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Hierarchical Clustering

A technique to cluster data into 
a multilevel hierarchy based on 
similarity. It arranges data as a 
rooted tree such that:
-- the root represents the entire data
set, and each leaf corresponds to a 
unique data point.
-- each internal node corresponds to a 
cluster containing its descendant leaves.

Clusters data at multiple levels of 
granularity simultaneously.



The Hierarchical Clustering Problem

Dasgupta (2016) introduced the following formalization:
n Input: A weighted graph whose vertices correspond to 

data points and whose edges capture similarity between 
the data points. 

n The cost of any HC tree ! is given by

Cost(!) =   ∑splits !→ !!,!" in $ ( % ⋅ '% %&, %' )

where '% %&, %' = total weight of edges going from %& to %'.

Goal: Find a tree that minimizes this cost.



The Hierarchical Clustering Problem
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The cost function incentivizes cutting high weight similarity 
edges deeper down the tree. 



Why this Cost Function?

n Dasgupta (2016) motivates this cost function as having 
several desirable properties :
n When the data consists of a collection of connected components, 

an optimal tree starts by building a hierarchy that separates the 
components. 

n When the input graph is a clique, all trees should have the same 
cost – no particular cluster hierarchy is to be favored.

n It recovers the desirable solution for some models of planted 
cluster partitions. 

n Cohen-Addad et al. (2019) take an axiomatic approach to 
characterize good cost functions in general.

n We will focus on the Dasgupta objective in this talk.



The Hierarchical Clustering Problem

n The problem of finding the best HC tree is NP-hard.
n Assuming Small Set Expansion (SSE) conjecture, no     
)(1)–approximation possible [Charikar-Chatziafratis 17].

n A natural algorithm called recursive sparsest cut gives 
)(,)–approximation where , = )( log 1) is the sparsest
cut approximation guarantee [Charikar-Chatziafratis 17], 
[Cohen-Addad et al. 19].

Useful fact: At expense of an )(1)–loss in approximation 
ratio, we can assume that each binary partition is roughly 
balanced.



Sublinear Algorithms

Can we match the best-known approximation guarantees for 
hierarchical clustering via sublinear algorithms?

Based on the computational platform, we may want sublinear 
query/time, space, or communication algorithms. 

We will consider all three resources.



Sublinear Space Algorithms

Streaming Model of Computation

n The graph is presented as a stream of edges. 
n The algorithm has limited memory to store information 

about the edges seen in the stream. 
n A natural model when the input is either generated ``on the 

fly’’ or is stored on a sequential access device, like a disk.
n The algorithm no longer has random access to the input.

Goal is to design algorithms that use space that is much 
smaller than the size of the graph.



Sublinear Query/Time Algorithms

Query Model of Computation

n Degree queries: What is the degree of a vertex 2?
n Pair queries: Is 3, 2 an edge?
n Neighbor queries: Who is the 4() neighbor of a vertex 2? 

Goal is to design algorithms that compute by performing only 
a few queries – much smaller than the size of the graph.

Additional goal: efficiently process the queries to recover a 
good HC tree.



Sublinear Communication Algorithms

MPC Model of Computation (Massively Parallel Computation)
n The edges of the graph are partitioned across multiple 

machines in an arbitrary manner. 
n Each machine has small memory – much smaller than the 

input.
n Computation proceeds in rounds where in each round, a 

machine can send and receive limited information to other 
machines (not exceeding its memory).

Goal is to compute in a small number of rounds using only 
machines with small memory.



Our Results

n There are efficient sublinear algorithms for hierarchical 
clustering in all three models of computation. 

n There are also nearly matching lower bounds that show 
these algorithms are essentially best possible.

Notation: We will use 1 to denote the number of vertices and 
5 to denote the number of edges. 



Results 0: Sublinear Space 
Algorithms

Theorem 0: Given a weighted graph 6 as a stream of edges, 
there is an 7)(1) space algorithm to find a (1 + 9(1))–
approximate hierarchical clustering of 6.

n The approximation guarantee above is better than 
)( log 1) because the model allows unbounded
computation time. It is )( log 1) in poly-time.

n It is also easy to show that Ω(1) space is necessary to 
obtain any 7)(1)-approximation.

n The algorithm also works for dynamic streams.



