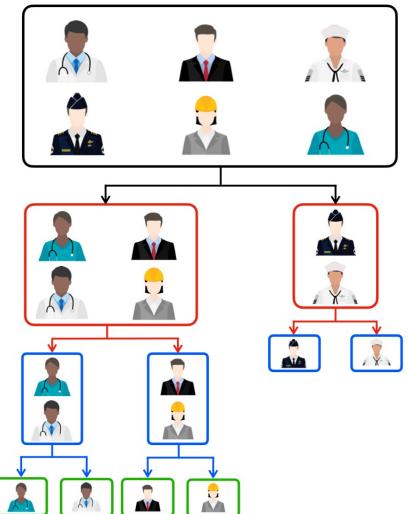
Hierarchical Clustering

A technique to cluster data into a multilevel hierarchy based on similarity. It arranges data as a rooted tree such that:

-- the root represents the entire data set, and each leaf corresponds to a unique data point.

-- each internal node corresponds to a cluster containing its descendant leaves

Clusters data at multiple levels of granularity simultaneously.



The Hierarchical Clustering Problem

Dasgupta (2016) introduced the following formalization:

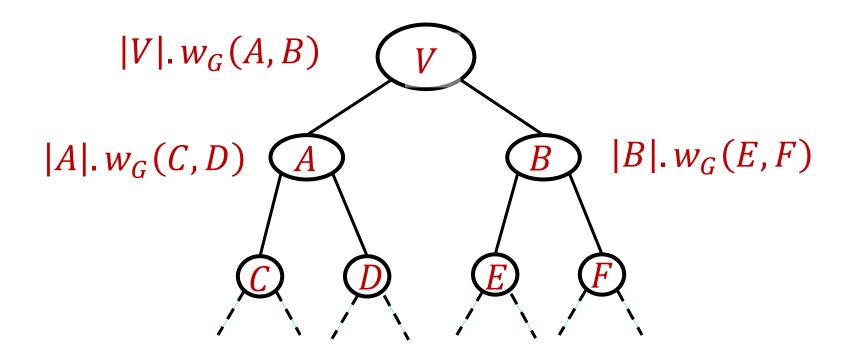
- Input: A weighted graph whose vertices correspond to data points and whose edges capture similarity between the data points.
- The cost of any HC tree *T* is given by

 $Cost(T) = \sum_{splits \ S \to (S_l, S_r) \text{ in } T} (|S| \cdot w_G(S_l, S_r))$

where $w_G(S_l, S_r)$ = total weight of edges going from S_l to S_r .

Goal: Find a tree that minimizes this cost.

The Hierarchical Clustering Problem



The cost function incentivizes cutting high weight similarity edges deeper down the tree.

Why this Cost Function?

- Dasgupta (2016) motivates this cost function as having several desirable properties :
 - When the data consists of a collection of connected components, an optimal tree starts by building a hierarchy that separates the components.
 - When the input graph is a clique, all trees should have the same cost – no particular cluster hierarchy is to be favored.
 - It recovers the desirable solution for some models of planted cluster partitions.
- Cohen-Addad et al. (2019) take an axiomatic approach to characterize good cost functions in general.
- We will focus on the Dasgupta objective in this talk.

The Hierarchical Clustering Problem

- The problem of finding the **best HC tree** is **NP-hard**.
- Assuming Small Set Expansion (SSE) conjecture, no
 0(1)-approximation possible [Charikar-Chatziafratis 17].
- A natural algorithm called recursive sparsest cut gives $O(\alpha)$ -approximation where $\alpha = O(\sqrt{\log n})$ is the sparsest cut approximation guarantee [Charikar-Chatziafratis 17], [Cohen-Addad et al. 19].

Useful fact: At expense of an O(1)-loss in approximation ratio, we can assume that each binary partition is roughly balanced.

Sublinear Algorithms

Can we match the best-known approximation guarantees for hierarchical clustering via sublinear algorithms?

Based on the computational platform, we may want sublinear query/time, space, or communication algorithms.

