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Encoding:  E: 0,1 𝑘 → 0,1 𝑛

Decoding:  D: 0,1 𝑛 → 0,1 𝑘 such that given 𝑤 with dist(𝑤, 𝐸(𝑚)) < 𝛿𝑛 then 𝐷(𝑤) = 𝑚. 

Goal: efficient encoding/decoding

Parameters: information rate: 𝑘/𝑛; minimum distance: min dist(𝐸 𝑚1 , 𝐸 𝑚2 )

Locally decodable/correctable codes (LDCs/LCCs)

LDC: Given oracle access to input 𝑤 with dist(𝑤, 𝐸(𝑚)) < 𝛿𝑛, and 𝑖, compute 𝑚𝑖 with 𝑜(𝑛) queries

LCC: Given oracle access to input 𝑤 with dist(𝑤, 𝐸(𝑚)) < 𝛿𝑛, and 𝑖, compute (𝐸 𝑚 )𝑖 with 𝑜(𝑛) queries

Status:  𝑞 = 2𝑂( log 𝑛), any constant rate 0 < 𝑅 < 1 [KMRS17]

𝑞 > 2 (constant), 𝑛 = 22
log 𝑛

[Yek08, DGY11, Efr12]                            

𝒙𝟑

Classical Locally Decodable/Correctable Codes

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟏 + 𝒙𝟐 𝒙𝟏 + 𝒙𝟑 𝒙𝟐+𝒙𝟑 𝒙𝟏 + 𝒙𝟐 + 𝒙𝟑 Locality



Relaxed LDCs/LCCs (RLDCs/RLCCs)

RLDC/RLCCs: Given oracle access to input 𝑤 with dist(𝑤, 𝐸(𝑚)) < 𝛿𝑛, 𝑫 makes 𝑞 = 𝑜(𝑛) queries and:

1) ∀ 𝑖, 𝐷𝑖 𝑤 = 𝑚𝑖 if 𝑤 = 𝐸(𝑚) (RLDC);  𝐷𝑖 𝑤 = 𝐸(𝑚)𝑖 (RLCC)

2) ∀ 𝑖, Pr [𝑏 ∉ {𝑚𝑖, ⊥}] < 1/3 (RLDC)  

Pr [𝑏 ∉ {𝐸(𝑚)𝑖, ⊥}] < 1/3 (RLCC)

3) Let Good= 𝑗 | Pr 𝐷𝑗 𝑤 = 𝑚𝑗 >
2

3
(RLDC)

Good= 𝑗 | Pr 𝐷𝑗 𝑤 = (𝐸 𝑚 )𝑗 >
2

3
(RLCC) 

Then Good > 𝜌𝑛, for some constant 𝜌.

Observation: 1) + 2) imply 3) for constant query codes and constant error rate

Status: RLDCs [BGHSV06]: 𝑞 = Θ 1 , 𝑛 = 𝑘1+𝜀

RLCCs [GRR18]: 𝑞 = Θ 1 , 𝑛 = Θ(𝑝𝑜𝑙𝑦(𝑘)), 

𝑞 = (log 𝑛)𝑂(log log 𝑛) , 𝑛 = Θ 𝑘

Our results: 𝑞 = 𝑝𝑜𝑙𝑦 log 𝑛 , 𝑛 = Θ 𝑘
for crypto version of definitions



Codes for Computationally Bounded Channels (CBC)

Hamming channel: the channel corrupts any pattern (possibly takes long time to corrupt adversarially)

Shannon channel: the channel introduces independent errors

Lipton channel: Computationally bounded – the channel is a PPT adversary

Previous work:

General Codes in CBCs achieve better communication capabilities than in the Hamming model 

[Lip94, DGL04, Langberg04, MPSW05, Smith07, GS16, SS16]

Locally Decodable Codes in CBCs: Requires trusted setup/key exchange

- Private-key LDCs [OPS07] - Assumes existence of OWF, shared secret key 

- Θ(1) info rate and error rate over binary alphabet, 𝑞 = 𝜔 1

- Public-key LDCs [HO08, HOSW11] - Crypto assumptions: 𝜙-hiding schemes and IND-CPA secure cryptosystems

This talk



Computational Relaxed LCCs (CRLCC)

