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Main motivation in the context of Fairness

Goal of fairness: Remove or minimize the harm caused by the algorithms
• Bias in data
• Bias in the data structures that handle it

This work:
• Selection bias, not introduce it
• Report uniformly at random an item from acceptable outcomes
• Similarity search (Near Neighbor problem)

 No unique definition of fairness, e.g.
• Group fairness: demographics of the population are preserved in the 

outcome
• Individual fairness:  treat individuals with similar conditions similarly, equal 

opportunity
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Individual Fairness in Searching

• 27% of senators are women
• Searching for job applicants (e.g. LinkedIn suggestions)

senator



Plan for the talk

• Nearest neighbor
• Sampling version/ fair version
• Applications
• Algorithms

• Basic Algorithm
• Improving the dependence on 𝜖𝜖
• Handling Outliers
• Improving the dependence on the neighborhood
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Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑, 
and a parameter 𝑟𝑟
A query point 𝑞𝑞 comes online

Goal: 
• Find a point 𝑝𝑝∗ in the 𝑟𝑟-neighborhood
• Do it in sub-linear time and small space

All existing algorithms for this problem
• Either space or query time depending exponentially on 𝑑𝑑
• Or assume certain properties about the data, e.g., bounded intrinsic dimension

𝑞𝑞
𝑝𝑝∗

𝑟𝑟



Approximate Near Neighbor
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A query point 𝑞𝑞 comes online

Goal: 
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• Do it in sub-linear time and small space
• Approximate Near Neighbor

─ Report a point in distance c𝑟𝑟 for c > 1
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Approximate Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑, 
and a parameter 𝑟𝑟
A query point 𝑞𝑞 comes online

Goal: 
• Find a point 𝑝𝑝∗ in the 𝑟𝑟-neighborhood
• Do it in sub-linear time and small space
• Approximate Near Neighbor

─ Report a point in distance c𝑟𝑟 for c > 1
─ For Hamming (and Manhattan) query time is 𝑛𝑛𝑂𝑂(1/𝑐𝑐) [IM98] 

─ and for Euclidean it is 𝑛𝑛𝑂𝑂( 1
𝑐𝑐2

) [AI08]

𝑞𝑞
𝑝𝑝

𝑟𝑟
𝑐𝑐𝑟𝑟



Fair Near Neighbor

Report one of the neighbors uniformly at random

 Individual fairness: every neighbor has the same chance of being reported.
 Remove the bias inherent in the NN data structure (also for the downstream 

tasks)

 Fair Near Neighbor as a NN sampling problem: 
• Sample a point in the neighborhood of the query uniformly at random
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Applications beyond Fairness: KNN - Classification

 Data set of points,  each has a label
 Given a query: find the closest K neighbors to the query
 Compute the majority label ℓ
 Assign the label ℓ to the query

 small values of k, are not robust 
 large values are not time efficient

Instead: sample a few points in the neighborhood and assign the label based on 
the majority of sampled points
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Applications beyond Fairness: Filtered Searching

 Apply filters on top of our search.

 E.g. in a shopping scenario, person 
looking for “blue” shoes
 Searches for “shoes” 
 Adds a filter of color being “blue”

 If the desired property is common in the 
neighborhood: 
 Retrieve random shoes until blue 

shoes are found.
 Can be combined with a different 

procedure for rare filters
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Beyond Fairness: When random nearby-by is better than the nearest

 Robustness: input is noisy, and the closest point might be an unrepresentative outlier 

(e.g. why knn is beneficial in reducing the effect of noise) 

 KNN-Classification 

 Statistical Queries: estimate the number of items with a desired property in the 

neighborhood.

