Distributed Spanner Approximation

Michal Dory, Technion

Joint work with: Keren Censor-Hillel, Technion

Spanners

A \boldsymbol{k}-spanner of a graph G is a subgraph of G that preserves distances up to a multiplicative factor of k.

Spanners

- There are many constructions which give a global guarantee on the size of the spanner:

$$
(2 k-1) \text {-spanners with } O\left(n^{1+1 / k}\right) \text { edges }
$$

- This is optimal in the worst case assuming Erdős's girth conjecture.

Spanner Approximation

- What about approximating the minimum k spanner?
- There are graphs where any 2-spanner has $\Omega\left(n^{2}\right)$ edges, this is also true for k-spanners in directed graphs.

In the sequential setting:

- 2-spanner: $O\left(\log \frac{|E|}{|V|}\right)$-approximation [Kortsarz and Peleg 1994]
- Directed k-spanner: $O(\sqrt{n} \log n)$-approximation [Berman et al. 2013]

Hardness Results:

- 2-spanner: $\Omega(\log n)$ [Kortsarz 2001]
- Directed k-spanner: $\Omega\left(2^{\left(\log ^{1-\varepsilon} n\right)}\right)$ [Elkin and Peleg 2007]
- Undirected k-spanner: $\Omega\left(2^{\left(\log ^{1-\varepsilon} n\right) / k}\right)$ [Dinitz, Kortsarz and Raz 2016]

The Distributed Models

Vertices exchange messages in synchronous rounds

The model	Message size
LOCAL	unbounded
CONGEST	$\theta(\log n)$ bits

In the LOCAL model

Directed \boldsymbol{k}-spanners:

Approximation	Number of rounds	
$O(\sqrt{n} \log n)$	$O(k \log n)$	[Dinitz and Nazari, 2017]
$O\left(n^{\epsilon}\right)$	constant	[Barenboim, Elvin and Gavoille, 2016]
$(1+\epsilon)$	$O($ poly $(\log n / \epsilon))$	Our Results

Spanner Approximation

- Can we give efficient approximations also in the CONGEST model?

Spanner Approximation

- Can we give efficient approximations also in the CONGEST model?

Approximating k-spanners in directed or weighted graphs is hard in the CONGEST model.

Spanner Approximation

- Can we give efficient approximations also in the CONGEST model?

Approximating k-spanners in directed or weighted graphs is hard in the CONGEST model.

This gives a strict separation between the LOCAL and CONGEST models.

Our Results

Directed k-spanner for $k \geq 5$:

- Randomized algorithms $-\widetilde{\Omega}(\sqrt{n / \alpha})$ rounds for an α-approximation.
- Deterministic algorithms - $\widetilde{\Omega}(n / \sqrt{\alpha})$

Weighted k-spanner for $k \geq 4$:

- Directed graphs - $\widetilde{\Omega}(n)$
- Undirected graphs - $\widetilde{\Omega}(n / k)$

