Local Computation Algorithms
for Spanners

Merav Parter, Ronitt Rubinfeld, Ali Vakilian and Anak Yodipinyanee

m:b mxn NI

WEIZMANN INSTITUTE OF SCIENCE

Graph Spanners

A subgraph H € G is a k spanner if: disty(u,v) < k- distg(u,v),Vu,v

Fact: Every n-vertex graph has (2k — 1) spanner with O(n'*1/%) edges.

= Numerous Applications:
Routing, synchronizers, SDD, spectral sparisfiers ...

= \Various of Computational Settings:
Distributed, parallel, dynamic, streaming ...

LCA for Spanners

The setting: Huge graph that cannot be stored on main memory
Goal: implement fast (local) access to sparse spanner

LCA decides locally if a given edge e is in the spanner
without ever/ computing the entire spanner

Making primitive probes

(neighbors) Consistent with respect to

a unique spanner H € G

The Model [Alon, Rubinfeld, Vardi, Tamir’12]

Input graph: N(uqy), N(uz), ..., N(uy)
Neighbor probe: "w” “1 is the j'th Adjacency probe:
“what’s the i’th neighbor of 1" Are u and v
neighbor of u?” neighbors?

random string

LCA work space

&

Unique output (spanner)

Slide modified from Rubinfeld

no preprocessing
no auxiliary info

Swarms of LCA

| Input Graph |

\ Initially share random string

Outputy Afterwards compute
independently

Complexity measure: number of probes (here also quality of spanner)

Slide from Rubinfeld

Previous Work

LCA for sparse subgraphs [Levi-Ron-Rubinfeld 14’]:
Provide fast random access to a sparse connected subgraph

Query: does e belong to a sparse subgraph H € G?

= |fH C Gisatree, probe complexity of Q(n)
= Relaxto |H| = (1 + €)n edges
= |Bof Q(\/ﬁ) probes for bounded-deg graphs

" UB for special graph families:
subexponential-growth, excluded-minor.

| GraphFamily __|#Edges |Stretch __|Probes

Levi-Ron-Rubinfeld’14 = Expanders

= Subexponential growth b @i - O(Vn)
Levi-Ron’15 Minor-free (14+6e)n Poly(A 1/€) Poly(A,1/€)
Levi-Ron-Rubinfeld’16 Minor-free (1+ ée)n 0(logA/e) Poly(A, 1/€)
v S PRI
Lenzen-Levi’18 General graphs (max-deg A) (1+ e)n 5(A/e) 5(A4 . n2/3)
New General graphs (max-deg A) g (nl+1/k) 0(k?) 0 (A* - n?/3)

New General graphs O(n**1/™y r € {2,3} O (nt+1/2m

Our Results

Spanner LCA implements oracle access to a unique sparse spanner

Stretch # Edges # Probes
 3-spanner 0(n3/?) Om3/* | \/
 5-spanner 0(n*/3) 0(n>®
 0(k?)-spanner O(ntt1/k) 0(A*n?/3) | \/

[O(n) spanner o(m) Q(min(y/n, n*/m)) }

First Attempt: LCA through Distributed Algorithm

Fact: Distributed constructions of (2k-1) spanners in k

rounds.
[Baswana-Sen’06, Elkin-Neiman ’17]

" Translates into a LCA with probe complexity of Q(Ak)

= Superlinear for the interesting case when A = Q(n'/%)

= Goal: sublinear (in n) probe complexity, not even clear

how to achieve O(A)

Clustering Alg. for 3-Spanner (Baswana-Sen)

Desired Output: 3-spanner H € G with O (n3/?) edges.

Def: A vertex v is high-deg if deg(v) = /n

= Add all edges of low-deg vertices to H
= Sample S € V of 0(n'/?1logn) centers
= Connect high-degvtos(v) € SN N(v)

= Every high-deg v adds one edge to each

neighboring stars.

Clustering Alg. for 3-Spanner (Baswana-Sen)

The algorithm has several degrees of freedom:

" Picking the center of high-deg vertex
" Picking the edge to add to each neighboring star

The LCA will fix these selections to
obtain small probe complexity

First Approach for Spanner LCA

» Picking the first sampled neighbor as a center (for high-deg nodes)

" Picking the first edge to each neighboring star

N(U) V1, uZ,...Uj,...,Ug - Uu, ...,

fS(v)

N(u) Ui, Uy, ... Uj, ..., U =V, ...,

s(u) v

By storing poly-log n random bits know if s € §

The First Approach

Query: edge (u, v)
Answer: Yes iff (u,v) € H

n |f min(deg(u),deg(v)) < /n: “yes”

Remains to handle edges between high-deg vertices

* Indeg(v) probes can compute the center s(v)

= Should “yes” if v is the first neighbor of u in the cluster of s(v)

The First Approach

Query: edge (u, v), interesting case: deg(u),deg(v) > /n

N(u)

N (v)

Ui, Uy, ... Uj, ..., U = U, ...

Vi, Uy, ... vj, ey, Vo = U, ...

f s(v)

For each u's neighbor u;
appearing before v in N(u)
check if s(v) is the center of u;

Probe complexity O(A?)

The First Multiple Center Approach

The centers of u are all sampled vertices in
the first block of v/n neighbors.

= By Chernoff, w.h.p., high-deg vertex has
®(log n) centers.

" Testing membership to a cluster :

“does w belong to the cluster of s"?