Results 1: Sublinear Communication 
Algorithms (MPC Model)

Theorem 1: Given a weighted graph 6 with edges partitioned 
across machines with 7)(1) memory, can find a (1 + 9(1))–
approximate hierarchical clustering of 6 in 2 rounds.

Theorem 2: No randomized 1-round protocol using machines 
with 1*/,-. memory for any ; > 0, can output an 7)(1) –
approximate hierarchical clustering even on unweighted
graphs.



Results 2: Sublinear Query/Time 
Algorithms

Theorem 3: Given an unweighted graph 6 with 5 edges, there 
is an algorithm that outputs a (1 + 9(1))–approximate
hierarchical clustering of 6 using

n 7)(1+5) queries if 5 ≤ 1*/,. 
n 7)(1 +5/,,) queries if 5 = ,. 1*/, for some , ≥ 1.

The query bound starts becoming sublinear once 5 exceeds 
1*/,, and then drops to 7)(1) queries once 5 ≥ 1,//. 



Results 2: Sublinear Query/Time 
Algorithms

n By investing an additional 101213(0) time over the query
complexity, we can get an )( log 1/B)-approximate 
solution [Sherman 09] and [Chen, Kyng, Liu, Peng, Probst 
Gutenberg, Sachdeva 22].

n We can get similar guarantees for the weighted case, 
assuming a suitable graph representation.

Theorem 4: The query complexity achieved by the algorithm 
in  Theorem 3 is essentially optimal for every edge density. 



Related Recent Work

Assadi, Chatziafratis, Lacki, Mirrokkni, and Wang (2022)
n Focuses on estimating the HC value in sublinear in 1 space, 

and shows several negative results. 
n Also gives algorithms for finding a Θ(1)–approximate HC

tree in the streaming and the MPC model – this is slightly
weaker than (1 + 9(1))–approximation that we get.  

Kapralov, Kumar, Lattanzi, Mousavifar (2022)
n Focuses on estimating the HC value in sublinear queries in 

4, ; -clusterable graphs: input is 4 expanders with outer 
conductance bounded by ;.

n )( log 4)–approximation in D9EF 4 . 1
#
$16(.)queries.



Sublinear Algorithms



Graph Sparsification for HC

Given any HC tree !, the cost of ! is given by

Cost(6,!) =   ∑splits !→ !!,!" in $ ( % ⋅ '% %&, %' )

where '% %&, %' = total weight of edges going from %& to %'.

Natural idea: Work with an approximate cut sparsifier of 6. 
For any pair of disjoint sets G, H, we can express '% G, H in 
terms of cuts in 6:

'% %&, %' = 0
/
. ('% %&, I%& +'% %', I%' −'% %& ∪ %', %& ∪ %' ).

Problem: Expressing '% %&, %' as difference of approximately 
preserved values, can result in unbounded error. 



Graph Sparsification for HC

'% %&, %' = 0
/
. ('% %&, I%& +'% %', I%' −'% %& ∪ %', %& ∪ %' ).

Observation: If we fix any HC tree, the negative term at any 
node appears with a strictly larger positive coefficient at the 
parent of the node. 

"
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Note that L > |B|.



Graph Sparsification for HC

Upshot: The cost of any tree ! can be written as
∑splits !→ !!,!" in $

%
& . ( |''|. (( '), *') + |')|. (( '', *'' ) + ∑*((( +, +̅) )

We get a blackbox reduction to cut sparsifiers. 

To get a (1 + 9(1))-approximate hierarchical clustering, it 
suffices to construct a (1 + 9(1))–approximate cut sparsifier.

Now we can just focus on accomplishing this task in various 
models of computation.



Immediate Applications

Corollary (Thm 0): There is an 7)(1) space dynamic streaming 
algorithm that outputs a (1 + 9(1)) –approximate 
hierarchical clustering of a weighted graph.

Corollary (Thm 1): There is a 2-round MPC algorithm with 7)(1)
space per machine that outputs a (1 + 9(1))–approximate 
hierarchical clustering of a weighted graph.

Both results basically follow from [Ahn, Guha, McGregor 12].



Application to Sublinear Time?

Constructing a cut sparsifier necessarily requires Ω(5) queries 
(even for connectivity).

We will work with a relaxed notion of cut sparsifiers that will 
prove much easier to construct.



