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McBoatfaces are expensive

What is the most ship-efficient protocol to reliably test whether the
distribution of temperatures matches the one on record?
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distributed inference



the setting: “simultaneous communication protocol” (smp)

∙ an inference task P over k-ary distributions
∙ an unknown k-ary distribution p
∙ one centralized “referee” R who needs to solve P on p
∙ n communication-limited players, each can send ℓ bits to R
∙ each player independently gets one sample from p

Question

As a function of k, ℓ, and all relevant parameters of P , how many
players n are required?
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the setting, cont’d
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the setting, cont’d

∙ Can assume ℓ < log2 k, otherwise trivial
∙ Inference tasks: density estimation, parameter estimation,
functional estimation, hypothesis testing/property testing…

∙ Different flavors: public-coin, pairwise-coin, private-coin
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“simulate-and-infer”



one approach to solve it all

Key Observation

If the referee can simulate independent samples from p using the
messages from the players, then it can do anything.

Begging the question

Can the referee simulate independent samples from p using the
messages from the players?
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no approach to solve it all?

Theorem

For every k ≥ 1 and ℓ < log k, there exists no SMP with ℓ bits of
communication per player for distributed simulation over [k] with
any finite number of players. (Even allowing public-coin and
interactive protocols.)

Proof.

By contradiction, […] pigeonhole principle […].
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one approach to solve it all!

Theorem

For every k, ℓ ≥ 1, there exists a private-coin protocol with ℓ bits of
communication per player for distributed simulation over [k], with
expected number of players O(k/2ℓ ∨ 1). Moreover, this is optimal
even allowing public-coin and interactive protocols.

Proof.

Case ℓ = 1. Player 2i− 1 and 2i both send 1 if their sample “hits” i; the
referee outputs i if (i) player 2i− 1 is the only odd player sending 1,
and player 2i sends 0. Then, conditioned on R not outputting ⊥, i is
outputted with probability pi. And the probability to output ⊥ is

1−
k∏

i=1

(1− pi) ≤ 1− ϕ(∥p∥2)

(and some complications to bound this away from 1).
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one approach to solve it all!

Corollary (Informal)

For any inference task P over k-ary distributions with sample
complexity s in the non-distributed model, there is a private-coin
protocol for P , with ℓ bits of communication per player, and
n = O(s · k/2ℓ) players.

Illustration ©Dami Lee
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one approach to solve it all!

Corollary (Learning in Total Variation)

For every k, ℓ ≤ log2 k, there is a private-coin protocol for learning
k-ary distributions with ℓ bits per player, and n = O( k2

2ℓε2 ) players.
(And this is optimal, even for public-coin and interactive protocols.)

Corollary (Testing Uniformity)

For every k, ℓ ≤ log2 k, there is a private-coin protocol for testing
uniformity over [k] with ℓ bits per player, and n = O( k3/22ℓε2 ) players.
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one approach to really, really solve it all?

Natural Question

Is this “simulate-and-infer” approach optimal?

Conjecture (The Flying Pony Question)

Does the simulate-and-infer scheme that simulates independent
samples compressed to the size* of the problem using private-coin
protocols, and sends them to the referee who then infers from them,
always require the lowest number of players?
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no flying pony



refuting the fpc

The answer is no:

Theorem

There exists an inference task P over k-ary distributions with
2size(P) · samplecomplexity(P) = Ω(k3/2), yet for which there is a 1-bit
private-coin protocol with n = O(k) players.

Proof.

Promise problem: p is either uniform, or uniform on an arbitrary
subset of k/2 elements. samplecomplexity(P) =

√
k (folklore);

2size(P) = Ω(k) (from other theorems); very simple scheme with O(k)
players... everyone focuses on the first element.
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public-coin uniformity testing



uniformity testing, recap

Must decide:

p = uk (uniform)

, or ℓ1(p,uk) > ε?

(and be correct on any p with probability at least 2/3)

Fundamental property of distributions, building block for testing
many others. [BKR04, Gol16, CDGR17]

∙ completely understood in the non-distributed setting:
n = Θ(

√
k/ε2) samples [GR00, BFR+00, Pan08, DGPP17]

∙ general “simulate-and-infer” scheme gives private-coin protocol
with n = O(k3/2/ε2) players (optimal?)

∙ what if we allow public coins?

20
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distributed uniformity testing with public coins

Theorem (Upper Bound)

For every k, ℓ ≤ log2 k, there is a public-coin protocol for testing
uniformity over [k] with ℓ bits per player, and n = O

(
k

2ℓ/2ε2

)
players.

Theorem (Lower Bound)

This is optimal.

21
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the upper bound

Theorem (Warm Up)

For every k, there is a public-coin protocol for testing uniformity
over [k] with ℓ = 1 bit per player, and n = O

(
k
ε3 log

1
ε

)
players.

Proof.

Starting point: if p is ε-far from uniform, by definition,

Ex∼u[|p(x)− 1/k|] > ε/k .

Now, by an averaging argument (Markov),

Pr
x∼u

[p(x) < (1− ε/2)/k] > ε/2

and therefore […]
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the (actual) upper bound

Theorem

For every k, there is a public-coin protocol for testing uniformity
over [k] with ℓ = 1 bit per player, and n = O(k/ε2) players.

Proof.

Same starting point. Now, by a better averaging argument (Levin’s
work investment strategy), there exists 1 ≤ j ≤ L := log2(1/ε) s.t.

Pr
x∼u

[p(x) < (1− 2−j)/k] > ε · 2j/(L+ 1− j)2

and therefore […] (also, don’t pay for the union bound!)
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the (actual (actual)) upper bound

Theorem

For every k, ℓ ≤ log2 k, there is a public-coin protocol for testing
uniformity over [k] with ℓ bits per player, and n = O(k/(2ℓ/2ε2))
players.

Proof.

Starting point: for a set S ⊆ [k] of 2ℓ − 1 elements with p(S) ≃ 2ℓ/k,
testing uniformity of the conditional distribution pS would cost

(k/2ℓ) ·
√
2ℓ/ε2 = k/(2ℓ/2ε2)

samples, by rejection sampling. Now, if p is ε-far from uniform then,
on a u.a.r. set S ⊆ [k] of 2ℓ − 1 elements, pS is ε-far from uniform on
expectation. Then, same ideas as before: Levin’s strategy+careful
allocation of the failure probabilities.
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the lower bound

Theorem

For every k, ℓ ≤ log2 k, every public-coin protocol for testing
uniformity over [k] with ℓ bits per player, must have n = Ω(k/(2ℓ/2ε2))
players.

Proof.

By Le Cam’s two-point method, consider a distribution over “hard
instances”:

∀1 ≤ i ≤ k/2, p(2i− 1),p(2i) =
(
1± ε

k ,
1∓ ε

k

)
uniformly and independently at random. (Paninski’s
construction [Pan08]). But needs to upper bound the TV distance
between (i) distribution of n messages sent to the referee when
p = uk, and (ii) distribution of n messages under average hard
instance. The latter is not a product distribution…
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conclusion

∙ General framework for distributed inference problems over
discrete distributions, in the communication-starved regime

∙ Tight bounds for distributed simulation (and distributed
learning [DGL+17, HMÖW18, HÖW18])

∙ First work on distributed testing
∙ Optimal protocols for public-coin uniformity testing
∙ Many questions and directions to explore*
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Thank you

Illustration ©Dami Lee
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