Optimal Gossip Algorithms for Exact and Approximate Quantile Computations

<u>Hsin-Hao Su</u> (UNC Charlotte => Boston College)

joint work with Bernhard Haeupler (CMU) and Jeet Mohapatra (MIT) WOLA '18

Shifting in Computing Paradigm

- Reduced costs on devices
- Increase in the amount of data
- Advances in connectivity between computers

Basic Aggregation Problems

- Basic Problems
 - Sum
 - Average
 - Min, Max

– Quantiles: Median, 90%, 10%.. 85 75 5.5-015.5.00-010. - -75 88 95 71 66 60 ALCONTRACTOR STATISTICS A 74 73 A.P.A.A.A.A.A.A.A.A. 92 90 Shinditadinit. 66 80 2.2.2.2.2.2.2.2.2.2.2. 91 80 79 78 antraration a 66 Antoniosciphic a 67 68 73 78 77 1.5.0-0.2.3.0-0.0. Shiphitating 78 90 91

Basic Aggregation Problems

- Basic Problems
 - Sum
 - Average
 - Min, Max

Gossip Algorithms

- Gossip Algorithms / Epidemic Algorithms / Population Protocols
 - Each node interacts with another node t(v), chosen uniformly at random
 - **PUSH** or **PULL** $O(\log n)$ bits
 - Nice properties:
 - Scalable
 - Low overhead (i.e. O(n) messages per round)
 - Fast convergence
 - Fault-tolerant
 - Captures interaction patterns in Nature:
 - Molecules interactions in chemical reactions
 - Rumor spreading

Previous Results

- Max, Min
 - Folklore: $O(\log n)$ rounds w.h.p.

- Sum, Average
 - [Kempe, Dobra, Gehrke '03] PUSH-SUM: approximate within $(1 \pm \epsilon)$ in $O(\log n + \log(\frac{1}{\epsilon}))$ rounds w.h.p.

Previous Results

- Quantile Computation
 - ϕ -quantile: Given $0 < \phi < 1$, every node outputs a value whose rank is $\lfloor \phi n \rfloor$
 - [Kempe, Dobra, Gehrke '03]: $O(\log^2 n)$
 - ϵ -approximate ϕ -quantile: Given $0 < \phi, \epsilon < 1$, every node outputs a value whose rank is $(\phi \pm \epsilon)n$

New results

• ϕ -quantile: Given $0 < \phi < 1$, every node outputs a value whose rank is $\lfloor \phi n \rfloor$

• *c*-approximate ϕ -quantile: Given $0 < \phi, \epsilon < 1$, every node outputs a value whose rank is $(\phi \pm \epsilon)n$

$$O\left(\log\log n + \log(\frac{1}{\epsilon})\right)$$
 rounds Optimal

New results

• ϕ -quantile: Given $0 < \phi < 1$, every node outputs a value whose rank is $\lfloor \phi n \rfloor$

O(log n) rounds Optimal

• ϵ -approximate ϕ -quantile: Given $0 < \phi, \epsilon < 1$, every node outputs a value whose rank is $(\phi \pm \epsilon)n$

$$O\left(\log\log n + \log(\frac{1}{\epsilon})\right)$$
 rounds Optimal

First Attempt (Sampling)

Suppose each node randomly samples $\Theta\left(\frac{\log n}{\epsilon^2}\right)$ values and outputs the ϕ -quantile of the sampled values Then, w.h.p. the quantile of the value is ($\phi \pm \epsilon$)

The sampled values can be doubled in every round.

Optimal Gossip Algorithms for Exact and Approximate Quantile Computations

Third Attempt (Quantile Sketch)

Instead of storing the whole set of sampled values, only keep a sketch of it. Quantile Sketch: [Munro and Patterson '80, Manku et al. '99, Greenwald and Khanna '01]

Our Approach

• Phase I: Shift the ϕ -quantile to the approximate median

• Phase II: Compute the approximate median

3-Tournament For each iteration: Each node v randomly samples 3 values and sets itself to the middle one

Running Time

Nodes whose values are in $(0.5 \pm \epsilon)$ quantile

Nodes whose values are not in $(0.5 \pm \epsilon)$ quantile

Expected Behavior $H_{i+1} = 3H_i^2 - 2H_i^3$ $L_{i+1} = 3L_i^2 - 2L_i^3$

Approximate Median

• Compute the approximate median ($\phi = 0.5$)

$$O\left(\log \log n + \log(\frac{1}{\epsilon})\right)$$
 rounds

• ϕ -quantiles for other ϕ ?

ϕ -quantiles for other ϕ ?

