Spatial coupling: Algorithm and Proof
Technique

Workshop on Local Algorithms - WOLA 2018

Boston, June 15th, 2018



Physics inspiration:
nucleation, crystallization, meta-stability







eat packs

Sodium acetate, C-H:NaO.,



Nucleation




Spatial-Coupling as an Algorithm



Introduction - Graphical Codes
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Low-Density Parity-Check Codes
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—nsemble of Codes - Configuration Construction
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Asymptotic Analysis - Density Evolution (D
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Asymptotic Analysis - Density Evolution (DE
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orresponding distrete-time ran
process. As a result, we obtain a simple criterion involving the frac
tions of nodes of different degrees on both sides of the graph whicl
is necessary and sufficient for the decoding process to finish suc
cessfully with high probability. By carefully designing these graph:
we can construct for any given rate { and any given real numbe
€ a family of linear codes of rate J@ which can be encoded in tim¢
proportional to In(1/¢) times their block length 7. Furthermore
a codeword can be recovered with high probability from a portior
of its entries of length (1 + €) R or more. The recovery algorithn
also runs in time proportional to 12 1n(1/€). Our algorithms hav
been implemented and work well in practice; various implementa
tion issues are discussed.
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Asymptotic Analysis -

Density

—volution (
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f(e, x) is increasing in both its arguments
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=XIT Curve for (3, 6) Ensemble
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A look back ...
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BSP decoder ends up In meta-stable state.

Optimal (MAP) decoder would reach stable state.
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DE for Coupled
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Thresholds
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Spatially Coupled

—nsembles — Summary
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Spatially Coupled Ensembles Universally Achieve
Capacity Under Belief Propagation

Shrinivas Kudekar, Tom Richardson, Fellow, IEEE, and Riidiger L. Urbanke

Abstract—We i patially coupled cod For
transmission over the binary erasure channel, it was recently
shown that spatial coupling increases the belief propagation
threshold of the ensemble to essentially the maximum a priori
threshold of the underlying component ensemble. This explains
why ional LDPC originally i by
Felstrom and Zigangirov, perform so well over this channel. We
show that the tqluvllen( result holds true for transmission over
general binary channels.
More precisely, given a desired error probability and a gap to
capacity, we can construct a spatially coupled ensemble that
fulfills these constraints umiversally on this class of channels under
belief propagation decoding. In fact, most codes in this ensemble
have this property. The quantifier wniversal refers to the single
ensemble/code that is good for all channels but we assume that
the channel is known at the receiver. The key technical result s a
proof that, under belief-propagation decoding, spatially coupled
ensembles achieve essentially the area threshold of the underlying
uncoupled ensemble, We conclude by diseussing some interesting
open problems.

Index Terms—Belief don (BP), capacity-achi
codes, channel coding, convolutional low-density parity-check
(LDPC) codes, iterative decoding, LDPC codes, spatial coupling,
spatially coupled codes, threshold saturation.

1. INTRODUCTION

A. Historical Perspective

VER since the publication of Shannon’s seminal paper
E [1] and the introduction of the first coding schemes by
Hamming [2] and Golay [3], coding xlmcry has hm cnncl:med
with finding low-delay and 1

schemes. The interested reader can find an l:xcellem hlsmnc.'ll

In the first 50 years, coding theory focused on the con-
struction of algebraic coding schemes and algorithms that
were capable of exploiting the algebraic structure. Two early
highlights of this line of rescarch were the introduction of the
Bose-Chaudhuri-Hocquenghem (BCH) codes (5], [6] as well
as the Reed-Solomon (RS) codes [7]. Berlekamp devised an
efficient decoding algorithm [8), and this algorithm was then
interpreted by Massey as an algorithm for finding the shortest
feedback-shift register that generates a given sequence [9]. More
recently, Sudan introduced alist decoding algorithm for RS codes
that decodes beyond the guaranteed error-correcting radius [10].
Guruswami and Sudan improved upon this algorithm [11] and
Koetter and Vardy showed how to handle soft information [12].

Another important branch started with the introduction of
convolutional codes [13] by Elias and the introduction of the
sequential decoding algorithm by Wozencraft [14]. Viterbi in-
troduced the Viterbi algorithm [15]. It was shown to be optimal
by Forney [16] and Omura [17] and to be eminently practical
by Heller [18], [19].

