Sampling a Neighbor in High Dimensions

Who is the fairest of them all?

Sepideh Mahabadi
MSR Redmond

Joint work with

Martin Aumuller Sariel Har-Peled Rasmus Pagh Francesco Silvestri
IT University of UIUC BARC and University of Padova
Copenhagen University of

Copenhagen

Main motivation in the context of Fairness

Goal of fairness: Remove or minimize the harm caused by the algorithms
* Bias in data
* Bias in the data structures that handle it

Main motivation in the context of Fairness

Goal of fairness: Remove or minimize the harm caused by the algorithms
* Bias in data
* Bias in the data structures that handle it

This work:
e Selection bias, not introduce it
* Report uniformly at random an item from acceptable outcomes
e Similarity search (Near Neighbor problem)

Main motivation in the context of Fairness

Goal of fairness: Remove or minimize the harm caused by the algorithms
* Bias in data
* Bias in the data structures that handle it

This work:
e Selection bias, not introduce it
* Report uniformly at random an item from acceptable outcomes
e Similarity search (Near Neighbor problem)

» No unique definition of fairness, e.g.

* Group fairness: demographics of the population are preserved in the
outcome

* Individual fairness: treat individuals with similar conditions similarly, equal
opportunity

Individual Fairness in Searching

* 27% of senators are women

Google a a @
q iforni AR i Heenotor i i cart i e "
" starw _ california current “ clipart sencter logo - design m fashion ,;,A;M, congress w canada m portrait ‘ old [>

o]
Minnesota State Senate U.S. Senator Mitt Romn. United States Senate - Wikipe About Angus Josh Hawley - Wikipedia ~ U.S. Senator Lindsey Graham says he 22 US Senators Join 89 Representatives Monica R. Martinez | NY State S.
senate.mn iri.org en.wikipedia.org king.senate.gov en.wikipedia.org reuters.com armenianweekly.com nysenate.gov

U.S. Senate: Statesint.. Eric Adams | NY State Senate Senator Brian Williams .. Senator Bill Cowsert | Geor.. Senators | Indiana Sen... What every Republican senator has.. File:Senator Harris offi... Requirements to be a US Senator
gema.georgia.gov indianasenaterepublican. pbs.org commons.wikimedia.org thoughtco.com

senate.gov nysenate.gov senate.mo.gov

Senator Jon Bumstead

Senator Eric Wimberger Contact Your U.S. Sena... Why Raphael Warnock was... Senator Edward Marke... Jane English | Arkansas Senate Shane Jett | Oklahoma ... first Black senator ...

Individual Fairness in Searching

* 27% of senators are women

* Searching for job applicants (e.g. LinkedIn suggestions)

Google a a @
i i i ®meenotor i 1 calls yrun v .
-_ starw _ california current “ clipart sencter logo - design m fashion ,;,A;ZZW congress w canada ﬁ portrait ‘ old [>

Minnesota State Senate U.S. Senator Mitt Romn. United States Senate - Wikipe About Angus Josh Hawley - Wikipedia ~ U.S. Senator Lindsey Graham says he 22 US Senators Join 89 Representatives Monica R. Martinez | NY State S.
senate.mn iri.org en.wikipedia.org king.senate.gov en.wikipedia.org reuters.com armenianweekly.com nysenate.gov

U.S. Senate: Statesint.. Eric Adams | NY State Senate Senator Brian Williams .. Senator Bill Cowsert | Geor.. Senators | Indiana Sen... What every Republican senator has.. File:Senator Harris offi.. Requirements to be a US Senator
senate.gov nysenate.gov senate.mo.gov gema.georgia.gov indianasenaterepublican. pbs.org commons.wikimedia.org thoughtco.com

Senator Eric Wimberger Contact Your U.S. Sena... Why Raphael Warnock was... Senator Edward Marke... Jane English | Arkansas Senate Shane Jett | Oklahoma ... first Black senator ... Senator Jon Bumstead

Plan for the talk

* Nearest neighbor

* Sampling version/ fair version
* Applications

* Algorithms

Near Neighbor

Dataset of 1 points P in a metric space, e.g. RY,
and a parameter r

Near Neighbor

Dataset of 1 points P in a metric space, e.g. RY,
and a parameter r

A query point g comes online

Near Neighbor

Dataset of 1 points P in a metric space, e.g. RY,
and a parameter r

A query point g comes online

Goal:
* Find a point p™ in the r-neighborhood

Near Neighbor

Dataset of 1 points P in a metric space, e.g. RY,
and a parameter r

A query point g comes online

Goal:
* Find a point p™ in the r-neighborhood

* Do it in sub-linear time and small space

Near Neighbor

Dataset of 1 points P in a metric space, e.g. RY,
and a parameter r

A query point g comes online o

Goal:
* Find a point p™ in the r-neighborhood

* Do it in sub-linear time and small space

All existing algorithms for this problem
 Either space or query time depending exponentially on d

* Or assume certain properties about the data, e.g., bounded intrinsic dimension

Approximate Near Neighbor

Dataset of 1 points P in a metric space, e.g. RY,
and a parameter r

A query point g comes online

Goal:

* Find a point p™ in the r-neighborhood

* Do it in sub-linear time and small space

* Approximate Near Neighbor
— Report a point in distance cr forc > 1

Approximate Near Neighbor

Dataset of 1 points P in a metric space, e.g. RY,
and a parameter r

A query point g comes online

Goal:

* Find a point p™ in the r-neighborhood

* Do it in sub-linear time and small space

* Approximate Near Neighbor
— Report a point in distance cr forc > 1
— For Hamming (and Manhattan) query time is n2(1/¢) [IM98]

1
_ and for Euclidean it is n° @@ [AIO8]

Fair Near Neighbor

Report one of the neighbors uniformly at random

 Individual fairness: every neighbor has the same chance of being reported.

