Local Computation Algorithms for Spanners

Merav Parter, Ronitt Rubinfeld, Ali Vakilian and Anak Yodipinyanee

Graph Spanners

A subgraph $H \subseteq G$ is a k spanner if: $dist_H(u,v) \leq k \cdot dist_G(u,v)$, $\forall u,v$

Fact: Every n-vertex graph has (2k-1) spanner with $O(n^{1+1/k})$ edges.

Numerous Applications:

Routing, synchronizers, SDD, spectral sparisfiers ...

Various of Computational Settings:

Distributed, parallel, dynamic, streaming ...

LCA for Spanners

The setting: Huge graph that cannot be stored on main memory

Goal: implement fast (local) access to sparse spanner

LCA decides locally if a given edge *e* is in the spanner without ever computing the entire spanner

Making primitive probes (neighbors)

Consistent with respect to a *unique* spanner $H \subseteq G$

The Model [Alon, Rubinfeld, Vardi, Tamir'12]

Input graph:

$$N(u_1), N(u_2), \dots, N(u_n)$$

Neighbor probe:

"what's the i'th neighbor of u?"

" \boldsymbol{v} is the \boldsymbol{j}' th neighbor of \boldsymbol{u} "

Adjacency probe:

Are u and v neighbors?

LCA

random string

work space

- no preprocessing
- no auxiliary info

Unique output (spanner)

Swarms of LCA

Complexity measure: number of probes (here also quality of spanner)

Previous Work

LCA for sparse subgraphs [Levi-Ron-Rubinfeld 14']:

Provide fast random access to a sparse connected subgraph

Query: does e belong to a sparse subgraph $H \subseteq G$?

- If $H \subseteq G$ is a tree, probe complexity of $\Omega(n)$
- Relax to $|H| = (1 + \epsilon)n$ edges
- LB of $\Omega(\sqrt{n})$ probes for *bounded-deg* graphs
- UB for special graph families: subexponential-growth, excluded-minor.

	Graph Family	# Edges	Stretch	Probe s
Levi-Ron-Rubinfeld'14	ExpandersSubexponential growth	$(1+\epsilon)n$		$O(\sqrt{n})$
Levi-Ron'15	Minor-free	$(1+\epsilon)n$	Poly $(\Delta, 1/\epsilon)$	$Poly(\Delta,1/\epsilon)$
Levi-Ron-Rubinfeld'16	Minor-free	$(1+\epsilon)n$	$O(\log \Delta/\epsilon)$	$Poly(\Delta,1/\epsilon)$
Levi-Moshkovitz-Ron- Rubinfeld-Shapira'17	Bounded Expansion	$(1+\epsilon)n$	$\operatorname{Exp}(\frac{1}{\epsilon})$	$\operatorname{Exp}(\frac{1}{\epsilon})$
Lenzen-Levi'18	General graphs (max-deg Δ)	$(1+\epsilon)n$	$ ilde{O}(\Delta/\epsilon)$	$\tilde{O}(\Delta^4 \cdot n^{2/3})$
New	General graphs (max-deg Δ)	$\widetilde{O}(n^{1+1/k})$	$O(k^2)$	$\tilde{O}(\Delta^4 \cdot n^{2/3})$
New	General graphs	$\tilde{O}(n^{1+1/r})$	$r \in \{2,3\}$	$\tilde{O}(n^{1+1/2r})$

Our Results

Spanner LCA implements oracle access to a unique sparse spanner

# Edges	# Probes
$\tilde{O}(n^{3/2})$	$\tilde{O}(n^{3/4})$
$\tilde{O}(n^{4/3})$	$\tilde{O}(n^{5/6})$
$\tilde{O}(n^{1+1/k})$	$\tilde{O}(\Delta^4 n^{2/3})$
	$\Omega(\min(\sqrt{n}, n^2/m))$
	$\tilde{O}(n^{3/2})$

First Attempt: LCA through Distributed Algorithm

Fact: Distributed constructions of (2k-1) spanners in k rounds.