We will consider all three resources.

Sublinear Space Algorithms

Streaming Model of Computation

- The graph is presented as a stream of edges.
- The algorithm has limited memory to store information about the edges seen in the stream.
- A natural model when the input is either generated ``on the fly" or is stored on a sequential access device, like a disk.
- The algorithm no longer has random access to the input.

Goal is to design algorithms that use space that is much smaller than the size of the graph.

Sublinear Query/Time Algorithms

Query Model of Computation

- Degree queries: What is the degree of a vertex v?
- Pair queries: Is (u, v) an edge?
- Neighbor queries: Who is the k_{th} neighbor of a vertex v?

Goal is to design algorithms that compute by performing only a few queries – much smaller than the size of the graph.

Additional goal: efficiently process the queries to recover a good HC tree.

Sublinear Communication Algorithms

MPC Model of Computation (Massively Parallel Computation)

- The edges of the graph are partitioned across multiple machines in an arbitrary manner.
- Each machine has small memory much smaller than the input.
- Computation proceeds in rounds where in each round, a machine can send and receive limited information to other machines (not exceeding its memory).

Goal is to compute in a small number of rounds using only machines with small memory.

Our Results

- There are efficient sublinear algorithms for hierarchical clustering in all three models of computation.
- There are also nearly matching lower bounds that show these algorithms are essentially best possible.

Notation: We will use n to denote the number of vertices and m to denote the number of edges.

Results o: Sublinear Space Algorithms

Theorem 0: Given a weighted graph G as a stream of edges, there is an $\tilde{O}(n)$ space algorithm to find a (1 + o(1))– approximate hierarchical clustering of G.

- The approximation guarantee above is better than $O(\sqrt{\log n})$ because the model allows unbounded computation time. It is $O(\sqrt{\log n})$ in poly-time.
- It is also easy to show that $\Omega(n)$ space is necessary to obtain any $\tilde{O}(1)$ -approximation.
- The algorithm also works for dynamic streams.

Results 1: Sublinear Communication Algorithms (MPC Model)

Theorem 1: Given a weighted graph G with edges partitioned across machines with $\tilde{O}(n)$ memory, can find a (1 + o(1))– approximate hierarchical clustering of G in 2 rounds.

Theorem 2: No randomized 1-round protocol using machines with $n^{4/3-\epsilon}$ memory for any $\epsilon > 0$, can output an $\tilde{O}(1)$ – approximate hierarchical clustering even on unweighted graphs.

Results 2: Sublinear Query/Time Algorithms

Theorem 3: Given an unweighted graph G with m edges, there is an algorithm that outputs a (1 + o(1))-approximate hierarchical clustering of G using

- $\tilde{O}(n+m)$ queries if $m \le n^{4/3}$.
- $\tilde{O}(n + m/\alpha^3)$ queries if $m = \alpha . n^{4/3}$ for some $\alpha \ge 1$.

The query bound starts becoming sublinear once m exceeds $n^{4/3}$, and then drops to $\tilde{O}(n)$ queries once $m \ge n^{3/2}$.

Results 2: Sublinear Query/Time Algorithms

- By investing an additional $n^{1+\tau+o(1)}$ time over the query complexity, we can get an $O(\sqrt{\log n/\tau})$ -approximate solution [Sherman 09] and [Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva 22].
- We can get similar guarantees for the weighted case, assuming a suitable graph representation.

Theorem 4: The query complexity achieved by the algorithm in Theorem 3 is essentially optimal for every edge density.

Related Recent Work

Assadi, Chatziafratis, Lacki, Mirrokkni, and Wang (2022)

- Focuses on estimating the HC value in sublinear in n space, and shows several negative results.
- Also gives algorithms for finding a $\Theta(1)$ -approximate HC tree in the streaming and the MPC model this is slightly weaker than (1 + o(1))-approximation that we get.

Kapralov, Kumar, Lattanzi, Mousavifar (2022)

Focuses on estimating the HC value in sublinear queries in (k, ε)-clusterable graphs: input is k expanders with outer conductance bounded by ε.