(d Remove the bias inherent in the NN data structure (also for the downstream
tasks)

» Fair Near Neighbor as a NN sampling problem:
e Sample a point in the neighborhood of the query uniformly at random

Beyond Fairness: When random nearby-by is better than the nearest

(d Robustness: input is noisy, and the closest point might be an unrepresentative outlier

(e.g. why knn is beneficial in reducing the effect of noise)

Beyond Fairness: When random nearby-by is better than the nearest

(d Robustness: input is noisy, and the closest point might be an unrepresentative outlier

(e.g. why knn is beneficial in reducing the effect of noise)

(J KNN-Classification

Applications beyond Fairness: KNN - Classification

= Data set of points, each has a label

= Given a query: find the closest K neighbors to the query

Applications beyond Fairness: KNN - Classification

= Data set of points, each has a label

= Given a query: find the closest K neighbors to the query
= Compute the majority label £

= Assign the label £ to the query

Applications beyond Fairness: KNN - Classification

= Data set of points, each has a label
= Given a query: find the closest K neighbors to the query
= Compute the majority label £

= Assign the label £ to the query
» small values of k, are not robust
» large values are not time efficient

»Instead: sample a few points in the neighborhood and assign the label based on
the majority of sampled points

Beyond Fairness: When random nearby-by is better than the nearest

(d Robustness: input is noisy, and the closest point might be an unrepresentative outlier

(e.g. why knn is beneficial in reducing the effect of noise)
(J KNN-Classification

(] Statistical Queries: estimate the number of items with a desired property in the

neighborhood.

Beyond Fairness: When random nearby-by is better than the nearest

(d Robustness: input is noisy, and the closest point might be an unrepresentative outlier

(e.g. why knn is beneficial in reducing the effect of noise)
(J KNN-Classification

(] Statistical Queries: estimate the number of items with a desired property in the

neighborhood.

 Filtered Searching

Applications beyond Fairness: Filtered Searching

= Apply filters on top of our search.
= E.g.in a shopping scenario, person
looking for “blue” shoes
= Searches for “shoes”
= Adds a filter of color being “blue”

Go g le shoes

Color
o o0
]

More

Brand

[] Nike

[adidas

] vans

[Fashion Nova

[Avia

[] Christian Louboutin
[] Asos

Department

] women

[Men

[] Unisex
| Kids

Athletic Shoe Style
] Running Shoes
] walking Shoes

Jordan Boys AJ 1 Mid - Basketball

]

Shoes Black/Dark Iris/White Size

1.0

$70.00

Nike

Delivery by Mon, Aug 22

@ Trusted store - 4.6/5 * (2.6K)

Compare prices from 5+ stores

LOW PRICE

Air Jordan 1 Retro High Dior
Shoes - Size 8
44 5

$10,948.00

$2,366.58 below typical
kickscrew.com

$35.00 delivery

4.1/5 (2.5K store reviews)

Jordan Boys Retro 4 - Shoes

Red/Black Size 02.0
43 6

$111.00

StockX

$20.50 delivery

4.0/5 % (12.7K slore reviews)

Compare prices fram 5+ stores

About these results

Air Jordan 1Retro High OG PS
Bubble Gum Shoes - Size 1y

48 66

$140.00

GOAT

$13.50 delivery

4.4/5 * (568 store reviews)

Compare prices from 5+ stores

nl

Al

E @

Applications beyond Fairness: Filtered Searching

= Apply filters on top of our search.
= E.g.in a shopping scenario, person
looking for “blue” shoes
= Searches for “shoes”
= Adds a filter of color being “blue”
= |f the desired property is common in the
neighborhood:

m Retrieve random shoes until blue
shoes are found.

= Can be combined with a different
procedure for rare filters

Go g|e shoes X Q ﬁ| h=4 €& i
Wolf & Shepherd - Allbirds Women's Anne Klein Raylee Under Armour Women's S Sport By Brooks Running %
Col SwiftKnit Derby - Tree Dasher 1, Blue, Pump | Women's | Men's Charged Skechers Kamary Men's Trace Road M
@ . . . Navy / White Size 10.5 Navy | Size 9 ... Pursuit 3 Running... Performance... Runnin g Shoes,... U
$179.00 $109.00 $39.98 $52.50 $37.49 $49.99 $79.95 $106:00 $1
Wolf & Shepherd Allbirds DsSwW Under Armour Target Brooks Running M
e (2,465) (8,281) 47 (15) (18) (180)
Q Upto 525 Free shipping Free shipping Was $59.98 Free returns Free shipping Free shipping
O $25-$50
QO $50-$10
O 1
O Over $250
$
Brand
[] Nike
[Asics
[] adidas
[cr
OF
[] K-Swiss
[] Paris Hilton
Nike Dunk Low SE Big Kids' Shoes Air Jordan 1 Mid Diamond Shorts Nike LeBron Witness 5 Basketball Jordan 4 Retro University Blue
in Black, Size: 4.5Y | Dr0165-001 Retro Basketball Shoes Shoes, Men's, Blue (PS)
Department 5
"1 women

Beyond Fairness: When random nearby-by is better than the nearest

(d Robustness: input is noisy, and the closest point might be an unrepresentative outlier

