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Graph Spanners

A subgraph H € G is a k spanner if: disty(u,v) < k- distg(u,v),Vu,v

Fact: Every n-vertex graph has (2k — 1) spanner with O(n'*1/%) edges.

= Numerous Applications:
Routing, synchronizers, SDD, spectral sparisfiers ...

= \Various of Computational Settings:
Distributed, parallel, dynamic, streaming ...




LCA for Spanners

The setting: Huge graph that cannot be stored on main memory
Goal: implement fast (local) access to sparse spanner

LCA decides locally if a given edge e is in the spanner
without ever/ computing the entire spanner

Making primitive probes

(neighbors) Consistent with respect to

a unique spanner H € G




The Model [Alon, Rubinfeld, Vardi, Tamir’12]

Input graph: N(uqy), N(uz), ..., N(uy)
Neighbor probe: "w” “1 is the j'th Adjacency probe:
“what’s the i’th neighbor of 1" Are u and v
neighbor of u?” neighbors?

random string

LCA work space

&

Unique output (spanner)

Slide modified from Rubinfeld

no preprocessing
no auxiliary info




Swarms of LCA

| Input Graph |

\ Initially share random string

Outputy Afterwards compute
independently

Complexity measure: number of probes (here also quality of spanner)

Slide from Rubinfeld



Previous Work

LCA for sparse subgraphs [Levi-Ron-Rubinfeld 14’]:
Provide fast random access to a sparse connected subgraph

Query: does e belong to a sparse subgraph H € G?

= |fH C Gisatree, probe complexity of Q(n)
= Relaxto |H| = (1 + €)n edges
= |Bof Q(\/ﬁ) probes for bounded-deg graphs

" UB for special graph families:
subexponential-growth, excluded-minor.




| GraphFamily __|#Edges |Stretch __|Probes

Levi-Ron-Rubinfeld’14 = Expanders

= Subexponential growth b @i - O(Vn)
Levi-Ron’15 Minor-free (14+6e)n  Poly(A 1/€) Poly(A,1/€)
Levi-Ron-Rubinfeld’16 Minor-free (1+ ée)n 0(logA/e)  Poly(A, 1/€)
v S PRI
Lenzen-Levi’18 General graphs (max-deg A) (1+ e)n 5(A/e) 5(A4 . n2/3)
New General graphs (max-deg A) g (nl+1/k) 0(k?) 0 (A* - n?/3)

New General graphs O(n**1/™y r € {2,3} O (nt+1/2m



Our Results

Spanner LCA implements oracle access to a unique sparse spanner

Stretch # Edges # Probes
 3-spanner 0(n3/?) Om3/* | \/
 5-spanner 0(n*/3) 0(n>®
 0(k?)-spanner O(ntt1/k) 0(A*n?/3) | \/

[ O(n) spanner o(m) Q(min(y/n, n*/m)) }




First Attempt: LCA through Distributed Algorithm

Fact: Distributed constructions of (2k-1) spanners in k

rounds.
[Baswana-Sen’06, Elkin-Neiman ’17]

" Translates into a LCA with probe complexity of Q(Ak)

= Superlinear for the interesting case when A = Q(n'/%)

= Goal: sublinear (in n) probe complexity, not even clear

how to achieve O(A)




Clustering Alg. for 3-Spanner (Baswana-Sen)

Desired Output: 3-spanner H € G with O (n3/?) edges.

Def: A vertex v is high-deg if deg(v) = /n

= Add all edges of low-deg vertices to H
= Sample S € V of 0(n'/?1logn) centers
= Connect high-degvtos(v) € SN N(v)

= Every high-deg v adds one edge to each

neighboring stars.



Clustering Alg. for 3-Spanner (Baswana-Sen)

The algorithm has several degrees of freedom:

" Picking the center of high-deg vertex
" Picking the edge to add to each neighboring star

The LCA will fix these selections to
obtain small probe complexity




First Approach for Spanner LCA

» Picking the first sampled neighbor as a center (for high-deg nodes)

" Picking the first edge to each neighboring star

N(U) V1, uZ,...Uj,...,Ug - Uu, ...,

fS(v)

N(u) Ui, Uy, ... Uj, ..., U =V, ...,

s(u) v

By storing poly-log n random bits know if s € §




The First Approach

Query: edge (u, v)
Answer: Yes iff (u,v) € H

n |f min(deg(u),deg(v)) < /n: “yes”

Remains to handle edges between high-deg vertices

* Indeg(v) probes can compute the center s(v)

= Should “yes” if v is the first neighbor of u in the cluster of s(v)




The First Approach

Query: edge (u, v), interesting case: deg(u),deg(v) > /n

N(u)

N (v)

Ui, Uy, ... Uj, ..., U = U, ...

Vi, Uy, ... vj, ey, Vo = U, ...

f s(v)

For each u's neighbor u;
appearing before v in N(u)
check if s(v) is the center of u;

Probe complexity O(A?)



The First Multiple Center Approach

The centers of u are all sampled vertices in
the first block of v/n neighbors.