• $O(\sqrt{\log k})$ -approximation in poly(k). $n^{\frac{1}{2}+O(\epsilon)}$ queries.

Sublinear Algorithms

Graph Sparsification for HC

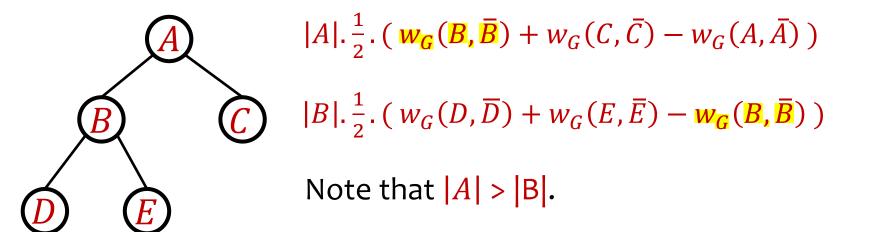
Given any HC tree *T*, the cost of *T* is given by $Cost(G,T) = \sum_{splits \ S \to (S_l,S_r)} in_T (|S| \cdot w_G(S_l,S_r))$ where $w_G(S_l,S_r) = total$ weight of edges going from S_l to S_r .

Natural idea: Work with an approximate cut sparsifier of G. For any pair of disjoint sets X, Y, we can express $w_G(X, Y)$ in terms of cuts in G:

 $w_G(S_l, S_r) = \frac{1}{2} \cdot (w_G(S_l, \overline{S_l}) + w_G(S_r, \overline{S_r}) - w_G(S_l \cup S_r, \overline{S_l} \cup S_r)).$ Problem: Expressing $w_G(S_l, S_r)$ as difference of approximately preserved values, can result in unbounded error.

Graph Sparsification for HC

 $w_G(S_l, S_r) = \frac{1}{2} \cdot (w_G(S_l, \overline{S_l}) + w_G(S_r, \overline{S_r}) - w_G(S_l \cup S_r, \overline{S_l} \cup S_r)).$ Observation: If we fix any HC tree, the negative term at any node appears with a strictly larger positive coefficient at the parent of the node.



Graph Sparsification for HC

Upshot: The cost of any tree T can be written as $\sum_{\text{splits } S \to (S_l, S_r) \text{ in } T} \frac{1}{2} \cdot (|S_r| \cdot w_G(S_l, \overline{S_l}) + |S_l| \cdot w_G(S_r, \overline{S_r})) + \sum_v w_G(v, \overline{v}))$

We get a blackbox reduction to cut sparsifiers.

To get a (1 + o(1))-approximate hierarchical clustering, it suffices to construct a (1 + o(1))-approximate cut sparsifier.

Now we can just focus on accomplishing this task in various models of computation.

Immediate Applications

Corollary (Thm o): There is an $\tilde{O}(n)$ space dynamic streaming algorithm that outputs a (1 + o(1)) –approximate hierarchical clustering of a weighted graph.

Corollary (Thm 1): There is a 2-round MPC algorithm with $\tilde{O}(n)$ space per machine that outputs a (1 + o(1))-approximate hierarchical clustering of a weighted graph.

Both results basically follow from [Ahn, Guha, McGregor 12].

Application to Sublinear Time?

Constructing a cut sparsifier necessarily requires $\Omega(m)$ queries (even for connectivity).

We will work with a relaxed notion of cut sparsifiers that will prove much easier to construct.

A Relaxed Notion of Cut Sparsifiers

A graph H(V, E') is an (ϵ, δ) -sparsifier of a graph G(V, E) if for any cut (S, \overline{S}) , we have

 $(1 - \epsilon)w_G(S) \le w_H(S) \le (1 + \epsilon)w_G(S) + \delta.\min\{|S|, |\bar{S}|\}$

The usual notion of cut sparsifiers gives an $(\epsilon, 0)$ -sparsifier.