(e.g. why knn is beneficial in reducing the effect of noise)
(J KNN-Classification

(] Statistical Queries: estimate the number of items with a desired property in the

neighborhood.
 Filtered Searching

1 Anonymizing the data

Beyond Fairness: When random nearby-by is better than the nearest

(d Robustness: input is noisy, and the closest point might be an unrepresentative outlier

(e.g. why knn is beneficial in reducing the effect of noise)
(J KNN-Classification

(] Statistical Queries: estimate the number of items with a desired property in the

neighborhood.
 Filtered Searching
1 Anonymizing the data

 Diversifying the output (e.g. in a recommendation system)

Problem formulation and our results

Fair Near Neighbor

Dataset of 1 points P in a metric space, e.g. RY,
and a parameter r

A query point g comes online o

Goal:
* Return each point p in the neighborhood of g with uniform probability

* Do it in sub-linear time and small space

Approximately Fair Near Neighbor

Dataset of 1 points P in a metric space, e.g. RY,
and a parameter r

A query point g comes online o

o
Goal of Approximately Fair NN

— Any point p in N(q, 1) is reported with “almost uniform” probability, i.e.,
Aq(p) where

(1+¢€)
IN(q,7)

A+ oINGg] = 1P =

Further notes

Need Independence
* Need a Fresh Sample each time, i.e., require independence between queries:

1
IN(q,1)]

Pr[outi,qi = plouti—l»qi—1 = Pi-1, -, 0Uly g, = pl] ~

Further notes

Need Independence
* Need a Fresh Sample each time, i.e., require independence between queries:

1
Pr[outi,qi = p|0uti—1,qi_1 = Pi-1, -, 0Uly g, = p1] ~ IN(q,1)|

Pior Work

* In low dimensions, “Independent Range Sampling” [Xiaocheng Hu,
Miao Qiao, and Yufei Tao.]
* Exponential dependence on dim runtime

Results on (1 + €)-Approximate Fair NN

_ ooman | space | Qury

IN(q, cr)|
IN(q,7)|

Exact Neighborhood
N(q,7)

O(SANN) 0"(T +
ANN

» S,y and T,y are the space and query time of standard ANN

Results on (1 + €)-Approximate Fair NN
S o e | auen

Exact Neighborhood O(Sann) 0Ty + IN(q, CT)|)
N(q,7) ANV T IN(g, 1)
Approximate Neighborhood O(Sann) O(Tynn)
N(g,r) €S S N(q,cr)

» S,nn and Ty are the space and query time of standard ANN

» Approximate neighborhood: a set S such that N(q,r) €S € N(q,cr)

Results on (1 + €)-Approximate Fair NN
S o e | auen

Exact Neighborhood O(Sann) 0Ty + IN(q, CT)|)
N(q,7) ANV T IN(g, 1)
Approximate Neighborhood O(Sann) O(Tynn)
N(g,r) €S S N(q,cr)

» S,nn and Ty are the space and query time of standard ANN

» Approximate neighborhood: a set S such that N(q,r) €S € N(q,cr)

» Dependence on € is O(log(i))

Results on (1 + €)-Approximate Fair NN
S o e | auen

Exact Neighborhood O(Sann) O(Tonn + IN(q, cr)|
N(q,7) AN IN(g,)
Approximate Neighborhood 0(Sann) O(Tann)
N(q,v) €S S N(q,cr)

» S,nn and Ty are the space and query time of standard ANN

» Approximate neighborhood: a set S such that N(q,r) €S € N(q,cr)
» Dependence on € is O(log(i))

> Black-box reduction

Results on (1 + €)-Approximate Fair NN
S o e | auen

Exact Neighborhood O(Sann) O(Tonn + IN(q, cr)|
N(q,7) AN IN(g,)
Approximate Neighborhood 0(Sann) O(Tann)
N(q,v) €S S N(q,cr)

» S,yn and T,y are the space and query time of standard ANN

» Approximate neighborhood: a set S such that N(q,r) €S € N(q,cr)
» Dependence on € is O(log(i))

> Black-box reduction

» Our approach solves a more general problem

Results on (1 + €)-Approximate Fair NN
S o e | auen

Exact Neighborhood O(Sann) O(Tonn + IN(q, cr)|
N(q,7) AN IN(g,)
Approximate Neighborhood 0(Sann) O(Tann)
N(q,v) €S S N(q,cr)

» S,yn and T,y are the space and query time of standard ANN

» Approximate neighborhood: a set S such that N(q,r) €S € N(q,cr)
» Dependence on € is O(log(i))

» Black-box reduction
» Our approach solves a more general problem

» Experiments (Naive randomization of ANN is not fair)

Locality Sensitive Hashing (LSH) [Indyk, Motwani’98]

One of the main approaches to solve the Nearest Neighbor problems

Locality Sensitive Hashing (LSH)

Hashing scheme s.t. close points have higher probability of collision than far points

@p ®
Op' &)
L2 O O

d
O
O
O

5
O
O

Locality Sensitive Hashing (LSH)

Hashing scheme s.t. close points have higher probability of collision than far points

Hash functions: g, , ... , g,
* g, is anindependently chosen hash function @p O
Op' O
91 [®@ O 0
92 @ O |1 | @
g: (®@]O @
9. [®4 (9

Locality Sensitive Hashing (LSH)

Hashing scheme s.t. close points have higher probability of collision than far points

Hash functions: g, , ... , g,
* g, is anindependently chosen hash function @p O
Op' ®

