Erasure-Resilient Graph Property Testing

Workshop on Local Algorithms 2018

Nithin Varma

Joint work with Amit Levi, Ramesh Pallavoor, and Sofya Raskhodnikova

Graph property testing

[Goldreich Ron '02, Parnas Ron '02]

Graphs are represented as adjacency lists.

If G satisfies property P.

If G has to be modified in at least $\epsilon \cdot m$ edges to satisfy P.

Erasure-resilient graph property testing

Erasure-resilient (function) property testing

[Dixit Raskhodnikova Thakurta Varma 18]

 $\leq \alpha \cdot m$ edges are erased.

Graph G = (V, E) with n vertices and m edges (erased and nonerased).

Exists completion of *G* satisfying property *P*.

Every completion of G has to be modified in at least $\epsilon \cdot m$ edges to satisfy P.

Erasure-resilient testing connectedness

• α -erasure-resilient ϵ -tester for connectedness with query complexity

Constant query complexity!

$$O\left(\left(\frac{1}{(\epsilon-\alpha)d}\right)^2\right)$$
 whenever $\alpha < \epsilon$, where $d = \frac{m}{n}$.

• Every α -erasure-resilient ϵ -tester for connectedness

Threshold phenomenon!

Linear query complexity!

$$\Omega(m)$$
 queries when $\alpha \geq \frac{2\epsilon}{1+\epsilon}$.