
Sublinear Algorithms for
Hierarchical Clustering

Sanjeev Khanna
University of Pennsylvania

Joint work with Arpit Agarwal (Columbia), Huan Li (Penn), and
Prathamesh Patil (Penn).

Hierarchical Clustering

A technique to cluster data into
a multilevel hierarchy based on
similarity.

Hierarchical Clustering

A technique to cluster data into
a multilevel hierarchy based on
similarity. It arranges data as a
rooted tree such that
-- the root represents the entire data
set, and each leaf corresponds to a
unique data point.
-- each internal node corresponds to a
cluster containing its descendant leaves.

Hierarchical Clustering

A technique to cluster data into
a multilevel hierarchy based on
similarity. It arranges data as a
rooted tree such that:
-- the root represents the entire data
set, and each leaf corresponds to a
unique data point.
-- each internal node corresponds to a
cluster containing its descendant leaves.

Clusters data at multiple levels of
granularity simultaneously.

The Hierarchical Clustering Problem

Dasgupta (2016) introduced the following formalization:
n Input: A weighted graph whose vertices correspond to

data points and whose edges capture similarity between
the data points.

n The cost of any HC tree ! is given by

Cost(!) = ∑splits !→ !!,!" in $ (% ⋅ '% %&, %')

where '% %&, %' = total weight of edges going from %& to %'.

Goal: Find a tree that minimizes this cost.

The Hierarchical Clustering Problem

!

" #

$ %

! .'! ", #

" .'! $, % # .'!), *

) *

The cost function incentivizes cutting high weight similarity
edges deeper down the tree.

Why this Cost Function?

n Dasgupta (2016) motivates this cost function as having
several desirable properties :
n When the data consists of a collection of connected components,

an optimal tree starts by building a hierarchy that separates the
components.

n When the input graph is a clique, all trees should have the same
cost – no particular cluster hierarchy is to be favored.

n It recovers the desirable solution for some models of planted
cluster partitions.

n Cohen-Addad et al. (2019) take an axiomatic approach to
characterize good cost functions in general.

n We will focus on the Dasgupta objective in this talk.

The Hierarchical Clustering Problem

n The problem of finding the best HC tree is NP-hard.
n Assuming Small Set Expansion (SSE) conjecture, no
)(1)–approximation possible [Charikar-Chatziafratis 17].

n A natural algorithm called recursive sparsest cut gives
)(,)–approximation where , =)(log 1) is the sparsest
cut approximation guarantee [Charikar-Chatziafratis 17],
[Cohen-Addad et al. 19].

Useful fact: At expense of an)(1)–loss in approximation
ratio, we can assume that each binary partition is roughly
balanced.

Sublinear Algorithms

Can we match the best-known approximation guarantees for
hierarchical clustering via sublinear algorithms?

Based on the computational platform, we may want sublinear
query/time, space, or communication algorithms.

We will consider all three resources.

Sublinear Space Algorithms

Streaming Model of Computation

n The graph is presented as a stream of edges.
n The algorithm has limited memory to store information

about the edges seen in the stream.
n A natural model when the input is either generated ``on the

fly’’ or is stored on a sequential access device, like a disk.
n The algorithm no longer has random access to the input.

Goal is to design algorithms that use space that is much
smaller than the size of the graph.

Sublinear Query/Time Algorithms

Query Model of Computation

n Degree queries: What is the degree of a vertex 2?
n Pair queries: Is 3, 2 an edge?
n Neighbor queries: Who is the 4() neighbor of a vertex 2?

Goal is to design algorithms that compute by performing only
a few queries – much smaller than the size of the graph.

Additional goal: efficiently process the queries to recover a
good HC tree.

Sublinear Communication Algorithms

MPC Model of Computation (Massively Parallel Computation)
n The edges of the graph are partitioned across multiple

machines in an arbitrary manner.
n Each machine has small memory – much smaller than the

input.
n Computation proceeds in rounds where in each round, a

machine can send and receive limited information to other
machines (not exceeding its memory).

Goal is to compute in a small number of rounds using only
machines with small memory.

Our Results

n There are efficient sublinear algorithms for hierarchical
clustering in all three models of computation.

n There are also nearly matching lower bounds that show
these algorithms are essentially best possible.

Notation: We will use 1 to denote the number of vertices and
5 to denote the number of edges.