If ||p — p'|| < r, they collide w.p. = Pp;4p

If ||[p — p'|| = cr, they collide w.p. < Py,

For Phign = Plow 91 [®5 ® o
[JoTe] e
g: (®@]O @
gL -.O @O

Locality Sensitive Hashing (LSH)

Retrieval: [Indyk, Motwani’98]

* The union of the query buckets is roughly the
neighborhood of g

* U; B; (gi(q)) is roughly the neighborhood
e Contains all points within distance r

e Contains at most L outlier points (farther than cr)

91

9>
93
gL

q

®
%[Je
® 10 e
g0 [@
-.O

Locality Sensitive Hashing (LSH)

Retrieval: [Indyk, Motwani’98]

* The union of the query buckets is roughly the
neighborhood of g

* U; B; (gi(q)) is roughly the neighborhood
e Contains all points within distance r

e Contains at most L outlier points (farther than cr)

* How to report a uniformly random neighbor
from union of these buckets?

9>
93
gL

q

O
%[Je
® 10 e
g0 [@

Locality Sensitive Hashing (LSH)

Retrieval: [Indyk, Motwani’98]

* The union of the query buckets is roughly the
neighborhood of g

* U; B; (gi(q)) is roughly the neighborhood
e Contains all points within distance r

* Contains at most L outlier points (farther than cr)

* How to report a uniformly random neighbor
from union of these buckets?

* Collecting all points might take O(n) time

9>
93
gL

q

®
%[Je
® 10 e
g0 [@
-.O

A more general problem

Sampling from a sub-collection of Sets

Sampling from a sub-collection of sets

Preprocess: a collection F of subsets of a universe U

Sampling from a sub-collection of sets

Preprocess: a collection F of subsets of a universe U
* E.g. in LSH: all buckets in all hash tables

ol | e
®ToTe
(¢[00 [@

Sampling from a sub-collection of sets

Preprocess: a collection F of subsets of a universe U
* E.g. in LSH: all buckets in all hash tables

Query: a sub-collection G € F
* £.g. in LSH: buckets corresponding to the query

%[Te
®ToTe
(¢[00 [@

Sampling from a sub-collection of sets

Preprocess: a collection F of subsets of a universe U
* E.g. in LSH: all buckets in all hash tables

Query: a sub-collection G € F
* £.g. in LSH: buckets corresponding to the query

Goal: report a point uniformly at random from UG = Upeg F
* Runtime of |G|, (e.g. in LSH: the number of hash functions L)

%[Te
®ToTe
(®e[C [@

Sampling from a sub-collection of sets

Preprocess: a collection F of subsets of a universe U
* E.g. in LSH: all buckets in all hash tables

Query: a sub-collection G € F
* £.g. in LSH: buckets corresponding to the query

Goal: report a point uniformly at random from UG = Upeg F
* Runtime of |G|, (e.g. in LSH: the number of hash functions L)

Other applications:
* Sampling from neighbors of a subset of vertices in a graph
* Uniform sampling for range searching

- O
® 1o e
O[O0 [@
ko

* Nearest neighbor
* Sampling version/ fair version
e Applications

e Algorithms
e Basic Algorithm
* Improving the dependence on €
* Handling Outliers
* |Improving the dependence on the neighborhood

Basic Algorithm

Algorithm

How to output a random neighbor from UG = Ugeg F

1. ChooseasetF € G w.p. « |F|
2. Choose a uniformly random pointin F

O

LA ®
® 0 [e
LOIREE
=

Algorithm

How to output a random neighbor from UG = Ugeg F

1. ChooseasetF € G w.p. « |F|

2. Choose a uniformly random pointin F
»Each point is picked w.p. proportional to its degree d,,

Number of sets in § that
p appears in

O

LA ®
® 0 [e
LOIREE

Algorithm

How to output a random neighbor from UG = Ugeg F

1. ChooseasetF € G w.p. « |F|

2. Choose a uniformly random pointin F
»Each point is picked w.p. proportional to its degree d,,

3. Keep p with probability di, 0.W. repeat
p

O

LA ®
® 0 [e
LOIREE
=

Algorithm

How to output a random neighbor from UG = Ugeg F

1. ChooseasetF € G w.p. « |F|

2. Choose a uniformly random pointin F
»Each point is picked w.p. proportional to its degree d,,
: 1
3. Keep p with probability — O.W. repeat

p
» Uniform probability

O

LA ®
® 0 [e
LOIREE

Algorithm

How to output a random neighbor from UG = Ugeg F

1. ChooseasetF € G w.p. « |F|

2. Choose a uniformly random pointin F
»Each point is picked w.p. proportional to its degree d,,

: 1
3. Keep p with probability — O.W. repeat
p
» Uniform probability

» Need to spend O(L) to find the degree

L = |G|
O
LA ®
® 10 [e] @
LOIREE

Algorithm

How to output a random neighbor from UG = Ugeg F

1. ChooseasetF € G w.p. « |F|

2. Choose a uniformly random pointin F
»Each point is picked w.p. proportional to its degree d,,

: 1
3. Keep p with probability — O.W. repeat
p
» Uniform probability

» Need to spend O(L) to find the degree
» Might need 0(d,,,q,) = O(L) samples
> Total time is O (L?)

L = |G|
O
LA ®
® 10 [e] @
LOIREE
-.O

Approximate the degree d,,

L

Sample O(d 62) sets out of L sets in G to (1 + €)-approximate the degree. L= |G|
-
O
_.C) P
® 1c el @
%0 [e
Ie

Approximate the degree d,,

L
dy-€?
> Still if the degree is low this takes O (L) samples.

