Lower Bounds for Tolerant Junta and Unateness Testing via Rejection Sampling of Graphs

Amit Levi Erik Waingarten

$$G = ([n], E)$$

G = ([n], E)

An oracle ${\cal O}$ sampling edges u.a.r

G = ([n], E)

An oracle ${\cal O}$ sampling edges u.a.r

Queries: $L_1, \ldots, L_t \subseteq [n]$

G = ([n], E)

An oracle ${\cal O}$ sampling edges u.a.r

Queries: $L_1, \ldots, L_t \subseteq [n]$

For each query L_j , the oracle samples a random edge (u_j, v_j)

G = ([n], E)

An oracle ${\mathcal O}$ sampling edges u.a.r

Queries: $L_1, \ldots, L_t \subseteq [n]$

For each query L_j , the oracle samples a random edge (u_j, v_j) and return: $L_j \cap \{u_j, v_j\}$

G = ([n], E)

An oracle \mathcal{O} sampling edges u.a.r

Queries: $L_1, \ldots, L_t \subseteq [n]$

For each query L_j , the oracle samples a random edge (u_j, v_j) and return: $L_i \cap \{u_i, v_j\}$

G = ([n], E)

An oracle \mathcal{O} sampling edges u.a.r

Queries: $L_1, \ldots, L_t \subseteq [n]$

For each query L_j , the oracle samples a random edge (u_j, v_j) and return: $L_i \cap \{u_i, v_j\}$

G = ([n], E)

An oracle \mathcal{O} sampling edges u.a.r

Queries: $L_1, \ldots, L_t \subseteq [n]$

For each query L_j , the oracle samples a random edge (u_j, v_j) and return: $L_i \cap \{u_i, v_j\}$

G = ([n], E)

An oracle \mathcal{O} sampling edges u.a.r

Queries: $L_1, \ldots, L_t \subseteq [n]$

For each query L_j , the oracle samples a random edge (u_j, v_j) and return: $L_i \cap \{u_i, v_j\}$

G = ([n], E)

An oracle \mathcal{O} sampling edges u.a.r

Queries: $L_1, \ldots, L_t \subseteq [n]$

For each query L_j , the oracle samples a random edge (u_j, v_j) and return: $L_i \cap \{u_i, v_j\}$

G = ([n], E)

An oracle \mathcal{O} sampling edges u.a.r

Queries: $L_1, \ldots, L_t \subseteq [n]$

For each query L_j , the oracle samples a random edge (u_j, v_j) and return: $L_i \cap \{u_i, v_j\}$

G = ([n], E)

An oracle \mathcal{O} sampling edges u.a.r

Queries: $L_1, \ldots, L_t \subseteq [n]$

For each query L_j , the oracle samples a random edge (u_j, v_j) and return: $L_i \cap \{u_i, v_j\}$

G = ([n], E)

An oracle \mathcal{O} sampling edges u.a.r

Queries: $L_1, \ldots, L_t \subseteq [n]$

For each query L_j , the oracle samples a random edge (u_j, v_j) and return: $L_i \cap \{u_i, v_j\}$

G = ([n], E)

An oracle \mathcal{O} sampling edges u.a.r

Queries: $L_1, \ldots, L_t \subseteq [n]$

For each query L_j , the oracle samples a random edge (u_j, v_j) and return: $L_i \cap \{u_i, v_j\}$

G = ([n], E)

An oracle \mathcal{O} sampling edges u.a.r

Queries: $L_1, \ldots, L_t \subseteq [n]$

For each query L_j , the oracle samples a random edge (u_j, v_j) and return: $L_i \cap \{u_i, v_j\}$

Thm 1: Testing Bipartiteness (non adaptively) in the rejection sampling model requires complexity of $\,\widetilde{\Omega}(n^2)$.

Thm 1: Testing Bipartiteness (non adaptively) in the rejection sampling model requires complexity of $\,\widetilde{\Omega}(n^2)$.

Thm 1: Testing Bipartiteness (non adaptively) in the rejection sampling model requires complexity of $\widetilde{\Omega}(n^2)$.

Def: a function $f: \{0,1\}^n \to \{0,1\}$ is a k-junta if it depends on at most k of its variables.