An important development in transmission over the con-
tinuous input, band-limited, additive white Gaussian noise
channel was the invention of the lattice codes. It was shown
in [201-[24] that lattce codes achieve the Shannon capacity.
A in b imited came
about when Ungerboeck [25]-[27] invented a technique to
combine coding and modulation. Ungerboeck’s technique
ushered in a new era of fast modems. The technique, called
trellis-coded modulation (TCM), offered significant coding
gains without compromising bandwidth efficiency by mapping
binary code symbols, generated by a convelutional encoder, to a
larger (nonbinary) signal constellation. In [28] and [29], Forney
showed that lattice codes, as well as TCM schemes, might
be gnnemmd by the same basm elements and the genemhzed

ique was termed

review in [4]. Let us just briefly mention some of the hij
‘before focusing on those parts that are the most relevant for our
purpose.
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Coming back to binary lumar ced.c& in 1993, Berrou et al.
[30] proposed mrbo codes. These codes attain near-Shannon
limit performance under low-complexity iterative decoding.
Their remarkable performance leads to a flurry of research
on the “turbo” principle. Around the same time, Spielman
in his thesis [31], [32] and MacKay and Neal in [33}-{3¢],

d low-density parity-check (LDPC)
codes and iterative decoding, both introduced in Gallager’s
remarkable thesis [37]. Wiberg showed [38] that both turbo
codes and LDPC codes fall under the umbrella of codes based
on sparse graphs and that their iterative decoding algorithms
are special cases of the sum-product algorithm. This line of
research was formalized by Kschischang et al. who introduced
the notion of factor graphs [39].

The nextbreakthrough in the design of codes (based on sparse
graphs) came with the idea of using irregular LDPC codes by
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Main Message

Coupled ensembles under BP decoding behave
like uncoupled ensembles under MAP decoding.

Since coupled ensemble achieve the highest threshold they can
achieve (namely the MAP threshold) under BP we speak of the
threshold saturation phenomenon.

Via spatial coupling we can construct codes which are
capacity-achieving universally across the whole set of BMS
channels.

On the downside, due to the termination which is required, we loose
In rate. We hence have to take the chain length large enough in order
to amortize this rate loss. Therefore, the blocklength has to be
reasonably large.
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Threshold Saturation via Spatial Coupling: Why
Convolutional LDPC Ensembles Perform so well
over the BEC

Shrinivas Kudekar®, Tom Richardson’ and Riidiger Urbanke®
*School of Computer and Communication Sciences
EPFL, Lausanne, Switzerland
Email: {shrinivas.kudekar. ruediger.urbanke } @epfl.ch
i Qualcomm, USA
Email: tjr@qualcomm.com

Abstract— Convolutional LDPC bles, i duced by Fel-
striim and Zigangirov, have excellent thresholds and these thresh-
olds are rapidly increasing functions of the average degree.
Several variations on the basic theme have been proposed to
date, all of which share the good performance characteristics of
convolutional LDPC ensembles.

We describe the fundamental mechanism which explains why
“eonvolutional-like™ or “spatially coupled™ codes perform so well.
In essence, the spatial coupling of the individual code structure
has the effect of increasing the belief-propagation threshold of
the new ensemble to its maximum possible value, namely the
maximum-a-posteriori threshold of the underlving ensemble. For
this reason we call this phenomenon “threshold saturation™.

This gives an entirely new way of approaching capacity. One
significant advantage of such a construction is that one can create
capacity-approaching ensembles with an error correcting radius
which is inereasing in the blocklength. Our proof makes wse
of the area theorem of the beliel-propagation EXIT curve and
the connection between the maximum-a-posteriori and belief-
propagation threshold recently pointed out by Méasson, Monta-
nari, Richardson, and Urbanke.

Although we prove the connection between the maximum-
a-posteriori and the belief-propagation threshold only for a
very specific ensemble and only for the binary erasure channel,
empirically a threshold saturation phenomenon occurs for a wide
class of ensembles and channels. More generally, we conjecture
that for a large range of graphical systems a similar saturation
of the “dynamical” threshold occurs once individual components
are coupled sufficiently strongly. This might give rise to improved
algorithms as well as to new technigques for analysis,

there is a connection between these two thresholds, see [1],
121

We discuss a fundamental mechanism which ensures that
these two thresholds coincide {or at least are very close).
We call this phenomenon “threshold saturation via spatial
coupling.” A prime example where this mechanism is at work
are convolutional low-density parity-check (LDPC) ensembles.