Sample O(

) sets out of L setsin G to (1 + €)-approximate the degree.

L = |G|
O
LA ®
® 10 [e] @
LOIREE
=

Approximate the degree d,,

L
2
dpe

Sample O() sets out of L setsin G to (1 + €)-approximate the degree. L= |G|

> Still if the degree is low this takes O (L) samples.

Keep p with probability di
14

Case 1: Small degree d ,:

* More samples are required to estimate ®

* Reject with lower probability -> Fewer queries of this type

d
O
O
O

&
O
O

Approximate the degree d,,

Sample O(

) sets out of L setsin G to (1 + €)-approximate the degree. L= |G|

L
2
dpe

> Still if the degree is low this takes O (L) samples.

Keep p with probability di
p

Case 1: Small degree d ,:

* More samples are required to estimate ®
* Reject with lower probability -> Fewer queries of this type
Case 2: Large degree d,;: _.C) ® ®
* Fewer samples are required to estimate @ O lel e
* Reject with higher probability -> More queries of this type
90 [@
1o
O @)

Approximate the degree d,,

Sample O(

) sets out of L setsin G to (1 + €)-approximate the degree. L= |G|

L
2
dpe

> Still if the degree is low this takes O (L) samples.

Keep p with probability di
p

Case 1: Small degree d ,:

* More samples are required to estimate ®

* Reject with lower probability -> Fewer queries of this type
Case 2: Large degree d,;: _.C) ® ®

* Fewer samples are required to estimate @ O lel e

* Reject with higher probability -> More queries of this type

90 [@
- 2y runtime to 0 L 0

» This decreases O(L*) runtime to O(L) Q)

Approximate the degree d,,

Sample O(

) sets out of L setsin G to (1 + €)-approximate the degree. L= |G|

L
2
dpe

> Still if the degree is low this takes O (L) samples.

Keep p with probability di
p

Case 1: Small degree d ,:

* More samples are required to estimate ®

* Reject with lower probability -> Fewer queries of this type
Case 2: Large degree d,;: _.C) ® ®

* Fewer samples are required to estimate @ O lel e

* Reject with higher probability -> More queries of this type

90 [@

- 2y runtime to 0 L 0

» This decreases O(L*) runtime to O(L) Q)

» Large dependency on € of the form O(Eiz)

Nearest neighbor
Sampling version/ fair version
e Applications

Algorithms
Basic Algorithm
Improving the dependence on €
* Handling Outliers
* |Improving the dependence on the neighborhood

Improving the dependence on €

From 1/€“ to log(1/€)

Goal: A procedure that given a sample p out of the L setsin§

* Keeps a sample p with probability di
p

* Intime é(dL—p)

L = |G| sets

Goal: A procedure that given a sample p out of the L setsin§

L = |G| sets

e

* Keeps a sample p with probability di

P
; ~ L
* |ntime 0(@)

Need to repeat = d,, times

~N

/

Goal: A procedure that given a sample p out of the L setsin §

L = |G| sets

e

* Keeps a sample p with probability di _

p

Need to repeat = d,, times

* Intime é(dL—p)

— 4

\

L

Total runtime would be = d,, - 0 (d—> = 0(L)

D

J

Goal: A procedure that given a sample p out of the L setsin § L = |G| sets

* Keeps a sample p with probability di
p

* Intime é(dL—p)

* Sample sets from G until you find a set F suchthatp € F t{ Assuming one can check if p € F in J

constant time

Goal: A procedure that given a sample p out of the L setsin §

* Keeps a sample p with probability di
p

* Intime é(dL—p)

L = |G| sets

* Sample sets from G until you find a set F such thatp € F

e Assume it happens at iteration i

Goal: A procedure that given a sample p out of the L setsin §

* Keeps a sample p with probability di
p

* Intime é(dL—p)

L = |G| sets

Sample sets from G until you find a set F suchthatp € F

Assume it happens at iteration i

—_—

Keep the sample p with probability% ~ <di> % =1/d,

p

Goal: A procedure that given a sample p out of the L setsin§

* Keeps a sample p with probability di
p

* Intime é(dL—p)

L = |G| sets

Sample sets from G until you find a set F suchthatp € F

Assume it happens at iteration i

—_—

L

1
?)'Z—l/dp

p
* Correct except that i /L could be larger than 1

Keep the sample p with probability% ~ <

Goal: A procedure that given a sample p out of the L setsin § L = |G| sets

* Keeps a sample p with probability di
p

* Intime é(dL—p)

Sample sets from G until you find a set F suchthatp € F

Assume it happens at iteration i

—_—

f)'%zl/dp = Elil= J

p

* Correct except that i /L could be larger than 1
i 1

* Keep the sample with probability — =
AL Ady -
e Still uniform ﬁ The number of iterations increases by a factor of A J

* Probability that i > (AL) is exponentially small in A

Keep the sample p with probability% ~ <

 Sufficient to set A = logi

So far

e Get a sample uniformly at random from the union of the buckets

* U; Bi(gi(q)) is roughly the neighborhood
e Contains all points within distance r

* Contains at most L outlier points (farther than cr)

e What about the outliers?