 Filtered Searching

 Anonymizing the data

 Diversifying the output (e.g. in a recommendation system)



Problem formulation and our results



Fair Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑, 
and a parameter 𝑟𝑟
A query point 𝑞𝑞 comes online

Goal: 
• Return each point 𝑝𝑝 in the neighborhood of 𝑞𝑞 with uniform probability
• Do it in sub-linear time and small space

𝑞𝑞1
2

𝑟𝑟 1
2



Approximately Fair Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑, 
and a parameter 𝑟𝑟
A query point 𝑞𝑞 comes online

Goal of Approximately Fair NN
─ Any point 𝑝𝑝 in 𝑁𝑁(𝑞𝑞, 𝑟𝑟) is reported with “almost uniform” probability, i.e.,  
𝜆𝜆𝑞𝑞(𝑝𝑝) where

1
1 + 𝜖𝜖 𝑁𝑁 𝑞𝑞, 𝑟𝑟

≤ 𝜆𝜆𝑞𝑞(𝑝𝑝) ≤
1 + 𝜖𝜖
𝑁𝑁 𝑞𝑞, 𝑟𝑟

𝑞𝑞1
2

+ 𝜖𝜖

𝑟𝑟 1
2
− ϵ



Further notes

Need Independence
• Need a Fresh Sample each time, i.e., require independence between queries:
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𝑵𝑵 𝒒𝒒, 𝒓𝒓

Pior Work
• In low dimensions, “Independent Range Sampling” [Xiaocheng Hu, 

Miao Qiao, and Yufei Tao.]
• Exponential dependence on dim runtime
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 Dependence on 𝜖𝜖 is O(log(1
𝜖𝜖
))

 Black-box reduction 

Our approach solves a more general problem

 Experiments (Naïve randomization of ANN is not fair)
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Locality Sensitive Hashing (LSH) [Indyk, Motwani’98]

One of the main approaches to solve the Nearest Neighbor problems
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Locality Sensitive Hashing (LSH)

Hashing scheme s.t. close points have higher probability of collision than far points
Hash functions: 𝑔𝑔1 , … ,𝑔𝑔𝐿𝐿

• 𝑔𝑔𝑖𝑖 is an independently chosen hash function

If 𝑝𝑝 − 𝑝𝑝𝑝 ≤ 𝑟𝑟 , they collide w.p.  ≥ 𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ
If 𝑝𝑝 − 𝑝𝑝𝑝 ≥ 𝑐𝑐𝑟𝑟 , they collide w.p. ≤ 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙

For 𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ ≥ 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙
𝑔𝑔1

𝑔𝑔2

𝑔𝑔3

𝑔𝑔𝐿𝐿



Locality Sensitive Hashing (LSH)

Retrieval: [Indyk, Motwani’98]
• The union of the query buckets is roughly the 

neighborhood of 𝑞𝑞

• ⋃𝑖𝑖 𝐵𝐵𝑖𝑖 𝑔𝑔𝑖𝑖 𝑞𝑞 is roughly the neighborhood
• Contains all points within distance 𝑟𝑟
• Contains at most 𝐿𝐿 outlier points (farther than 𝑐𝑐𝑟𝑟) 𝑔𝑔1

𝑔𝑔2
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Locality Sensitive Hashing (LSH)

Retrieval: [Indyk, Motwani’98]
• The union of the query buckets is roughly the 

neighborhood of 𝑞𝑞

• ⋃𝑖𝑖 𝐵𝐵𝑖𝑖 𝑔𝑔𝑖𝑖 𝑞𝑞 is roughly the neighborhood
• Contains all points within distance 𝑟𝑟
• Contains at most 𝐿𝐿 outlier points (farther than 𝑐𝑐𝑟𝑟)

• How to report a uniformly random neighbor 
from union of these buckets?

• Collecting all points might take 𝑂𝑂(𝑛𝑛) time

𝑔𝑔1

𝑔𝑔2

𝑔𝑔3

𝑔𝑔𝐿𝐿

𝑞𝑞



A more general problem
Sampling from a sub-collection of Sets
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Sampling from a sub-collection of sets

Preprocess: a collection ℱ of subsets of a universe 𝑈𝑈
• E.g. in LSH: all buckets in all hash tables

Query: a sub-collection 𝒢𝒢 ⊆ ℱ
• E.g. in LSH: buckets corresponding to the query

Goal: report a point uniformly at random from ⋃𝒢𝒢 = ⋃𝐹𝐹∈𝒢𝒢 𝐹𝐹
• Runtime of |𝒢𝒢|, (e.g. in LSH: the number of hash functions 𝐿𝐿)