= By Chernoff, w.h.p., high-deg vertex has
®(log n) centers.

" Testing membership to a cluster :

“does w belong to the cluster of s"?

Can be done with a single adj. probe!

W1, Wy, W], .4, Wy, ...




LCA with deg(u) Probes
Query: edge (u,v), deg(u),deg(v) >+/n

Compute S(v) : the first centers of v |v4, V9, ... Vi s Vpy oen

Nu) | Uq, U, e Ujy eee, Uy = VU, Upegq e

If u € S(v),say "yes".
Forevery s € S(v) and u; < v:
Check if u; € C(s) (single adj. query)

If 3s’ € S(v) for whichnou; < visin C(s'), say “yes”

Probe complexity: |[S(v)| - deg(u) = O(deg(u) - logn)



LCA with deg(u) Probes

Nw)  uq, Uy, e Uy e, U = U, .ue,

= Sjze analysis:
An edge (u,u;) € H only if S(u;) has a new center notin U;; S(u;) .

= Stretch analysis:

An edge (u,u;) & H,withs" € S(u;)
u; be the firstin N(u) s.ts’ € S(u;)

# (u, u]) e H
) disty; (u,u) <3 ¢



3-Spanner with Sublinear Probe Complexity
= Edge query (u, v) with min(deg(u), deg(v)) < n3/4 \/

New approach for very-high deg vertices with deg(v) > n3/4

Decompose N (u) into “independent” blocks of size n3/*

O — e ) —
3/4

n

Given query (u, v) decide based on the block of v in N(u)



3-Spanner with Sublinear Probe Complexity

= Sample S € Vof O(n'/*logn) centers Ni(w)  Ni(w)

= Define first-centers S(u) = S N Ny (u) E E

n3/47

Query (u,v):

= compute N;(u) and first-centers S(v)

= Foreveryu; <vands € S(v):

" Checkif u; € C(s) (single adj. query)

= If3s’ € S(v) for whichnou; < visin C(s'), say “yes”



Analysis

Query (u,v):

= compute N;(u) and first-centers S(v)

= Foreveryu; <wvands € S(v):

" Check if u; € C(s) (single adj. query)

= If3s’ € S(v) for whichnou; < wvisin C(s'), say “yes”

Probe complexity: |[S(v)] - [N;(w)| = 0(n3/*log n)



Analysis

Query (u,v):
= compute N;(u) and first-centers S(v)
= Foreveryu; <vands € S(v):

" Checkif u; € C(s) (single adj. query)
= If3s’ € S(v) for whichnou; < visin C(s"), say “yes”

Size: In each block N;(u), add one edge per sampled center.
Overall, |[H| = O(n - n'/* - n'/* . log n)

Tt 1

# blocks # centers



Spanner LCA with Stretch 0 (k#)

= Sample a set § € V of 0(n?/3) centers.
= Sparse vertices N, (v) NS = @, hence w.h.p. |N,(v)| = 0(n'/?)
= Dense vertices N . (v) NS = @

Spanner H. for the sparse subgraph (I,xX V)N E

" Collect the k-neighborhood of sparse vertex v
= Apply a k-round distributed algorithm on N (v)
= Probe complexity 0(An?/3)




Spanner LCA for the Dense Subgraph

= Sample S of O0(n?/3) centers, Dense vertices Ni. (V) NS # @

= Assign nodes in S random IDs in |1, n]

Voroni-cells centered at S

= Add a BFS tree (depth k) in each cell
= Al|l dense vertices are covered

How to connect adjacent cells?

VOT(SS)/ /




Spanner LCA for the Dense Subgraph

= Subdivide each Voronoi cell into clusters with O(n'/3) vertices

= 0(n?/3) clusters 7
A

Vel
3

= Sample O(n'/3) centers S’ < S

All clusters of a sampled Voronoi cell

are marked.




Spanner LCA for the Dense Subgraph

= 0(n'/3) marked clusters.

= Connect each cluster to all marked

neighboring clusters (0 (n) edges)

= Connect each cluster with no marked

neighbor, to all of its neighbors




Spanner LCA for the Dense Subgraph

For each marked cluster C and cluster C’:

Connect C’ to the Voronoi cells of the O (n'/%) minimum center-IDs in
NVor(C) N Nvor(C,)'

Overall this adds
0(n?/3 - nl/3 . nl/k) edges




Spanner LCA for the Dense Subgraph

Analysis idea:

Inductive argument (based on random ranks)
to show stretch in H,,,,- is O (k)

Since each Vor cell has depth k tree,
yields a total stretch of O (k?*)



Summing Up and Open Problems

Stretch # Edges # probes

- 2r—1,7r € {2,3} 0(n'*™") O(n*~1/?7) |
Openforr = 4

 0(k?)-spanner O(n*ti/k) 0(A*n?/3) |
Improve dependency on A

~ 0(n) spanner o(m) Q(min(y/n,n*/m) |

Stretch-sensitive lower bounds
Todal
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