N\ XA ¥
NI LA
\\ .\‘\“2} ,l’

Block Coordinate Descent and Exact Minimization

Jelena Diakonikolas
Boston University

joint work with Lorenzo Orecchia (BU)

Workshop on Local Algorithms
June 2018



Full-Gradient First-Order Convex Optimization

Unconstrained convex minimization:

First-order blackbox (oracle) model:

x € RY

Vfx), f(x)




History

* Methods with optimal iteration complexity in various settings are well-known:
= Gradient descent —folklore

Nemirovski’s mirror descent [Nemirovski, Yudin’83]

Nesterov’s accelerated method (AGD) [Nesterov'83]
Frank-Wolfe methods [Frank, Wolfe'56]

..and many more — books: [Bubeck'14], [Sra, Nowozin, Wright'11]
 Typical complexity of an iteration is near-linear in the input size, few iterations

* Particularly attractive for large-scale problems; broad applications in machine learning and TCS



Block Coordinate Descent: Setting

* Fix a partition of the vector of variables into n blocks:
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Block Coordinate Descent: Setting

* Fix a partition of the vector of variables into n blocks:

Block 1 Block 2 Block 3 Block 4

* Assume access to two types of oracles:

x e R" 1 argmuilnf(xl,.., u .., Xy,)

)

first-order oracle minimization oracle



Assumptions about the Problem

* Assumptions:
= Function is differentiable and L-smooth:

IVF(x) = Vi)l < Lilx =y, ¥x,y

= Each blockiis L;-smooth:

IVif(x) = Vif(y)ll« < Lillx; — yill, Vx,y, where yj, =X, for k #1¢

= Blocknis “least” smooth, possibly with L,, = oo:

Ln — Lmax = IMaXj<;<n Lz

Note that if L,, = oo, then it must be L = oo!




Basic (Nonaccelerated) Methods



Cyclic Block Coordinate Descent

* Almost a folklore method [Ortega & Rheinboldt, 1970]
* Fix a (possibly random) permutation of the blocks

 Take either exact minimization or a gradient step over a block selected in the cyclic order
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Example order: 1, 3, 2, 4
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Cyclic Block Coordinate Descent

* Almost a folklore method [Ortega & Rheinboldt, 1970]
* Fix a (possibly random) permutation of the blocks

 Take either exact minimization or a gradient step over a block selected in the cyclic order

Block 1 Block 2 Block 3 Block 4

Example order: 1, 3, 2, 4

Dependence of the optimality gap on smoothness parameters:

in(nL?, (X7, L;)? :
L,+ M [Sun, Hong'1g], Ln’ [Hong, Wang, Razaviyayn, Luo'17]

min



Alternating Minimization

* A special case of cyclic BCD when there are only two blocks

* Exact minimization on the less smooth block; exact minimization or gradient descent step on the
other block

Block 1 Block 2
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* A special case of cyclic BCD when there are only two blocks

* Exact minimization on the less smooth block; exact minimization or gradient descent step on the
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Dependence of the optimality gap on smoothness parameters:

min(Lq, L,) [Beck'1s]



Randomized Block Coordinate Descent

* Introduced by [Nesterov, 2012]
* Fix a probability distribution {p;};=, over the blocks

* Select block i with probability p; and do a gradient descent step or exact minimization over it
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Randomized Block Coordinate Descent

* Introduced by [Nesterov, 2012]
* Fix a probability distribution {p;};=, over the blocks 4

* Select block i with probability p; and do a gradient descent step or exact minimization over it
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Dependence of the optimality gap on smoothness parameters:

Yt L;forp;~L; [Nesterov'12]



Dependence of the optimality gap on smoothness parameters:

* Cyclic block coordinate descent (n blocks):

L,+ w [Sun, Hong'1ig], Ln3 [Hong, Wang, Razaviyayn, Luo'17]

min

* Randomized block coordinate descent (n blocks):

Z?=1 L; forpi~L; [Nesterov'12]

* Alternating minimization (2 blocks):

min(Lq, L,) [Beck'1is]

So far, only alternating minimization (two blocks) can avoid paying for the less-smooth block

Q. Can we avoid paying for the least-smooth block when there are more than two blocks?



Alternating Randomized Block Coordinate Descent

* ...or how to avoid paying for the least smooth (non-smooth) block | ;
n—1

* Fix a probability distribution {p;};=; overblocks 1,2, ...,n — 1 3

* Do a gradient descent (or exact min) step over block i, then exact minimization over block n

Block 1 Block 2 Block 3

*D, Orecchia, “"Alternating Randomized Block Coordinate Descent,” in Proc. ICML'18, 2018, to appear.
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Alternating Randomized Block Coordinate Descent

* ...or how to avoid paying for the least smooth (non-smooth) block | ;
* Fix a probability distribution {p;}*={ over blocks 1,2, ...,n — 1 1

* Do a gradient descent (or exact min) step over block i, then exact minimization over block n

Block 1 Block 2 Block 3

Generalizes randomized BCD and alternating minimization

Dependence of the optimality gap on smoothness parameters: Z?z_ll L; forp;~L; (no dependence on L,!)

Possible to accelerate: gives the same convergence time as the fastest known accelerated BCD — NUACDM
[Allen-Zhu, Qu, Richtarik, Yuan'16], except without any dependence on L.,

*D, Orecchia, “"Alternating Randomized Block Coordinate Descent,” in Proc. ICML'18, 2018, to appear.



Convergence Analysis: Main Ideas

* Extension of Approximate Duality Gap Technique [D, Orecchia, 2017]

G: approximate
optimality/duality gap

f(x%) = f(x*) < Gy. Let A be an increasing (rate) function of iteration count k. Then, ifA, G, < Ap_1Gy_q1, Vk

F(x*) - F(x) < G < 22
Ag



Convergence Analysis: Main Ideas

* Lower bound uses the following:
= by convexity (and differentiability), Vx:

fF(x*) > f(x¥) +(Vf(x"),x" —x")
= f(x*) + Z (Vif(x"),x] —x7)

= f(x") + 2_: <V7;f(xk),x,’; — X,I:>

because v,f(x*)=0

f(Grad;(x*)) < f(x")|- ! 1V f (%) ||2 ﬁ can sample only over the first

2L; n — 1 (i.e., "smoother”) blocks




Numerical Experiments



Experiments: Linear Regression on BlogFeedback Dataset
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Summary

A novel block coordinate descent method (and its accelerated version) that can handle a
completely non-smooth block (structured non-smoothness)

The method outperforms existing methods if one block has much worse (but finite) smoothness
parameter than the remaining ones

Ongoing work:
= Extension to the smooth and strongly convex setting

= Extension to the composite non-smooth setting
= Improved convergence bounds for randomized BCD with exact minimization

* Open question:

= We need to know which block is the least smooth to not pay for it. Is it possible to relax this?

sl eelabonkess  Thank you!


mailto:jelena@jelena-diakonikolas.com
http://www.jelena-diakonikolas.com/

