Block Coordinate Descent and Exact Minimization

Jelena Diakonikolas
Boston University
joint work with Lorenzo Orecchia (BU)

Full-Gradient First-Order Convex Optimization

Unconstrained convex minimization:

First-order blackbox (oracle) model:

History

$$
\begin{aligned}
\min & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{x} \in \mathbb{R}^{N}
\end{aligned}
$$

- Methods with optimal iteration complexity in various settings are well-known:
- Gradient descent - folklore
- Nemirovski's mirror descent [Nemirovski, Yudin'83]
- Nesterov's accelerated method (AGD) [Nesterov'83]
- Frank-Wolfe methods [Frank, Wolfe'56]
- ... and many more - books: [Bubeck'14], [Sra, Nowozin, Wright'11]
- Typical complexity of an iteration is near-linear in the input size, few iterations
- Particularly attractive for large-scale problems; broad applications in machine learning and TCS

Block Coordinate Descent: Setting

- Fix a partition of the vector of variables into n blocks:

1	2	1	3	3	1	2	4	4	2	3	4

Block Coordinate Descent: Setting

- Fix a partition of the vector of variables into n blocks:

Block 1			Block 2			Block 3			Block 4		
1	1	1	2	2	2	3	3	3	4	4	4

Block Coordinate Descent: Setting

- Fix a partition of the vector of variables into n blocks:

Block 1			Block 2			Block 3			Block 4		
1	1	1	2	2	2	3	3	3	4	4	4

- Assume access to two types of oracles:

Assumptions about the Problem

- Assumptions:
- Function is differentiable and L-smooth:

$$
\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\|_{*} \leq L\|\mathbf{x}-\mathbf{y}\|, \forall \mathbf{x}, \mathbf{y}
$$

- Each block i is L_{i}-smooth:

$$
\left\|\nabla_{i} f(\mathbf{x})-\nabla_{i} f(\mathbf{y})\right\|_{*} \leq L_{i}\left\|\mathbf{x}_{i}-\mathbf{y}_{i}\right\|, \forall \mathbf{x}, \mathbf{y}, \text { where } \mathbf{y}_{k}=\mathbf{x}_{k} \text { for } k \neq i
$$

- Block n is "least" smooth, possibly with $L_{n}=\infty$:

$$
L_{n}=L_{\max }=\max _{1 \leq i \leq n} L_{i}
$$

\square

Basic (Nonaccelerated) Methods

Cyclic Block Coordinate Descent

- Almost a folklore method [Ortega \& Rheinboldt, 1970]
- Fix a (possibly random) permutation of the blocks
- Take either exact minimization or a gradient step over a block selected in the cyclic order

Block 1			Block 2			Block 3			Block 4		
1	1	1	2	2	2	3	3	3	4	4	4

Example order: 1, 3, 2, 4

Cyclic Block Coordinate Descent

- Almost a folklore method [Ortega \& Rheinboldt, 1970]
- Fix a (possibly random) permutation of the blocks
- Take either exact minimization or a gradient step over a block selected in the cyclic order

Block 1			Block 2			Block 3			Block 4		
1	1	1	2	2	2	3	3	3	4	4	4

Example order: 1, 3, 2, 4

Cyclic Block Coordinate Descent

- Almost a folklore method [Ortega \& Rheinboldt, 1970]
- Fix a (possibly random) permutation of the blocks
- Take either exact minimization or a gradient step over a block selected in the cyclic order

Block 1			Block 2			Block 3			Block 4		
1	1	1	2	2	2	3	3	3	4	4	4

Example order: 1, 3, 2, 4

Cyclic Block Coordinate Descent

- Almost a folklore method [Ortega \& Rheinboldt, 1970]
- Fix a (possibly random) permutation of the blocks
- Take either exact minimization or a gradient step over a block selected in the cyclic order

Block 1			Block 2			Block 3			Block 4		
1	1	1	2	2	2	3	3	3	4	4	4

Example order: 1, 3, 2, 4

Cyclic Block Coordinate Descent

- Almost a folklore method [Ortega \& Rheinboldt, 1970]
- Fix a (possibly random) permutation of the blocks
- Take either exact minimization or a gradient step over a block selected in the cyclic order

Block 1			Block 2			Block 3			Block 4		
1	1	1	2	2	2	3	3	3	4	4	4

Example order: 1, 3, 2, 4

Dependence of the optimality gap on smoothness parameters:

$$
L_{n}+\frac{\min \left(n L^{2},\left(\sum_{i=1}^{n} L_{i}\right)^{2}\right)}{L_{\mathrm{min}}} \text { [Sun, Hong'15], Ln }{ }^{3} \text { [Hong, Wang, Razaviyayn, Luo'17] }
$$