It was Tanner who introduced the method of “unwrapping”
a cyclic block code into a convolutional structure [3]. [4]. The
first low-density convolutional ensembles were introduced by
Felstrém and Zigangirov [5]. Convolutional LDPC ensembles
are constructed by coupling several standard (1.r)-regular
LDPC ensembles together in a chain. Perhaps surprisingly,
due to the coupling, and assuming that the chain is finite and
properly terminated. the threshold of the resulting ensemble
is considerably improved. Indeed, if we start with a (3.6)-
regular ensemble, then on the binary erasure channel (BEC)
the threshold is improved from ¢*(1 = 3.r = 6) = 0.4294 10
roughly (L4881 (the capacity for this case is %}. The latter
number is the MAP threshold «**{1.r) of the underlying
(3. 6)-regular ensemble. This opens up an entirely new way
of constructing capacity-approaching ensembles. It is a folk
theorem that for standard constructions improvements in the
BP threshold go hand in hand with increases in the error floor.
More precisely, a large fraction of degree-two variable nodes
is tvpically needed in order to get large thresholds under BP

Spatial Coupling as a Proof Technique and Three
Applications

Andrei Giurgiu, Nicolas Macris and Riidiger Urbanke
School of Computer and Communication Sciences,
EPFL, Lausanne, Switzerland
{andrei.giurgiu, nicolas.macris, rudiger.urbanke } @epfl.ch

Abstract—The aim of this paper is to show that spatial coupling
can be viewed not only as a means to build better graphical
models, but also as a tool to better understand uncoupled models.
The starting point is the observation that some asymptotic
properties of graphical models are easier to prove in the case
of spatial coupling. In such cases, one can then use the so-called
interpolation method to transfer known results for the spatially
coupled case to the uncoupled one.

Our main use of this framework is for LDPC codes, where
we use interpolation to show that the average entropy of the
codeword conditioned on the observation is asymptotically the
same for spatially coupled as for uncoupled ensembles.

We give three applications of this result for a large class of
LDPC ensembles. The first one is a proof of the so-called Maxwell
construction stating that the MAP threshold is equal to the Area
threshold of the BP GEXIT curve. The second is a proof of the
equality between the BP and MAP GEXIT curves above the MAP
threshold. The third application is the intimately related fact that
the replica symmetric formula for the conditional entropy in the
infinite block length limit is exact.

ensembles [2] (a result of type (i)) and here we deduce that it
also holds for the uncoupled systems. Then, using the freshly-
proven Maxwell construction conjecture, we derive two more
results, namely Theorems 5 and 7. The first one states the
equality of the BP and MAP GEXIT curves above the MAP
threshold (see conjecture 1 in [4] and Sec IIL.B [5] for a related
discussion) and the second implies the exactness of the replica-
symmetric formula for the conditional entropy (see conjecture
1 in [6] and Sec IILB in [5]). Our treatment is general enough
to provide a potential recipe for similar results for many types
of graphical models.

Note that the replica-symmetric formula for error correcting
codes on general channels was first derived by non-rigorous
methods in the statistical mechanics litterature [7]-[10]. The
Maxwell construction and equality of BP and MAP GEXIT
curves can also be informally derived from this formula, which
in the statistical physics literature plays the role of a “more

R —
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shows that MAP threshold is given by Maxwell conjecture
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Paradigmatic CSP: random K-SAT

» Random graph with n variable nodes and m clauses.
» Each variable node is connected to K clauses u.a.r by an edge.

» Edge is dashed or full with probability 1/2. Degree of variable
nodes is Poisson(aK).

» Boolean variables: x; € {T, F}
ore {0,1},i=1,---.,n

> Clauses: (VK xJ@)),

a:‘]’...,m

S(a;
> Frak = ALy (VE x5 ™)

1 g
Control parameter o = ﬁ(v‘;ﬁzﬁjg) = 1 Phase Transitions.
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» Friedgut 1999: Jag(n, K) s.tVe >0

{ 1 ifa<(1—e)as(n K),

lim Pr{Fn,a,KiS SAT} 10 ifa> (1 —€)as(n, K).

n— oo

Existence of lim,_ - as(n, K) is still an open problem.

» This talk: MAX-SAT or Hamiltonian version of the problem:

m

He(x) = > (1= 1(vE x5 ™)),

a=1

the MAX-SAT/UNSAT threshold is defined as:

as(K) =inf{ o | nﬂrpoo %E[mxin Hr(x)] >0}

A\ 4
N

exists and continuous function of «

In particular ag exists. [Interpolation methods: Franz-Leone,
Panchenko, Gamarnik-Bayati-Tetali].
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The Physics Picture

Parisi-Mezard-Zechina 2001

Semerjian-RicciTersenghi-Montanari, Krazkala-Zdeborova 2008




Known Lower bounds on the SAT-UNSAT threshold

» Algorithmic lower bounds: find analyzable algorithm and
find solutions for aye(K) < as(K). [long history ...]

» Second Moment lower bounds, weighted s.m with cavity
Inspired weights [long history, ... Achlioptas - Coja Oghlan].