Lemma: If *H* is an (ϵ, δ) -sparsifier of a graph *G* then for any HC tree *T*, we have $(1 - \epsilon)cost_G(T) \le cost_H(T) \le (1 + \epsilon)cost_G(T) + O(\delta, n^2)$

High-level Plan for Sublinear Time

We will focus on unweighted graphs.

- Show that larger the δ , the easier it is to compute an (ϵ, δ) -sparsifier.
- But how large can we make δ to still get a (1 + o(1)) approximation?
- Identify an easy to compute lower bound *C* for optimal HC cost, and set $\delta = o\left(\frac{C}{n^2}\right)$ to get (1 + o(1))-approximation.

High-level Plan for Sublinear Time

Lemma: The cost of hierarchical clustering on any unweighted graph *G* with *n* vertices and *m* edges is $\Omega(\frac{m^2}{n})$.

Example: Suppose *G* is any graph with $m \gg n^{3/2}$ edges, then optimal tree cost is $\gg n^2$.

So if we set $\delta = O(1)$, then the $O(\delta, n^2)$ additive error term is negligible because optimal tree cost is $\gg n^2$.

Let us focus on this density regime, and we will design a $\tilde{O}(n/\epsilon^2)$ query algorithm to construct an $(\epsilon, O(1))$ -sparsifier.

Constructing an $(\epsilon, O(1))$ -sparsifier

[Spielman-Srivastava 11]

One way to construct an $(\epsilon, 0)$ -sparsifier of *G*:

sample $O(n \log n/\epsilon^2)$ times each edge e = (u, v) with probability p_e proportional to R(u, v) = effective resistance between u and v.

Difficulty: How to estimate effective resistances in sublinear time?

Fix: Add a constant degree expander G' to G.

Constructing an $(\epsilon, O(1))$ -sparsifier

Observation: Any $(\epsilon, 0)$ -sparsifier for the graph $H = G \cup G'$ is an $(\epsilon, O(1))$ -sparsifier for the graph G.

For any cut (S, \overline{S}) , its size in any $(\epsilon, 0)$ -sparsifier of H

- is at least $(1 \epsilon) w_G(S)$, and
- at most $(1 + \epsilon)w_G(S) + O(1 + \epsilon)$. $min\{|S|, |\overline{S}|\}$

New Goal: Construct an $(\epsilon, 0)$ -sparsifier of the graph *H*.

An $(\epsilon, 0)$ -sparsifier of the Graph H

What have we gained by shifting the focus to H instead of G?

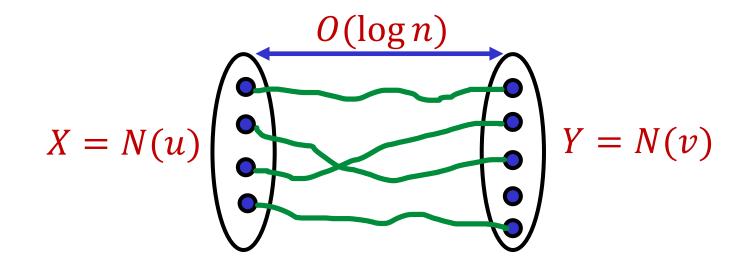
Observation: For any edge e = (u, v), its effective resistance R(u, v) in H satisfies

 $\frac{1}{\min\{d_H(u), d_H(v)\}} \le R(u, v) \le \frac{O(\log n)}{\min\{d_H(u), d_H(v)\}}$

$$R(u,v) \ge \frac{1}{\min\{d_H(u),d_H(v)\}}$$
 is easy.

An $(\epsilon, 0)$ -sparsifier of the Graph H

More interesting direction: $R(u, v) \leq \frac{O(\log n)}{\min\{d_H(u), d_H(v)\}}$ In a constant degree expander, for any 2 sets X and Y, there are $\approx \min\{|X|, |Y|\}$ edge-disjoint paths of $O(\log n)$ length between X and Y [Frieze 01].



Constructing an $(\epsilon, O(1))$ -sparsifier

We now have a very simple algorithm to construct an $(\epsilon, 0)$ -sparsifier for the graph $H = G \cup G'$.