[Baswana-Sen'06, Elkin-Neiman '17]

- Translates into a LCA with probe complexity of $\Omega(\Delta^k)$
- Superlinear for the interesting case when $\Delta = \Omega(n^{1/k})$
- Goal: sublinear (in n) probe complexity, not even clear

how to achieve $O(\Delta)$

Clustering Alg. for 3-Spanner (Baswana-Sen)

Desired Output: 3-spanner $H \subseteq G$ with $\tilde{O}(n^{3/2})$ edges.

Def: A vertex v is high-deg if $deg(v) \ge \sqrt{n}$

- Add all edges of low-deg vertices to H
- Sample $S \subseteq V$ of $O(n^{1/2} \log n)$ centers
- Connect high-deg v to $s(v) \in S \cap N(v)$
- lacktriangledown Every high-deg $oldsymbol{v}$ adds one edge to each neighboring stars.

Clustering Alg. for 3-Spanner (Baswana-Sen)

The algorithm has several degrees of freedom:

- Picking the center of high-deg vertex
- Picking the edge to add to each neighboring star

The LCA will fix these selections to obtain small probe complexity

First Approach for Spanner LCA

- Picking the first sampled neighbor as a center (for high-deg nodes)
- Picking the first edge to each neighboring star

$$N(u) \quad u_1, u_2, \dots u_i, \dots, u_k = v, \dots,$$

$$s(u)$$

By storing poly-log n random bits know if $s \in S$

The First Approach

Query: edge (u, v)

Answer: Yes iff $(u, v) \in H$

• If $\min(\deg(u), \deg(v)) \leq \sqrt{n}$: "yes"

Remains to handle edges between high-deg vertices

- In deg(v) probes can compute the center s(v)
- Should "yes" if v is the first neighbor of u in the cluster of s(v)

The First Approach

Query: edge (u, v), interesting case: deg(u), $deg(v) > \sqrt{n}$

$$N(u) | u_1, u_2, \dots u_i, \dots, u_k = v, \dots,$$

For each u's neighbor u_i appearing before v in N(u) check if s(v) is the center of u_i

Probe complexity $O(\Delta^2)$

The First Multiple Center Approach

The centers of u are all sampled vertices in the first block of \sqrt{n} neighbors.

By Chernoff, w.h.p., high-deg vertex has $\Theta(\log n)$ centers.

Testing membership to a cluster :

"does w belong to the cluster of s"?

Can be done with a single adj. probe!

LCA with deg(u) Probes

```
Query: edge (u, v), \deg(u), \deg(v) > \sqrt{n}
```

Compute S(v): the first centers of v $v_1, v_2, ... v_j, ..., v_\ell, ...$

$$v_1, v_2, \dots v_j, \dots, v_\ell, \dots$$

$$N(u) | u_1, u_2, \dots u_i, \dots, u_k = v, u_{k+1} \dots,$$

```
If u \in S(v), say "yes".
For every s \in S(v) and u_i < v:
       Check if u_i \in C(s) (single adj. query)
If \exists s' \in S(v) for which no u_i < v is in C(s'), say "yes"
```

Probe complexity: $|S(v)| \cdot \deg(u) = O(\deg(u) \cdot \log n)$

LCA with deg(u) Probes

$$N(u)$$
 $u_1, u_2, \dots u_i, \dots, u_k = v, \dots,$

Size analysis:

An edge $(u, u_i) \in H$ only if $S(u_i)$ has a new center not in $\bigcup_{j < i} S(u_j)$.

