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Main motivation in the context of Fairness

Goal of fairness: Remove or minimize the harm caused by the algorithms
* Bias in data
* Bias in the data structures that handle it

This work:
e Selection bias, not introduce it
* Report uniformly at random an item from acceptable outcomes
e Similarity search (Near Neighbor problem)

» No unique definition of fairness, e.g.

* Group fairness: demographics of the population are preserved in the
outcome

* Individual fairness: treat individuals with similar conditions similarly, equal
opportunity



Individual Fairness in Searching
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Individual Fairness in Searching

* 27% of senators are women

* Searching for job applicants (e.g. LinkedIn suggestions)
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Plan for the talk

* Nearest neighbor

* Sampling version/ fair version
* Applications

* Algorithms



Near Neighbor

Dataset of 1 points P in a metric space, e.g. RY,
and a parameter r



Near Neighbor

Dataset of 1 points P in a metric space, e.g. RY,
and a parameter r

A query point g comes online



Near Neighbor

Dataset of 1 points P in a metric space, e.g. RY,
and a parameter r

A query point g comes online

Goal:
* Find a point p™ in the r-neighborhood



Near Neighbor

Dataset of 1 points P in a metric space, e.g. RY,
and a parameter r

A query point g comes online

Goal:
* Find a point p™ in the r-neighborhood

* Do it in sub-linear time and small space



Near Neighbor

Dataset of 1 points P in a metric space, e.g. RY,
and a parameter r

A query point g comes online o

Goal:
* Find a point p™ in the r-neighborhood

* Do it in sub-linear time and small space

All existing algorithms for this problem
 Either space or query time depending exponentially on d

* Or assume certain properties about the data, e.g., bounded intrinsic dimension
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and a parameter r
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Approximate Near Neighbor

Dataset of 1 points P in a metric space, e.g. RY,
and a parameter r

A query point g comes online

Goal:

* Find a point p™ in the r-neighborhood

* Do it in sub-linear time and small space

* Approximate Near Neighbor
— Report a point in distance cr forc > 1
— For Hamming (and Manhattan) query time is n2(1/¢) [IM98]

1
_ and for Euclidean it is n° @@ [AIO8]



Fair Near Neighbor

Report one of the neighbors uniformly at random

 Individual fairness: every neighbor has the same chance of being reported.

(d Remove the bias inherent in the NN data structure (also for the downstream
tasks)

» Fair Near Neighbor as a NN sampling problem:
e Sample a point in the neighborhood of the query uniformly at random
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Applications beyond Fairness: KNN - Classification

= Data set of points, each has a label
= Given a query: find the closest K neighbors to the query
= Compute the majority label £

= Assign the label £ to the query
» small values of k, are not robust
» large values are not time efficient

»Instead: sample a few points in the neighborhood and assign the label based on
the majority of sampled points
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Applications beyond Fairness: Filtered Searching

= Apply filters on top of our search.
= E.g.in a shopping scenario, person
looking for “blue” shoes
= Searches for “shoes”
= Adds a filter of color being “blue”

Go g le shoes

Color
o o0
]

More

Brand

[] Nike

[ adidas

] vans

[ Fashion Nova

[ Avia

[] Christian Louboutin
[] Asos

Department

] women

[ Men

[] Unisex
| Kids

Athletic Shoe Style
] Running Shoes
] walking Shoes

Jordan Boys AJ 1 Mid - Basketball

]

Shoes Black/Dark Iris/White Size

1.0

$70.00

Nike

Delivery by Mon, Aug 22

@ Trusted store - 4.6/5 * (2.6K)

Compare prices from 5+ stores

LOW PRICE

Air Jordan 1 Retro High Dior
Shoes - Size 8
44 5

$10,948.00

$2,366.58 below typical
kickscrew.com

$35.00 delivery

4.1/5  (2.5K store reviews)

Jordan Boys Retro 4 - Shoes

Red/Black Size 02.0
43 6

$111.00

StockX

$20.50 delivery

4.0/5 % (12.7K slore reviews)

Compare prices fram 5+ stores

About these results

Air Jordan 1Retro High OG PS
Bubble Gum Shoes - Size 1y

48 66

$140.00

GOAT

$13.50 delivery

4.4/5 * (568 store reviews)

Compare prices from 5+ stores

nl
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Applications beyond Fairness: Filtered Searching

= Apply filters on top of our search.
= E.g.in a shopping scenario, person
looking for “blue” shoes
= Searches for “shoes”
= Adds a filter of color being “blue”
= |f the desired property is common in the
neighborhood:

m Retrieve random shoes until blue
shoes are found.