Security parameter 𝝀, s=Gen(1𝜆), s is public

𝐸(𝑠,𝑚)
A

𝑖, 𝑤 = 𝐸(𝑠,𝑚) + 𝑒
Sender Receiver

𝑏 = 𝐷(𝑠, 𝑤, 𝑖)

Def𝑠: 𝒑𝑨,𝒔 = Pr [𝑏 ∉ {𝑤𝑖, ⊥}]

GoodA,s = 𝑖 | Pr 𝐷 𝑠, 𝑤, 𝑖 = (𝐸 𝑚 )𝑖 >
2

3

Def: (𝐺𝑒𝑛, 𝐸, 𝐷) is a CRLCC with parameters 𝑞 queries, 𝜏 error rate, 0 < 𝜌 ≤ 1, against PPT adversaries if 𝐷
makes 𝑞 queries to input 𝑤 and

1) For all s, if 𝑤 = 𝐸(𝑠,𝑚) then 𝐷 𝑠,𝑚, 𝑖 = 𝐸 𝑠,𝑚
𝑖

2) For all 𝐴 in the class, Pr[Pr[𝑏 ∉ {𝑤𝑖, ⊥}]> negl.] < negl.

3) For all 𝐴 in the class, Pr[GoodA,s < 𝜌𝑛]< negl.

(Decoder’s error probability)

A
𝑚



Computational Relaxed LCCs

(𝑮𝒆𝒏, 𝑬,𝑫) is a CRLCC with parameters 𝒒 queries, 𝝉 error rate, 𝝆, against a class of adversaries (here PPT) if 𝑫
makes 𝑞 queries to input 𝑤 and

1) For all 𝑠, if 𝑤 = 𝐸(𝑠,𝑚) then 𝐷(𝑠,𝑚, 𝑖) = 𝐸 𝑠,𝑚
𝑖

2) For all 𝐴 in the class, Pr[ Pr [𝑏 ∉ {𝑤𝑖, ⊥}]> 𝛾 =negl. ] < 𝜇 = negl.

3) For all 𝐴 in the class, Pr[GoodA,s < 𝜌]< 𝜇 = negl.

𝑝𝐴,𝑠 = Pr [𝑏 ∉ {𝑤𝑖, ⊥}]; GoodA,s = 𝑖 | Pr 𝐷 𝑠,𝑤, 𝑖 = (𝐸(𝑚)𝑖 >
2

3

Observation: Classical RLCC: for all 𝐴 (not necessarily PPT) ∀𝑖, |Good|>𝜌, 𝛾=1/3, 𝜇=0

Our results: Weak and Strong CRLCC for binary alphabet, constant information and error rate, 𝑝𝑜𝑙𝑦 log(𝑛) queries, 

assuming the existence of collision-resistant hash functions.

Weak CRLCC Strong CRLCC



Our results - Observations

Results: Weak and Strong CRLCC for binary alphabet, constant error and information rate,  

𝑝𝑜𝑙𝑦 log(𝑛) queries, assuming the existence of collision-resistant hash function.

o Classical RLCCs [GRR18]: 𝑞 = (log𝑛)𝑂(log log 𝑛) , constant information rate, subconstant error rate

o Previous constructions of RLCC in CBC need public/private-key crypto setup; our constructions don’t.

o Our setup assumption: public seed chosen once

o Key Idea: local expander graphs 



Local Expander Graphs and Their Properties

(𝐴, 𝐵) contains a 𝛿-expander if

for all subsets 𝑋 ⊆ 𝐴, Y ⊆ 𝐵 of fractional size 𝛿, there is an edge between 𝑋 and 𝑌.

𝑋𝐴 𝑌
𝐵

DAG

𝐴 𝐵

G is a DAG such that for all vertices 𝑣,  and radii 𝑟,
(𝐴 = [𝑣 − 𝑟 + 1, 𝑣], 𝐵 = [𝑣 + 1, 𝑣 + 𝑟]) contains a 𝛿-expander. 

