Local Model
for Differentially Private Data Analysis

Sofya Raskhodnikova
Boston University

Some slides are based on slides by Adam Smith (Boston University)
Typical examples: census, medical studies, what big companies want to publish about our data…

Two conflicting goals

- Protect privacy of individuals
 - Differential privacy [Dwork McSherry Nissim Smith 06]
- Give accurate answers
Two datasets x, x' are **neighbors** if they differ in one person’s data.
Privacy Definition

An algorithm A is ϵ-differentially private if for all pairs of neighbors x, x' and all sets of answers S:

$$\Pr[A(x) \in S] \leq e^{\epsilon} \Pr[A(x') \in S]$$
Properties of Differential Privacy

- Composition:
 If algorithms A_1 and A_2 are ϵ-differentially private then algorithm that outputs $(A_1(x), A_2(x))$ is 2ϵ-differentially private

- Meaningful in the presence of arbitrary external information
Basic Privacy Models

Local Noninteractive

Local (Interactive)

Centralized

• Advantages of the local model:
 – private data never leaves person's hands
 – no single point of failure
 – highly distributed

• Disadvantage of the local model:
 – data-thirsty (more data for the same accuracy)
 – Exponentially more data for learning parity
Deployments of the Local Privacy Model

https://github.com/google/rappor

Chrome
Differential Privacy in the Local Model

Privacy Definition

A randomizer R is ϵ-differentially private if for all pairs of values x_i, x_i' and all sets of answers S:

$$\Pr[R(x_i) \in S] \leq e^\epsilon \Pr[A(x_i') \in S]$$

• The requirement that the ratio $\frac{\Pr[R(x_i)=a]}{\Pr[A(x_i')=a]}$ be bounded predates differential privacy

[Efvimievski Gehrke Srikant 03]
Randomized Response [Warner 65]

- Canonical example of a local algorithm
- Invented to help get truthful answers on sensitive YES/NO survey questions.
- Each person has data $x_i \in \mathcal{X}$
 - Given $f: \mathcal{X} \rightarrow \{-1,1\}$, analyst needs the average of $f(x_i)$
 - Can deduce, e.g., the proportion of diabetics
- Randomization operator takes $y \in \{-1,1\}$:

$$R(y) = \begin{cases}
 +y & \text{w. p. } \frac{e^{\epsilon}}{e^{\epsilon}+1} \\
 -y & \text{w. p. } \frac{1}{e^{\epsilon}+1}
\end{cases}$$
Randomized Response

- Randomization operator takes $y \in \{-1, 1\}$:
 \[R(y) = \begin{cases}
 +y & \text{w. p. } \frac{e^\epsilon}{e^\epsilon + 1} \\
 -y & \text{w. p. } \frac{1}{e^\epsilon + 1}
\end{cases} \]

- $E[R(y)] = y \cdot \frac{e^\epsilon}{e^\epsilon + 1} - y \cdot \frac{1}{e^\epsilon + 1} = y \cdot \frac{e^\epsilon - 1}{e^\epsilon + 1}$

- If we rescale by $c_\epsilon = \frac{e^\epsilon + 1}{e^\epsilon - 1}$, then $E[c_\epsilon \cdot R(y)] = y$

- We can estimate the average of $f(x_i)$
 \[A(x_1, \ldots, x_n) = \frac{1}{n} \sum_{i} c_\epsilon \cdot R(f(x_i)) \]

Lemma. $E \left[\left\| A(x) - \frac{1}{n} \sum_{i} f(x_i) \right\| \right] \leq \frac{c_\epsilon}{\sqrt{n}} \approx \frac{1}{\epsilon \sqrt{n}}$.
Randomized Response: Generalization

• Can be generalized to estimating the averages of functions of the form $f : \mathcal{X} \to [-1,1]$

• If $y \in [-1,1]$, first round it to 1 or -1:

$$\text{Round}(y) = \begin{cases}
+1 & \text{w. p. } \frac{1+y}{2} \\
-1 & \text{w. p. } \frac{1-y}{2}
\end{cases}$$

• Define $RR(y) = R(\text{Round}(y))$

• $E[RR(y)] = E[\text{Round}(y)] = \frac{1+y}{2} - \frac{1-y}{2} = y$

• We can estimate the average as before.
Power of Local Models

Local Noninteractive = Nonadaptive SQ

Local = SQ

Containment is strict: there are computational tasks for which noninteractive protocols require \textit{exponentially} larger n than interactive ones.
Statistical Query (SQ) Algorithms

- An **SQ algorithm** can perform its computation by accessing the data via an SQ oracle.

 \[f: \mathcal{X} \rightarrow [0,1] \]

 \[\mathbb{E}_{y \sim P}[f(y)] \pm \tau \]

- Distribution \(P \) could be the distribution from which the data drawn or the empirical distribution over the data set.

- A **nonadaptive** algorithm specifies all its queries in advance.

- Huge fraction of basic learning/optimization algorithms can be expressed in SQ form [Kearns 93]

Theorem [Blum Dwork McSherry Nissim 05]

Any SQ algorithm can be simulated by a private algorithm.
(Noninteractive) $\text{Local} = \text{(Nonadaptive) SQ}$

Theorem

Any q-query (nonadaptive) SQ algorithm with tolerance τ can be simulated by an ϵ-DP (noninteractive) local algorithm if $n \geq \frac{q \ln q}{\tau^2 \epsilon^2}$.

Local protocol for an SQ query:

- use a different group of n/q people
- for each i, compute bit $\text{RR}(f(x_i))$
- average the noisy bits and rescale

- Participants can compute noisy bits on their own
- RR (applied by each participant) is differentially private
- If all SQ queries are known in advance (non-adaptive), the protocol is non-interactive
(Noninteractive) Local = (Nonadaptive) SQ

Theorem

When the data is sampled i.i.d. from an unknown distribution P, any (noninteractive) local algorithm can be simulated by a (nonadaptive) SQ algorithm.

Technique: Rejection sampling

Proof idea [noninteractive case]:

- To simulate a randomizer $R: D \rightarrow W$ on entry x_i, need to output each $w \in W$ with probability $p(w) = \Pr_{y \sim P}[R(y) = w]$.

- Let $q(w) = \Pr[R(0) = w]$. (Approximates $p(w)$ up to factor e^ε).

1. Sample w from $q(w)$.
2. Output w with probability $\frac{p(w)}{q(w)e^\varepsilon}$.
3. With the remaining probability, repeat from (1).

- Use SQ queries to estimate $p(w) = \Pr_{y \sim P}[R(z) = w] = \sum_y \Pr_{y \sim P}[y] \cdot \Pr[R(y) = w]$.

Idea:

$$p(w) = \Pr_{y \sim P}[R(z) = w] = \sum_y \Pr_{y \sim P}[y] \cdot \Pr[R(y) = w] = \mathbb{E}_{y \sim P}[\Pr[R(y) = w]]$$
Summary

• We characterized the class of problems solvable in local noninteractive and local interactive models
 – with respect to sample size
 – up to polynomial factors

• Many specific tasks are studied (learning, heavy hitters, histograms, optimization problems, clustering,...)
 – Best algorithms often use sketching techniques
 – Information-theoretic techniques were developed for lower bounds
 [Beimel Nissim Omri 08, Chan Shi Song 12, Duchi Jordan Wainwright 13,...]

• For specific tasks, need to optimize
 – Amount of data need for specific accuracy
 – Running time
 – Communication
 – Server memory