Badger Rampage: Multi-Dimensional Balanced Partitioning of Facebook-scale Graphs

Grigory Yaroslavtsev (Indiana University, Bloomington)
http://grigory.us/blog

Dmitry Avdyukhin (Indiana University), Sergey Pupyrev (Facebook)

2nd Workshop on Local Algorithms, MIT, June 14, 2018
“Three Schools of Thought” in Algorithms & Complexity

- **Boston (MIT & Harvard)**
 - **Youthful & innovative attacks on problems**, driven by PhD students with new ideas (“grad student descent”)
 - **“Relentless optimism ;)****: faster algorithms, e.g. sublinear time, gradient descent, unconditional results
“Three Schools of Thought” in Algorithms & Complexity

- **New York & Chicago** (Princeton, NYU, U Chicago)
 - Abstract and skeptical theory building, driven by fundamental questions and big agendas
 - “Life is hard...”: polynomial-time, hardness of approximation, conditional hardness, beyond-worst case analysis
“Three Schools of Thought” in Algorithms & Complexity

• **Bay area** (Stanford & Berkeley)

 – *No time for philosophy*, driven by applications and societal needs

 – “Let’s start a company and change the society!”: machine learning/AI, fairness, social networks, privacy
This talk

• “Boston school”
 – Fast, optimistic and specific: sublinear time, streaming, distributed, gradient descent

• “Bay area school”
 – Driven by applications, does it work in practice and scale to large data?
Balanced Graph Partitioning

• Partition $G(V, E)$ into k parts V_1, V_2, \ldots, V_k:
 – Each part contains $(1 \pm \epsilon) \frac{|V|}{k}$ vertices
 – # of edges inside the parts is maximized

• Goal: make it work for the real Facebook graph
 – Load balancing
 – Community detection
 – Selecting representative subsets for training
 – ...
Facebook Graph

vertices \(\approx 2 \times 10^9 \), #edges \(\approx 10^{12} \)
Hard in Theory, Important in Practice

• Minimizing the cut
 – No constant-factor approximation for $\epsilon = 0, k \geq 3$ unless $P = NP$ [Andreev, Racke’06]
 – Best approximation: polylog [Feige, Krauthgamer’02]

• Max $n/2$-UNCUT
 – ≈ 0.64 via SDP [Halperin, Zwick, IPCO’01]

• If approximate balance is allowed, what is the hardness of this problem?
Hard in Theory, Important in Practice

• Previous generation tools:
 – METIS [Karypis, Kumar, ‘95]

• Google:
 – Linear embedding: [Aydin, Bateni, Mirrokni, WSDM’16]

• Facebook:
 – Label propagation: [Ugander, Backstrom, WSDM’13]
 – SocialHash partitioner: [Kabiljo, Karrer, Pundir, Pupyrev, Shalita, Akhremtsev, Presta, VLDB’17]
 – Spinner [Martella, Logothetis, Loukas, Siganos, ICDE’17]

• Some other papers:
 – FENNEL [Tsourakakis, Gkantsidis, Radunovic, Vojnovic, WSDM’14]
Multidimensional Balanced Graph Partitioning

• Balance according to multiple weights (≥ 0)
 – Each vertex i has d weights: $w_{i,1}, w_{i,2}, \ldots, w_{i,d}$
 – Let $w_j(S) = \sum_{i \in S} w_{ij}$ for each $j \in [d]$
 – Want $w_j(V_t) = \frac{(1 \pm \epsilon)w_j(V)}{k}$ for each part V_t

• Balanced graph partitioning: $d = 1, \forall i: w_{i1} = 1$

• Balance of the sum of degrees in each part:
 \[w_{i2} = \text{deg}(i) \]

• **Note:** can be impossible as weights are unrelated
Existing approaches are combinatorial

• Local search, branch and bound, “linear embedding”, etc ...

• Difficult to extend to the multi-dimensional case
 – Don’t scale very well
 – Don’t produce good results

• Our approach is \textbf{gradient descent based}:
 – Easy to implement
 – Scales well on Facebook-scale graphs
 – Handles multiple balance constraints naturally
Quadratic Integer Program

• Variable x_i for each vertex:
 • $i \in V_1: x_i = 1$
 • $i \in V_2: x_i = -1$

Maximize: $\sum_{(i_1, i_2) \in E} \frac{1}{2} (x_{i_1} x_{i_2} + 1)$

Subject to: $|\sum_{i=1}^{n} w_{ij} x_i| \leq \epsilon \sum_{i=1}^{n} w_{ij} \quad \forall j \in [d]$
$x_i \in \{-1,1\} \quad \forall i \in V$
Non-convex relaxation

- $x_i \rightarrow$ continuous variables

Maximize:
\[
\sum_{(i_1, i_2) \in E} \frac{1}{2} (x_{i_1} x_{i_2} + 1)
\]

Subject to:
\[
|\sum_{i=1}^{n} w_{ij} x_i| \leq \epsilon \sum_{i=1}^{n} w_{ij} \quad \forall j \in [d]
\]
\[
x_i \in [-1,1] \quad \forall i \in V
\]
Randomized Projected Gradient Descent

- Objective: $f(x) = x^T A x$ (up to constants)
 - $\nabla f(x) = Ax, \; \nabla^2 f(x) = A$

