Sublinear Algorithms for Hierarchical Clustering

Sanjeev Khanna
University of Pennsylvania

Joint work with Arpit Agarwal (Columbia), Huan Li (Penn), and Prathamesh Patil (Penn).
Hierarchical Clustering

A technique to **cluster data** into a **multilevel hierarchy** based on similarity.
Hierarchical Clustering

A technique to cluster data into a multilevel hierarchy based on similarity. It arranges data as a rooted tree such that
-- the root represents the entire data set, and each leaf corresponds to a unique data point.
-- each internal node corresponds to a cluster containing its descendant leaves
Hierarchical Clustering

A technique to cluster data into a multilevel hierarchy based on similarity. It arranges data as a rooted tree such that:

-- the root represents the entire data set, and each leaf corresponds to a unique data point.
-- each internal node corresponds to a cluster containing its descendant leaves

Clusters data at multiple levels of granularity simultaneously.
Dasgupta (2016) introduced the following formalization:

- **Input:** A weighted graph whose vertices correspond to data points and whose edges capture similarity between the data points.
- **The cost of any HC tree** T is given by
 \[
 \text{Cost}(T) = \sum_{\text{splits } s \rightarrow (S_l, S_r) \text{ in } T} (|S| \cdot w_G(S_l, S_r))
 \]
 where $w_G(S_l, S_r) =$ total weight of edges going from S_l to S_r.

Goal: Find a tree that minimizes this cost.
The Hierarchical Clustering Problem

The cost function incentivizes cutting high weight similarity edges deeper down the tree.
Why this Cost Function?

- **Dasgupta (2016)** motivates this cost function as having several desirable properties:
 - When the data consists of a collection of connected components, an optimal tree starts by building a hierarchy that separates the components.
 - When the input graph is a clique, all trees should have the same cost — no particular cluster hierarchy is to be favored.
 - It recovers the desirable solution for some models of planted cluster partitions.
- **Cohen-Addad et al. (2019)** take an axiomatic approach to characterize good cost functions in general.
- We will focus on the Dasgupta objective in this talk.
The Hierarchical Clustering Problem

- The problem of finding the best HC tree is NP-hard.
- Assuming Small Set Expansion (SSE) conjecture, no \(O(1) \)-approximation possible [Charikar-Chatziafratis 17].
- A natural algorithm called recursive sparsest cut gives \(O(\alpha) \)-approximation where \(\alpha = O(\sqrt{\log n}) \) is the sparsest cut approximation guarantee [Charikar-Chatziafratis 17], [Cohen-Addad et al. 19].

Useful fact: At expense of an \(O(1) \)-loss in approximation ratio, we can assume that each binary partition is roughly balanced.
Sublinear Algorithms

Can we match the best-known approximation guarantees for hierarchical clustering via sublinear algorithms?

Based on the computational platform, we may want sublinear query/time, space, or communication algorithms.

We will consider all three resources.
Sublinear Space Algorithms

Streaming Model of Computation

- The graph is presented as a stream of edges.
- The algorithm has limited memory to store information about the edges seen in the stream.
- A natural model when the input is either generated “on the fly” or is stored on a sequential access device, like a disk.
- The algorithm no longer has random access to the input.

Goal is to design algorithms that use space that is much smaller than the size of the graph.
Sublinear Query/Time Algorithms

Query Model of Computation

- Degree queries: What is the degree of a vertex v?
- Pair queries: Is (u, v) an edge?
- Neighbor queries: Who is the k_{th} neighbor of a vertex v?

Goal is to design algorithms that compute by performing only a few queries – much smaller than the size of the graph.

Additional goal: efficiently process the queries to recover a good HC tree.
MPC Model of Computation (Massively Parallel Computation)

- The edges of the graph are partitioned across multiple machines in an arbitrary manner.
- Each machine has small memory – much smaller than the input.
- Computation proceeds in rounds where in each round, a machine can send and receive limited information to other machines (not exceeding its memory).