Results 0: Sublinear Space
Algorithms

Theorem 0: Given a weighted graph 6 as a stream of edges,
there is an 7)(1) space algorithm to find a (1 + 9(1))–
approximate hierarchical clustering of 6.

n The approximation guarantee above is better than
)(log 1) because the model allows unbounded
computation time. It is)(log 1) in poly-time.

n It is also easy to show that Ω(1) space is necessary to
obtain any 7)(1)-approximation.

n The algorithm also works for dynamic streams.

Results 1: Sublinear Communication
Algorithms (MPC Model)

Theorem 1: Given a weighted graph 6 with edges partitioned
across machines with 7)(1) memory, can find a (1 + 9(1))–
approximate hierarchical clustering of 6 in 2 rounds.

Theorem 2: No randomized 1-round protocol using machines
with 1*/,-. memory for any ; > 0, can output an 7)(1) –
approximate hierarchical clustering even on unweighted
graphs.

Results 2: Sublinear Query/Time
Algorithms

Theorem 3: Given an unweighted graph 6 with 5 edges, there
is an algorithm that outputs a (1 + 9(1))–approximate
hierarchical clustering of 6 using

n 7)(1+5) queries if 5 ≤ 1*/,.
n 7)(1 +5/,,) queries if 5 = ,. 1*/, for some , ≥ 1.

The query bound starts becoming sublinear once 5 exceeds
1*/,, and then drops to 7)(1) queries once 5 ≥ 1,//.

Results 2: Sublinear Query/Time
Algorithms

n By investing an additional 101213(0) time over the query
complexity, we can get an)(log 1/B)-approximate
solution [Sherman 09] and [Chen, Kyng, Liu, Peng, Probst
Gutenberg, Sachdeva 22].

n We can get similar guarantees for the weighted case,
assuming a suitable graph representation.

Theorem 4: The query complexity achieved by the algorithm
in Theorem 3 is essentially optimal for every edge density.

Related Recent Work

Assadi, Chatziafratis, Lacki, Mirrokkni, and Wang (2022)
n Focuses on estimating the HC value in sublinear in 1 space,

and shows several negative results.
n Also gives algorithms for finding a Θ(1)–approximate HC

tree in the streaming and the MPC model – this is slightly
weaker than (1 + 9(1))–approximation that we get.

Kapralov, Kumar, Lattanzi, Mousavifar (2022)
n Focuses on estimating the HC value in sublinear queries in

4, ; -clusterable graphs: input is 4 expanders with outer
conductance bounded by ;.

n)(log 4)–approximation in D9EF 4 . 1
#
$16(.)queries.

Sublinear Algorithms

Graph Sparsification for HC

Given any HC tree !, the cost of ! is given by

Cost(6,!) = ∑splits !→ !!,!" in $ (% ⋅ '% %&, %')

where '% %&, %' = total weight of edges going from %& to %'.

Natural idea: Work with an approximate cut sparsifier of 6.
For any pair of disjoint sets G, H, we can express '% G, H in
terms of cuts in 6:

'% %&, %' = 0
/
. ('% %&, I%& +'% %', I%' −'% %& ∪ %', %& ∪ %').

Problem: Expressing '% %&, %' as difference of approximately
preserved values, can result in unbounded error.

Graph Sparsification for HC

'% %&, %' = 0
/
. ('% %&, I%& +'% %', I%' −'% %& ∪ %', %& ∪ %').

Observation: If we fix any HC tree, the negative term at any
node appears with a strictly larger positive coefficient at the
parent of the node.

"

#

)

! . !" . ($# %, '% + $#), ̅) − $# !, !̅)

% . !" . ($# -, .- + $# /, '/ − $# %, '%)

%

$
Note that L > |B|.

Graph Sparsification for HC

Upshot: The cost of any tree ! can be written as
∑splits !→ !!,!" in $

%
& . (|''|. (('), *') + |')|. (('', *'') + ∑*(((+, +̅))

We get a blackbox reduction to cut sparsifiers.

To get a (1 + 9(1))-approximate hierarchical clustering, it
suffices to construct a (1 + 9(1))–approximate cut sparsifier.

Now we can just focus on accomplishing this task in various
models of computation.

Immediate Applications

Corollary (Thm 0): There is an 7)(1) space dynamic streaming
algorithm that outputs a (1 + 9(1)) –approximate
hierarchical clustering of a weighted graph.