* Nearest neighbor
* Sampling version/ fair version
e Applications

e Algorithms
e Basic Algorithm
* Improving the dependence on €
* Handling Outliers
* |Improving the dependence on the neighborhood

Handling Outliers

Sampling from a sub-collection of sets with outliers

Preprocess: a collection F of subsets of a universe U

Sampling from a sub-collection of sets with outliers
Preprocess: a collection F of subsets of a universe U

Query: a sub-collection § € F , and a set of outliers O € U, s.t.
ZOEO do(g) < Mmo

Sampling from a sub-collection of sets with outliers
Preprocess: a collection F of subsets of a universe U

Query: a sub-collection § € F , and a set of outliers O € U, s.t.
ZOEO do(g) < Mmo

Goal: report a point uniformly at random from UG \ O = Upeg F \ O

Sampling from a sub-collection of sets with outliers
Preprocess: a collection F of subsets of a universe U

Query: a sub-collection § € F , and a set of outliers O € U, s.t.
ZOEO do(g) < Mmo

Goal: report a point uniformly at random from UG \ O = Upeg F \ O
Trivial solution:

* Whenever you see an outlier sample, ignore it and repeat.
* Runtime in the worst case: |G| - m,

Sampling from a sub-collection of sets with outliers
Preprocess: a collection F of subsets of a universe U

Query: a sub-collection § € F , and a set of outliers O € U, s.t.
ZOEO do(g) < Mmo

Goal: report a point uniformly at random from UG \ O = Upeg F \ O
* Runtime of |G| + m,

Trivial solution:
* Whenever you see an outlier sample, ignore it and repeat.
* Runtime in the worst case: |G| - m,

Goal: Runtime of |G| + m,

* Implement each bucket (each setin F) as an array

Cnt=5

2,4,6,9, 3

Goal: Runtime of |G| + m,

* Implement each bucket (each setin F) as an array

* Once we encounter an outlier, swap it with the last element of the array.

* Update the count of that bucket/set

Cnt=5

2,4,6,9, 3

Goal: Runtime of |G| + m,

* Implement each bucket (each setin F) as an array

* Once we encounter an outlier, swap it with the last element of the array.

* Update the count of that bucket/set

Cnt=4

2,3,6,9,4

Goal: Runtime of |G| + m,

* Implement each bucket (each setin F) as an array

* Once we encounter an outlier, swap it with the last element of the array.

* Update the count of that bucket/set

Need to (dynamically) sample a set with probability

proportional to its active size

Goal: Runtime of |G| + m,

* Implement each bucket (each setin F) as an array

* Once we encounter an outlier, swap it with the last element of the array.

* Update the count of that bucket/set
Need to (dynamically) sample a set with probability

At the query time upon receiving G, proportional to its active size

* Build a tree on with L = |G| leaves containing the count of the sets in §

Goal: Runtime of |G| + m,

* Implement each bucket (each setin F) as an array

* Once we encounter an outlier, swap it with the last element of the array.

* Update the count of that bucket/set
Need to (dynamically) sample a set with probability

At the query time upon receiving G, proportional to its active size

* Build a tree on with L = |G| leaves containing the count of the sets in §

* Each node keeps the sum of the counts of the leaves in its subtree

Goal: Runtime of |G| + m,

* Implement each bucket (each setin F) as an array

* Once we encounter an outlier, swap it with the last element of the array.

* Update the count of that bucket/set
Need to (dynamically) sample a set with probability

At the query time upon receiving G, proportional to its active size

* Build a tree on with L = |G| leaves containing the count of the sets in §
* Each node keeps the sum of the counts of the leaves in its subtree

* Taking a sample from sets can be done by moving down the tree from the root

Goal: Runtime of |G| + m,

* Implement each bucket (each setin F) as an array

* Once we encounter an outlier, swap it with the last element of the array.

* Update the count of that bucket/set

At the query time upon receiving G,

Need to (dynamically) sample a set with probability

proportional to its active size

* Build a tree on with L = |G| leaves containing the count of the sets in §

* Each node keeps the sum of the counts of the leaves in its subtree

* Taking a sample from sets can be done by moving down the tree from the root

* Update the counts in time O(log L)

Goal: Runtime of |G| + m,

* Implement each bucket (each setin F) as an array

* Once we encounter an outlier, swap it with the last element of the array.

* Update the count of that bucket/set

At the query time upon receiving G,

* Build a tree on with L = |G| leaves containing the count of the sets in §

° Each node keeps the Su nf+tho covinte nftho loavine in ite ciibhiran

* Takingasample fromset; % \We see each outlier 0 € 0 at most d, times
« Update the counts in tim » Total number of times we encounter an outlier is m,

So far

e Get a sample uniformly at random from the union of the buckets

* U; Bi(gi(q)) is roughly the neighborhood
e Contains all points within distance r

* Contains at most L outlier points (farther than cr)

* What about the outliers?
* Total degree of outliersis O(L)
* Geta sampleintime 0(|G| + m,) = O(L + L) = O(L)

Results on (1 + €)-Approximate Fair NN

_ ooman | Space | Quen

Approximate Neighborhood O0(Sann) O(Tann)
N(q,v) €S € N(q,cr)

» Get a sample from the union of the buckets

» Approximate neighborhood: a set S suchthat N(q,r) €S € N(q, cr)

» Dependence on € is O(log(i))

> Black-box reduction

Results on (1 + €)-Approximate Fair NN

_ ooman | Space | Quen

Exact Neighborhood
N(q,7)

Approximate Neighborhood O0(Sann) O(Tann)
N(q,v) €S € N(q,cr)

» Get a sample from the union of the buckets

» Approximate neighborhood: a set S suchthat N(q,r) €S € N(q, cr)

» Dependence on € is O(log(i))

> Black-box reduction

Exact Neighborhood?

