Deterministic Distributed Edge-Coloring

 with Fewer Colorsto be presented at STOC 2018

Yannic Maus

University of Freiburg
Germany
joint work with Mohsen Ghaffari (ETH Zurich) Fabian Kuhn (U. Freiburg) Jara Uitto (ETH \& U. Freiburg)

Distributed Edge-Coloring

- LOCAL Model [Linial '87], $G=(V, E), n=|V|, \Delta=$ max degree

Long Time Open Problem (deterministic):
Can (2 $24-1$)-edge-coloring be computed in polylog n time?
Answer: Yes [Fischer, Ghaffari, Kuhn, FOCS '17]

Vizing: Any graph with maximum degree Δ has a $(\Delta+1)$-edge-coloring.

This paper: $(1+\epsilon) \Delta$ colors in polylog n deterministic time.

A Teaser on the Algorithm

For $i=1$ to $2 \Delta-1$
compute maximal matching M of G color edges of M with color i remove M from G
Next

$2 \Delta-1$ iterations suffice to color all edges

This paper:

Fewer iterations through better matchings: Favor nodes that lack behind.
sufficient to consider $\Delta=0($ polylog $n)$ [Ghaffari et al. '17]

