

Deterministic Distributed Edge-Coloring with Fewer Colors

to be presented at STOC 2018

Yannic Maus

University of Freiburg Germany

joint work with Mohsen Ghaffari (ETH Zurich) Fabian Kuhn (U. Freiburg) Jara Uitto (ETH & U. Freiburg)

Distributed Edge-Coloring

• LOCAL Model [Linial '87], $G = (V, E), n = |V|, \Delta = \max \text{ degree}$

Long Time Open Problem (deterministic):

Can $(2\Delta - 1)$ -edge-coloring be computed in polylog n time?

Answer: Yes [Fischer, Ghaffari, Kuhn, FOCS '17]

Vizing: Any graph with maximum degree Δ has a $(\Delta + 1)$ -edge-coloring.

This paper: $(1 + \epsilon)\Delta$ colors in polylog *n* deterministic time.

A Teaser on the Algorithm

For i = 1 to $2\Delta - 1$

compute maximal *matching M* of *G* color edges of *M* with color *i* remove *M* from *G*

Next

 $2\Delta - 1$ iterations suffice to color all edges

This paper:

Fewer iterations through better matchings: Favor nodes that lack behind.

sufficient to consider $\Delta = O(\text{polylog } n)$ [Ghaffari et al. '17]