A Relaxed Notion of Cut Sparsifiers

A graph M(N, O′) is an (;, Q)-sparsifier of a graph 6(N, O) if for 
any cut %, ̅% , we have

1 − ; '% % ≤ '7 % ≤ 1 + ; '% % + Q.min{ % , ̅% }

The usual notion of cut sparsifiers gives an (;, 0)-sparsifier. 

Lemma: If M is an (;, Q)-sparsifier of a graph 6 then for any HC
tree !, we have 
1 − ; X9YZ% ! ≤ X9YZ7 ! ≤ 1 + ; X9YZ% ! + )(Q. 1/)



High-level Plan for Sublinear Time

We will focus on unweighted graphs. 

n Show that larger the Q, the easier it is to compute an  
(;, Q)-sparsifier. 

n But how large can we make Q to still get a (1 + 9(1)) –
approximation?

n Identify an easy to compute lower bound [ for  optimal HC 
cost, and set Q = 9 8

9$
to get  (1 + 9(1))–approximation.



High-level Plan for Sublinear Time

Lemma: The cost of hierarchical clustering on any unweighted

graph 6 with 1 vertices and 5 edges is Ω(:
$

9
).

Example: Suppose 6 is any graph with 5 ≫ 1,// edges, then 
optimal tree cost is ≫ 1/.
So if we set Q = ) 1 , then the ) Q. 1/ additive error term is 
negligible because optimal tree cost is ≫ 1/.

Let us focus on this density regime, and we will design a 
7)(1/]/) query algorithm to construct an (;, )(1))-sparsifier.



Constructing an (", $(1))-sparsifier

[Spielman-Srivastava 11]
One way to construct an (;, 0)-sparsifier of 6:
sample ) 1 log 1/;/ times each edge ^ = (3, 2) with 
probability D; proportional to _(3, 2) = effective resistance 
between 3 and 2.

Difficulty: How to estimate effective resistances in sublinear 
time?

Fix: Add a constant degree expander 6′ to 6.



Constructing an (", $(1))-sparsifier

Observation: Any (;, 0)-sparsifier for the graph M = 6 ∪ 6′
is an (;, )(1))-sparsifier for the graph 6.

For any cut %, ̅% , its size in any (;, 0)-sparsifier of M

n is at least 1 − ; '% % , and 
n at most 1 + ; '% % + ) 1 + ; .5`1{ % , ̅% }

New Goal: Construct an (;, 0)-sparsifier of the graph M.



An (", 0)-sparsifier of the Graph (

What have we gained by shifting the focus to M instead of 6? 

Observation: For any edge ^ = (3, 2), its effective resistance 
_(3, 2) in M satisfies

1
min{ a7 3 , a7 2 }

≤ _ 3, 2 ≤
)(log 1)

min{ a7 3 , a7 2 }

_ 3, 2 ≥ 0
<=>{ @% A ,@% B }

is easy.



An (", 0)-sparsifier of the Graph (

More interesting direction:  _ 3, 2 ≤ 6(DEF 9)
<=>{ @% A ,@% B }

In a constant degree expander, for any 2 sets G and H, there 
are ≈ min G , H edge-disjoint paths of )(log 1) length 
between G and H [Frieze 01].

+ = -(/) 1 = -(2)

3(log 7)



Constructing an (", $(1))-sparsifier

We now have a very simple algorithm to construct an (;, 0)-
sparsifier for the graph M = 6 ∪ 6′.

Repeat the following for 7) 1/;/ steps:
n sample a random vertex 2.
n sample a random edge incident on 2, and add it to the 

sparsifier.

Thus in 7) 1/;/ queries, we get a sparsified graph that gives 
a (1 + ;)–approximation to hierarchical clustering whenever 
the input graph contains 5 ≫ 1,// edges.



General Case: An (", ))-sparsifier

Add constant degree expander 6′ with edges of weight Q.

Observation: For any edge (3, 2) in M = 6 ∪ 6′, we have

1
min{ 2+ 3 , 2+ + } ≤ 6 3, + ≤ 7(log ;)

min 2+ 3 , 2+ + . 1=

Now construct an (;, 0)-sparsifier for the graph M = 6 ∪ 6G by 
sampling as before for 7) 1/Q;/ steps.