Thm 1: Testing Bipartiteness (non adaptively) in the rejection sampling model requires complexity of $\,\widetilde{\Omega}(n^2)$.

Def: a function $f: \{0,1\}^n \to \{0,1\}$ is a k-junta if it depends on at most k of its variables.

Thm 2 : There exist $0 < \epsilon_0 < \epsilon_1 < 1$ such that distinguishing a function ϵ_0 -close to a k-junta and a function ϵ_1 -far from any k-junta requires $\widetilde{\Omega}(k^2)$ non-adaptive queries.

Thm 1: Testing Bipartiteness (non adaptively) in the rejection sampling model requires complexity of $\,\widetilde{\Omega}(n^2)$.

Def: a function $f: \{0,1\}^n \to \{0,1\}$ is a k-junta if it depends on at most k of its variables.

Thm 2 : There exist $0 < \epsilon_0 < \epsilon_1 < 1$ such that distinguishing a function ϵ_0 -close to a k-junta and a function ϵ_1 -far from any k-junta requires $\widetilde{\Omega}(k^2)$ non-adaptive queries.

Given the non-adaptive $\tilde{O}(k^{3/2})$ tester of Blais [Bla08] (where $\epsilon_0 = 0$), we conclude that non-adaptive tolerant junta testing requires more queries than non-tolerant testing.

Thm 1: Testing Bipartiteness (non adaptively) in the rejection sampling model requires complexity of $\,\widetilde{\Omega}(n^2)$.

Thm 1: Testing Bipartiteness (non adaptively) in the rejection sampling model requires complexity of $\,\widetilde{\Omega}(n^2)$.

Def: a function $f: \{0,1\}^n \to \{0,1\}$ is unate if it is either non-increasing or non-decreasing in every variable.

Thm 1: Testing Bipartiteness (non adaptively) in the rejection sampling model requires complexity of $\,\widetilde{\Omega}(n^2)$.

Def: a function $f: \{0,1\}^n \to \{0,1\}$ is unate if it is either non-increasing or non-decreasing in every variable.

Thm 2 : There exist $0 < \epsilon_0 < \epsilon_1 < 1$ such that distinguishing a function ϵ_0 -close to a unate and a function ϵ_1 -far from any unate function requires $\widetilde{\Omega}(n^{3/2})$ non-adaptive queries.

Thm 1: Testing Bipartiteness (non adaptively) in the rejection sampling model requires complexity of $\widetilde{\Omega}(n^2)$.

Def: a function $f: \{0,1\}^n \to \{0,1\}$ is unate if it is either non-increasing or non-decreasing in every variable.

Thm 2 : There exist $0 < \epsilon_0 < \epsilon_1 < 1$ such that distinguishing a function ϵ_0 -close to a unate and a function ϵ_1 -far from any unate function requires $\widetilde{\Omega}(n^{3/2})$ non-adaptive queries.

Thm 3 : There exist $0 < \epsilon_0 < \epsilon_1 < 1$ such that distinguishing a function ϵ_0 -close to a unate and a function ϵ_1 -far from any unate function requires $\widetilde{\Omega}(n)$ queries.

Thm 1: Testing Bipartiteness (non adaptively) in the rejection sampling model requires complexity of $\widetilde{\Omega}(n^2)$.

Def: a function $f: \{0,1\}^n \to \{0,1\}$ is unate if it is either non-increasing or non-decreasing in every variable.

Thm 2 : There exist $0 < \epsilon_0 < \epsilon_1 < 1$ such that distinguishing a function ϵ_0 -close to a unate and a function ϵ_1 -far from any unate function requires $\widetilde{\Omega}(n^{3/2})$ non-adaptive queries.

Thm 3 : There exist $0 < \epsilon_0 < \epsilon_1 < 1$ such that distinguishing a function ϵ_0 -close to a unate and a function ϵ_1 -far from any unate function requires $\widetilde{\Omega}(n)$ queries.

Given the non-adaptive $\tilde{O}(n)$ tester of Baleshzar et al. [BCP+17] (where $\epsilon_0 = 0$), and the adaptive $\tilde{O}(n^{3/4})$ tester of Chen et al. [CWX17], we conclude that tolerant unateness testing requires more queries than non-tolerant testing in both settings.