* Treat the points within distance r and cr also as outliers.
* Unlucky event: we hit all the n(gq, cr) outliers first

» Total runtime: O0(|G|l +m,) = O(L + |N(q,cr)| — |IN(q,7)|) =
O(L + [N(q,cr)|)

Results on (1 + €)-Approximate Fair NN

_ ooman | Space | Quen

Exact Neighborhood O0(Sann) O(Tynn + IN(q,cr)))
N(q,7)
Approximate Neighborhood O0(Sann) O(Tann)
N(q,r) €S S N(q,cr)

» S,ny and T,y are the space and query time of standard ANN

» Approximate neighborhood: a set S suchthat N(q,r) €S € N(q, cr)
» Dependence on € is O(log(i))

> Black-box reduction

Results on (1 + €)-Approximate Fair NN

_ ooman | Space | Quen

Exact Neighborhood O(Sann) O(Tynn + IN(q,cr)))
N(q,r) \
Approximate Neighborhood O0(Sann) O(Tynn) A
N(q,r) €S S N(q,cr) Improve to
| T n IN(q,cr)|
» S,yn and T,y are the space and query time of standard ANN ANN " \N(g1)|

» Approximate neighborhood: a set S suchthat N(q,r) €S € N(q, cr)

» Dependence on € is O(log(i))

> Black-box reduction

~

Nearest neighbor

Sampling version/ fair version
Applications

Algorithms
Basic Algorithm
Improving the dependence on €

Handling Outliers
Improving the dependence on the neighborhood

Improving the dependence on the density of the neighborhood

IN(q,cr)|
From Tanw + IN(q, cr)| to Tyny + 5 =5

High Level |dea:

* Partition the elements UG randomly into k bins s.t.
* Each bin gets 0(1) good elements, i.e., from UG \ O

0|
|UG\O|

* Each bin gets O() points from the outliers

IN(q,cr) I)

* Time will improve to O(|G| + m,) = (L + IN(q,1)|

More Precisely,

Preprocess:

* To partition all elements in U among k bins

* Give each of the elements in U a random unique rank
from1to N = |U|, (i.e, pick a random permutation)

e Each set in F stores its elements in sorted order

More Precisely,

Preprocess:

* To partition all elements in U among k bins

* Give each of the elements in U a random unique rank
from1to N = |U|, (i.e, pick a random permutation)

e Each set in F stores its elements in sorted order

Query Time:
e Consider k bins based on the ranks, i.e.,

Bini = [(%)l(%) (i +1)]

More Precisely,

Preprocess:

* To partition all elements in U among k bins

* Give each of the elements in U a random unique rank
from1to N = |U|, (i.e, pick a random permutation)

e Each set in F stores its elements in sorted order

Query Time:
e Consider k bins based on the ranks, i.e.,
Bini = [(%)l(%) (i +1)]
* Select one bin (almost) uniformly at random
* Get a sample from the sampled bin

More Precisely,

How to choose k

Preprocess:
P * k large: many bins get no element from UG

* To partition all ele

* Give each of t
from 1 to N g » Set k roughly equal to |UG|. Then each bin has roughly O(1) elements from UG

* Each setin F | > Don’t know |UG]| in advance

* k small: finding an element in UG that is in a particular bin takes a long time

» Count the number of distinct elements using a sketch for Distinct Elements Problem

Query Time:
e Consider k bins based on the ranks, i.e.,
Bini = [(7)i,(%) G+ D]
* Select one bin (almost) uniformly at random
* Get a sample from the sampled bin

More Precisely,

Preprocess:

* To partition all elements in U among k bins

* Give each of the elements in U a random unique rank
from1to N = |U|, (i.e, pick a random permutation)

e Each set in F stores its elements in sorted order
* Keep a sketch for distinct elements

Query Time:
e Consider k bins based on the ranks, i.e.,
Bini = [(%)l(%) (i +1)]
* Select one bin (almost) uniformly at random
* Get a sample from the sampled bin

More Precisely,

Preprocess: How to choose k

« To partition all ele * klarge: many bins get no element from UG
e Give each of t| * k small: finding an element in UG that is in a particular bin takes a long time
from1to N =
 EachsetinF
* Keep a sketch

» Set k roughly equal to |[UG|. Then each bin has roughly O(1) elements from UgG
» Don’t know |UG| in advance

Query Time: » Count the number of distinct elements using a sketch for Distinct Elements Problem

* Consider k bir

Bini — [(ﬂ)l d Setk =n(q,r)
k7 1 1 Number of outliers in a bin is at most n(q, cr)/n(q,r)

e Select one bin

* Get a sample from the sampled bin

More Precisely,

Preprocess:

* To partition all elements in U among k bins

* Give each of the elements in U a random unique rank
from1to N = |U|, (i.e, pick a random permutation)

e Each set in F stores its elements in sorted order
* Keep a sketch for distinct elements

Query Time:
e Consider k bins based on the ranks, i.e.,
Bini = [(7)i,(%) G+ D]
* Select one bin (almost) uniformly at random
* Get a sample from the sampled bin

How to sample from UG N bin;?