𝛿 - local expander: 

[ErdosGrahamSzemeredi75]

𝒗 𝒗 + 𝒓𝒗 − 𝒓 + 𝟏𝟏 𝒌𝒗 + 𝟏



Local Expanders: Properties and Applications

Thm [EGS75, ABP18]: For any 𝛿 > 0, there exist explicit 𝛿-local expanders 𝐺 on 𝑛 vertices with 

indegree(G), outdegree(G) = 𝑶(𝒍𝒐𝒈 𝒏)

Def: For set 𝑺, vertex 𝒗 is 𝛼-good if for any radius 𝑟, |𝑆 ∩ [𝑣 − 𝑟 + 1, 𝑣]| ≤ 𝛼𝑟 and |𝑆 ∩ [𝑣 + 𝑟 − 1, 𝑣]| ≤ 𝛼𝑟

Thm [EGS75, ABP18]: If we delete large set 𝐒 ⊆ 𝑉, all 𝛼-good vertices are on a path

Applications: 

- proof of sequential work [MMV13, CP18]

- time-lock puzzles and fair coin flipping protocols [BN00, JM10]

- design of memory hard functions [ABH17, ABP17, BZ17, ABP18]

𝑣 𝑣 + 𝑟𝑣 − 𝑟 + 11 𝑘𝑣 + 1

A B

𝛼-good



(Weak) CRLCCs using local expander graphs

CRHF: 𝐻𝑠: {0,1}
∗⇢ {0,1}𝐿(𝜆) is collision-resistant if for all PPT adversaries 𝐴,  Pr[𝐴 finds 𝐻(𝑥) = 𝐻(𝑥’)] is negl.

Labeling graph 𝐺 using 𝐻 and input 𝑚 = 𝑚1 ∘ 𝑚2 ∘ 𝑚3…∘ 𝑚𝑘 ∈ Σ𝑘 , where Σ={0,1}𝐿(𝜆)

Encoding of 𝑚 = 𝑚1 ∘ 𝑚2 ∘ 𝑚3…∘ 𝑚𝑘 is the concatenation of 3 parts

1. 𝐸𝐶𝐶(𝑚1) ∘ 𝐸𝐶𝐶(𝑚2) ∘ 𝐸𝐶𝐶(𝑚3)… ∘ 𝐸𝐶𝐶(𝑚𝑘 ) ECC is good and efficiently decodable (eg., Justesen) 

2. (𝐸𝐶𝐶 𝑙 1 ∘ 𝐸𝐶𝐶 𝑙 2 ∘ 𝐸𝐶𝐶 𝑙 3 …𝐸𝐶𝐶(𝑙 𝑘 ) underlying G is 𝛿-local expander

3. (𝐸𝐶𝐶(𝑙 𝑘 ) ∘ 𝐸𝐶𝐶(𝑙 𝑘 ) ∘ 𝐸𝐶𝐶(𝑙 𝑘 )… . . 𝐸𝐶𝐶(𝑙 𝑘 ))          𝑘 copies of last label

𝑙 1 = 𝐻(𝑚1) 𝑙 𝑣 = 𝐻(𝑚𝑣 ∘ 𝑙(𝑝1) ∘ 𝑙(𝑝2)…∘ 𝑙(𝑝𝑡))

𝑣 𝑣 + 𝑟𝑣 − 𝑟 + 11 𝑘𝑣 + 1

𝑣′s parents



Ingredients of the Local Decoder

o Testing consistent labeling:

After decoding the ECCs, check if 𝑣’s label is consistent with parents’ labels

Else 𝒗 is inconsistent.

o Testing 𝛼-goodness: 

𝒍′ 𝒗 = 𝑯(𝒎′
𝒗
∘ 𝒍′(𝒑𝟏) ∘…∘ 𝒍′(𝒑𝒕)).

𝑣 𝑣 + 𝑟𝑣 − 𝑟 + 11 𝑘𝑣 + 1

Recall: Vertex 𝒗 is 𝛼-good w.r.t set S if for any radius 𝑟,
|𝑆 ∩ [𝑣 − 𝑟 + 1, 𝑣]| ≤ 𝛼𝑟 and |𝑆 ∩ [𝑣 + 𝑟 − 1, 𝑣]| ≤ 𝛼𝑟

Test if vertex 𝒗 of G is 𝛼/4-good with respect to set S of inconsistent nodes.   