Corollary (Thm 1): There is a 2-round MPC algorithm with 7)(1)
space per machine that outputs a (1 + 9(1))–approximate
hierarchical clustering of a weighted graph.

Both results basically follow from [Ahn, Guha, McGregor 12].

Application to Sublinear Time?

Constructing a cut sparsifier necessarily requires Ω(5) queries
(even for connectivity).

We will work with a relaxed notion of cut sparsifiers that will
prove much easier to construct.

A Relaxed Notion of Cut Sparsifiers

A graph M(N, O′) is an (;, Q)-sparsifier of a graph 6(N, O) if for
any cut %, ̅% , we have

1 − ; '% % ≤ '7 % ≤ 1 + ; '% % + Q.min{ % , ̅% }

The usual notion of cut sparsifiers gives an (;, 0)-sparsifier.

Lemma: If M is an (;, Q)-sparsifier of a graph 6 then for any HC
tree !, we have
1 − ; X9YZ% ! ≤ X9YZ7 ! ≤ 1 + ; X9YZ% ! +)(Q. 1/)

High-level Plan for Sublinear Time

We will focus on unweighted graphs.

n Show that larger the Q, the easier it is to compute an
(;, Q)-sparsifier.

n But how large can we make Q to still get a (1 + 9(1)) –
approximation?

n Identify an easy to compute lower bound [for optimal HC
cost, and set Q = 9 8

9$
to get (1 + 9(1))–approximation.

High-level Plan for Sublinear Time

Lemma: The cost of hierarchical clustering on any unweighted

graph 6 with 1 vertices and 5 edges is Ω(:
$

9
).

Example: Suppose 6 is any graph with 5 ≫ 1,// edges, then
optimal tree cost is ≫ 1/.
So if we set Q =) 1 , then the) Q. 1/ additive error term is
negligible because optimal tree cost is ≫ 1/.

Let us focus on this density regime, and we will design a
7)(1/]/) query algorithm to construct an (;,)(1))-sparsifier.

Constructing an (", $(1))-sparsifier

[Spielman-Srivastava 11]
One way to construct an (;, 0)-sparsifier of 6:
sample) 1 log 1/;/ times each edge ^ = (3, 2) with
probability D; proportional to _(3, 2) = effective resistance
between 3 and 2.

Difficulty: How to estimate effective resistances in sublinear
time?

Fix: Add a constant degree expander 6′ to 6.

Constructing an (", $(1))-sparsifier

Observation: Any (;, 0)-sparsifier for the graph M = 6 ∪ 6′
is an (;,)(1))-sparsifier for the graph 6.

For any cut %, ̅% , its size in any (;, 0)-sparsifier of M

n is at least 1 − ; '% % , and
n at most 1 + ; '% % +) 1 + ; .5`1{ % , ̅% }

New Goal: Construct an (;, 0)-sparsifier of the graph M.

An (", 0)-sparsifier of the Graph (

What have we gained by shifting the focus to M instead of 6?

Observation: For any edge ^ = (3, 2), its effective resistance
_(3, 2) in M satisfies

1
min{ a7 3 , a7 2 }

≤ _ 3, 2 ≤
)(log 1)

min{ a7 3 , a7 2 }

_ 3, 2 ≥ 0
<=>{ @% A ,@% B }

is easy.

An (", 0)-sparsifier of the Graph (

More interesting direction: _ 3, 2 ≤ 6(DEF 9)
<=>{ @% A ,@% B }

In a constant degree expander, for any 2 sets G and H, there
are ≈ min G , H edge-disjoint paths of)(log 1) length
between G and H [Frieze 01].

+ = -(/) 1 = -(2)

3(log 7)

Constructing an (", $(1))-sparsifier

We now have a very simple algorithm to construct an (;, 0)-
sparsifier for the graph M = 6 ∪ 6′.

Repeat the following for 7) 1/;/ steps:
n sample a random vertex 2.
n sample a random edge incident on 2, and add it to the

sparsifier.

Thus in 7) 1/;/ queries, we get a sparsified graph that gives
a (1 + ;)–approximation to hierarchical clustering whenever
the input graph contains 5 ≫ 1,// edges.

General Case: An (",))-sparsifier

Add constant degree expander 6′ with edges of weight Q.

Observation: For any edge (3, 2) in M = 6 ∪ 6′, we have

1
min{ 2+ 3 , 2+ + } ≤ 6 3, + ≤ 7(log ;)

min 2+ 3 , 2+ + . 1=

Now construct an (;, 0)-sparsifier for the graph M = 6 ∪ 6G by
sampling as before for 7) 1/Q;/ steps.