Repeat the following for $\tilde{O}(n/\epsilon^2)$ steps:

- sample a random vertex ν.
- sample a random edge incident on v, and add it to the sparsifier.

Thus in $\tilde{O}(n/\epsilon^2)$ queries, we get a sparsified graph that gives a $(1 + \epsilon)$ -approximation to hierarchical clustering whenever the input graph contains $m \gg n^{3/2}$ edges.

General Case: An (ϵ, δ) -sparsifier

Add constant degree expander G' with edges of weight δ .

Observation: For any edge (u, v) in $H = G \cup G'$, we have

$$\frac{1}{\min\{d_H(u), d_H(v)\}} \le R(u, v) \le \frac{O(\log n)}{\min\{d_H(u), d_H(v)\}} \cdot \frac{1}{\delta}$$

Now construct an $(\epsilon, 0)$ -sparsifier for the graph $H = G \cup G'$ by sampling as before for $\tilde{O}(n/\delta\epsilon^2)$ steps.

A variation of this expander idea was used by [Lee 14] for efficiently answering a single cut query with bounded additive error – we need this guarantee to hold for all cut queries.

Lower Bounds

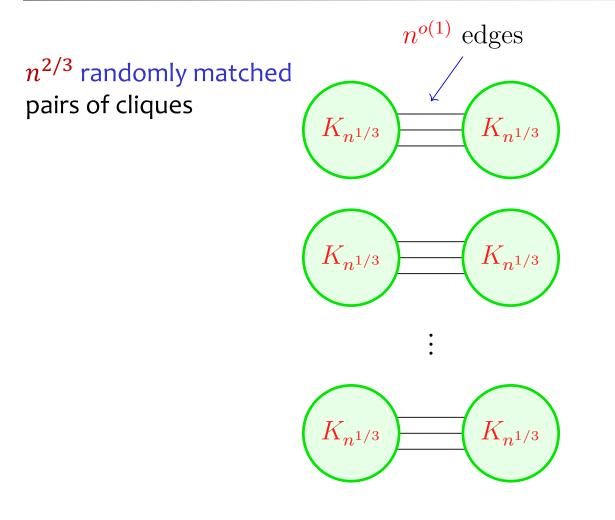
Theorem: For any $\gamma \in (0, \frac{1}{2})$, there is a family of unweighted graphs with $m = \Theta(n^{1+\gamma})$ edges such that any randomized algorithm that outputs an $\tilde{O}(1)$ -approximate hierarchical clustering for this family, requires $n^{\min\{1+\gamma,2-2\gamma\}-o(1)}$ queries.

The lower bound

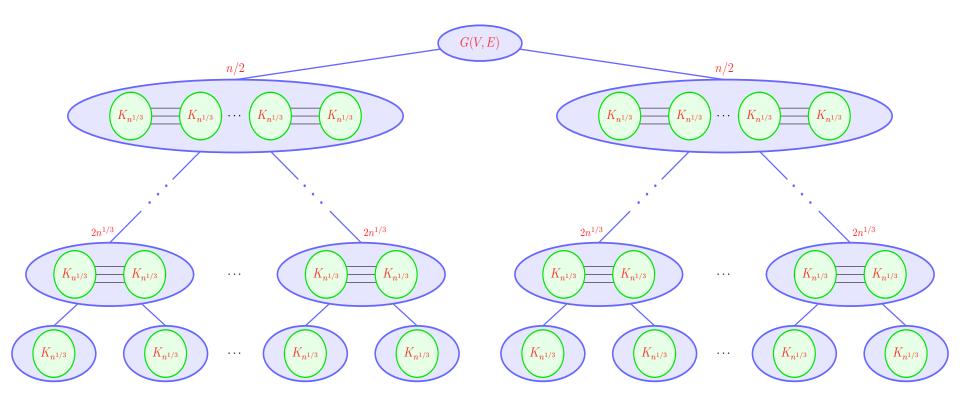
- remains $m^{1-o(1)}$ as m increases from n to $n^{4/3}$; and
- then gradually decreases from $n^{4/3-o(1)}$ to $n^{1-o(1)}$ as *m* increases from $n^{4/3}$ to $n^{3/2}$.

