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or non-decreasing in every variable.

Thm 2 : There exist 0 < ¢y < €7 < 1 such that distinguishing a function
€o -close to a unate and a function €1 -far from any unate function requires
)(n3/?) non-adaptive queries.

Thm 3 : There exist 0 < ¢y < €1 < 1 such that distinguishing a function
€0 -close to a unate and a function €; -far from any unate function requires
()(n) queries.

Given the non-adaptive 5(n) tester of Baleshzar et al. [BCP+17] (where ¢y = 0),
and the adaptive O(n®/%) tester of Chen et al. [CWX17], we conclude that
tolerant unateness testing requires more queries than non-tolerant testing in both settings.