* One can iterate over F N Bin; in time O(logn + |F N Bin;|)
* Because the elements are kept sorted in F
* And the Bin is continuous

»Compute |F N Bin;| foreach F € §
»Build a BST on these counts, sample from them

Results on (1 + €)-Approximate Fair NN
S o e | awey

Exact Neighborhood O(Sann) 5(T + IN(q, CT)|)
N(q,7) ANNTIN (g, 1)
Approximate Neighborhood O(Sann) O(Tynn)
N(q,v) €S S N(q,cr)

» Sunyn and Ty are the space and query time of standard ANN

> Approximate neighborhood: a set S such that N(q,r) €S € N(q, cr)
» Dependence on € is O(log(i))

» Black-box reduction
» Our approach solves a more general problem

» Experiments

Summary

» Defined NN problem with respect to fairness, i.e., the sampling variant
* Applications of sampling NN

» How to sample from a sub-collection of sets
» Improve dependency on €
» How to handle outliers

» Improve dependency on the density parameter of the neighborhood

Summary

_ ooman | Space | Quen

Exact Neighborhood O(Sann) 5(T + IN(q, CT)|)
N(q,7) ANNTIN (g, 1)
Approximate Neighborhood O(Sann) O(Tynn)
N(q,v) €S S N(q,cr)

» Sunyn and Ty are the space and query time of standard ANN

> Approximate neighborhood: a set S such that N(q,r) €S € N(q, cr)
» Dependence on € is O(log(i))

» Black-box reduction

» Our approach solves a more general problem
» Experiments

Open Problem:

o Finding the optimal dependency on the density parameter

	Sampling a Neighbor in High Dimensions�Who is the fairest of them all?
	Main motivation in the context of Fairness
	Main motivation in the context of Fairness
	Main motivation in the context of Fairness
	Individual Fairness in Searching
	Individual Fairness in Searching
	Plan for the talk
	Near Neighbor
	Near Neighbor
	Near Neighbor
	Near Neighbor
	Near Neighbor
	Approximate Near Neighbor
	Approximate Near Neighbor
	Fair Near Neighbor
	Beyond Fairness: When random nearby-by is better than the nearest
	Beyond Fairness: When random nearby-by is better than the nearest
	Applications beyond Fairness: KNN - Classification
	Applications beyond Fairness: KNN - Classification
	Applications beyond Fairness: KNN - Classification
	Beyond Fairness: When random nearby-by is better than the nearest
	Beyond Fairness: When random nearby-by is better than the nearest
	Applications beyond Fairness: Filtered Searching
	Applications beyond Fairness: Filtered Searching
	Beyond Fairness: When random nearby-by is better than the nearest
	Beyond Fairness: When random nearby-by is better than the nearest
	Problem formulation and our results
	Fair Near Neighbor
	Approximately Fair Near Neighbor
	Further notes
	Further notes
	Results on (1+𝜖)-Approximate Fair NN
	Results on (1+𝜖)-Approximate Fair NN
	Results on (1+𝜖)-Approximate Fair NN
	Results on (1+𝜖)-Approximate Fair NN
	Results on (1+𝜖)-Approximate Fair NN
	Results on (1+𝜖)-Approximate Fair NN
	Locality Sensitive Hashing (LSH) [Indyk, Motwani’98]�
	Locality Sensitive Hashing (LSH)
	Locality Sensitive Hashing (LSH)
	Locality Sensitive Hashing (LSH)
	Locality Sensitive Hashing (LSH)
	Locality Sensitive Hashing (LSH)
	Locality Sensitive Hashing (LSH)
	A more general problem
	Sampling from a sub-collection of sets
	Sampling from a sub-collection of sets
	Sampling from a sub-collection of sets
	Sampling from a sub-collection of sets
	Sampling from a sub-collection of sets
	Basic Algorithm
	Algorithm
	Algorithm
	Algorithm
	Algorithm
	Algorithm
	Algorithm
	Approximate the degree 𝑑 𝑝
	Approximate the degree 𝑑 𝑝
	Approximate the degree 𝑑 𝑝
	Approximate the degree 𝑑 𝑝
	Approximate the degree 𝑑 𝑝
	Approximate the degree 𝑑 𝑝
	Improving the dependence on 𝜖
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	So far
	Handling Outliers
	Sampling from a sub-collection of sets with outliers
	Sampling from a sub-collection of sets with outliers
	Sampling from a sub-collection of sets with outliers
	Sampling from a sub-collection of sets with outliers
	Sampling from a sub-collection of sets with outliers
	Goal: Runtime of 𝒢 + 𝑚 𝑜
	Goal: Runtime of 𝒢 + 𝑚 𝑜
	Goal: Runtime of 𝒢 + 𝑚 𝑜
	Goal: Runtime of 𝒢 + 𝑚 𝑜
	Goal: Runtime of 𝒢 + 𝑚 𝑜
	Goal: Runtime of 𝒢 + 𝑚 𝑜
	Goal: Runtime of 𝒢 + 𝑚 𝑜
	Goal: Runtime of 𝒢 + 𝑚 𝑜
	Goal: Runtime of 𝒢 + 𝑚 𝑜
	So far
	Results on (1+𝜖)-Approximate Fair NN
	Results on (1+𝜖)-Approximate Fair NN
	Exact Neighborhood?
	Results on (1+𝜖)-Approximate Fair NN
	Results on (1+𝜖)-Approximate Fair NN
	Improving the dependence on the density of the neighborhood
	High Level Idea:
	More Precisely,
	More Precisely,
	More Precisely,
	More Precisely,
	More Precisely,
	More Precisely,
	More Precisely,
	How to sample from ⋃𝒢∩𝑏𝑖 𝑛 𝑖 ?
	Results on (1+𝜖)-Approximate Fair NN
	Summary
	Summary