= Can be combined with a different
procedure for rare filters

Go g|e shoes X Q ﬁ| h=4 €& i
Wolf & Shepherd - Allbirds Women's Anne Klein Raylee Under Armour Women's S Sport By Brooks Running %
Col SwiftKnit Derby - Tree Dasher 1, Blue, Pump | Women's | Men's Charged Skechers Kamary Men's Trace Road M
@ . . . Navy / White Size 10.5 Navy | Size 9 ... Pursuit 3 Running... Performance... Runnin g Shoes,... U
$179.00 $109.00 $39.98 $52.50 $37.49 $49.99 $79.95 $106:00 $1
Wolf & Shepherd Allbirds DsSwW Under Armour Target Brooks Running M
e (2,465) (8,281) 47 (15) (18) (180)
Q Upto 525 Free shipping Free shipping Was $59.98 Free returns Free shipping Free shipping
O $25-$50
QO $50-$10
O 1
O Over $250
$
Brand
[] Nike
[ Asics
[] adidas
[ cr
OF
[] K-Swiss
[] Paris Hilton
Nike Dunk Low SE Big Kids' Shoes Air Jordan 1 Mid Diamond Shorts Nike LeBron Witness 5 Basketball Jordan 4 Retro University Blue
in Black, Size: 4.5Y | Dr0165-001 Retro Basketball Shoes Shoes, Men's, Blue (PS)
Department 5
"1 women
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Beyond Fairness: When random nearby-by is better than the nearest

(d Robustness: input is noisy, and the closest point might be an unrepresentative outlier

(e.g. why knn is beneficial in reducing the effect of noise)
(J KNN-Classification

(] Statistical Queries: estimate the number of items with a desired property in the

neighborhood.
 Filtered Searching
1 Anonymizing the data

 Diversifying the output (e.g. in a recommendation system)



Problem formulation and our results



Fair Near Neighbor

Dataset of 1 points P in a metric space, e.g. RY,
and a parameter r

A query point g comes online o

Goal:
* Return each point p in the neighborhood of g with uniform probability

* Do it in sub-linear time and small space



Approximately Fair Near Neighbor

Dataset of 1 points P in a metric space, e.g. RY,
and a parameter r

A query point g comes online o

o
Goal of Approximately Fair NN

— Any point p in N(q, 1) is reported with “almost uniform” probability, i.e.,
Aq(p) where

(1+¢€)
IN(q,7)

A+ oINGg ] = 1P =



Further notes

Need Independence
* Need a Fresh Sample each time, i.e., require independence between queries:

1
IN(q,1)]

Pr[outi,qi = plouti—l»qi—1 = Pi-1, -, 0Uly g, = pl] ~



Further notes

Need Independence
* Need a Fresh Sample each time, i.e., require independence between queries:

1
Pr[outi,qi = p|0uti—1,qi_1 = Pi-1, -, 0Uly g, = p1] ~ IN(q,1)|

Pior Work

* In low dimensions, “Independent Range Sampling” [Xiaocheng Hu,
Miao Qiao, and Yufei Tao.]
* Exponential dependence on dim runtime



Results on (1 + €)-Approximate Fair NN

_ ooman | space | Qury

IN(q, cr)|
IN(q,7)|

Exact Neighborhood
N(q,7)

O(SANN) 0"(T +
ANN

» S,y and T,y are the space and query time of standard ANN
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Results on (1 + €)-Approximate Fair NN
S o e | auen