Goal is to compute in a small number of rounds using only machines with small memory.
Our Results

- There are efficient sublinear algorithms for hierarchical clustering in all three models of computation.
- There are also nearly matching lower bounds that show these algorithms are essentially best possible.

Notation: We will use n to denote the number of vertices and m to denote the number of edges.
Theorem 0: Given a weighted graph G as a stream of edges, there is an $\tilde{O}(n)$ space algorithm to find a $(1 + o(1))$-approximate hierarchical clustering of G.

- The approximation guarantee above is better than $O(\sqrt{\log n})$ because the model allows unbounded computation time. It is $O(\sqrt{\log n})$ in poly-time.
- It is also easy to show that $\Omega(n)$ space is necessary to obtain any $\tilde{O}(1)$-approximation.
- The algorithm also works for dynamic streams.
Theorem 1: Given a weighted graph G with edges partitioned across machines with $\tilde{O}(n)$ memory, can find a $(1 + o(1))$–approximate hierarchical clustering of G in 2 rounds.

Theorem 2: No randomized 1-round protocol using machines with $n^{4/3-\epsilon}$ memory for any $\epsilon > 0$, can output an $\tilde{O}(1)$–approximate hierarchical clustering even on unweighted graphs.
Results 2: Sublinear Query/Time Algorithms

Theorem 3: Given an unweighted graph G with m edges, there is an algorithm that outputs a $(1 + o(1))$–approximate hierarchical clustering of G using

- $\tilde{O}(n+m)$ queries if $m \leq n^{4/3}$.
- $\tilde{O}(n + m/\alpha^3)$ queries if $m = \alpha \cdot n^{4/3}$ for some $\alpha \geq 1$.

The query bound starts becoming sublinear once m exceeds $n^{4/3}$, and then drops to $\tilde{O}(n)$ queries once $m \geq n^{3/2}$.
Results 2: Sublinear Query/Time Algorithms

- By investing an additional $n^{1+\tau+o(1)}$ time over the query complexity, we can get an $O(\sqrt{\log n/\tau})$-approximate solution [Sherman 09] and [Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva 22].

- We can get similar guarantees for the weighted case, assuming a suitable graph representation.

Theorem 4: The query complexity achieved by the algorithm in Theorem 3 is essentially optimal for every edge density.
Related Recent Work

Assadi, Chatziafratis, Lacki, Mirrokkni, and Wang (2022)
- Focuses on estimating the HC value in sublinear in n space, and shows several negative results.
- Also gives algorithms for finding a $\Theta(1)$–approximate HC tree in the streaming and the MPC model – this is slightly weaker than $(1 + o(1))$–approximation that we get.

Kapralov, Kumar, Lattanzi, Mousavifar (2022)
- Focuses on estimating the HC value in sublinear queries in (k, ϵ)-clusterable graphs: input is k expanders with outer conductance bounded by ϵ.
- $O(\sqrt{\log k})$–approximation in $\text{poly}(k). n^{\frac{1}{2} + O(\epsilon)}$ queries.
Sublinear Algorithms
Graph Sparsification for HC

Given any HC tree T, the cost of T is given by

$$\text{Cost}(G,T) = \sum_{\text{splits } s \rightarrow (S_l, S_r) \text{ in } T} (|S| \cdot w_G(S_l, S_r))$$

where $w_G(S_l, S_r) =$ total weight of edges going from S_l to S_r.

Natural idea: Work with an approximate cut sparsifier of G. For any pair of disjoint sets X, Y, we can express $w_G(X, Y)$ in terms of cuts in G:

$$w_G(S_l, S_r) = \frac{1}{2} \cdot (w_G(S_l, \overline{S_l}) + w_G(S_r, \overline{S_r}) - w_G(S_l \cup S_r, \overline{S_l \cup S_r}))$$

Problem: Expressing $w_G(S_l, S_r)$ as difference of approximately preserved values, can result in unbounded error.
Graph Sparsification for HC

$$w_G(S_l, S_r) = \frac{1}{2} \cdot (w_G(S_l, \overline{S_l}) + w_G(S_r, \overline{S_r}) - w_G(S_l \cup S_r, \overline{S_l \cup S_r}))$$.