A variation of this expander idea was used by [Lee 14] for
efficiently answering a single cut query with bounded additive
error – we need this guarantee to hold for all cut queries.

Lower Bounds

Query Lower Bounds

Theorem: For any c ∈ (0,½), there is a family of unweighted
graphs with 5 = Θ(101H) edges such that any randomized
algorithm that outputs an 7)(1)–approximate hierarchical
clustering for this family, requires 1<=>{01H,/-/H}-3(0) queries.

The lower bound
n remains50-3(0) as 5 increases from 1 to 1*/,; and
n then gradually decreases from 1*/,-3(0) to 10-3(0) as
5 increases from 1*/, to 1,//.

We will illustrate the lower bound idea for c = 1/3, and show
a lower bound of 1*/,-3(0) queries.

!!/#$%(') Query Lower Bound for " = !!/#

Kn1/3 Kn1/3

no(1) edges

Kn1/3 Kn1/3

...

Kn1/3 Kn1/3

;&/- randomly matched
pairs of cliques

An Optimal Tree

G(V,E)

Kn1/3 Kn1/3

n/2

· · · Kn1/3 Kn1/3

· · ·

2n1/3

Kn1/3 Kn1/3

· · ·Kn1/3 Kn1/3

2n1/3 2n1/3 2n1/3

Kn1/3 Kn1/3

Kn1/3 Kn1/3

n/2

Kn1/3 Kn1/3 · · · Kn1/3 Kn1/3

Kn1/3 Kn1/3

· · ·

· · ·

Kn1/3 Kn1/3

Kn1/3 Kn1/3

Kn1/3 Kn1/3

Optimal clustering cost: Θ(7>/@)

Lower Bound Idea

Consider any 7)(1) –approximation algorithm L.
n Assume w.l.o.g. that the top-level partition is roughly

balanced in the solution output by L.
n L must not cut too many clique matching edges at the top

partition since penalty for each edge cut is 1. So L must
``discover’’ most of the meta-matching among the cliques.

n It takes about 1//,-3(0) queries to discover match of a
given clique under g.

n We need to discover Ω(1//,) matches in g, giving us an
1*/,-3(0)query lower bound.

MPC Lower Bound

Theorem 2: No randomized 1-round protocol using machines
with 1*/,-. memory for any ; > 0, can output an 7)(1) –
approximate hierarchical clustering even on unweighted
graphs.

n The input graph is partitioned across ≈ 10/, machines with
1*/,-. memory for an arbitrarily small ϵ > 0.

n We want to rule out recovery of an 7)(1)–approximate HC
tree in one round of communication.

MPC Lower Bound

Union of ≈ 10/,
bipartite cliques
of size ≈ 1//,

Union of ≈ 1//,
bipartite cliques
of size ≈ 10/,

So Θ(1I/,) edges are partitioned across ≈ 10/, machines.

N0 = N/ = 1.

MPC Lower Bound

Key idea: each machine
gets a graph isomorphic to
A[C&].
We do this by tiling the
bi-cliques in A[C%] by
graphs that are isomorphic
to A[C&].

A machine can not tell locally whether it received the
blue cliques, the red cliques, or the graph A C& itself.

MPC Lower Bound

Key idea: each machine
gets a graph isomorphic to
A[C&].
We do this by tiling the
bi-cliques in A[C%] by
graphs that are isomorphic
to A[C&].

Any E7(1)–approximate solution must discover how
the vertices are partitioned across the cliques in A[C&] .

MPC Lower Bound

Key idea: each machine
gets a graph isomorphic to
A[C&].
We do this by tiling the
bi-cliques in A[C%] by
graphs that are isomorphic
to A[C&].

So each of the ;%/- machines needs to send
Ω ; bits of information to the coordinator – this is
much more than the coordinator’s memory.

Concluding Remarks

n We designed near-optimal sublinear algorithms for
hierarchical clustering in the query model, streaming, and
MPC model.

n The main algorithmic ingredient:
n a relaxed notion of cut sparsifiers that is easy to compute in various

computational models.

n We also establish lower bounds that almost match the
performance of our algorithms.

n An interesting direction is to understand if there is a
separation between the queries needed to estimate the
value and finding a clustering in general graphs.

Thank you !