A variation of this expander idea was used by [Lee 14] for 
efficiently answering a single cut query with bounded additive 
error – we need this guarantee to hold for all cut queries.



Lower Bounds



Query Lower Bounds

Theorem: For any c ∈ (0,½), there is a family of unweighted
graphs with 5 = Θ(101H) edges such that any randomized 
algorithm that outputs an 7)(1)–approximate hierarchical 
clustering for this family, requires 1<=>{01H,/-/H}-3(0) queries.

The lower bound
n remains50-3(0) as 5 increases from 1 to 1*/,; and
n then gradually decreases from 1*/,-3(0) to 10-3(0) as 
5 increases from 1*/, to 1,//.

We will illustrate the lower bound idea for c = 1/3, and show 
a lower bound of 1*/,-3(0) queries.



!!/#$%(') Query Lower Bound for " = !!/#

Kn1/3 Kn1/3

no(1) edges

Kn1/3 Kn1/3

...

Kn1/3 Kn1/3

;&/- randomly matched
pairs of cliques



An Optimal Tree 

G(V,E)

Kn1/3 Kn1/3

n/2

· · · Kn1/3 Kn1/3

· · ·

2n1/3

Kn1/3 Kn1/3

· · ·Kn1/3 Kn1/3

2n1/3 2n1/3 2n1/3

Kn1/3 Kn1/3

Kn1/3 Kn1/3

n/2

Kn1/3 Kn1/3 · · · Kn1/3 Kn1/3

Kn1/3 Kn1/3

· · ·

· · ·

Kn1/3 Kn1/3

Kn1/3 Kn1/3

Kn1/3 Kn1/3

Optimal clustering cost: Θ(7>/@)



Lower Bound Idea

Consider any 7)(1) –approximation algorithm L.
n Assume w.l.o.g. that the top-level partition is roughly

balanced in the solution output by L.
n L must not cut too many clique matching edges at the top 

partition since penalty for each edge cut is 1. So L must 
``discover’’ most of the meta-matching among the cliques. 

n It takes about 1//,-3(0) queries to discover match of a 
given clique under g. 

n We need to discover Ω(1//,) matches in g, giving us an 
1*/,-3(0)query lower bound.



MPC Lower Bound

Theorem 2: No randomized 1-round protocol using machines 
with 1*/,-. memory for any ; > 0, can output an 7)(1) –
approximate hierarchical clustering even on unweighted
graphs.

n The input graph is partitioned across ≈ 10/, machines with
1*/,-. memory for an arbitrarily small ϵ > 0. 

n We want to rule out recovery of an 7)(1)–approximate HC 
tree in one round of communication. 



MPC Lower Bound

Union of ≈ 10/,
bipartite cliques
of size ≈ 1//,

Union of ≈ 1//,
bipartite cliques
of size ≈ 10/,

So Θ(1I/,) edges are partitioned across ≈ 10/, machines.

N0 = N/ = 1.



MPC Lower Bound

Key idea: each machine 
gets a graph isomorphic to 
A[C&]. 
We do this by tiling the 
bi-cliques in A[C%] by 
graphs that are isomorphic
to A[C&]. 

A machine can not tell locally whether it received the 
blue cliques, the red cliques, or the graph A C& itself.



MPC Lower Bound

Key idea: each machine 
gets a graph isomorphic to 
A[C&]. 
We do this by tiling the 
bi-cliques in A[C%] by 
graphs that are isomorphic
to A[C&]. 

Any E7(1)–approximate solution must discover how 
the vertices are partitioned across the cliques in A[C&] .



MPC Lower Bound

Key idea: each machine 
gets a graph isomorphic to 
A[C&]. 
We do this by tiling the 
bi-cliques in A[C%] by 
graphs that are isomorphic
to A[C&]. 

So each of the ;%/- machines needs to send 
Ω ; bits of information to the coordinator – this is 
much more than the coordinator’s memory.



Concluding Remarks

n We designed near-optimal sublinear algorithms for 
hierarchical clustering in the query model, streaming, and 
MPC model.

n The main algorithmic ingredient: 
n a relaxed notion of cut sparsifiers that is easy to compute in various 

computational models.

n We also establish lower bounds that almost match the 
performance of our algorithms.

n An interesting direction is to understand if there is a 
separation between the queries needed to estimate the 
value and finding a clustering in general graphs.



Thank you !