Test guarantees: accepts if 𝒗 is 𝛼/4-good (hence also 𝛼-good) (whp)

rejects if 𝒗 is not 𝛼-good (whp)

𝑂 log𝑛 vertex queries

poly log 𝑛 vertex queries



Local Decoding 

𝑤 = 𝐸𝐶𝐶(𝑚′1) ∘ 𝐸𝐶𝐶(𝑚′2)… ∘ 𝐸𝐶𝐶(𝑚′𝑘 ∘ 𝐸𝐶𝐶 𝑙′ 1 ∘ 𝐸𝐶𝐶 𝑙′ 2 ∘ ⋯𝑬𝑪𝑪(𝒍′ 𝒌 ) ∘ 𝐸𝐶𝐶(𝑙′ 𝑘 ) ∘. . . 𝐸𝐶𝐶(𝑙′ 𝑘 ))

Ensures that the last block 

is decoded correctly

𝑫(𝒊): Decode by majority vote

𝑫(𝒊): Decode by majority vote

Test consistency of vertex 𝒌 in G

Test if vertex 𝒌 is 𝛼-good w.r.t set of inconsistent nodes

Output ⊥ if tests fail; o/w output decoded bit

𝑫(𝒊): If 𝑖 is in 𝐸𝐶𝐶 𝑙′(𝑗) , test if vertex 𝑗 of G is 𝛼-good with respect to set of inconsistent nodes   

If the answer is yes, output the decoding of 𝐸𝐶𝐶(𝑙′ 𝑗 ); o/w output ⊥

Encoding of labeling of 𝛿-expander G

𝑫(𝒊): Output same answer as

for the corresponding vertex



Analysis: Key Ideas

If vertex is consistent and correctly decoded then

𝑙 𝑣 = 𝑙′ 𝑣 = 𝐻(𝑚𝑣 ∘ 𝑙(𝑝1) ∘ 𝑙(𝑝2)…∘ 𝑙(𝑝𝑡)) = 𝐻(𝑚′𝑣 ∘ 𝑙′(𝑝1) ∘ 𝑙′(𝑝2)… ∘ 𝑙′(𝑝𝑡))

Implies  𝑚𝑣 = 𝑚′𝑣 and 𝑙(𝑝1) = 𝑙′ 𝑝1 , 𝑙(𝑝2) = 𝑙′(𝑝2), … , 𝑙(𝑝𝑡)=𝑙′(𝑝𝑡) [correct decoding of parent label!]

or colliding pair was found!

Hence, if a parent is consistent, then can iteratively backtrack along a path of consistent nodes and 

deduce correct decoding of a label!

v v+rv-r+11 kv+1

Recall: Thm [EGS75, ABP18] If we delete large set 𝐒 ⊆ 𝑉, all 𝜶-good vertices remain on a path.

Conclusion: The test only returns the decoded bit when it thinks that block is correctly decoded (and 𝛼-good.) 

Want there properties from the last vertex



Extensions: Strong CRLCCs

- Need to ensure that the adversary cannot corrupt the entire codeword and obtain a new 

encoding in which all tests check

- Idea: Reduce the degree of the graphs by a composition of 𝛿-expanders and path-like graphs and 

encode `metanodes’ as blocks

- Use the extra fact that there are many 𝛼-good nodes (long paths)

Def: (𝐺𝑒𝑛, 𝐸, 𝐷) is a CRLCC with parameters 𝑞 queries, 𝜏
error rate, 𝜌, against a class of PPT adversaries if 𝐷 makes 𝑞
queries to input 𝑤 and

1) For all s, if 𝑤 = 𝐸(𝑠,𝑚) then 𝐷 𝑠,𝑚, 𝑖 = 𝐸 𝑠,𝑚
𝑖

2) For all 𝐴 in the class, Pr[[Pr [𝑏 ∉ {𝑤𝑖, ⊥}]> negl.]<negl.

3) For all 𝐴 in the class, Pr[GoodA,s < 𝜌]<negl.



Conclusions and Further Directions

Our results: Weak and Strong CRLCC/CRLDC for binary alphabet, 

constant error and information rate,

𝑝𝑜𝑙𝑦 log(𝑛) queries, 

assuming the existence of collision-resistant hash function.

Open directions: Better tradeoffs: 𝑞 = Θ 1 ?

Other local models in computationally bounded channels (non-relaxed LCCs, testing)?

THANK YOU!