• Phase I: Shift the ϕ -quantile to the approximate median

• Phase II: Compute the approximate median

$$O\left(\log\log n + \log(\frac{1}{\epsilon})\right)$$
 rounds

Phase I: Shifting

Running Time

Nodes whose values are in $(\phi \pm \epsilon)$ quantile

Nodes whose values are not in $(\phi\pm\epsilon)$ quantile

Expected Behavior $L_{i+1} = L_i^2$ $M_{i+1} \ge M_i$

Our Approach

• Phase I: Shift the ϕ -quantile to approximate median

$$O\left(\log(\frac{1}{\epsilon})\right)$$
 rounds

• Phase II: Compute the approximate median

$$O\left(\log\log n + \log(\frac{1}{\epsilon})\right)$$
 rounds

Caveat

• Given $0 \le \phi \le 1$ and $0 < \epsilon < 1$, every node outputs a value whose rank is $(\phi \pm \epsilon)n$

$$O\left(\log \log n + \log(\frac{1}{\epsilon})\right)$$
 rounds w.h.p., but only for $\epsilon \ge 1/n^{0.01}$

- Example: $\phi = 0.5$ (median), $\epsilon = 1/(2n)$ (exact quantile computation)
 - After the first round of the 3-Tournament algorithm, with a constant probability, the answer is erased.

Quantile Computation for Small ϵ

• ϕ -quantile: Given $0 < \phi < 1$, every node outputs a value whose rank is $\lfloor \phi n \rfloor$

 $O(\log n)$ rounds

• ϵ -approximate ϕ -quantile: Given $0 < \phi < 1$ and $1/n^{0.01} < \epsilon < 1$, every node outputs a value whose rank is $(\phi \pm \epsilon)n$

$$O\left(\log\log n + \log(\frac{1}{\epsilon})\right)$$
 rounds

Bootstrapping

- Given $0 \le \phi \le 1$, every node outputs a value whose rank is $[\phi n]$
- Bootstrap the approximation algorithm:

Quantile Computation

• Given $0 \le \phi \le 1$ and $0 < \epsilon < 1$, every node outputs a value whose rank is $(\phi \pm \epsilon)n$

$$O\left(\log \log n + \log(\frac{1}{\epsilon})\right)$$
 rounds, but ~~only for $\epsilon \ge 1/n^{0.01}$~~

Robustness

• Our algorithm also tolerates constant probability node failure in each round with the same asymptotic running time.

Theorem: Given
$$\frac{\log n}{n} < \epsilon < 1$$
, any gossip algorithms that uses
o $\left(\log \log n + \log \left(\frac{1}{\epsilon}\right)\right)$ rounds fail to ϵ -approximate the median with prob.
at least $\frac{1}{3}$.

Lower Bound

- Indistinguishable Arguments
 - Scenario 1: the values are $\{1, 2, ..., n\}$
 - Scenario 2: the values are $\{1 + \epsilon n, 2 + \epsilon n, ..., n + \epsilon n\}$

Optimal Gossip Algorithms for Exact and Approximate Quantile Computations

Lower Bound

- Indistinguishable Arguments
 - The median in the first scenario and the second differ by ϵn
 - In Scenario 1, each node must receive a value in $S = \{1, 2, ..., \epsilon n\}$ to ensure it is not in Scenario 2

Lower Bound

- Lower Bound
 - $-|S| = \epsilon n$
 - It takes $\Omega\left(\log \log n + \log\left(\frac{1}{\epsilon}\right)\right)$ to spread messages from S to every node using both PUSH and PULL.

Open Problems

- For all ϵ -quantile computation problem
 - Each node v outputs Q(v) such that $|Q(v) \phi(v)| \le \epsilon$, where $\phi(v)$ is the quantile of v
 - Approach 1:
 - Use our algorithm to select the $\frac{\epsilon}{2}$, $\frac{2\epsilon}{2}$, $\frac{3\epsilon}{2}$, ... quantiles
 - Each node outputs the nearest quantile
 - $O\left(\frac{1}{\epsilon}\left(\log\log n + \log\left(\frac{1}{\epsilon}\right)\right)\right)$ rounds
 - Approach 2:
 - Broadcast every value to every node in O(n + log n) rounds using Network
 Coding [Haeupler '11]
 - O(n) rounds for exact answers

Open Problems

- Pipeline problems
 - [Haeupler '11] Broadcast k messages in $O(k + \log n)$ rounds by gossiping.
 - [Kempe, Dobra, Gehrke '03] Compute the sum in $O(\log n)$ rounds
 - Compute k sums in $O(k + \log n)$ rounds?

Thank you