Relaxed Locally Correctable Codes in Computationally Bounded Channels

Elena Grigorescu (Purdue)

Joint with Jeremiah Blocki (Purdue), Venkata Gandikota (JHU), Samson Zhou (Purdue)

Classical Locally Decodable/Correctable Codes

Encoding: E: $\{0,1\}^k \to \{0,1\}^n$

Decoding: D: $\{0,1\}^n \to \{0,1\}^k$ such that given w with dist $(w, E(m)) < \delta n$ then D(w) = m.

Goal: *efficient* encoding/decoding

Parameters: information rate: k/n; minimum distance: min dist($E(m_1), E(m_2)$)

```
Locally decodable/correctable codes (LDCs/LCCs)
```

LDC: Given oracle access to input w with $dist(w, E(m)) < \delta n$, and *i*, compute m_i with o(n) queries

LCC: Given oracle access to input w with $dist(w, E(m)) < \delta n$, and i, compute $(E(m))_i$ with o(n) queries

Status: $q = 2^{O(\sqrt{\log n})}$, any constant rate 0 < R < 1 [KMRS17] q > 2 (constant), $n = 2^{2^{\sqrt{\log n}}}$ [Yek08, DGY11, Efr12]

Relaxed LDCs/LCCs (RLDCs/RLCCs)

RLDC/RLCCs: Given oracle access to input *w* with dist(*w*, *E*(*m*)) < δn , *D* makes q = o(n) queries and: 1) $\forall i, D_i(w) = m_i$ if w = E(m) (RLDC); $D_i(w) = E(m)_i$ (RLCC) 2) $\forall i, \Pr [b \notin \{m_i, \bot\}] < 1/3$ (RLDC) $\Pr [b \notin \{E(m)_i, \bot\}] < 1/3$ (RLCC) 3) Let Good= $\{j \mid \Pr[D_j(w) = m_j] > \frac{2}{3}\}$ (RLDC) $Good= \{j \mid \Pr[D_j(w) = (E(m))_j] > \frac{2}{3}\}$ (RLCC)

Then $|Good| > \rho n$, for some constant ρ .

Observation: 1) + 2) imply 3) for constant query codes and constant error rate

```
Status: RLDCs [BGHSV06]: q = \Theta(1), n = k^{1+\varepsilon}
RLCCs [GRR18]: q = \Theta(1), n = \Theta(poly(k)),
q = (\log n)^{O(\log \log n)}, n = \Theta(k)
```

Our results: $q = poly \log n$, $n = \Theta(k)$ for crypto version of definitions

Codes for Computationally Bounded Channels (CBC)

Previous work:

General Codes in CBCs achieve better communication capabilities than in the Hamming model [Lip94, DGL04, Langberg04, MPSW05, Smith07, GS16, SS16]

Locally Decodable Codes in CBCs: Requires trusted setup/key exchange

- Private-key LDCs [OPS07] - Assumes existence of OWF, shared secret key

- $\Theta(1)$ info rate and error rate over binary alphabet, $q = \omega(1)$

- Public-key LDCs [HO08, HOSW11] - Crypto assumptions: ϕ -hiding schemes and IND-CPA secure cryptosystems

Computational Relaxed LCCs (CRLCC)

Security parameter λ , s=Gen(1^{λ}), s is public

Sender
$$\stackrel{m}{\longrightarrow}$$
 A
 $\stackrel{i,w = E(s,m) + e}{\longrightarrow}$ Receiver $\stackrel{b = D(s,w,i)}{\longrightarrow}$

Defs:
$$p_{A,s} = \Pr[b \notin \{w_i, \bot\}]$$
 (Decoder's error probability)
 $Good_{A,s} = \left\{i \mid \Pr[D(s, w, i) = (E(m))_i] > \frac{2}{3}\right\}$

Def: (*Gen*, *E*, *D*) is a CRLCC with parameters q queries, τ error rate, $0 < \rho \le 1$, against PPT adversaries if *D* makes q queries to input w and

- 1) For all s, if w = E(s,m) then $D(s,m,i) = (E(s,m))_i$
- 2) For all A in the class, $\Pr[\Pr[b \notin \{w_i, \bot\}] > \text{negl.}] < \text{negl.}$
- 3) For all A in the class, $Pr[Good_{A,s} < \rho n] < negl.$

Computational Relaxed LCCs

(Gen, E, D) is a CRLCC with parameters q queries, τ error rate, ρ , against a class of adversaries (here PPT) if D makes q queries to input w and

1) For all s, if
$$w = E(s,m)$$
 then $D(s,m,i) = (E(s,m))_i$

Weak CRLCC For all A in the class, $\Pr[\Pr[b \notin \{w_i, \bot\}] > \gamma = \operatorname{negl.}] < \mu = \operatorname{negl.}]$ 2)

Observation: Classical RLCC: for all A (not necessarily PPT) $\forall i$, $|Good| > \rho$, $\gamma = 1/3$, $\mu = 0$

For all *A* in the class, $Pr[Good_{A,s} < \rho] < \mu = negl.$ 3)

$$p_{A,s} = \Pr[b \notin \{w_i, \bot\}]; \operatorname{Good}_{A,s} = \left\{i \mid \Pr[D(s, w, i) = (E(m)_i] > \frac{2}{3}\right\}$$

- Strong CRLCC

Our results: Weak and Strong CRLCC for binary alphabet, constant information and error rate, $poly \log(n)$ queries, assuming the existence of collision-resistant hash functions.

Our results - Observations

Results: Weak and Strong CRLCC for binary alphabet, constant error and information rate, $poly \log(n)$ queries, assuming the existence of collision-resistant hash function.

