
Lower Bounds for Tolerant Junta and
Unateness Testing

 via Rejection Sampling of Graphs

Amit Levi Erik Waingarten

The Model

The Model
G = ([n], E)

The Model
An oracle sampling edges u.a.rG = ([n], E) O

The Model
An oracle sampling edges u.a.r

Queries: L1, . . . , Lt ✓ [n]

G = ([n], E) O

The Model
An oracle sampling edges u.a.r

Queries: L1, . . . , Lt ✓ [n]

For each query , the oracle samples a random edge Lj (uj , vj)

G = ([n], E) O

The Model
An oracle sampling edges u.a.r

Queries: L1, . . . , Lt ✓ [n]

For each query , the oracle samples a random edge

and return:

Lj (uj , vj)

Lj \ {uj , vj}

G = ([n], E) O

The Model
An oracle sampling edges u.a.r

Queries: L1, . . . , Lt ✓ [n]

For each query , the oracle samples a random edge

and return:

The complexity of the algorithm is defined as:

Lj (uj , vj)

Lj \ {uj , vj} tX

j=1

|Lj |

G = ([n], E) O

The Model
An oracle sampling edges u.a.r

Queries: L1, . . . , Lt ✓ [n]

For each query , the oracle samples a random edge

and return:

The complexity of the algorithm is defined as:

Lj (uj , vj)

Lj \ {uj , vj} tX

j=1

|Lj |

G = ([n], E) O

Lj

The Model
An oracle sampling edges u.a.r

Queries: L1, . . . , Lt ✓ [n]

For each query , the oracle samples a random edge

and return:

The complexity of the algorithm is defined as:

Lj (uj , vj)

Lj \ {uj , vj} tX

j=1

|Lj |

G = ([n], E) O

Lj

The Model
An oracle sampling edges u.a.r

Queries: L1, . . . , Lt ✓ [n]

For each query , the oracle samples a random edge

and return:

The complexity of the algorithm is defined as:

Lj (uj , vj)

Lj \ {uj , vj} tX

j=1

|Lj |

G = ([n], E) O

Lj

The Model
An oracle sampling edges u.a.r

Queries: L1, . . . , Lt ✓ [n]

For each query , the oracle samples a random edge

and return:

The complexity of the algorithm is defined as:

Lj (uj , vj)

Lj \ {uj , vj} tX

j=1

|Lj |

G = ([n], E) O

Lj

The Model
An oracle sampling edges u.a.r

Queries: L1, . . . , Lt ✓ [n]

For each query , the oracle samples a random edge

and return:

The complexity of the algorithm is defined as:

Lj (uj , vj)

Lj \ {uj , vj} tX

j=1

|Lj |

G = ([n], E) O

Lj

The Model
An oracle sampling edges u.a.r

Queries: L1, . . . , Lt ✓ [n]

For each query , the oracle samples a random edge

and return:

The complexity of the algorithm is defined as:

Lj (uj , vj)

Lj \ {uj , vj} tX

j=1

|Lj |

G = ([n], E) O

Lj

The Model
An oracle sampling edges u.a.r

Queries: L1, . . . , Lt ✓ [n]

For each query , the oracle samples a random edge

and return:

The complexity of the algorithm is defined as:

Lj (uj , vj)

Lj \ {uj , vj} tX

j=1

|Lj |

G = ([n], E) O

Lj

The Model
An oracle sampling edges u.a.r

Queries: L1, . . . , Lt ✓ [n]

For each query , the oracle samples a random edge

and return:

The complexity of the algorithm is defined as:

Lj (uj , vj)

Lj \ {uj , vj} tX

j=1

|Lj |

G = ([n], E) O

Lj

The Model
An oracle sampling edges u.a.r

Queries: L1, . . . , Lt ✓ [n]

For each query , the oracle samples a random edge

and return:

The complexity of the algorithm is defined as:

Lj (uj , vj)

Lj \ {uj , vj} tX

j=1

|Lj |

G = ([n], E) O

Lj

Results

Results
Thm 1: Testing Bipartiteness (non adaptively) in the rejection

sampling model requires complexity of .e⌦(n2)

