Improved Massively Parallel Computation Algorithms for MIS, Matching, and Vertex Cover

Themis Gouleakis

June 14, 2018

Joint work with: Mohsen Ghaffari(ETH), Christian Konrad(University of Bristol), Slobodan Mitrović(EPFL) and Ronitt Rubinfeld(MIT and Tel Aviv University)

CONGESTED CLIQUE MODEL [LOTKER PAVLOV PATT-SHAMIR PELEG 03]

- *Complete* communication graph: $G' = K_{|V|}$.
- ► *Synchronous* messages of size *O*(log *n*) bits
- ► complexity=# rounds.

MASSIVELY PARALLEL COMPUTATION (MPC) MODEL [KARLOFF SURI VASSILVITSKII 10]

- Inspired by MapReduce
- ► Input size=N
- ► *m* machines
- ► Space $S \in \left[\frac{N}{m}, N\right]$ per machine
- unbounded internal computation
- Total communication per node bounded by S each round.
- ► complexity=# rounds.

00000

RESULTS

Theorem: There is an algorithm that with high probability computes an MIS in $O(\log \log \Delta)$ rounds of the MPC model, with $\tilde{O}(n)$ -bits of memory per machine.

Theorem: There is an algorithm that with high probability computes a $(2 + \varepsilon)$ -approximate integral maximum matching and a $(2 + \varepsilon)$ -approximate integral minimum vertex cover in $O(\log \log n)$ rounds of the MPC model, with $\tilde{O}(n)$ -bits of memory per machine.

Improved Massively Parallel Computation Algorithms for MIS, Matching, and Vertex Cover

Mohsen Ghaffari¹, Themis Gouleakis², Christian Konrad³, Slobodan Mitrović⁴ and Ronitt Rubinfeld^{2,5}

ETH1.MIT2.University of Bristol3. EPFL4.Tel Aviv University5

Models

CONGESTED CLIQUE model

- Complete communication graph: G' = K_{|V|}.
- Sunchronous messages of size O(log n) bits

Massively Parallel Computation model [Karloff Suri Vassilvitskii 10]

- Input size= N
- Space $S \in [\frac{N}{2}, N]$ per machine
- Total communication per node per round: < S

Greedy randomized Algorithm for

Greedy Randomized Maximal Independent Set

Choose a permutation $\pi : [n] \rightarrow [n]$ u.a.r. Repeat until the next rank is at least $n/\log^{10} n$ and the maximum degree is at most log¹⁰ n: (A) Add smallest rank vertex v to the MIS. (B) Remove all the neighbors of v.

Run $O(\log \log \Delta)$ rounds of the Sparsified MIS Algorithm of [Ghaffari 17] in the remaining graph. Remove from the graph the constructed MIS and its neighborhood Find MIS of the residual graph (single machine)

Output the union of the constructed MIS sets.

algorithm [Ghaffari 17]

 $CONGESTED \ CLIQUE \approx MPC \ model with \ S = O(n)$

Analysis

Lemma: Let G, be the remaining graph after r vertices are simulated. Then $\Lambda = O(n \log n)$ when

O(n) edges sent to the central machine each

• 1st round: For
$$\alpha < 1/2$$
, we get:
 $Pr[\{i, j\} \in G[V_i]] = \left(\frac{1}{\Delta n}\right)^2 \leq \frac{1}{n} \Rightarrow O(n)$ edges in $G[V_i]$
• both round:

$$\mathbb{E}[\text{parages}] = \Delta_{\nu} \cdot \left(\frac{1}{\Delta^{\mu}}\right)^2 = 0$$

 After i = O(log log Δ)-rounds the max degree $\Delta_i \leq \log^{10} n$. Key idea: High degree vertices are much more likely to

MPC simulation

• Choose a permutation $\pi : [n] \rightarrow [n]$ u.a.r • Repeat for each chunk Vi-• Machine $\sharp 1$ receives all $G[V_1]$ edges Broadcasts MIS(G[Vi]) OUpdate local memories

Until: $\Delta < \log^{10} m$

Run O(log log Δ) rounds of sparsified MIS

Theorem (inf.) [GGKMR18], [BDH18]

Results

Theorem: There is an algorithm that with high probability computes an MIS in $O(\log \log \Lambda)$ rounds of the MPC model, with $\tilde{O}(n)$ -bits of memory per machine.

Theorem: There is an algorithm that with high probability computes a $(2 + \varepsilon)$ -approximate integral maximum matching and a $(2 + \epsilon)$ approximate integral minimum vertex cover in $O(\log \log n)$ rounds of the MPC model, with O(n). bits of memory per machine

MPC memory: $S = \tilde{O}(n)$

- CONGESTED CLIOUE ⇒ MPC [BDH18] (1 MPC machine per graph node)
- · Assign each MPC machine to a vertex.
- For each edge {u, v}, send message to machines u, v.
- Simulate CONGESTED CLIOUE aborithm.
- (< n MPC machines: assign multiple vertices to each one)

MPC ⇒ CONGESTED CLIQUE

- Each node needs to send/receive up to O(n) bits.
- Split messages into O(log n) bit chunks
- · Exploit unused edges of the communication graph using routing scheme in Len
- We can simulate one MPC round using O(1) concerted clique

References

- [1] Soheil Behnezhad, Mahsa Derakhshan, and Mohammad Tiqhi Hajiqhayi. Brief announcement: Semi-manreduce meets conrested clique.
- [2] Mohsen Ghaffari. Distributed mis via all-to-all communication.
- [3] Howard Karloff, Siddharth Suri, and Sereei Vassilvitskii. A model of computation for mapreduce.
- [4] Christoph Lenzen. Optimal deterministic routing and sorting on the congested clique.
- [5] Zvi Lotker, Elan Pawloy, Boaz Patt-Shamir, and David Poles
- MST construction in O(log log n) communication rounds.