We will illustrate the lower bound idea for $\gamma = 1/3$, and show a lower bound of $n^{4/3-o(1)}$ queries.

$n^{4/3-o(1)}$ Query Lower Bound for $m = n^{4/3}$



An Optimal Tree



Optimal clustering cost: $\Theta(n^{5/3})$

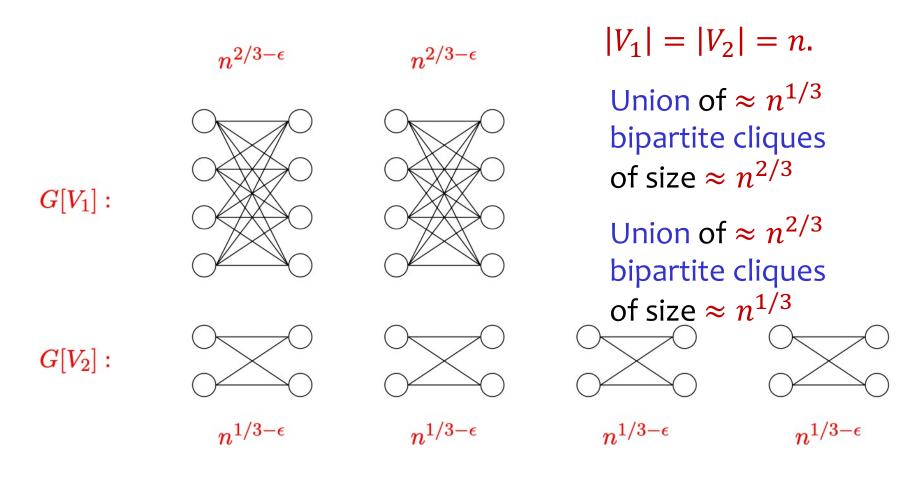
Lower Bound Idea

Consider any $\tilde{O}(1)$ –approximation algorithm A.

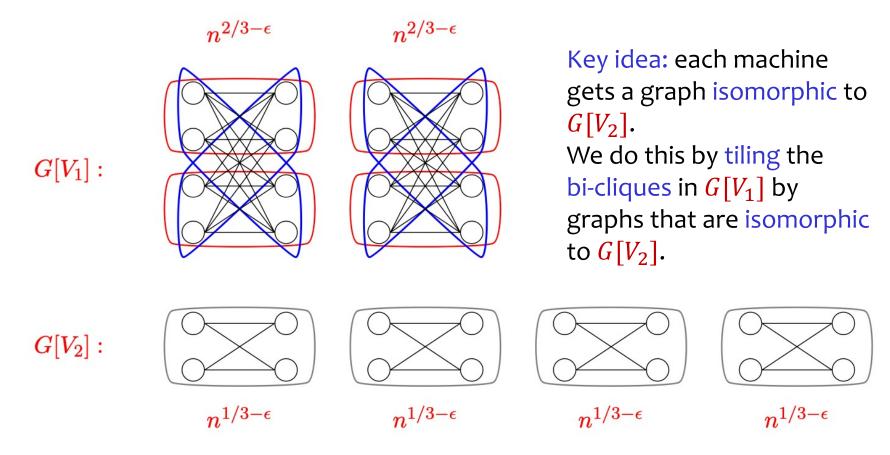
- Assume w.l.o.g. that the top-level partition is roughly balanced in the solution output by A.
- A must not cut too many clique matching edges at the top partition since penalty for each edge cut is *n*. So A must ``discover'' most of the meta-matching among the cliques.
- It takes about $n^{2/3-o(1)}$ queries to discover match of a given clique under M.
- We need to discover $\Omega(n^{2/3})$ matches in M, giving us an $n^{4/3-o(1)}$ query lower bound.