Stretch analysis:

An edge $(u, u_i) \notin H$, with $s' \in S(u_i)$ u_j be the first in N(u) s.t $s' \in S(u_j)$

$$(u,u_j)\in H$$

$$dist_H(u, u_i) \leq 3$$

3-Spanner with Sublinear Probe Complexity

■ Edge query (u, v) with $\min(\deg(u), \deg(v)) \le n^{3/4}$

New approach for very-high deg vertices with $\deg(v) \geq n^{3/4}$

Decompose N(u) into "independent" blocks of size $n^{3/4}$

Given query (u, v) decide based on the block of v in N(u)

3-Spanner with Sublinear Probe Complexity

- Sample $S \subseteq V$ of $O(n^{1/4} \log n)$ centers
- Define first-centers $S(u) = S \cap N_1(u)$

Query (u, v):

- compute $N_i(u)$ and first-centers S(v)
- For every $u_j < v$ and $s \in S(v)$:
 - Check if $u_i \in C(s)$ (single adj. query)
- If $\exists s' \in S(v)$ for which no $u_i < v$ is in C(s'), say "yes"

Analysis

Query (u, v):

- compute $N_i(u)$ and first-centers S(v)
- For every $u_j < v$ and $s \in S(v)$:
 - Check if $u_i \in C(s)$ (single adj. query)
- If $\exists s' \in S(v)$ for which no $u_i < v$ is in C(s'), say "yes"

Probe complexity: $|S(v)| \cdot |N_i(u)| = O(n^{3/4} \log n)$

Analysis

Query (u, v):

- compute $N_i(u)$ and first-centers S(v)
- For every $u_i < v$ and $s \in S(v)$:
 - Check if $u_i \in C(s)$ (single adj. query)
- If $\exists s' \in S(v)$ for which no $u_i < v$ is in C(s'), say "yes"

Size: In each block $N_i(u)$, add one edge per sampled center.

Overall,
$$|H| = O(n \cdot n^{1/4} \cdot n^{1/4} \cdot log n)$$

Spanner LCA with Stretch $O(k^2)$

- Sample a set $S \subseteq V$ of $\widetilde{O}(n^{2/3})$ centers.
- Sparse vertices $N_k(v) \cap S = \emptyset$, hence w.h.p. $|N_k(v)| = O(n^{1/3})$
- Dense vertices $N_k(v) \cap S \neq \emptyset$

Spanner H_s for the sparse subgraph $(V_s \times V) \cap E$

- Collect the k-neighborhood of sparse vertex v
- Apply a k-round distributed algorithm on $N_k(v)$
- Probe complexity $O(\Delta n^{2/3})$

- Sample S of $O(n^{2/3})$ centers, Dense vertices $N_k(v) \cap S \neq \emptyset$
- Assign nodes in S random IDs in [1, n]

Voroni-cells centered at S

- Add a BFS tree (depth k) in each cell
- All dense vertices are covered

How to connect adjacent cells?

- Subdivide each Voronoi cell into clusters with $O(n^{1/3})$ vertices
- $\tilde{O}(n^{2/3})$ clusters
- Sample $\widetilde{O}(n^{1/3})$ centers $S' \subseteq S$

All clusters of a sampled Voronoi cell are **marked**.

- \bullet $\widetilde{O}(n^{1/3})$ marked clusters.
- Connect each cluster to all marked neighboring clusters ($\tilde{O}(n)$ edges)
- Connect each cluster with no marked neighbor, to all of its neighbors

For each marked cluster C and cluster C':

Connect C' to the Voronoi cells of the $\widetilde{\mathcal{O}}(n^{1/k})$ minimum center-IDs in

Analysis idea:

Inductive argument (based on random ranks) to show stretch in H_{vor} is O(k)

Since each Vor cell has depth k tree, yields a total stretch of $O(k^2)$

Summing Up and Open Problems

Stretch # Edges # probes $2r-1, r \in \{2,3\} \qquad \tilde{O}(n^{1+r}) \qquad \tilde{O}(n^{1-1/2r})$ Open for $r \geq 4$

$$O(k^2)$$
-spanner

$$\tilde{O}(n^{1+1/k})$$

$$\tilde{O}(\Delta^4 n^{2/3})$$

Improve dependency on Δ

O(n) spanner

o(m)

 $\Omega(\min(\sqrt{n}, n^2/m))$

Toda!

Stretch-sensitive lower bounds