Observation: If we fix any HC tree, the negative term at any node appears with a strictly larger positive coefficient at the parent of the node.

Note that $|A| > |B|$.

$$|A| \cdot \frac{1}{2} \cdot (w_G(B, \overline{B}) + w_G(C, \overline{C}) - w_G(A, \overline{A}))$$

$$|B| \cdot \frac{1}{2} \cdot (w_G(D, \overline{D}) + w_G(E, \overline{E}) - w_G(B, \overline{B}))$$
Graph Sparsification for HC

Upshot: The cost of any tree T can be written as
\[\sum_{\text{splits } s \rightarrow (S_l, S_r) \text{ in } T} \frac{1}{2} \cdot (|S_r| \cdot w_G(S_l, S_r) + |S_l| \cdot w_G(S_r, S_r)) + \sum_v w_G(v, \bar{v}) \]

We get a blackbox reduction to cut sparsifiers.

To get a $(1 + o(1))$-approximate hierarchical clustering, it suffices to construct a $(1 + o(1))$–approximate cut sparsifier.

Now we can just focus on accomplishing this task in various models of computation.
Immediate Applications

Corollary (Thm 0): There is an $\tilde{O}(n)$ space dynamic streaming algorithm that outputs a $(1 + o(1))$–approximate hierarchical clustering of a weighted graph.

Corollary (Thm 1): There is a 2-round MPC algorithm with $\tilde{O}(n)$ space per machine that outputs a $(1 + o(1))$–approximate hierarchical clustering of a weighted graph.

Both results basically follow from [Ahn, Guha, McGregor 12].
Application to Sublinear Time?

Constructing a cut sparsifier necessarily requires $\Omega(m)$ queries (even for connectivity).

We will work with a relaxed notion of cut sparsifiers that will prove much easier to construct.
A Relaxed Notion of Cut Sparsifiers

A graph $H(V, E')$ is an (ϵ, δ)-sparsifier of a graph $G(V, E)$ if for any cut (S, \bar{S}), we have

$$(1 - \epsilon)w_G(S) \leq w_H(S) \leq (1 + \epsilon)w_G(S) + \delta \cdot \min\{|S|, |\bar{S}|\}$$

The usual notion of cut sparsifiers gives an $(\epsilon, 0)$-sparsifier.

Lemma: If H is an (ϵ, δ)-sparsifier of a graph G then for any HC tree T, we have

$$(1 - \epsilon)\text{cost}_G(T) \leq \text{cost}_H(T) \leq (1 + \epsilon)\text{cost}_G(T) + O(\delta \cdot n^2)$$
High-level Plan for Sublinear Time

We will focus on unweighted graphs.

- Show that larger the δ, the easier it is to compute an (ϵ, δ)-sparsifier.
- But how large can we make δ to still get a $(1 + o(1))$–approximation?
- Identify an easy to compute lower bound C for optimal HC cost, and set $\delta = o\left(\frac{C}{n^2}\right)$ to get $(1 + o(1))$–approximation.
High-level Plan for Sublinear Time

Lemma: The cost of hierarchical clustering on any unweighted graph G with n vertices and m edges is $\Omega\left(\frac{m^2}{n}\right)$.

Example: Suppose G is any graph with $m \gg n^{3/2}$ edges, then optimal tree cost is $\gg n^2$. So if we set $\delta = O(1)$, then the $O(\delta \cdot n^2)$ additive error term is negligible because optimal tree cost is $\gg n^2$.

Let us focus on this density regime, and we will design a $\tilde{O}(n/\varepsilon^2)$ query algorithm to construct an $(\varepsilon, O(1))$-sparsifier.
Constructing an \((\epsilon, O(1))\)-sparsifier

[Spielman-Srivastava 11]

One way to construct an \((\epsilon, 0)\)-sparsifier of \(G\):

sample \(O(n \log n / \epsilon^2)\) times each edge \(e = (u, v)\) with probability \(p_e\) proportional to \(R(u, v) = \text{effective resistance between } u \text{ and } v\).

