Testing local properties via spherical queries

Omri Ben-Eliezer

WOLA 2018, MIT

- Monotonicity is a 2-local property.
 - Sequence S_1, \ldots, S_n monotone $\iff \forall i : S_i \leq S_{i+1}$.

1357

- Monotonicity is a 2-local property.
 - Sequence S_1, \ldots, S_n monotone $\iff \forall i : S_i \leq S_{i+1}$.

- Monotonicity is a 2-local property.
 - Sequence S_1, \ldots, S_n monotone $\iff \forall i : S_i \leq S_{i+1}$.

- Monotonicity is a 2-local property.
 - Sequence S_1, \ldots, S_n monotone $\iff \forall i : S_i \leq S_{i+1}$.

- Monotonicity is a 2-local property.
 - Sequence S_1, \ldots, S_n monotone $\iff \forall i : S_i \leq S_{i+1}$.

1 3 5 7 is monotone!

- Monotonicity is a 2-local property.
 - Sequence S_1, \ldots, S_n monotone $\iff \forall i : S_i \leq S_{i+1}$.

5 7 9 1 3 is not monotone

- Monotonicity is a 2-local property.
 - Sequence S_1, \ldots, S_n monotone $\iff \forall i : S_i \leq S_{i+1}$.

Property of d-dimensional arrays (1D sequences, 2D images,...) is k-local

defined by a set of <u>allowed</u> $k \times ... \times k$ consecutive subarrays.

- Lipschitz continuity is also 2-local.
 - S_1, \ldots, S_n Lipschitz-continuous $\iff \forall i : |S_{i+1} S_i| \le 1$.
- Problems in **pattern matching** are typically o(n)-local.

The result

Any k-local property of d-dimensional arrays over any* alphabet has 1-sided non-adaptive ϵ -test with number of queries

- $O(k\log(\epsilon n/k))$ for d=1.
- $O(c_d k \epsilon^{-1/d} \mathbf{n^{d-1}})$ for d > 1

Tight across whole range! (and matches monotonicity in 1D even for 2-sided adaptive [Fischer 04,

Chakrabarty-Seshadhri 14, Belovs 18])

Test based on querying spheres of varying sizes.