Exact Neighborhood O(Sann) O(Tonn + IN(q, cr)|
N(q,7) AN IN(g, )
Approximate Neighborhood 0(Sann) O(Tann)
N(q,v) €S S N(q,cr)

» S,yn and T,y are the space and query time of standard ANN

» Approximate neighborhood: a set S such that N(q,r) €S € N(q,cr)
» Dependence on € is O(log(i))

» Black-box reduction
» Our approach solves a more general problem

» Experiments (Naive randomization of ANN is not fair)



Locality Sensitive Hashing (LSH) [Indyk, Motwani’98]

One of the main approaches to solve the Nearest Neighbor problems



Locality Sensitive Hashing (LSH)

Hashing scheme s.t. close points have higher probability of collision than far points
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Locality Sensitive Hashing (LSH)

Hashing scheme s.t. close points have higher probability of collision than far points

Hash functions: g, , ... , g,
* g, is anindependently chosen hash function  @p O
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Locality Sensitive Hashing (LSH)

Hashing scheme s.t. close points have higher probability of collision than far points

Hash functions: g, , ... , g,
* g, is anindependently chosen hash function  @p O
Op' ®

If ||p — p'|| < r, they collide w.p. = Pp;4p

If ||[p — p'|| = cr, they collide w.p. < Py,

For Phign = Plow 91 [®5 ® o
[ JoTe] e
g: (®@]O @
gL -.O @O




Locality Sensitive Hashing (LSH)

Retrieval: [Indyk, Motwani’98]

* The union of the query buckets is roughly the
neighborhood of g

* U; B; (gi(q)) is roughly the neighborhood
e Contains all points within distance r

e Contains at most L outlier points (farther than cr)

91

9>
93
gL

q

®
%[ Je
® 10 e
g0 [ @
-.O




Locality Sensitive Hashing (LSH)

Retrieval: [Indyk, Motwani’98]

* The union of the query buckets is roughly the
neighborhood of g

* U; B; (gi(q)) is roughly the neighborhood
e Contains all points within distance r

e Contains at most L outlier points (farther than cr)

* How to report a uniformly random neighbor
from union of these buckets?
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Locality Sensitive Hashing (LSH)

Retrieval: [Indyk, Motwani’98]

* The union of the query buckets is roughly the
neighborhood of g

* U; B; (gi(q)) is roughly the neighborhood
e Contains all points within distance r

* Contains at most L outlier points (farther than cr)

* How to report a uniformly random neighbor
from union of these buckets?

* Collecting all points might take O(n) time

9>
93
gL

q

®
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A more general problem

Sampling from a sub-collection of Sets



Sampling from a sub-collection of sets

Preprocess: a collection F of subsets of a universe U
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Preprocess: a collection F of subsets of a universe U
* E.g. in LSH: all buckets in all hash tables
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Sampling from a sub-collection of sets

Preprocess: a collection F of subsets of a universe U
* E.g. in LSH: all buckets in all hash tables

Query: a sub-collection G € F
* £.g. in LSH: buckets corresponding to the query

%[ Te
®ToTe
(¢[00 [ @




Sampling from a sub-collection of sets

Preprocess: a collection F of subsets of a universe U
* E.g. in LSH: all buckets in all hash tables

Query: a sub-collection G € F
* £.g. in LSH: buckets corresponding to the query

Goal: report a point uniformly at random from UG = Upeg F
* Runtime of |G|, (e.g. in LSH: the number of hash functions L)
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Sampling from a sub-collection of sets

Preprocess: a collection F of subsets of a universe U
* E.g. in LSH: all buckets in all hash tables

Query: a sub-collection G € F
* £.g. in LSH: buckets corresponding to the query

Goal: report a point uniformly at random from UG = Upeg F
* Runtime of |G|, (e.g. in LSH: the number of hash functions L)

Other applications:
* Sampling from neighbors of a subset of vertices in a graph
* Uniform sampling for range searching
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* Nearest neighbor
* Sampling version/ fair version
e Applications

e Algorithms
e Basic Algorithm
* Improving the dependence on €
* Handling Outliers
* |Improving the dependence on the neighborhood