Difficulty: How to estimate effective resistances in sublinear time?

Fix: Add a constant degree expander \(G'\) to \(G\).
Constructing an \((\epsilon, O(1))\)-sparsifier

Observation: Any \((\epsilon, 0)\)-sparsifier for the graph \(H = G \cup G'\) is an \((\epsilon, O(1))\)-sparsifier for the graph \(G\).

For any cut \((S, \bar{S})\), its size in any \((\epsilon, 0)\)-sparsifier of \(H\)

- is at least \((1 - \epsilon)w_G(S)\), and
- at most \((1 + \epsilon)w_G(S) + O(1 + \epsilon).\ min\{|S|, |\bar{S}|\}\)

New Goal: Construct an \((\epsilon, 0)\)-sparsifier of the graph \(H\).
An \((\varepsilon, 0)\)-sparsifier of the Graph \(H\)

What have we gained by shifting the focus to \(H\) instead of \(G\)?

Observation: For any edge \(e = (u, v)\), its effective resistance \(R(u, v)\) in \(H\) satisfies

\[
\frac{1}{\min\{ d_H(u), d_H(v) \}} \leq R(u, v) \leq \frac{O(\log n)}{\min\{ d_H(u), d_H(v) \}}
\]

\(R(u, v) \geq \frac{1}{\min\{ d_H(u), d_H(v) \}}\) is easy.
An \((\varepsilon, 0)\)-sparsifier of the Graph \(H\)

More interesting direction: \(R(u, v) \leq \frac{O(\log n)}{\min\{d_H(u), d_H(v)\}}\)

In a constant degree expander, for any 2 sets \(X\) and \(Y\), there are \(\approx \min\{|X|, |Y|\}\) edge-disjoint paths of \(O(\log n)\) length between \(X\) and \(Y\) [Frieze 01].
Constructing an \((\epsilon, O(1))\)-sparsifier

We now have a very simple algorithm to construct an \((\epsilon, 0)\)-sparsifier for the graph \(H = G \cup G'\).

Repeat the following for \(\tilde{O}(n/\epsilon^2)\) steps:
- sample a random vertex \(v\).
- sample a random edge incident on \(v\), and add it to the sparsifier.

Thus in \(\tilde{O}(n/\epsilon^2)\) queries, we get a sparsified graph that gives a \((1 + \epsilon)\)-approximation to hierarchical clustering whenever the input graph contains \(m \gg n^{3/2}\) edges.
General Case: An \((\epsilon, \delta)\)-sparsifier

Add constant degree expander \(G'\) with edges of weight \(\delta\).

Observation: For any edge \((u, v)\) in \(H = G \cup G'\), we have

\[
\frac{1}{\min\{d_H(u), d_H(v)\}} \leq R(u, v) \leq \frac{O(\log n)}{\min\{d_H(u), d_H(v)\}} \cdot \frac{1}{\delta}
\]

Now construct an \((\epsilon, 0)\)-sparsifier for the graph \(H = G \cup G'\) by sampling as before for \(\tilde{O}(n/\delta\epsilon^2)\) steps.

A variation of this expander idea was used by [Lee 14] for efficiently answering a single cut query with bounded additive error – we need this guarantee to hold for all cut queries.
Lower Bounds
Theorem: For any $\gamma \in (0, \frac{1}{2})$, there is a family of unweighted graphs with $m = \Theta(n^{1+\gamma})$ edges such that any randomized algorithm that outputs an $\tilde{O}(1)$–approximate hierarchical clustering for this family, requires $n^{\min\{1+\gamma, 2-2\gamma\}-o(1)}$ queries.

