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A STORY



0aty McBoatface is starting its first mission today!
t:s'going to Antarctica to study global warming, not to play.

The world’s oceans are changing, you see.
It’s freezing down there, but not as cold as it used to be.
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Boaty’s findings will be sent to scientists with care,
By way of a radio link, but with a certain flair.
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McBoatfaces are expensive

What is the most ship-efficient protocol to reliably test whether the
distribution of temperatures matches the one on record?
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- an inference task P over k-ary distributions

-an unknown k-ary distribution p

- one centralized “referee” R who needs to solve P on p

- n communication-limited players, each can send ¢ bits to R

- each player independently gets one sample from p

Question

As a function of k, 4, and all relevant parameters of P, how many
players n are required?
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- Can assume / < log, k, otherwise trivial

- Inference tasks: density estimation, parameter estimation,
functional estimation, hypothesis testing/property testing...

- Different flavors: public-coin, pairwise-coin, private-coin
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Key Observation

If the referee can simulate independent samples from p using the
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Begging the question

Can the referee simulate independent samples from p using the
messages from the players?
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Theorem

For every k > 1and 7 < logk, there exists no SMP with ¢ bits of
communication per player for distributed simulation over [k] with
any finite number of players. (Even allowing public-coin and
interactive protocols.)

Proof.

By contradiction, [...] pigeonhole principle [..]. O
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ONE APPROACH TO SOLVE IT ALL!

Theorem

For every k, ¢ > 1, there exists a private-coin protocol with ¢ bits of
communication per player for distributed simulation over [k], with
expected number of players O(k/2° v 1). Moreover, this is optimal

even allowing public-coin and interactive protocols.

Proof.

Case ¢ = 1. Player 2i — 1 and 2i both send 1 if their sample “hits” i; the
referee outputs i if (i) player 2i — 1is the only odd player sending 1,
and player 2i sends 0. Then, conditioned on R not outputting L, i is
outputted with probability p;. And the probability to output L is

k

1= - ) <1-¢(lpll2)

i=1

(and some complications to bound this away from 1). OJ
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ONE APPROACH TO SOLVE IT ALL!

Corollary (Informal)

For any inference task P over k-ary distributions with sample
complexity s in the non-distributed model, there is a private-coin
protocol for P, with ¢ bits of communication per player, and

n = 0O(s - k/2%) players.

Illustration ©Dami Lee



ONE APPROACH TO SOLVE IT ALL!



ONE APPROACH TO SOLVE IT ALL!

Corollary (Learning in Total Variation)

For every k, ¢ < log, k, there is a private-coin protocol for learning

k-ary distributions with ¢ bits per player, and n = O(zf;) players.

(And this is optimal, even for public-coin and interactive protocols.)




ONE APPROACH TO SOLVE IT ALL!

Corollary (Learning in Total Variation)

For every k, ¢ < log, k, there is a private-coin protocol for learning
k-ary distributions with ¢ bits per player, and n = O( e ) players.

2te?

(And this is optimal, even for public-coin and interactive protocols.)

Corollary (Testing Uniformity)

For every k, ¢ < log, k, there is a private-coin protocol for testing

uniformity over [k] with ¢ bits per player,and n = 0(5,3:2) players.
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Natural Question

Is this “simulate-and-infer” approach optimal?

Conjecture (The Flying Pony Question)

Does the simulate-and-infer scheme that simulates independent
samples compressed to the size* of the problem using private-coin
protocols, and sends them to the referee who then infers from them,
always require the lowest number of players?
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REFUTING THE FPC

The answer is no:
Theorem

There exists an inference task P over k-ary distributions with
252(P) . samplecomplexity(P) = Q(k*/?), yet for which there is a 1-bit
private-coin protocol with n = O(k) players.

Proof.

Promise problem: p is either uniform, or uniform on an arbitrary
subset of k/2 elements. samplecomplexity(P) = vk (folklore);

257(P) = Q(k) (from other theorems); very simple scheme with O(k)
players... everyone focuses on the first element. O
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UNIFORMITY TESTING, RECAP

Must decide:

p = Uy (uniform), or ¢(p, uy) > &?

(and be correct on any p with probability at least 2/3)

Fundamental property of distributions, building block for testing
many others. [BKR04, Gol16, CDGR17]

- completely understood in the non-distributed setting:
n = ©(Vk/e?) samples [GROO, BFR*00, Pan08, DGPP17]

- general “simulate-and-infer” scheme gives private-coin protocol
with n = 0(k3/?/¢?) players (optimal?)
- what if we allow public coins?
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DISTRIBUTED UNIFORMITY TESTING WITH PUBLIC COINS

Theorem (Upper Bound)

For every k, ¢ < log, k, there is a public-coin protocol for testing
uniformity over [k] with ¢ bits per player,and n = 0(2//‘—262> players.
Theorem (Lower Bound)

This is optimal.
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Theorem

For every k, there is a public-coin protocol for testing uniformity
over [k] with # = 1 bit per player, and n = O(k/e?) players.

Proof.

Same starting point. Now, by a better averaging argument (Levin's

work investment strategy), there exists 1 < j < L := log,(1/¢) s.t.
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Proof.

Same starting point. Now, by a better averaging argument (Levin's

work investment strategy), there exists 1 < j < L := log,(1/¢) s.t.

Prip(x) < (1=27)/K] >e-2/(L+1—j)

X~u

and therefore [...] (also, don't pay for the union bound!) O
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THE (ACTUAL (ACTUAL)) UPPER BOUND

Theorem

For every k, /¢ < log, k, there is a public-coin protocol for testing
uniformity over [k] with ¢ bits per player, and n = O(k/(2//2¢?))
players.

Proof.
Starting point: for a set S C [k] of 2 — 1 elements with p(S) ~ 2¢/k,
testing uniformity of the conditional distribution ps would cost

(k/2°) - V2t /e = k/(2/%€?)

samples, by rejection sampling. Now, if p is e-far from uniform then,
onauar setS C [k] of 2¢ — 1 elements, ps is e-far from uniform on
expectation. Then, same ideas as before: Levin's strategy+careful
allocation of the failure probabilities. O]
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Theorem

For every k, ¢ < log, k, every public-coin protocol for testing
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Theorem

For every k, ¢ < log, k, every public-coin protocol for testing
uniformity over [k] with ¢ bits per player, must have n = Q(k/(2¢/%¢?))
players.

Proof.

By Le Cam'’s two-point method, consider a distribution over “hard
instances”:

. . . T£e 1
Vi<i<k/2,  p(i-1),pQi)= ( = IE>
uniformly and independently at random. (Paninski’s
construction [Pan08]). But needs to upper bound the TV distance
between (i) distribution of n messages sent to the referee when
p = uy, and (ii) distribution of n messages under average hard

instance. The latter is not a product distribution... O]
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CONCLUSION

- General framework for distributed inference problems over
discrete distributions, in the communication-starved regime

- Tight bounds for distributed simulation (and distributed
learning [DGL*17, HMOW18, HOW18])

- First work on distributed testing
- Optimal protocols for public-coin uniformity testing

- Many questions and directions to explore*
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