- Classical RLCCs [GRR18]: $q = (\log n)^{O(\log \log n)}$, constant information rate, subconstant error rate
- Previous constructions of RLCC in CBC need public/private-key crypto setup; our constructions don't.
- Our setup assumption: public seed chosen once
- Key Idea: local expander graphs

Local Expander Graphs and Their Properties

[ErdosGrahamSzemeredi75] (A, B) contains a δ -expander if for all subsets $X \subseteq A$, $Y \subseteq B$ of fractional size δ , there is an edge between X and Y.

δ - local expander: G is a DAG such that for all vertices v, and radii r, (A = [v - r + 1, v], B = [v + 1, v + r]) contains a δ-expander.

Local Expanders: Properties and Applications

Thm [EGS75, ABP18]: For any $\delta > 0$, there exist explicit δ -local expanders G on n vertices with indegree(G), outdegree(G) = $O(\log n)$

Def: For set *S*, vertex v is α -good if for any radius r, $|S \cap [v - r + 1, v]| \le \alpha r$ and $|S \cap [v + r - 1, v]| \le \alpha r$

Thm [EGS75, ABP18]: If we delete large set $S \subseteq V$, all α -good vertices are on a path

Applications:

- proof of sequential work [MMV13, CP18]
- time-lock puzzles and fair coin flipping protocols [BN00, JM10]
- design of memory hard functions [ABH17, ABP17, BZ17, ABP18]

(Weak) CRLCCs using local expander graphs

CRHF: $H_s: \{0,1\}^* \rightarrow \{0,1\}^{L(\lambda)}$ is collision-resistant if for all PPT adversaries A, $\Pr[A \text{ finds } H(x) = H(x')]$ is negl.

Labeling graph G using H and input $m = (m_1 \circ m_2 \circ m_3 \dots \circ m_k) \in \Sigma^k$, where $\Sigma = \{0,1\}^{L(\lambda)}$,

Encoding of $m = (m_1 \circ m_2 \circ m_3 \dots \circ m_k)$ is the concatenation of 3 parts

- 1. $(ECC(m_1) \circ ECC(m_2) \circ ECC(m_3) ... \circ ECC(m_k))$
- 2. $(ECC(l(1)) \circ ECC(l(2)) \circ ECC(l(3)) \dots ECC(l(k)))$
- 3. $(ECC(l(k)) \circ ECC(l(k)) \circ ECC(l(k))....ECC(l(k)))$

ECC is good and efficiently decodable (eg., Justesen) underlying G is δ -local expander

k copies of last label

Ingredients of the Local Decoder

• Testing consistent labeling:

After decoding the ECCs, check if v's label is consistent with parents' labels $l'(v) = H(m'_n \circ l'(p_1) \circ ... \circ l'(p_t))$.

Else v is inconsistent.

 $O(\log n)$ vertex queries

• Testing α -goodness:

Recall: Vertex \boldsymbol{v} is α -good w.r.t set **S** if for any radius r, $|S \cap [v - r + 1, v]| \leq \alpha r$ and $|S \cap [v + r - 1, v]| \leq \alpha r$

Test if vertex \boldsymbol{v} of G is $\alpha/4$ -good with respect to set S of inconsistent nodes.

Test guarantees: *accepts* if \boldsymbol{v} is $\alpha/4$ -good (hence also α -good) (whp) *rejects* if \boldsymbol{v} is not α -good (whp) poly(log *n*) vertex queries

Analysis: Key Ideas

If vertex is consistent and correctly decoded then

 $l(v) = l'(v) = H(m_v \circ l(p_1) \circ l(p_2) \dots \circ l(p_t)) = H(m'_v \circ l'(p_1) \circ l'(p_2) \dots \circ l'(p_t))$

Implies $m_v = m'_v$ and $l(p_1) = l'(p_1)$, $l(p_2) = l'(p_2)$, ..., $l(p_t) = l'(p_t)$ [correct decoding of parent label!]

or colliding pair was found!

Hence, if a parent is consistent, then can iteratively backtrack along a path of consistent nodes and deduce correct decoding of a label!

Want there properties from the last vertex

Recall: Thm [EGS75, ABP18] If we delete large set $S \subseteq V$, all α -good vertices remain on a path.

Conclusion: The test only returns the decoded bit when it thinks that block is correctly decoded (and α -good.)

Extensions: Strong CRLCCs

Def: (*Gen*, *E*, *D*) is a CRLCC with parameters q queries, τ error rate, ρ , against a class of PPT adversaries if *D* makes q queries to input w and

1) For all s, if w = E(s,m) then $D(s,m,i) = (E(s,m))_i$ 2) For all A in the class, $\Pr[\Pr[b \notin \{w_i, \bot\}] > \operatorname{negl.}] < \operatorname{negl.}$ 3) For all A in the class, $\Pr[\operatorname{Good}_{A,s} < \rho] < \operatorname{negl.}$

- Need to ensure that the adversary cannot corrupt the entire codeword and obtain a new encoding in which all tests check
- Idea: Reduce the degree of the graphs by a composition of δ -expanders and path-like graphs and encode `metanodes' as blocks
- Use the extra fact that there are many α -good nodes (long paths)

Conclusions and Further Directions

Our results: Weak and Strong CRLCC/CRLDC for binary alphabet, constant error and information rate, $poly \log(n)$ queries, assuming the existence of collision-resistant hash function.

Open directions: Better tradeoffs: $q = \Theta(1)$?

Other local models in computationally bounded channels (non-relaxed LCCs, testing)?

THANK YOU!