Basic Algorithm



Algorithm

How to output a random neighbor from UG = Ugeg F

1. ChooseasetF € G w.p. « |F|
2. Choose a uniformly random pointin F
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Algorithm

How to output a random neighbor from UG = Ugeg F

1. ChooseasetF € G w.p. « |F|

2. Choose a uniformly random pointin F
»Each point is picked w.p. proportional to its degree d,,

Number of sets in § that
p appears in
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Algorithm

How to output a random neighbor from UG = Ugeg F

1. ChooseasetF € G w.p. « |F|

2. Choose a uniformly random pointin F
»Each point is picked w.p. proportional to its degree d,,

3. Keep p with probability di, 0.W. repeat
p
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Algorithm

How to output a random neighbor from UG = Ugeg F

1. ChooseasetF € G w.p. « |F|

2. Choose a uniformly random pointin F
»Each point is picked w.p. proportional to its degree d,,
: 1
3. Keep p with probability — O.W. repeat

p
» Uniform probability
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Algorithm

How to output a random neighbor from UG = Ugeg F

1. ChooseasetF € G w.p. « |F|

2. Choose a uniformly random pointin F
»Each point is picked w.p. proportional to its degree d,,

: 1
3. Keep p with probability — O.W. repeat
p
» Uniform probability

» Need to spend O(L) to find the degree

L = |G|
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Algorithm

How to output a random neighbor from UG = Ugeg F

1. ChooseasetF € G w.p. « |F|

2. Choose a uniformly random pointin F
»Each point is picked w.p. proportional to its degree d,,

: 1
3. Keep p with probability — O.W. repeat
p
» Uniform probability

» Need to spend O(L) to find the degree
» Might need 0(d,,,q,) = O(L) samples
> Total time is O (L?)

L = |G|
O
LA ®
® 10 [e] @
LOIREE
-.O




Approximate the degree d,,

L

Sample O(d 62) sets out of L sets in G to (1 + €)-approximate the degree. L= |G|
-
O
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Approximate the degree d,,

L
dy-€?
> Still if the degree is low this takes O (L) samples.

Sample O(

) sets out of L setsin G to (1 + €)-approximate the degree.

L = |G|
O
LA ®
® 10 [e] @
LOIREE
=




Approximate the degree d,,

L
2
dpe

Sample O( ) sets out of L setsin G to (1 + €)-approximate the degree. L= |G|

> Still if the degree is low this takes O (L) samples.

Keep p with probability di
14

Case 1: Small degree d ,:

* More samples are required to estimate ®

* Reject with lower probability -> Fewer queries of this type
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Approximate the degree d,,

Sample O(

) sets out of L setsin G to (1 + €)-approximate the degree. L= |G|

L
2
dpe

> Still if the degree is low this takes O (L) samples.

Keep p with probability di
p

Case 1: Small degree d ,:

* More samples are required to estimate ®
* Reject with lower probability -> Fewer queries of this type
Case 2: Large degree d,;: _.C) ® ®
* Fewer samples are required to estimate @ O lel e
* Reject with higher probability -> More queries of this type
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Approximate the degree d,,

Sample O(

) sets out of L setsin G to (1 + €)-approximate the degree. L= |G|

L
2
dpe

> Still if the degree is low this takes O (L) samples.

Keep p with probability di
p

Case 1: Small degree d ,:

* More samples are required to estimate ®

* Reject with lower probability -> Fewer queries of this type
Case 2: Large degree d,;: _.C) ® ®

* Fewer samples are required to estimate @ O lel e

* Reject with higher probability -> More queries of this type
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Approximate the degree d,,

Sample O(

) sets out of L setsin G to (1 + €)-approximate the degree. L= |G|

L
2
dpe

> Still if the degree is low this takes O (L) samples.

