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Given the non-adaptive              tester of Blais [Bla08]  (where           ), we conclude that 
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Given the non-adaptive          tester of Baleshzar et al. [BCP+17]  (where            ), 

and the adaptive               tester of Chen et al. [CWX17], we conclude that 


tolerant unateness testing requires more queries than non-tolerant testing in both settings.     

✏0 = 0eO(n)
eO(n3/4)