K 3 4 - large K
bestlowerbound 3.52%2 7.91>™ ... oK n2 — g In2 4+ o(1)*™
best algor bound 3.52 5.54 e ZK;'(”K(1 + 0(1))

Ctayn 3.86 9.38 .- 2K (1 4 o(1))
Olcond 3.86 955 ... 2XIn2— 22+ o(1)

Qs 4.26 993 -+ 2%In2-3(1+In2)+ o(1)
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New Lower bounds by the Spatial Coupling Method

Recall:

He(x) = number of UNSAT clauses of F for x € {0,1}"
and as = inf{a | liMp_ o0 tE[miny He(X)] > 0}

K 3 4 large K
Otnew 3.67 7.81 oK %
best algor bound 3.52 5.54 ZK}'(” K(1+0(1))
best lowerbound ~ 3.52%¢ 7.91°7 2°In2 - 3In2+o(1)*™
Ctayn 3.86 9.38 2K (1 1 o(1)
(lcond 3.86 9.55 2K In2 — g In2 + 0(1)
o 4.26 9.93 2%In2 — (1 +1In2) + o(1)
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Strategy

construct spatially coupled model

coupled = uncoupled

Xgar = Qgar

uncoupled coupled (un)coupled
aalg < aalg < XgaAT



Unit Clause Propagation algorithm

1. Repeat until all variables are set:

2. Forced Step: If F contains unit clauses

choose one at random and satisfy it by

setting unique variable. Remove or shorten unit clause
other clauses that contain this variable.

3. Free Step: If there are no unit clauses choose a variable at
random and set it at random. Remove or shorten clauses that
contain this variable.

37



Analysis by differential equations [Chao-Franco 1986]

A "Round" = "free step immediately followed by forced steps

and ends when all forced steps have ended".

(Rescaled) time t is number of rounds. For K = 3:

dea(t 3ca(t
: 03§>:_@(t) Ol

e — o) 3% )1 - 50 (365%

\

‘ d@(t —26(8), B(t) = #(variables set in a round)

de(t) 2 o
o an-Fa-) 1A

Fora — £ ~ 2.66, dﬁ(t)

and rate ry(t) of unit clauses

productlon — 1; : aUC(S) = % ~ 2.66.
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Unit Clause Propagation for coupled Formulas:

» Forced step: as long as 4 unit clause, then satisty it by
setting the variable. Remove or shorten clauses containing

this variable.
» Free step:
0 L —w
N I \
I }l }
‘).Q"\__\/ —_—_—— e e o L—w L—]_
/ N
¥ “a
In a free step, choose a Once the first position is
variable uniformly at empty, choose the free
random from all the variables from the second
remaining ones in the position and so on.

first position.



Evolution of number of variables per position

N
l12<t

0« > — > ¢ o —
2 3

0 1 12

Algorithm runs in "phases”" p =0,1,2,3,... which terminate
each time all variables have been set in a position p.

At o ~ 3.67 the curves develop vertical slopes: explosion of
unit clauses.
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coupled

Proposition: Let oo P*!(K) = limy o0 iMoo ofmP (K, L, w)

K 3 4 large K
o 2.67 4.50 e pK=1

UC(K) . . K
oK) 3.67 781 .. 2K T4

Exact formula:

aiP(K) = max{a > 0] min &, «(¢)}

¢€[0,2]
with 7 ,
_ o ney -« bk
b, k(£) =2 — (1 5 ) 2K_2(1 2)
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Differential Equations for Coupled-UC

Phase p (/1 > p). Round = free step followed by forced steps.

dt;(t)
at

= —20j(t) = —2 rate of removal of nodes at pos i

[ ac®(t7) 740 (1,7)

qt = —2 ZZ/V:_(; 5i+d(t) Civq(h)

act? (t,7 —1 rac?(t,7 —1
L - dg‘ ) = —2 Z(VJ'V:O Bitalt) dgci;dgt) ) T Z('/jv:o(1 + 79)Bivrq(t
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Conclusion

>

Lower bounds for CSP’s by algorithmic lower bounds on
coupled-CSP’s.

Applies to many problems: K-SAT, COL, XORSAT, Error
Correcting LDPC codes, Rate-Distortion theory.

For XORSAT and Error Correcting codes it gives optimal
lower bounds ayjs < coupled—alg = Os.

For SAT, COL, can we perform better with more
sophisticated local rule instead of free step ?

coupled uncoupled

Above some K we find that apc™ ™ > ayy,

Sometimes we go above condensation threshold. E.g
coloring with Q > 4.
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Summary

Spatial coupling can be used in two different ways.

Algorithmic: spatially coupled graphs are particularly suited for message passing

Proof technique: extend problem to spatially coupled version
proof desired property for this version
show that original problem is equivalent to spatially coupled
with respect to this property;