Other applications:
• Sampling from neighbors of a subset of vertices in a graph
• Uniform sampling for range searching



Basic Algorithm

• Nearest neighbor

• Sampling version/ fair version

• Applications

• Algorithms
• Basic Algorithm
• Improving the dependence on 𝜖𝜖
• Handling Outliers
• Improving the dependence on the neighborhood
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How to output a random neighbor from ⋃𝒢𝒢 = ⋃𝐹𝐹∈𝒢𝒢 𝐹𝐹

1. Choose a set 𝐹𝐹 ∈ 𝒢𝒢 w.p. ∝ |𝐹𝐹|
2. Choose a uniformly random point in 𝐹𝐹
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Number of sets in 𝒢𝒢 that 
𝒑𝒑 appears in
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Algorithm

How to output a random neighbor from ⋃𝒢𝒢 = ⋃𝐹𝐹∈𝒢𝒢 𝐹𝐹

1. Choose a set 𝐹𝐹 ∈ 𝒢𝒢 w.p. ∝ |𝐹𝐹|
2. Choose a uniformly random point in 𝐹𝐹
Each point is picked w.p. proportional to its degree 𝑑𝑑𝑝𝑝

3. Keep 𝑝𝑝 with probability 1
𝑑𝑑𝑝𝑝

,  o.w. repeat

 Uniform probability
 Need to spend 𝑂𝑂(𝐿𝐿) to find the degree
Might need 𝑂𝑂 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑂𝑂(𝐿𝐿) samples
 Total time is 𝑂𝑂(𝐿𝐿2)

𝑳𝑳 = |𝒢𝒢|



Approximate the degree 𝑑𝑑𝑝𝑝
Sample 𝑂𝑂( 𝐿𝐿

𝑑𝑑𝑝𝑝⋅𝜖𝜖2
) sets out of 𝐿𝐿 sets in 𝒢𝒢 to (1 + 𝜖𝜖)-approximate the degree. 𝑳𝑳 = |𝒢𝒢|
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𝑑𝑑𝑝𝑝⋅𝜖𝜖2
) sets out of 𝐿𝐿 sets in 𝒢𝒢 to (1 + 𝜖𝜖)-approximate the degree.
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• More samples are required to estimate
• Reject with lower probability -> Fewer queries of this type
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Approximate the degree 𝑑𝑑𝑝𝑝
Sample 𝑂𝑂( 𝐿𝐿

𝑑𝑑𝑝𝑝⋅𝜖𝜖2
) sets out of 𝐿𝐿 sets in 𝒢𝒢 to (1 + 𝜖𝜖)-approximate the degree.

 Still if the degree is low this takes 𝑂𝑂(𝐿𝐿) samples.

Case 1: Small degree 𝒅𝒅𝒑𝒑:
• More samples are required to estimate
• Reject with lower probability -> Fewer queries of this type

Case 2: Large degree 𝒅𝒅𝒑𝒑:
• Fewer samples are required to estimate
• Reject with higher probability -> More queries of this type

 This decreases 𝑂𝑂(𝐿𝐿2) runtime to �𝑂𝑂(𝐿𝐿)

𝑳𝑳 = |𝒢𝒢|

Keep 𝑝𝑝 with probability 1
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Approximate the degree 𝑑𝑑𝑝𝑝
Sample 𝑂𝑂( 𝐿𝐿

𝑑𝑑𝑝𝑝⋅𝜖𝜖2
) sets out of 𝐿𝐿 sets in 𝒢𝒢 to (1 + 𝜖𝜖)-approximate the degree.

 Still if the degree is low this takes 𝑂𝑂(𝐿𝐿) samples.

