Relaxed Locally Correctable Codes in
Computationally Bounded Channels

Elena Grigorescu (Purdue)

Joint with Jeremiah Blocki (Purdue), Venkata Gandikota (JHU), Samson Zhou (Purdue)



Classical Locally Decodable/Correctable Codes

Encoding: E: {0,1}* - {0,1}"
Decoding: D: {0,1}" — {0,1}* such that given w with dist(w, E(m)) < én then D(w) = m.
Goal: efficient encoding/decoding
Parameters: information rate: k/n; minimum distance: min dist(E(m,), E(m,))
Locally decodable/correctable codes (LDCs/LCCs)
LDC: Given oracle access to input w with dist(w, E(m)) < dn, and i, compute m; with o(n) queries

LCC: Given oracle access to input w with dist(w, E(m)) < dn, and i, compute (E(m)); withho(n) queries

Cibcaiiy |
&

‘{é\

Status: g = 29G1°8™) any constant rate 0 < R < 1 [KMRS17]
g > 2 (constant), n = 22'"°®™ [Yek08, DGY11, Efr12]




Relaxed LDCs/LCCs (RLDCs/RLCCs)

RLDC/RLCCs: Given oracle access to input w with dist(w, E(m)) < dn, D makes g = o(n) queries and:
1) Vi, Di(w) =m,; if w=E(m) (RLDC); D;(w) = E(m); (RLCC)
2)Vi,Pr[bé¢{m;, L}]<1/3 (RLDC)

Pr[b ¢ {E(m);, 1}] <1/3 (RLCC)

3) Let Good= {j | Pr[D;(w) = mj] > g} (RLDC)

Good= {j | Pr[D;(w) = (E(m));] >2} (RLCC)

Then |Good| > pn, for some constant p.

Observation: 1) + 2) imply 3) for constant query codes and constant error rate

Status: RLDCs [BGHSV06]: ¢ = ©(1),n = k1t
Our results: g = polylogn, n = 0(k)
RLCCs [GRR18]: g = 6(1),n = O(poly(k)), for crypto version of definitions

q = (logn)PUoglosn) 4, — @(k)



Codes for Computationally Bounded Channels (CBC)

Hamming channel: the channel corrupts any pattern (possibly takes long time to corrupt adversarially)
Shannon channel: the channel introduces independent errors

Lipton channel: Computationally bounded - the channel is a PPT adversary  «—— i 1

Previous work:
General Codes in CBCs achieve better communication capabilities than in the Hamming model
[Lip94, DGLO4, Langberg04, MPSW05, Smith07, G516, S516]

Locally Decodable Codes in CBCs: Requires trusted setup/key exchange
Private-key LDCs [OPS07] - Assumes existence of OWF, shared secret key
- ©(1) info rate and error rate over binary alphabet, g = w(1)

Public-key LDCs [HO08, HOSW11] - Crypto assumptions: ¢-hiding schemes and IND-CPA secure cryptosystems



Security parameter 4, s=Gen(1%), s is public
m_ A

E(s,m) A i, w=E(s,m)+e b=D(s,w,i)

Sender Receiver

Defs: pas = Pr[b & {w;, L}] (Decoder’s error probability)

Goody s = {i | Pr[D(s,w,i) = (E(m));] > g}

ﬁ)ef: (Gen,E, D) is a CRLCC with parameters g queries, t error rate, 0 < p < 1, against PPT adversaries if D\
makes g queries to input w and

1) For all s, if w = E(s,m) then D(s,m,i) = (E(s, m))l_

2) For all A in the class, Pr[Pr[b & {w;, L}]> negl.] < negl.
Q) For all 4 in the class, Pr[Good, s < pn]< negl. /




Computational Relaxed LCCs

(Gen,E, D) is a CRLCC with parameters q queries, T error rate, p, against a class of adversaries (here PPT) if D
makes g queries to input w and B

1) For all s, if w = E(s,m) then D(s,m,i) = (E(S, m)). }
L Weak CRLCC
— Strong CRLCC

2) For all 4 in the class, Pr[ Pr[b & {w;, L}]> ¥ =negl. | < u = negl.

3) Forall 4in the class, Pr[Good, s < p]< u = negl. _

pas = Pr[b & {w;, L}]; Good, s = {i | Pr[D(s,w,i) = (E(m);] > g}

Observation: Classical RLCC: for all A (not necessarily PPT) Vi, |Good|>p, y=1/3, u=0

/

Our results: Weak and Strong CRLCC for binary alphabet, constant information and error rate, poly log(n) queries,

assuming the existence of collision-resistant hash functions.

-




Our results - Observations

Results: Weak and Strong CRLCC for binary alphabet, constant error and information rate,
poly log(n) queries, assuming the existence of collision-resistant hash function.

> Classical RLCCs [GRR18]: g = (logn)®Ue8logn) " constant information rate, subconstant error rate

o Previous constructions of RLCC in CBC need public/private-key crypto setup; our constructions don’t.

o Our setup assumption: public seed chosen once

o Key ldea: local expander graphs



[ErdosGrahamSzemeredi75] (4, B) contains a §-expander if
for all subsets X € A, Y € B of fractional size §, there is an edge between X and Y.

