Improved Massively Parallel Computation Algorithms for MIS, Matching, and Vertex Cover

Themis Gouleakis

MIT

June 14, 2018

Joint work with: Mohsen Ghaffari (ETH), Christian Konrad (University of Bristol), Slobodan Mitrović (EPFL) and Ronitt Rubinfeld (MIT and Tel Aviv University)
CONGESTED CLIQUE model [Lotker Pavlov Patt-Shamir Peleg 03]

- Complete communication graph: $G' = K_{|V|}$.
- Synchronous messages of size $O(\log n)$ bits
- complexity=$\#$ rounds.
Massively Parallel Computation (MPC) model

[Karloff Suri Vassilvitskii 10]

- Inspired by MapReduce
- Input size=N
- m machines
- Space $S \in \left[\frac{N}{m}, N \right]$ per machine
- unbounded internal computation
- Total communication per node bounded by S each round.
- complexity=$\#$ rounds.
RESULTS

Theorem: There is an algorithm that with high probability computes an MIS in $O(\log \log \Delta)$ rounds of the MPC model, with $\tilde{O}(n)$-bits of memory per machine.

Theorem: There is an algorithm that with high probability computes a $(2 + \varepsilon)$-approximate integral maximum matching and a $(2 + \varepsilon)$-approximate integral minimum vertex cover in $O(\log \log n)$ rounds of the MPC model, with $\tilde{O}(n)$-bits of memory per machine.
Improved Massively Parallel Computation Algorithms for MIS, Matching, and Vertex Cover

Mohsen Ghaffari1, Themis Gouleakis2, Christian Konrad3, Slobodan Mitrovic4 and Ronitt Rubinfeld2,5

ETH1, MIT2, University of Bristol3, EPFL4, Tel Aviv University5

Models

CONGESTED CLIQUE model
[Loekh Pavlov Patt-Shamir Peleg 03]

- Complete communication graph: \(G' = K_{|V|} \)
- Synchronous messages of size \(O(\log n) \) bits
- Complexity: \(\leq \) rounds

Massively Parallel Computation model
[Karloff Suri Vassilvitskii 10]

- Input size: \(N \)
- \(m \) machines
- Space \(S = \lceil \frac{\log N}{m} \rceil \) per machine
- Total communication per node per round: \(\leq S \)
- Complexity: \(\leq \) rounds

Greedy randomized Algorithm for MIS

Greedy Randomized Maximal Independent Set
- Choose a permutation \(\pi : [n] \rightarrow [n] \) u.a.r.
- Repeat until the next rank is at least \(n/\log^{10} n \) and the maximum degree is at most \(\log^{10} n \):
 - Add smallest rank vertex \(v \) to the MIS.
 - Remove all neighbors of \(v \).
 - Run \(O(\log \log \Delta) \) rounds of the Sparsiﬁed MIS Algorithm of [Ghaffari 17] in the remaining graph. Remove from the graph the constructed MIS and its neighborhood.
 - Find MIS of the residual graph (single machine)
 - Output the union of the constructed MIS sets.

MPC simulation

- Choose a permutation \(\pi : [n] \rightarrow [n] \) u.a.r.
- Repeat for each chunk \(V_i \):
 - Machine \(\Pi \) receives all \(G(V_i) \) edges.
 - Broadcasts MIS(\(G(V_i) \))
 - Update local memories

Until: \(\Delta < \log^{10} n \)
- Run \(O(\log \log \Delta) \) rounds of sparsiﬁed MIS algorithm [Ghaffari 17]

CONGESTED CLIQUE vs MPC

MPC memory: \(S = O(n) \)

- \textbf{CONGESTED CLIQUE} \(\Rightarrow \textbf{MPC} \) [BDH18]
 - (1 MPC machine per graph node)
 - Assign each MPC machine to a vertex.
 - For each edge \((u,v)\), send message to machines \(u,v \).
 - \textbf{Simulate} \textbf{CONGESTED CLIQUE} algorithm (\(< n \) MPC machines: assign multiple vertices to each one)

- \textbf{MPC} \(\Rightarrow \textbf{CONGESTED CLIQUE} \)
 - Each node needs to send/receive up to \(O(n) \) bits.
 - Split messages into \(O(\log n) \) bit chunks.
 - Exploit unused edges of the communication graph using routing scheme in [Lemma13]
 - We can simulate one MPC round using \(O(1) \)-congested clique rounds.

Theorem (inf.) [GGKMR18, [BDH18]

\textbf{CONGESTED CLIQUE} \(\approx \) \textbf{MPC} model with \(S = O(n) \)

Analysis

Lemma: Let \(G_r \) be the remaining graph after \(r \) vertices are simulated. Then \(\Delta_r = O(\frac{\log n}{\log \log n}) \)

- \(O(n) \) edges sent to the central machine each round w.h.p.
- 1st round: For \(\alpha < 1/2 \), we get:
 \(P_r[\{i,j\} \in G_r] = \left(\frac{1}{2}\right)^{\alpha} \leq 2^{-\log \log n} \)
- \(k \)-th round:
 \(E[|\text{edges}|] = \Delta_r \left(\frac{1}{2}\right)^k \leq O(n) \)
- After \(\tau = O(\log \log \Delta) \) rounds the max degree \(\Delta_r \leq \log^{10} n \)
- **Key idea:** High degree vertices are much more likely to be removed!

Results

Theorem: There is an algorithm that with high probability computes an MIS in \(O(\log \log \Delta) \) rounds of the MPC model, with \(O(n) \)-bits of memory per machine.

Theorem: There is an algorithm that with high probability computes a \((2 + c) \)-approximate integral maximum matching and a \((2 + c) \)-approximate integral minimum vertex cover in \(O(\log \log n) \) rounds of the MPC model, with \(O(n) \)-bits of memory per machine.

References

Brief announcement: Semi-mapreduce meets congested clique.
Distributed mis via all-to-all communication.
A model of computation for mapreduce.
Optimal deterministic routing and sorting on the congested clique.
MST construction in \(O(\log \log n) \) communication rounds.