Case 1: Small degree 𝒅𝒅𝒑𝒑:
• More samples are required to estimate
• Reject with lower probability -> Fewer queries of this type

Case 2: Large degree 𝒅𝒅𝒑𝒑:
• Fewer samples are required to estimate
• Reject with higher probability -> More queries of this type

 This decreases 𝑂𝑂(𝐿𝐿2) runtime to �𝑂𝑂(𝐿𝐿)

 Large dependency on 𝜖𝜖 of the form 𝑂𝑂( 1
𝜖𝜖2

)

𝑳𝑳 = |𝒢𝒢|

Keep 𝑝𝑝 with probability 1
𝑑𝑑𝑝𝑝



Improving the dependence on 𝜖𝜖
From 1/𝜖𝜖2 to log(1/𝜖𝜖)

• Nearest neighbor

• Sampling version/ fair version

• Applications

• Algorithms
• Basic Algorithm
• Improving the dependence on 𝜖𝜖
• Handling Outliers
• Improving the dependence on the neighborhood
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• Keeps a sample 𝑝𝑝 with probability 1
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• In time �𝑂𝑂( 𝐿𝐿
𝑑𝑑𝑝𝑝
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𝐿𝐿 = |𝒢𝒢| setsGoal: A procedure that given a sample 𝑝𝑝 out of the 𝐿𝐿 sets in 𝒢𝒢
• Keeps a sample 𝑝𝑝 with probability 1

𝑑𝑑𝑝𝑝

• In time �𝑂𝑂( 𝐿𝐿
𝑑𝑑𝑝𝑝

)
Need to repeat ≈ 𝑑𝑑𝑝𝑝 times

Total runtime would be ≈ 𝑑𝑑𝑝𝑝 ⋅ �𝑂𝑂
𝐿𝐿
𝑑𝑑𝑝𝑝

= �𝑂𝑂(𝐿𝐿)



• Sample sets from 𝒢𝒢 until you find a set 𝐹𝐹 such that 𝑝𝑝 ∈ 𝐹𝐹

𝐿𝐿 = |𝒢𝒢| setsGoal: A procedure that given a sample 𝑝𝑝 out of the 𝐿𝐿 sets in 𝒢𝒢
• Keeps a sample 𝑝𝑝 with probability 1

𝑑𝑑𝑝𝑝

• In time �𝑂𝑂( 𝐿𝐿
𝑑𝑑𝑝𝑝

)

Assuming one can check if 𝑝𝑝 ∈ 𝐹𝐹 in 
constant time
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• Assume it happens at iteration 𝑖𝑖
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𝐸𝐸 𝑖𝑖 =
𝐿𝐿
𝑑𝑑𝑝𝑝
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• Assume it happens at iteration 𝑖𝑖

• Keep the sample 𝑝𝑝 with probability 𝑖𝑖
𝐿𝐿
≈ 𝐿𝐿

𝑑𝑑𝑝𝑝
⋅ 1
𝐿𝐿

= 1/𝑑𝑑𝑝𝑝
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)
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• Assume it happens at iteration 𝑖𝑖
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𝐿𝐿
≈ 𝐿𝐿

𝑑𝑑𝑝𝑝
⋅ 1
𝐿𝐿

= 1/𝑑𝑑𝑝𝑝

• Correct except that 𝑖𝑖/𝐿𝐿 could be larger than 1

𝐿𝐿 = |𝒢𝒢| setsGoal: A procedure that given a sample 𝑝𝑝 out of the 𝐿𝐿 sets in 𝒢𝒢
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)

𝐸𝐸 𝑖𝑖 =
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• Sample sets from 𝒢𝒢 until you find a set 𝐹𝐹 such that 𝑝𝑝 ∈ 𝐹𝐹
• Assume it happens at iteration 𝑖𝑖

• Keep the sample 𝑝𝑝 with probability 𝑖𝑖
𝐿𝐿
≈ 𝐿𝐿

𝑑𝑑𝑝𝑝
⋅ 1
𝐿𝐿

= 1/𝑑𝑑𝑝𝑝

• Correct except that 𝑖𝑖/𝐿𝐿 could be larger than 1

• Keep the sample with probability 𝑖𝑖
Δ⋅𝐿𝐿

≈ 1
Δ⋅𝑑𝑑𝑝𝑝

• Still uniform
• Probability that 𝑖𝑖 > (Δ𝐿𝐿) is exponentially small in Δ
• Sufficient to set Δ = log 1

𝜖𝜖

𝐿𝐿 = |𝒢𝒢| setsGoal: A procedure that given a sample 𝑝𝑝 out of the 𝐿𝐿 sets in 𝒢𝒢
• Keeps a sample 𝑝𝑝 with probability 1