Results
Thm 1: Testing Bipartiteness (non adaptively) in the rejection

sampling model requires complexity of .e⌦(n2)

Results
Thm 1: Testing Bipartiteness (non adaptively) in the rejection

sampling model requires complexity of .e⌦(n2)

Def: a function is a - junta if it depends on at most

 of its variables.

f : {0, 1}n ! {0, 1} k
k

Results
Thm 1: Testing Bipartiteness (non adaptively) in the rejection

sampling model requires complexity of .e⌦(n2)

Def: a function is a - junta if it depends on at most

 of its variables.

f : {0, 1}n ! {0, 1}

Thm 2 : There exist such that distinguishing a function

-close to a -junta and a function -far from any -junta requires

 non-adaptive queries.

0 < ✏0 < ✏1 < 1
✏0 k ✏1 k

e⌦(k2)

k
k

Results
Thm 1: Testing Bipartiteness (non adaptively) in the rejection

sampling model requires complexity of .e⌦(n2)

Def: a function is a - junta if it depends on at most

 of its variables.

f : {0, 1}n ! {0, 1}

Thm 2 : There exist such that distinguishing a function

-close to a -junta and a function -far from any -junta requires

 non-adaptive queries.

0 < ✏0 < ✏1 < 1
✏0 k ✏1 k

e⌦(k2)

k
k

Given the non-adaptive tester of Blais [Bla08] (where), we conclude that

non-adaptive tolerant junta testing requires more queries than non-tolerant testing.

✏0 = 0eO(k3/2)

Results
Thm 1: Testing Bipartiteness (non adaptively) in the rejection

sampling model requires complexity of .e⌦(n2)

Results
Thm 1: Testing Bipartiteness (non adaptively) in the rejection

sampling model requires complexity of .e⌦(n2)

Def: a function is unate if it is either non-increasing

 or non-decreasing in every variable.

f : {0, 1}n ! {0, 1}

Results
Thm 1: Testing Bipartiteness (non adaptively) in the rejection

sampling model requires complexity of .e⌦(n2)

Def: a function is unate if it is either non-increasing

 or non-decreasing in every variable.

f : {0, 1}n ! {0, 1}

Thm 2 : There exist such that distinguishing a function

-close to a unate and a function -far from any unate function requires

 non-adaptive queries.

0 < ✏0 < ✏1 < 1
✏0 ✏1

e⌦(n3/2)

Results
Thm 1: Testing Bipartiteness (non adaptively) in the rejection

sampling model requires complexity of .e⌦(n2)

Def: a function is unate if it is either non-increasing

 or non-decreasing in every variable.

f : {0, 1}n ! {0, 1}

Thm 2 : There exist such that distinguishing a function

-close to a unate and a function -far from any unate function requires

 non-adaptive queries.

0 < ✏0 < ✏1 < 1
✏0 ✏1

e⌦(n3/2)

Thm 3 : There exist such that distinguishing a function

-close to a unate and a function -far from any unate function requires

 queries.

0 < ✏0 < ✏1 < 1
✏0 ✏1

e⌦(n)

Results
Thm 1: Testing Bipartiteness (non adaptively) in the rejection

sampling model requires complexity of .e⌦(n2)

Def: a function is unate if it is either non-increasing

 or non-decreasing in every variable.

f : {0, 1}n ! {0, 1}

Thm 2 : There exist such that distinguishing a function

-close to a unate and a function -far from any unate function requires

 non-adaptive queries.

0 < ✏0 < ✏1 < 1
✏0 ✏1

e⌦(n3/2)

Thm 3 : There exist such that distinguishing a function

-close to a unate and a function -far from any unate function requires

 queries.

0 < ✏0 < ✏1 < 1
✏0 ✏1

e⌦(n)

Given the non-adaptive tester of Baleshzar et al. [BCP+17] (where),

and the adaptive tester of Chen et al. [CWX17], we conclude that

tolerant unateness testing requires more queries than non-tolerant testing in both settings.

✏0 = 0eO(n)
eO(n3/4)

