Distributed Spanner Approximation

Michal Dory, Technion Joint work with: Keren Censor-Hillel, Technion

Spanners

A **k-spanner** of a graph G is a subgraph of G that preserves distances up to a multiplicative factor of k.

Spanners

• There are many constructions which give a global guarantee on the size of the spanner: (2k - 1)-spanners with $O(n^{1+1/k})$ edges

• This is optimal in the worst case assuming Erdős's girth conjecture.

- What about approximating the minimum *k*-spanner?
- There are graphs where any 2-spanner has $\Omega(n^2)$ edges, this is also true for k-spanners in directed graphs.

In the sequential setting:

- 2-spanner: $O\left(\log \frac{|E|}{|V|}\right)$ -approximation [Kortsarz and Peleg 1994]
- Directed k-spanner: $O(\sqrt{n} \log n)$ -approximation [Berman et al. 2013]

Hardness Results:

- 2-spanner: $\Omega(\log n)$ [Kortsarz 2001]
- Directed k-spanner: $\Omega(2^{(\log^{1-\varepsilon} n)})$ [Elkin and Peleg 2007]
- Undirected k-spanner: $\Omega(2^{(\log^{1-\varepsilon} n)/k})$ [Dinitz, Kortsarz and Raz 2016]

The Distributed Models

Vertices exchange messages in **synchronous** rounds

The model	Message size
LOCAL	unbounded
CONGEST	$\theta(\log n)$ bits

In the LOCAL model

Directed *k*-spanners:

Approximation	Number of rounds	
$O(\sqrt{n} \log n)$	$O(k \log n)$	[Dinitz and Nazari, 2017]
$O(n^{\epsilon})$	constant	[Barenboim, Elkin and Gavoille, 2016]
$(1+\epsilon)$	$O(poly(\log n / \epsilon))$	Our Results

• Can we give efficient approximations also in the **CONGEST** model?

• Can we give efficient approximations also in the **CONGEST** model?

Approximating *k*-spanners in **directed** or **weighted** graphs is hard in the CONGEST model.

• Can we give efficient approximations also in the **CONGEST** model?

Approximating *k*-spanners in **directed** or **weighted** graphs is hard in the CONGEST model.

This gives a strict **separation** between the **LOCAL** and **CONGEST** models.

Our Results

Directed k-spanner for $k \ge 5$:

- Randomized algorithms $\tilde{\Omega}(\sqrt{n/\alpha})$ rounds for an α -approximation.
- Deterministic algorithms $\widetilde{\Omega}(n/\sqrt{\alpha})$

<u>Weighted *k*-spanner for $k \ge 4$:</u>

- Directed graphs $\widetilde{\Omega}(n)$
- Undirected graphs $\widetilde{\Omega}(n/k)$