𝑑𝑑𝑝𝑝

• In time �𝑂𝑂( 𝐿𝐿
𝑑𝑑𝑝𝑝

)

The number of iterations increases by a factor of Δ

𝐸𝐸 𝑖𝑖 =
𝐿𝐿
𝑑𝑑𝑝𝑝



So far 

• Get a sample uniformly at random from the union of the buckets

• ⋃𝑖𝑖 𝐵𝐵𝑖𝑖 𝑔𝑔𝑖𝑖 𝑞𝑞 is roughly the neighborhood
• Contains all points within distance 𝑟𝑟
• Contains at most 𝐿𝐿 outlier points (farther than 𝑐𝑐𝑟𝑟)

• What about the outliers?



Handling Outliers

• Nearest neighbor

• Sampling version/ fair version

• Applications

• Algorithms
• Basic Algorithm
• Improving the dependence on 𝜖𝜖
• Handling Outliers
• Improving the dependence on the neighborhood
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• Whenever you see an outlier sample, ignore it and repeat.
• Runtime in the worst case: 𝒢𝒢 ⋅ 𝑚𝑚𝑂𝑂



Sampling from a sub-collection of sets with outliers

Preprocess: a collection ℱ of subsets of a universe 𝑈𝑈

Query: a sub-collection 𝒢𝒢 ⊆ ℱ , and a set of outliers 𝑂𝑂 ⊆ 𝑈𝑈, s.t.
∑𝑙𝑙∈𝑂𝑂 𝑑𝑑𝑙𝑙 𝒢𝒢 ≤ 𝑚𝑚𝑂𝑂

Goal: report a point uniformly at random from ⋃𝒢𝒢 ∖ 𝑂𝑂 = ⋃𝐹𝐹∈𝒢𝒢 𝐹𝐹 ∖ 𝑂𝑂
• Runtime of 𝓖𝓖 + 𝒎𝒎𝒐𝒐

Trivial solution:
• Whenever you see an outlier sample, ignore it and repeat.
• Runtime in the worst case: 𝒢𝒢 ⋅ 𝑚𝑚𝑂𝑂
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• Implement each bucket (each set in ℱ ) as an array 

2, 4, 6, 9, 3
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• Implement each bucket (each set in ℱ ) as an array 

• Once we encounter an outlier, swap it with the last element of the array.
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• Implement each bucket (each set in ℱ ) as an array 

• Once we encounter an outlier, swap it with the last element of the array.

• Update the count of that bucket/set

2, 3, 6, 9, 4

Cnt=4
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• Update the count of that bucket/set
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proportional to its active size
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Goal: Runtime of 𝒢𝒢 + 𝑚𝑚𝑙𝑙

• Implement each bucket (each set in ℱ ) as an array 

• Once we encounter an outlier, swap it with the last element of the array.

• Update the count of that bucket/set

At the query time upon receiving 𝒢𝒢,  

• Build a tree on with 𝐿𝐿 = |𝒢𝒢| leaves containing the count of the sets in 𝒢𝒢

• Each node keeps the sum of the counts of the leaves in its subtree

• Taking a sample from sets can be done by moving down the tree from the root

• Update the counts in time 𝑂𝑂(log𝐿𝐿)

 We see each outlier 𝑜𝑜 ∈ 𝑂𝑂 at most 𝑑𝑑𝑙𝑙 times
 Total number of times we encounter an outlier is 𝑚𝑚𝑙𝑙



So far 

• Get a sample uniformly at random from the union of the buckets

• ⋃𝑖𝑖 𝐵𝐵𝑖𝑖 𝑔𝑔𝑖𝑖 𝑞𝑞 is roughly the neighborhood
• Contains all points within distance 𝑟𝑟
• Contains at most 𝐿𝐿 outlier points (farther than 𝑐𝑐𝑟𝑟)

• What about the outliers?
• Total degree of outliers is 𝑂𝑂(𝐿𝐿)
• Get a sample in time �𝑂𝑂 𝒢𝒢 + 𝑚𝑚𝑙𝑙 = �𝑂𝑂 𝐿𝐿 + 𝐿𝐿 = �𝑂𝑂(𝐿𝐿)