G is a DAG such that for all vertices v, and radii r,

& - local expander: (A=[v—r+1v],B=[v+1v+r])contains a §-expander.

A B
e@ 00000 00 0 o
1 v—7FT v p+1 {-I/—r k



Local Expanders: Properties and Applications

Thm [EGS75, ABP18]: For any § > 0, there exist explicit §-local expanders G on n vertices with
indegree(G), outdegree(G) = O(log n)

Def: For set §, vertex v is a-good if for any radius r, |SN[v—r+ 1L, v]|<arand |SNn[v+r—1,v]| < ar

Thm [EGS75, ABP18]: If we delete large set S € I/, all a-good vertices are on a path
A

c@ee
Applications: 1 v—r+ v v+ 1 v+ 7

- proof of sequential work [MMV13, CP18]
- time-lock puzzles and fair coin flipping protocols [BNOO, JM10]
- design of memory hard functions [ABH17, ABP17, BZ17, ABP18]




(Weak) CRLCCs using local expander graphs
CRHF: H,:{0,1}*-» {0,1}*® is collision-resistant if for all PPT adversaries A, Pr[A finds H(x) = H(x’)] is negl.
Labeling graph G using H and input m = (m; e m, o ms ...omy,) € ¥, where 2={0,1}}

/ v's parents

) = H(my © L(p1) * [(p2)- L(PO)
@

v+r k

[(1) =H(m

Encoding of m = (m; e m, o m5 ...o my,) is the concatenation of 3 parts

7. (ECC(my) o ECC(mM,) o ECC(M3) ..o ECC(my)) ECC is good and efficiently decodable (eg., Justesen)
2 (EcC(l(1) e ECC(L(2)) o ECC(L(3)) ... ECC(I(K)) underlying G is §-local expander

3 (ECC(L(k)) o ECC(l(k)) o ECC(I(k)).....ECC(I(K))) k copies of last label



Ingredients of the Local Decoder

o Testing consistent labeling: m ‘

1 v—r+1 % v+1 v+r1r k

After decoding the ECCs, check if v’s label is consistent with parents’ labels I'(v) = H(m' o l'(pq) o...c I'(p.)).

Else v is inconsistent. [ O (logn) vertex queries ]

Recall: Vertex v is a-good w.r.t set S if for any radius r,

o Testing a-goodness: ISA[v—r+1Lv]|<arand |Sn[v+7r—1,v] <ar

Test if vertex v of G is a/4-good with respect to set S of inconsistent nodes.

Test guarantees: accepts if v is a/4-good (hence also a-good) (whp)
rejects if v is not a-good (whp)

[ poly(logn) vertex queries




Encoding of labeling of §-expander G

EcC(U'(1)) o ECC(I'(2)) o ECC(U'(K))|e ECC(U'(K)) o...ECC(U'(K)))
}

|

Ensures that the last block

is decoded correctly

w = (ECC(m'l) o ECC(mIZ) ) ECC(m'k) o
\ )
|

D(i): Output same answer as

for the corresponding vertex

D(i): Decode by majority vote

D(i): Decode by majority vote
Test of vertex £ in G
Test if vertex k is a-good w.r.t set of inconsistent nodes

Output L if tests fail; o/w output decoded bit

D(i): If i isin ECC(I'(j)), test if vertex j of G is @-good with respect to set of inconsistent nodes
If the answer is yes, output the decoding of ECC(I'(j)); o/w output L




Analysis: Key ldeas

Want there properties from the last vertex
If vertex is consistent and correctly decoded then —

[(v) =1U'(v) = H(my o L(p1) © l(p2)..o U(p)) = H(M'y o U'(p1) o U'(p2)-. o U'(pe))
Implies m, =m’', and [(p;) = "(py), [(p,) = '(p,), ..., l(p;)=l"(p;) [correct decoding of parent label!]
or colliding pair was found!

Hence, if a parent is consistent, then can iteratively backtrack along a path of consistent nodes and
deduce correct decoding of a label!

cocee ) e

V-r+1 v v+1 V+r k

Recall: Thm [EGS75, ABP18] If we delete large set S € V, all a-good vertices remain on a path.

Conclusion: The test only returns the decoded bit when it thinks that block is correctly decoded (and a-good.)



Def: (Gen, E,D) is a CRLCC with parameters g queries, t
error rate, p, against a class of PPT adversaries if D makes g
queries to input w and

1) For all s, if w = E(s,m) then D(s,m,i) = (E(s, m))i

2) For all A in the class, Pr[[Pr [b & {w;, 1}]> negl.]<negl.
3) For all 4 in the class, Pr[Good, ¢ < p]<negl.

Need to ensure that the adversary cannot corrupt the entire codeword and obtain a new
encoding in which all tests check

Idea: Reduce the degree of the graphs by a composition of §-expanders and path-like graphs and
encode "'metanodes’ as blocks

Use the extra fact that there are many a-good nodes (long paths)



Our results: Weak and Strong CRLCC/CRLDC for binary alphabet,
constant error and information rate,
poly log(n) queries,
assuming the existence of collision-resistant hash function.

Open directions: Better tradeoffs: g = 0(1)?

Other local models in computationally bounded channels (non-relaxed LCCs, testing)?