Alternating Minimization

- A special case of cyclic BCD when there are only two blocks
- Exact minimization on the less smooth block; exact minimization or gradient descent step on the other block
\square

Alternating Minimization

- A special case of cyclic BCD when there are only two blocks
- Exact minimization on the less smooth block; exact minimization or gradient descent step on the other block

Alternating Minimization

- A special case of cyclic BCD when there are only two blocks
- Exact minimization on the less smooth block; exact minimization or gradient descent step on the other block

Dependence of the optimality gap on smoothness parameters:

$$
\min \left(L_{1}, L_{2}\right)\left[\operatorname{Beck}^{\prime} 15\right]
$$

Randomized Block Coordinate Descent

- Introduced by [Nesterov, 2012]
- Fix a probability distribution $\left\{p_{i}\right\}_{i=1}^{n}$ over the blocks

1

- Select block i with probability p_{i} and do a gradient descent step or exact minimization over it

Block 1			Block 2			Block 3			Block 4		
1	1	1	2	2	2	3	3	3	4	4	4

Randomized Block Coordinate Descent

- Introduced by [Nesterov, 2012]
- Fix a probability distribution $\left\{p_{i}\right\}_{i=1}^{n}$ over the blocks

1

- Select block i with probability p_{i} and do a gradient descent step or exact minimization over it

Block 1			Block 2			Block 3			Block 4		
1	1	1	2	2	2	3	3	3	4	4	4

Randomized Block Coordinate Descent

- Introduced by [Nesterov, 2012]
- Fix a probability distribution $\left\{p_{i}\right\}_{i=1}^{n}$ over the blocks

- Select block i with probability p_{i} and do a gradient descent step or exact minimization over it

Block 1			Block 2			Block 3			Block 4		
1	1	1	2	2	2	3	3	3	4	4	4

Randomized Block Coordinate Descent

- Introduced by [Nesterov, 2012]
- Fix a probability distribution $\left\{p_{i}\right\}_{i=1}^{n}$ over the blocks

4

- Select block i with probability p_{i} and do a gradient descent step or exact minimization over it

Block 1			Block 2			Block 3			Block 4		
1	1	1	2	2	2	3	3	3	4	4	4

Randomized Block Coordinate Descent

- Introduced by [Nesterov, 2012]
- Fix a probability distribution $\left\{p_{i}\right\}_{i=1}^{n}$ over the blocks
i

- Select block i with probability p_{i} and do a gradient descent step or exact minimization over it

Block 1			Block 2			Block 3			Block 4		
1	1	1	2	2	2	3	3	3	4	4	4

Dependence of the optimality gap on smoothness parameters:

$$
\sum_{i=1}^{n} L_{i} \text { for } p_{i} \sim L_{i} \text { [Nesterov'12] }
$$

Dependence of the optimality gap on smoothness parameters:

- Cyclic block coordinate descent (n blocks):

$$
L_{n}+\frac{\min \left(n L^{2},\left(\sum_{i=1}^{n} L_{i}\right)^{2}\right)}{L_{\mathrm{min}}} \text { [Sun, Hong'15], } L n^{3} \text { [Hong, Wang, Razaviyayn, Luo'17] }
$$

- Randomized block coordinate descent (n blocks):

$$
\sum_{i=1}^{n} L_{i} \text { for } p_{i} \sim L_{i} \text { [Nesterov'12] }
$$

- Alternating minimization (2 blocks):

$$
\min \left(L_{1}, L_{2}\right)\left[\operatorname{Beck}^{\prime} 15\right]
$$

So far, only alternating minimization (two blocks) can avoid paying for the less-smooth block
Q. Can we avoid paying for the least-smooth block when there are more than two blocks?

Alternating Randomized Block Coordinate Descent

- ... or how to avoid paying for the least smooth (non-smooth) block
- Fix a probability distribution $\left\{p_{i}\right\}_{i=1}^{n-1}$ over blocks $1,2, \ldots, n-1$
i 3
- Do a gradient descent (or exact min) step over block i, then exact minimization over block n

Block 1			Block 2			Block 3			Block 4		
1	1	1	2	2	2	3	3	3	4	4	4

Alternating Randomized Block Coordinate Descent

- ... or how to avoid paying for the least smooth (non-smooth) block
- Fix a probability distribution $\left\{p_{i}\right\}_{i=1}^{n-1}$ over blocks $1,2, \ldots, n-1$

```
i
```


4

- Do a gradient descent (or exact min) step over block i, then exact minimization over block n