Results on (1 + 𝜖𝜖)-Approximate Fair NN

 Get a sample from the union of the buckets
 Approximate neighborhood: a set 𝑆𝑆 such that 𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟

 Dependence on 𝜖𝜖 is O(log(1
𝜖𝜖
))

 Black-box reduction 

Domain Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 +
𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟
𝑁𝑁 𝑞𝑞, 𝑟𝑟

)

Approximate Neighborhood
𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁(𝑞𝑞, 𝑐𝑐𝑟𝑟)

�𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴)

𝑞𝑞

𝑟𝑟
𝑐𝑐𝑟𝑟
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𝑞𝑞

𝑟𝑟
𝑐𝑐𝑟𝑟



Exact Neighborhood?

• Treat the points within distance 𝑟𝑟 and 𝑐𝑐𝑟𝑟 also as outliers.
• Unlucky event: we hit all the 𝑛𝑛(𝑞𝑞, 𝑐𝑐𝑟𝑟) outliers first
• Total runtime: �𝑂𝑂 𝒢𝒢 + 𝑚𝑚𝑙𝑙 = �𝑂𝑂 𝐿𝐿 + 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟 − |𝑁𝑁 𝑞𝑞, 𝑟𝑟 | =
�𝑂𝑂(𝐿𝐿 + 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟 )



Results on (1 + 𝜖𝜖)-Approximate Fair NN

 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 are the space and query time of standard ANN

 Approximate neighborhood: a set 𝑆𝑆 such that 𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟

 Dependence on 𝜖𝜖 is O(log(1
𝜖𝜖
))

 Black-box reduction 

Domain Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟 )
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�𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴)



Results on (1 + 𝜖𝜖)-Approximate Fair NN

 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 are the space and query time of standard ANN

 Approximate neighborhood: a set 𝑆𝑆 such that 𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟

 Dependence on 𝜖𝜖 is O(log(1
𝜖𝜖
))

 Black-box reduction 

Domain Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟 )

Approximate Neighborhood
𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁(𝑞𝑞, 𝑐𝑐𝑟𝑟)

�𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴)

Improve to 
𝑻𝑻𝑨𝑨𝑵𝑵𝑵𝑵 + 𝑵𝑵 𝒒𝒒,𝒄𝒄𝒓𝒓

𝑵𝑵 𝒒𝒒,𝒓𝒓



Improving the dependence on the density of the neighborhood
From 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟 to 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑵𝑵 𝒒𝒒,𝒄𝒄𝒓𝒓

𝑵𝑵 𝒒𝒒,𝒓𝒓

• Nearest neighbor

• Sampling version/ fair version

• Applications

• Algorithms
• Basic Algorithm
• Improving the dependence on 𝜖𝜖
• Handling Outliers
• Improving the dependence on the neighborhood



High Level Idea:

• Partition the elements ⋃𝒢𝒢 randomly into 𝑘𝑘 bins s.t.

• Each bin gets 𝑂𝑂 1 good elements, i.e., from ⋃𝒢𝒢 ∖ 𝑂𝑂

• Each bin gets 𝑂𝑂( 𝑂𝑂
⋃𝒢𝒢∖𝑂𝑂

) points from the outliers

• Time will improve to �𝑂𝑂 𝒢𝒢 + 𝑚𝑚𝑙𝑙 = (𝐿𝐿 + 𝑵𝑵 𝒒𝒒,𝒄𝒄𝒓𝒓
𝑵𝑵 𝒒𝒒,𝒓𝒓

)



More Precisely,

Preprocess:

• To partition all elements in 𝑈𝑈 among 𝑘𝑘 bins
• Give each of the elements in 𝑈𝑈 a random unique rank

from 1 to 𝑁𝑁 = |𝑈𝑈|, (i.e, pick a random permutation)
• Each set in ℱ stores its elements in sorted order
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𝑘𝑘
𝑖𝑖 , 𝐴𝐴

𝑘𝑘
𝑖𝑖 + 1 ]

• Select one bin (almost) uniformly at random
• Get a sample from the sampled bin

