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Dense graph limit
(by Lovász, Szegedy, Borgs, Chayes, Sós, Vesztergombi et al.)

Sampling from a graph: we choose a constant number of uniform random
vertices and observe the spanned subgraph.

Accordingly, we say that a sequence of graphs (Gn) is convergent if for all
k ∈ Z, the probability distribution of the subgraphs spanned by k uniform
random vertices sk(Gn) is convergent for n→∞.

Graphon is a symmetric measurable function W : [0, 1]× [0, 1]→ [0, 1].
Graphs G ∈ {0, 1}n×n are represented by W (x , y) = G (bnxc, bnyc).

The topology on the set of graphons are defined by the topology induced
by sk(W ), or by the metric

inf
P1,P2 : [0,1]→[0,1] bijection,
P−1

1 ,P−1
2 measure-preserving

sup
X ,Y⊂[0,1]
measurable

∫
X×Y

∣∣W1(x , y)−W2(x , y)
∣∣ d(x , y).

Theorem. The two definitions are equivalent.
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Theorem. The closure of the set of graphs is the set of graphons.

This language simplifies many problems, e.g.

I Szemerédi Regularity Lemma ⇔ The space of graphons is compact.
I Let NG (F ) = number of labelled copies of G ′ in G , and t(F ,G ) the

homomorphism densities. Theorem (Chung, Graham, Wilson):

∀p ∈ [0, 1], ∀F ∈ G, ∀ε > 0, ∃δ > 0 :

if NG (P1) ≥ pn2 but NG (C4) ≤ (1+ δ)pn4, then

NG (F ) ∈ (1± ε)pV (F )

m

If t(C4,W ) = t(P1,W )4, then W is constant.
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Sparse graph limits
(by Benjamini, Schramm, Elek, Hatami, Lovász, Szegedy, Gamarnik,

Sudan et al.)

Sampling from a graph with degrees bounded by d : we choose a constant
number of uniform random vertices v and observe Br (v), the
constant-radius neighborhood of v .

Accordingly, we say that a sequence of graphs (Gn) with degree bound d is
convergent if for all r ∈ Z, the distribution of Br (Gn) is convergent for
n→∞.

Graph limits
I Probability distributions on rooted connected (finite or) infinite trees.

Necessary: unimodularity (some consistency condition).
Aldous–Lyons: is it sufficient? (Elek: probably not.)
Theorem (Cs). The question whether there is a unimodular random
rooted graph supported on a set of neighborhoods is undecidable.
The same applies for limits of finite graphs.
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number of uniform random vertices v and observe Br (v), the
constant-radius neighborhood of v .

Accordingly, we say that a sequence of graphs (Gn) with degree bound d is
convergent if for all r ∈ Z, the distribution Br (Gn) is convergent for
n→∞.

Graph limits
I Probability distributions on rooted connected (finite or) infinite trees.

Necessary: unimodularity (some consistency condition).
Aldous–Lyons: is it sufficient? (Elek: probably not.)
Theorem (Cs). The question whether there is a unimodular random
rooted graph supported on a set of neighborhoods is undecidable.
The same applies for limits of finite graphs.

I Graphing or measurable graph is a finite union of measure-preserving
partial bijections on a measurable vertex set. It is a richer structure:
Theorem. Every convergent sequence of graphs local-globally tends
to a graphing.



Local-global limit and local algorithms
For a finite set of colors C = {1, 2, ..., c}, consider all possible vertex
colorings of a graph G . Consider the colored r -neighborhood distributions,
let us call now them structures. These define the local-global topology on
graphs. For graphings, we want measurable colorings.

Lemma. For each unimodular random graph, there exists a graphing
(Bernoulli-graphing) with the weakest possible structure: only those
structures which can be made by local algorithms.

Questions:
I Is there a graph sequence local-globally converging to each graphing?
I Is the Bernoulli-graphing the local-global limit of a graph sequence?
I Is the sequence of random graphs asymptotically the least structured?

Theorem. (Gamarnik, Sudan) For large d , random graphs have larger
independence ratio as what can be constructed by any local algorithm.



Local (graph) algorithms
Local algorithm is a function l : [0, 1]V (Br (v)) → C . We assign a random
variable q to each vertex (or edge, etc.) and the output at v is
f
(
q(Br (v)), [g ,Br (G )]

)
.

I g is a global randomization
I Br (G ) is the exact statistics of r-neighborhoods

Theorem. (Cs) Access to Br (G ) does not help.

Theorem. (Bollobás) A random 3-regular graph has an independence ratio
< 0.46. (Later improved to 0.455.)
Rephrased theorem. Let H(·) denote the entropy of the output at a
random vertex, and H(−) is the entropy on two neighboring vertex. Then

H(−) ≥ 4
3
H(·).

Theorem. (Cs) We can construct an independence ratio 0.445 by a local
algorithm.



Entropy bounds for local algorithms
Reveal the random seeds one by one. The Shapley–Shannon information
i(x , v) of a seed s(x) to the output c(v) is the expected mutual
information between them when the seed is revealed. We know that for
neighboring vertices v ,w ,

i(x , v) ≥ 0

H
(
c(v)

)
=
∑
x

i(x , v)

H
(
c(v), c(w)

)
≥
∑
x

max
(
i(x , v), i(x ,w)

)
.

All negative results about local algorithms are followed by such inequalities
(+ graph automorphisms).
If we exchange the entropy function to other functions, we can get
correlation-inequalities and other bounds.