Can be done with a single adj. probe!

W1, Wy, W], .4, Wy, ...

LCA with deg(u) Probes
Query: edge (u,v), deg(u),deg(v) >+/n

Compute S(v) : the first centers of v |v4, V9, ... Vi s Vpy oen

Nu) | Uq, U, e Ujy eee, Uy = VU, Upegq e

If u € S(v),say "yes".
Forevery s € S(v) and u; < v:
Check if u; € C(s) (single adj. query)

If 3s’ € S(v) for whichnou; < visin C(s'), say “yes”

Probe complexity: |[S(v)| - deg(u) = O(deg(u) - logn)

LCA with deg(u) Probes

Nw) uq, Uy, e Uy e, U = U, .ue,

= Sjze analysis:
An edge (u,u;) € H only if S(u;) has a new center notin U;; S(u;) .

= Stretch analysis:

An edge (u,u;) & H,withs" € S(u;)
u; be the firstin N(u) s.ts’ € S(u;)

(u, u]) e H
) disty; (u,u) <3 ¢

3-Spanner with Sublinear Probe Complexity
= Edge query (u, v) with min(deg(u), deg(v)) < n3/4 \/

New approach for very-high deg vertices with deg(v) > n3/4

Decompose N (u) into “independent” blocks of size n3/*

O — e) —
3/4

n

Given query (u, v) decide based on the block of v in N(u)

3-Spanner with Sublinear Probe Complexity

= Sample S € Vof O(n'/*logn) centers Ni(w) Ni(w)

= Define first-centers S(u) = S N Ny (u) E E

n3/47

Query (u,v):

= compute N;(u) and first-centers S(v)

= Foreveryu; <vands € S(v):

" Checkif u; € C(s) (single adj. query)

= If3s’ € S(v) for whichnou; < visin C(s'), say “yes”

Analysis

Query (u,v):

= compute N;(u) and first-centers S(v)

= Foreveryu; <wvands € S(v):

" Check if u; € C(s) (single adj. query)

= If3s’ € S(v) for whichnou; < wvisin C(s'), say “yes”

Probe complexity: |[S(v)] - [N;(w)| = 0(n3/*log n)

Analysis

Query (u,v):
= compute N;(u) and first-centers S(v)
= Foreveryu; <vands € S(v):

" Checkif u; € C(s) (single adj. query)
= If3s’ € S(v) for whichnou; < visin C(s"), say “yes”

Size: In each block N;(u), add one edge per sampled center.
Overall, |[H| = O(n - n'/* - n'/* . log n)

Tt 1

blocks # centers

Spanner LCA with Stretch 0 (k#)

= Sample a set § € V of 0(n?/3) centers.
= Sparse vertices N, (v) NS = @, hence w.h.p. |N,(v)| = 0(n'/?)
= Dense vertices N . (v) NS = @

Spanner H. for the sparse subgraph (I,xX V)N E

" Collect the k-neighborhood of sparse vertex v
= Apply a k-round distributed algorithm on N (v)
= Probe complexity 0(An?/3)

Spanner LCA for the Dense Subgraph

= Sample S of O0(n?/3) centers, Dense vertices Ni. (V) NS # @

= Assign nodes in S random IDs in |1, n]

Voroni-cells centered at S

= Add a BFS tree (depth k) in each cell
= Al|l dense vertices are covered

How to connect adjacent cells?

VOT(SS)/ /

Spanner LCA for the Dense Subgraph

= Subdivide each Voronoi cell into clusters with O(n'/3) vertices

= 0(n?/3) clusters 7
A

Vel
3

= Sample O(n'/3) centers S’ < S

All clusters of a sampled Voronoi cell

are marked.

Spanner LCA for the Dense Subgraph

= 0(n'/3) marked clusters.

= Connect each cluster to all marked

neighboring clusters (0 (n) edges)

= Connect each cluster with no marked

neighbor, to all of its neighbors

Spanner LCA for the Dense Subgraph

For each marked cluster C and cluster C’:

Connect C’ to the Voronoi cells of the O (n'/%) minimum center-IDs in
NVor(C) N Nvor(C,)'

Overall this adds
0(n?/3 - nl/3 . nl/k) edges

Spanner LCA for the Dense Subgraph

Analysis idea:

Inductive argument (based on random ranks)
to show stretch in H,,,,- is O (k)

Since each Vor cell has depth k tree,
yields a total stretch of O (k?*)

Summing Up and Open Problems

Stretch # Edges # probes

- 2r—1,7r € {2,3} 0(n'*™") O(n*~1/?7) |
Openforr = 4

 0(k?)-spanner O(n*ti/k) 0(A*n?/3) |
Improve dependency on A

~ 0(n) spanner o(m) Q(min(y/n,n*/m) |

Stretch-sensitive lower bounds
Todal

	Slide Number 1
	Graph Spanners
	LCA for Spanners
	The Model [Alon, Rubinfeld, Vardi, Tamir’12]
	Swarms of LCA
	Previous Work
	Slide Number 7
	Our Results
	First Attempt: LCA through Distributed Algorithm
	Clustering Alg. for 3-Spanner (Baswana-Sen)
	Slide Number 11
	First Approach for Spanner LCA
	The First Approach
	The First Approach
	The First Multiple Center Approach
	LCA with deg 𝒖 Probes
	LCA with deg 𝒖 Probes
	3-Spanner with Sublinear Probe Complexity
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28