How to choose 𝒌𝒌

• 𝒌𝒌 large: many bins get no element from ⋃𝒢𝒢

• 𝒌𝒌 small: finding an element in ⋃𝒢𝒢 that is in a particular bin takes a long time

 Set 𝒌𝒌 roughly equal to |⋃𝒢𝒢|. Then each bin has roughly 𝑂𝑂(1) elements from ⋃𝒢𝒢

 Don’t know |⋃𝒢𝒢| in advance

 Count the number of distinct elements using a sketch for Distinct Elements Problem
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More Precisely,

Preprocess:

• To partition all elements in 𝑈𝑈 among 𝑘𝑘 bins
• Give each of the elements in 𝑈𝑈 a random unique rank 
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• 𝒌𝒌 small: finding an element in ⋃𝒢𝒢 that is in a particular bin takes a long time

 Set 𝒌𝒌 roughly equal to |⋃𝒢𝒢|. Then each bin has roughly 𝑂𝑂(1) elements from ⋃𝒢𝒢

 Don’t know |⋃𝒢𝒢| in advance

 Count the number of distinct elements using a sketch for Distinct Elements Problem

 Set 𝒌𝒌 = 𝒏𝒏(𝒒𝒒, 𝒓𝒓)
 Number of outliers in a bin is at most 𝒏𝒏(𝒒𝒒, 𝒄𝒄𝒓𝒓)/𝒏𝒏(𝒒𝒒, 𝒓𝒓)



More Precisely,

Preprocess:

• To partition all elements in 𝑈𝑈 among 𝑘𝑘 bins
• Give each of the elements in 𝑈𝑈 a random unique rank 
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How to sample from ⋃𝒢𝒢 ∩ 𝑏𝑏𝑖𝑖𝑛𝑛𝑖𝑖?

• One can iterate over 𝐹𝐹 ∩ 𝐵𝐵𝑖𝑖𝑛𝑛𝑖𝑖 in time 𝑂𝑂 log𝑛𝑛 + 𝐹𝐹 ∩ 𝐵𝐵𝑖𝑖𝑛𝑛𝑖𝑖
• Because the elements are kept sorted in 𝐹𝐹
• And the Bin is continuous

Compute |𝐹𝐹 ∩ 𝐵𝐵𝑖𝑖𝑛𝑛𝑖𝑖| for each 𝐹𝐹 ∈ 𝒢𝒢
Build a BST on these counts, sample from them



Results on (1 + 𝜖𝜖)-Approximate Fair NN

 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 are the space and query time of standard ANN

 Approximate neighborhood: a set 𝑆𝑆 such that 𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟

 Dependence on 𝜖𝜖 is O(log(1
𝜖𝜖
))

 Black-box reduction 

 Our approach solves a more general problem

 Experiments

Domain Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 +
𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟
𝑁𝑁 𝑞𝑞, 𝑟𝑟

)

Approximate Neighborhood
𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁(𝑞𝑞, 𝑐𝑐𝑟𝑟)

�𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴)



Summary

 Defined NN problem with respect to fairness, i.e., the sampling variant
• Applications of sampling NN

 How to sample from a sub-collection of sets
 Improve dependency on 𝜖𝜖
 How to handle outliers
 Improve dependency on the density parameter of the neighborhood



 𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 and 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 are the space and query time of standard ANN

 Approximate neighborhood: a set 𝑆𝑆 such that 𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟

 Dependence on 𝜖𝜖 is O(log(1
𝜖𝜖
))

 Black-box reduction 

 Our approach solves a more general problem

 Experiments

Open Problem:

o Finding the optimal dependency on the density parameter

Domain Space Query

Exact Neighborhood
𝑁𝑁(𝑞𝑞, 𝑟𝑟)

𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 +
𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟
𝑁𝑁 𝑞𝑞, 𝑟𝑟

)

Approximate Neighborhood
𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑆𝑆 ⊆ 𝑁𝑁(𝑞𝑞, 𝑐𝑐𝑟𝑟)

�𝑂𝑂(𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴) �𝑂𝑂(𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴)

Thanks
Questions?

Summary
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