Keep p with probability di
p

Case 1: Small degree d ,:

* More samples are required to estimate ®

* Reject with lower probability -> Fewer queries of this type
Case 2: Large degree d,;: _.C) ® ®

* Fewer samples are required to estimate @ O lel e

* Reject with higher probability -> More queries of this type

90 [ @

- 2y runtime to 0 L 0

» This decreases O(L*) runtime to O(L) Q)

» Large dependency on € of the form O(Eiz)



Nearest neighbor
Sampling version/ fair version
e Applications

Algorithms
Basic Algorithm
Improving the dependence on €
* Handling Outliers
* |Improving the dependence on the neighborhood

Improving the dependence on €

From 1/€“ to log(1/€)



Goal: A procedure that given a sample p out of the L setsin§

* Keeps a sample p with probability di
p

* Intime é(dL—p)

L = |G| sets




Goal: A procedure that given a sample p out of the L setsin§

L = |G| sets

e

* Keeps a sample p with probability di

P
; ~ L
* |ntime 0(@)

Need to repeat = d,, times
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Goal: A procedure that given a sample p out of the L setsin §

L = |G| sets

e

* Keeps a sample p with probability di _

p

Need to repeat = d,, times

* Intime é(dL—p)

— 4

\

L

Total runtime would be = d,, - 0 (d—> = 0(L)

D

J




Goal: A procedure that given a sample p out of the L setsin § L = |G| sets

* Keeps a sample p with probability di
p

* Intime é(dL—p)

* Sample sets from G until you find a set F suchthatp € F t{ Assuming one can check if p € F in J

constant time




Goal: A procedure that given a sample p out of the L setsin §

* Keeps a sample p with probability di
p

* Intime é(dL—p)

L = |G| sets

* Sample sets from G until you find a set F such thatp € F

e Assume it happens at iteration i




Goal: A procedure that given a sample p out of the L setsin §

* Keeps a sample p with probability di
p

* Intime é(dL—p)

L = |G| sets

Sample sets from G until you find a set F suchthatp € F

Assume it happens at iteration i

—_—

Keep the sample p with probability% ~ <di> % =1/d,

p




Goal: A procedure that given a sample p out of the L setsin§

* Keeps a sample p with probability di
p

* Intime é(dL—p)

L = |G| sets

Sample sets from G until you find a set F suchthatp € F

Assume it happens at iteration i

—_—

L

1
?)'Z—l/dp

p
* Correct except that i /L could be larger than 1

Keep the sample p with probability% ~ <




Goal: A procedure that given a sample p out of the L setsin § L = |G| sets

* Keeps a sample p with probability di
p

* Intime é(dL—p)

Sample sets from G until you find a set F suchthatp € F

Assume it happens at iteration i

—_—

f)'%zl/dp = Elil= J

p

* Correct except that i /L could be larger than 1
i 1

* Keep the sample with probability — =
AL Ady -
e Still uniform ﬁ The number of iterations increases by a factor of A J

* Probability that i > (AL) is exponentially small in A

Keep the sample p with probability% ~ <

 Sufficient to set A = logi



So far

e Get a sample uniformly at random from the union of the buckets

* U; Bi(gi(q)) is roughly the neighborhood
e Contains all points within distance r

* Contains at most L outlier points (farther than cr)

e What about the outliers?



* Nearest neighbor
* Sampling version/ fair version
e Applications

e Algorithms
e Basic Algorithm
* Improving the dependence on €
* Handling Outliers
* |Improving the dependence on the neighborhood

Handling Outliers



Sampling from a sub-collection of sets with outliers

Preprocess: a collection F of subsets of a universe U
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Goal: report a point uniformly at random from UG \ O = Upeg F \ O
Trivial solution:

* Whenever you see an outlier sample, ignore it and repeat.
* Runtime in the worst case: |G| - m,



Sampling from a sub-collection of sets with outliers
Preprocess: a collection F of subsets of a universe U

Query: a sub-collection § € F , and a set of outliers O € U, s.t.
ZOEO do(g) < Mmo

Goal: report a point uniformly at random from UG \ O = Upeg F \ O
* Runtime of |G| + m,

Trivial solution:
* Whenever you see an outlier sample, ignore it and repeat.
* Runtime in the worst case: |G| - m,



Goal: Runtime of |G| + m,

* Implement each bucket (each setin F ) as an array
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Goal: Runtime of |G| + m,

* Implement each bucket (each setin F ) as an array

* Once we encounter an outlier, swap it with the last element of the array.