Alternating Randomized Block Coordinate Descent

- ... or how to avoid paying for the least smooth (non-smooth) block
- Fix a probability distribution $\left\{p_{i}\right\}_{i=1}^{n-1}$ over blocks $1,2, \ldots, n-1$

```
i
```

2

- Do a gradient descent (or exact min) step over block i, then exact minimization over block n

Block 1			Block 2			Block 3			Block 4		
1	1	1	2	2	2	3	3	3	4	4	4

Alternating Randomized Block Coordinate Descent

- ... or how to avoid paying for the least smooth (non-smooth) block
- Fix a probability distribution $\left\{p_{i}\right\}_{i=1}^{n-1}$ over blocks $1,2, \ldots, n-1$

```
i
```


4

- Do a gradient descent (or exact min) step over block i, then exact minimization over block n

Alternating Randomized Block Coordinate Descent

- ... or how to avoid paying for the least smooth (non-smooth) block
- Fix a probability distribution $\left\{p_{i}\right\}_{i=1}^{n-1}$ over blocks $1,2, \ldots, n-1$

```
i
```

- Do a gradient descent (or exact min) step over block i, then exact minimization over block n

Block 1			Block 2			Block 3			Block 4		
1	1	1	2	2	2	3	3	3	4	4	4

Alternating Randomized Block Coordinate Descent

- ... or how to avoid paying for the least smooth (non-smooth) block
- Fix a probability distribution $\left\{p_{i}\right\}_{i=1}^{n-1}$ over blocks $1,2, \ldots, n-1$

```
i
```

- Do a gradient descent (or exact min) step over block i, then exact minimization over block n

Generalizes randomized BCD and alternating minimization
Dependence of the optimality gap on smoothness parameters: $\sum_{i=1}^{n-1} L_{i}$ for $p_{i} \sim L_{i}$ (no dependence on L_{n} !)
Possible to accelerate: gives the same convergence time as the fastest known accelerated BCD - NUACDM [Allen-Zhu, Qu, Richtárik, Yuan'16], except without any dependence on L_{n}

Convergence Analysis: Main Ideas

- Extension of Approximate Duality Gap Technique [D, Orecchia, 2017]

$f\left(\boldsymbol{x}^{k}\right)-f\left(\boldsymbol{x}^{*}\right) \leq G_{k}$. Let A_{k} be an increasing (rate) function of iteration count k. Then, if $A_{k} G_{k} \leq A_{k-1} G_{k-1}, \forall k$

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \leq G_{k} \leq \frac{A_{0} G_{0}}{A_{k}}
$$

Convergence Analysis: Main Ideas

- Lower bound uses the following:
- by convexity (and differentiability), $\forall \boldsymbol{x}_{\boldsymbol{k}}$:

$$
f\left(\mathrm{x}^{*}\right) \geq f\left(\mathrm{x}^{k}\right)+\left\langle\nabla f\left(\mathrm{x}^{k}\right), \mathrm{x}^{*}-\mathrm{x}^{k}\right\rangle
$$

$$
=f\left(\mathbf{x}^{k}\right)+\sum_{i=1}^{n}\left\langle\nabla_{i} f\left(\mathbf{x}^{k}\right), \mathbf{x}_{i}^{*}-\mathbf{x}_{i}^{k}\right\rangle
$$

$$
=f\left(\mathrm{x}^{k}\right)+\sum_{i=1}^{n-1}\left\langle\nabla_{i} f\left(\mathbf{x}^{k}\right), \mathbf{x}_{i}^{*}-\mathbf{x}_{i}^{k}\right\rangle
$$

$$
\text { because } \nabla_{i} f\left(\mathbf{x}^{k}\right)=\mathbf{0}
$$

- Upper bound uses the (block) gradient descent progress:

$$
f\left(\operatorname{Grad}_{i}\left(\mathrm{x}^{k}\right)\right) \leq f\left(\mathrm{x}^{k}\right)-\frac{1}{2 L_{i}}\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|_{*}^{2}
$$

can sample only over the first
$n-1$ (i.e., "smoother") blocks

Numerical Experiments

Experiments: Linear Regression on BlogFeedback Dataset

Experiments: Linear Regression on BlogFeedback Dataset

Summary

- A novel block coordinate descent method (and its accelerated version) that can handle a completely non-smooth block (structured non-smoothness)
- The method outperforms existing methods if one block has much worse (but finite) smoothness parameter than the remaining ones
- Ongoing work:
- Extension to the smooth and strongly convex setting
- Extension to the composite non-smooth setting
- Improved convergence bounds for randomized BCD with exact minimization
- Open question:
- We need to know which block is the least smooth to not pay for it. Is it possible to relax this?