Theorem 2: No randomized 1-round protocol using machines with $n^{4/3-\epsilon}$ memory for any $\epsilon > 0$, can output an $\tilde{O}(1)$ – approximate hierarchical clustering even on unweighted graphs.

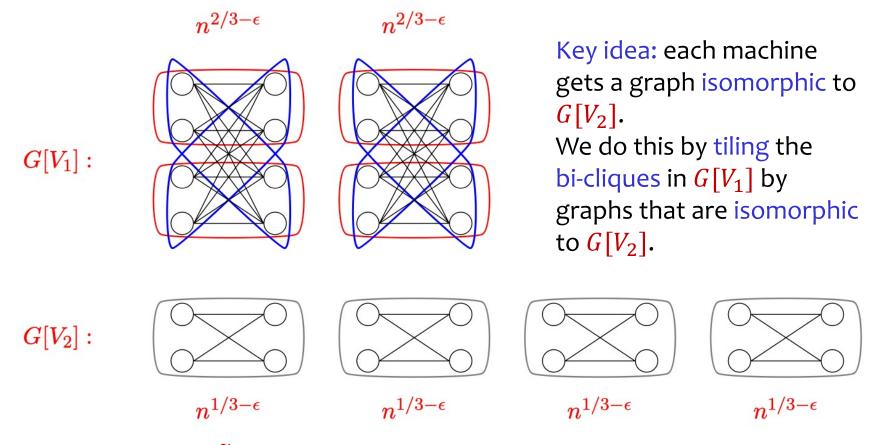
- The input graph is partitioned across $\approx n^{1/3}$ machines with $n^{4/3-\epsilon}$ memory for an arbitrarily small $\epsilon > 0$.
- We want to rule out recovery of an $\tilde{O}(1)$ -approximate HC tree in one round of communication.



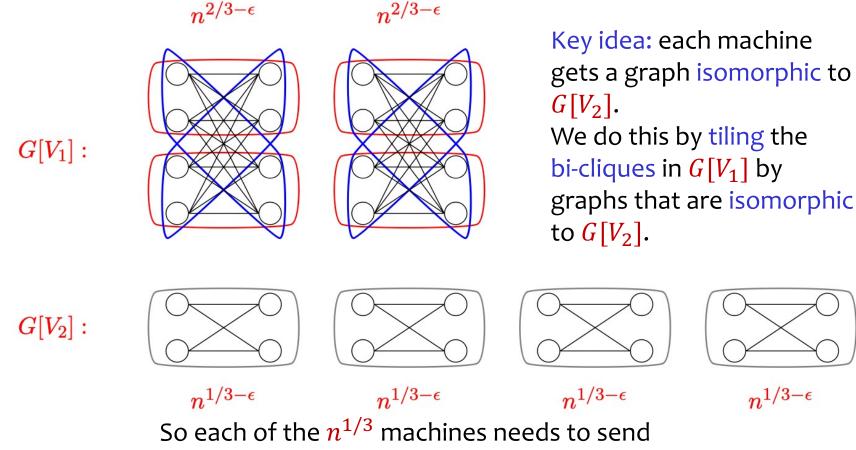
So $\Theta(n^{5/3})$ edges are partitioned across $\approx n^{1/3}$ machines.



A machine can not tell locally whether it received the blue cliques, the red cliques, or the graph $G[V_2]$ itself.



Any $\tilde{O}(1)$ -approximate solution must discover how the vertices are partitioned across the cliques in $G[V_2]$.



 $\Omega(n)$ bits of information to the coordinator – this is much more than the coordinator's memory.

Concluding Remarks

- We designed near-optimal sublinear algorithms for hierarchical clustering in the query model, streaming, and MPC model.
- The main algorithmic ingredient:
 - a relaxed notion of cut sparsifiers that is easy to compute in various computational models.
- We also establish lower bounds that almost match the performance of our algorithms.
- An interesting direction is to understand if there is a separation between the queries needed to estimate the value and finding a clustering in general graphs.

Thank you !