* Update the count of that bucket/set

Cnt=4

2,3,6,9,4



Goal: Runtime of |G| + m,

* Implement each bucket (each setin F ) as an array

* Once we encounter an outlier, swap it with the last element of the array.

* Update the count of that bucket/set

Need to (dynamically) sample a set with probability

proportional to its active size
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* Each node keeps the sum of the counts of the leaves in its subtree

* Taking a sample from sets can be done by moving down the tree from the root



Goal: Runtime of |G| + m,

* Implement each bucket (each setin F ) as an array

* Once we encounter an outlier, swap it with the last element of the array.

* Update the count of that bucket/set

At the query time upon receiving G,

Need to (dynamically) sample a set with probability

proportional to its active size

* Build a tree on with L = |G| leaves containing the count of the sets in §

* Each node keeps the sum of the counts of the leaves in its subtree

* Taking a sample from sets can be done by moving down the tree from the root

* Update the counts in time O(log L)




Goal: Runtime of |G| + m,

* Implement each bucket (each setin F ) as an array

* Once we encounter an outlier, swap it with the last element of the array.

* Update the count of that bucket/set

At the query time upon receiving G,

* Build a tree on with L = |G| leaves containing the count of the sets in §

° Each node keeps the Su nf+tho covinte nftho loavine in ite ciibhiran

* Takingasample fromset; % \We see each outlier 0 € 0 at most d, times
« Update the counts in tim » Total number of times we encounter an outlier is m,




So far

e Get a sample uniformly at random from the union of the buckets

* U; Bi(gi(q)) is roughly the neighborhood
e Contains all points within distance r

* Contains at most L outlier points (farther than cr)

* What about the outliers?
* Total degree of outliersis O(L)
* Geta sampleintime 0(|G| + m,) = O(L + L) = O(L)



Results on (1 + €)-Approximate Fair NN

_ ooman | Space | Quen

Approximate Neighborhood O0(Sann) O(Tann)
N(q,v) €S € N(q,cr)

» Get a sample from the union of the buckets

» Approximate neighborhood: a set S suchthat N(q,r) €S € N(q, cr)

» Dependence on € is O(log(i))

> Black-box reduction
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» Get a sample from the union of the buckets

» Approximate neighborhood: a set S suchthat N(q,r) €S € N(q, cr)

» Dependence on € is O(log(i))

> Black-box reduction



Exact Neighborhood?

* Treat the points within distance r and cr also as outliers.
* Unlucky event: we hit all the n(gq, cr) outliers first

» Total runtime: O0(|G|l +m,) = O(L + |N(q,cr)| — |IN(q,7)|) =
O(L + [N(q,cr)|)
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» Dependence on € is O(log(i))

> Black-box reduction



Results on (1 + €)-Approximate Fair NN

_ ooman | Space | Quen

Exact Neighborhood O(Sann) O(Tynn + IN(q,cr)))
N(q,r) \
Approximate Neighborhood O0(Sann) O(Tynn) A
N(q,r) €S S N(q,cr) Improve to
| T n IN(q,cr)|
» S,yn and T,y are the space and query time of standard ANN ANN " \N(g1)|

» Approximate neighborhood: a set S suchthat N(q,r) €S € N(q, cr)

» Dependence on € is O(log(i))

> Black-box reduction

~




Nearest neighbor

Sampling version/ fair version
Applications

Algorithms
Basic Algorithm
Improving the dependence on €

Handling Outliers
Improving the dependence on the neighborhood

Improving the dependence on the density of the neighborhood

IN(q,cr)|
From Tanw + IN(q, cr)| to Tyny + 5 =5




High Level |dea:

* Partition the elements UG randomly into k bins s.t.
* Each bin gets 0(1) good elements, i.e., from UG \ O

0|
|UG\O|

* Each bin gets O( ) points from the outliers

IN(q,cr) I)