The lower bound
- remains $m^{1-o(1)}$ as m increases from n to $n^{4/3}$; and
- then gradually decreases from $n^{4/3-o(1)}$ to $n^{1-o(1)}$ as m increases from $n^{4/3}$ to $n^{3/2}$.

We will illustrate the lower bound idea for $\gamma = 1/3$, and show a lower bound of $n^{4/3-o(1)}$ queries.
$n^{4/3-o(1)}$ Query Lower Bound for $m = n^{4/3}$

$n^{2/3}$ randomly matched pairs of cliques

$\begin{align*}
K_{n^{1/3}} & \quad \quad \quad K_{n^{1/3}} \\
\vdots & \quad \quad \quad \vdots \\
K_{n^{1/3}} & \quad \quad \quad K_{n^{1/3}}
\end{align*}$

$n^{o(1)}$ edges
An Optimal Tree

Optimal clustering cost: $\Theta(n^{5/3})$
Lower Bound Idea

Consider any $\tilde{O}(1)$–approximation algorithm A.

- Assume w.l.o.g. that the top-level partition is roughly balanced in the solution output by A.
- A must not cut too many clique matching edges at the top partition since penalty for each edge cut is n. So A must "discover" most of the meta-matching among the cliques.
- It takes about $n^{2/3-o(1)}$ queries to discover match of a given clique under M.
- We need to discover $\Omega(n^{2/3})$ matches in M, giving us an $n^{4/3-o(1)}$ query lower bound.
Theorem 2: No randomized 1-round protocol using machines with $n^{4/3-\epsilon}$ memory for any $\epsilon > 0$, can output an $\widetilde{O}(1)$-approximate hierarchical clustering even on unweighted graphs.

- The input graph is partitioned across $\approx n^{1/3}$ machines with $n^{4/3-\epsilon}$ memory for an arbitrarily small $\epsilon > 0$.
- We want to rule out recovery of an $\widetilde{O}(1)$-approximate HC tree in one round of communication.
MPC Lower Bound

\[|V_1| = |V_2| = n. \]

Union of \(\approx n^{1/3} \) bipartite cliques of size \(\approx n^{2/3} \)

Union of \(\approx n^{2/3} \) bipartite cliques of size \(\approx n^{1/3} \)

So \(\Theta(n^{5/3}) \) edges are partitioned across \(\approx n^{1/3} \) machines.
MPC Lower Bound

Key idea: each machine gets a graph isomorphic to $G[V_2]$. We do this by tiling the bi-cliques in $G[V_1]$ by graphs that are isomorphic to $G[V_2]$.

A machine can not tell locally whether it received the blue cliques, the red cliques, or the graph $G[V_2]$ itself.
MPC Lower Bound

Key idea: each machine gets a graph isomorphic to $A[C]$. We do this by tiling the bi-cliques in $G[V_1]$ by graphs that are isomorphic to $G[V_2]$.

Any $\tilde{O}(1)$–approximate solution must discover how the vertices are partitioned across the cliques in $G[V_2]$.

$G[V_1]$:

$n^{2/3-\epsilon}$ $n^{2/3-\epsilon}$

$G[V_2]$:

$n^{1/3-\epsilon}$ $n^{1/3-\epsilon}$ $n^{1/3-\epsilon}$ $n^{1/3-\epsilon}$
MPC Lower Bound

Key idea: each machine gets a graph isomorphic to $G[V_2]$. We do this by tiling the bi-cliques in $G[V_1]$ by graphs that are isomorphic to $G[V_2]$.

So each of the $n^{1/3}$ machines needs to send $\Omega(n)$ bits of information to the coordinator – this is much more than the coordinator’s memory.
Concluding Remarks

We designed near-optimal sublinear algorithms for hierarchical clustering in the query model, streaming, and MPC model.

The main algorithmic ingredient:
- a relaxed notion of cut sparsifiers that is easy to compute in various computational models.

We also establish lower bounds that almost match the performance of our algorithms.

An interesting direction is to understand if there is a separation between the queries needed to estimate the value and finding a clustering in general graphs.
Thank you !