* Time will improve to O(|G| + m,) = (L + IN(q,1)|



More Precisely,

Preprocess:

* To partition all elements in U among k bins

* Give each of the elements in U a random unique rank
from1to N = |U|, (i.e, pick a random permutation)

e Each set in F stores its elements in sorted order
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* To partition all elements in U among k bins

* Give each of the elements in U a random unique rank
from1to N = |U|, (i.e, pick a random permutation)

e Each set in F stores its elements in sorted order

Query Time:
e Consider k bins based on the ranks, i.e.,
Bini = [(%)l(%) (i +1)]
* Select one bin (almost) uniformly at random
* Get a sample from the sampled bin



More Precisely,

How to choose k

Preprocess:
P * k large: many bins get no element from UG

* To partition all ele

* Give each of t
from 1 to N g » Set k roughly equal to |UG|. Then each bin has roughly O(1) elements from UG

* Each setin F | > Don’t know |UG]| in advance

* k small: finding an element in UG that is in a particular bin takes a long time

» Count the number of distinct elements using a sketch for Distinct Elements Problem

Query Time:
e Consider k bins based on the ranks, i.e.,
Bini = [(7)i,(%) G+ D]
* Select one bin (almost) uniformly at random
* Get a sample from the sampled bin
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More Precisely,

Preprocess: How to choose k

« To partition all ele * klarge: many bins get no element from UG
e Give each of t| * k small: finding an element in UG that is in a particular bin takes a long time
from1to N =
 EachsetinF
* Keep a sketch

» Set k roughly equal to |[UG|. Then each bin has roughly O(1) elements from UgG
» Don’t know |UG| in advance

Query Time: » Count the number of distinct elements using a sketch for Distinct Elements Problem

* Consider k bir

Bini — [(ﬂ)l d Setk =n(q,r)
k7 1 1 Number of outliers in a bin is at most n(q, cr)/n(q,r)

e Select one bin

* Get a sample from the sampled bin



More Precisely,

Preprocess:

* To partition all elements in U among k bins

* Give each of the elements in U a random unique rank
from1to N = |U|, (i.e, pick a random permutation)

e Each set in F stores its elements in sorted order
* Keep a sketch for distinct elements

Query Time:
e Consider k bins based on the ranks, i.e.,
Bini = [(7)i,(%) G+ D]
* Select one bin (almost) uniformly at random
* Get a sample from the sampled bin



How to sample from UG N bin;?

* One can iterate over F N Bin; in time O(logn + |F N Bin;|)
* Because the elements are kept sorted in F
* And the Bin is continuous

»Compute |F N Bin;| foreach F € §
»Build a BST on these counts, sample from them



Results on (1 + €)-Approximate Fair NN
S o e | awey

Exact Neighborhood O(Sann) 5(T + IN(q, CT)|)
N(q,7) ANNTIN (g, 1)
Approximate Neighborhood O(Sann) O(Tynn)
N(q,v) €S S N(q,cr)

» Sunyn and Ty are the space and query time of standard ANN

> Approximate neighborhood: a set S such that N(q,r) €S € N(q, cr)
» Dependence on € is O(log(i))

» Black-box reduction
» Our approach solves a more general problem

» Experiments



Summary

» Defined NN problem with respect to fairness, i.e., the sampling variant
* Applications of sampling NN

» How to sample from a sub-collection of sets
» Improve dependency on €
» How to handle outliers

» Improve dependency on the density parameter of the neighborhood



Summary

_ ooman | Space | Quen

Exact Neighborhood O(Sann) 5(T + IN(q, CT)|)
N(q,7) ANNTIN (g, 1)
Approximate Neighborhood O(Sann) O(Tynn)
N(q,v) €S S N(q,cr)

» Sunyn and Ty are the space and query time of standard ANN

> Approximate neighborhood: a set S such that N(q,r) €S € N(q, cr)
» Dependence on € is O(log(i))

» Black-box reduction

» Our approach solves a more general problem
» Experiments

Open Problem:

o Finding the optimal dependency on the density parameter
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