- Projected Gradient Descent
 - Set $x_0 = 0$
 - For $i = 1 \ldots t$:
 - Gradient step: $y_i = x_i + \gamma \cdot \nabla f(x_i) = x_i(I + \gamma A)$
 - Project on the feasible space: $x_{i+1} = Proj(y_i)$

- Note that $x_0 = 0$ is a saddle point
 - Add random noise: $x'_i = x_i + N_d(0,1)$
Projection Step

• Proj(y_i) is $x = \text{closest}^*$ point to y_i satisfying:

\[
\left| \sum_{i=1}^{n} w_{ij} x_i \right| \leq \varepsilon \sum_{i=1}^{n} w_{ij} \quad \forall j \in [d]
\]

\[
x_i \in [-1,1] \quad \forall i \in V
\]

* closest in ℓ_2 (Euclidean distance)

• Projection is a computationally expensive step
 • For $d = 1$ can be done in $O(n)$ time [Maculan, et al. ‘03]
 • For $d = 2$ we give an $O(n \log^2 n)$ time algorithm
 • Open: Give $\tilde{O}(n)$ time algorithm for any fixed d
Badger Rampage: \textbf{BalanceD GRaph Partitioning via RAnDoMized Projected Gradient DEscent}

• Set $x_0 = 0$
• For $i = 1 \ldots t$:
 • Gradient step: $y_i = (x_i + N_d(0,1)) \cdot (I + \gamma A)$
 • Project on the feasible space: $x_{i+1} = \text{Proj}(y_i)$

* If fractional values remain, use them as rounding probabilities.

Open: What can we say about convergence?
 – Randomized PGD converges to a local minimum \textbf{if all constraints are equalities} [Ge, Huang, Jin, Yuan, COLT’15]
 – With inequalities even computing Frank-Wolfe conditional gradient is NP-hard
Projection Problem

- Feasible region: $B_\infty \cap \left(\bigcap_{j=1}^{d} S_j^\epsilon \right)$, where:
 - ℓ_∞-ball $B_\infty = \{ x \in R^n \mid x_i \in [-1; 1] \}$
 - Slice $S_j^\epsilon = \{ x \in R^n \mid |\sum_{i=1}^{n} w_{ij} x_i| \leq \epsilon \sum_{i=1}^{n} w_{ij} \}$

- Approaches:
 - Solve exactly using KKT conditions
 - Alternating projections:
 $P_{B_\infty} (P_{S_1^\epsilon} (P_{S_2^\epsilon} (\ldots P_{S_d^\epsilon} (P_{B_\infty} (\ldots (y) \ldots)) \ldots))$
 - Finds a point in the feasible space, not necessarily closest
 - Dykstra’s projection algorithm
 - Converges to the projection
Projection problem

Minimize: \(f(x) = \|x - y\|_2^2 \)

Subject to:

\[
x_i^2 \leq 1 \quad \forall i \in [n]
\]

\[
\sum_{i=1}^{n} w_{ij} x_i \leq c \quad \forall j \in [d]
\]

\[
\sum_{i=1}^{n} w_{ij} x_i \geq -c \quad \forall j \in [d]
\]
After simplifying KKT conditions...

- KKT is equivalent to finding $\lambda_1, \ldots, \lambda_d$ such that \mathbf{x} satisfies the constraints, where:
 - $x_i = [y_i - \sum_j \lambda_j w_{ij}]$, where $[\cdot]$ is rounding to $[-1,1]$.
 - I.e. shift y by a lin. combination, then project on B_∞.

- \mathbf{x} is the projection if it satisfies constraints:
 - $\lambda_j < 0 \Rightarrow \sum_i w_{ij} x_i = c$
 - $\lambda_j = 0 \Rightarrow \sum_i w_{ij} x_i \in [-c, c]$
 - $\lambda_j > 0 \Rightarrow \sum_i w_{ij} x_i = -c$
Finding $\lambda_1, \ldots, \lambda_d$

- For each j there are 3 cases:
 - $\lambda_j < 0 \Rightarrow \sum_i w_{ij} x_i = c$
 - $\lambda_j = 0 \Rightarrow \sum_i w_{ij} x_i \in [-c, c]$
 - $\lambda_j > 0 \Rightarrow \sum_i w_{ij} x_i = -c$

- Try 3^d combinations. Select the best point
 - For each unknown λ_j we have equality constraints
 - Projection on $B_\infty \cap (\cap_{i=1}^d A_i)$, where A_i are hyperplanes

- Can find $\lambda_1, \ldots, \lambda_d$ using nested binary search
 - $O(n \log n)$ for $d = 1$ and $O(n \log^2 n)$ for $d = 2$
 - Conjecture: $\tilde{O}(n)$ for any fixed d
Balanced Graph Partitioning

• Implementation in Apache Giraph

• Percentage of cut edges on subsets of the Facebook graph (allowed vertex imbalance – 3%).

<table>
<thead>
<tr>
<th>Graph</th>
<th>Badger Rampage</th>
<th>SocialHash</th>
<th>Spinner</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB-2.5B</td>
<td>5.11%</td>
<td>8.75%</td>
<td>13.30%</td>
</tr>
<tr>
<td>FB-55B</td>
<td>4.99%</td>
<td>11.75%</td>
<td>12.79%</td>
</tr>
<tr>
<td>FB-80B</td>
<td>5.21%</td>
<td>12.04%</td>
<td>8.64%</td>
</tr>
<tr>
<td>FB-400B</td>
<td>6.88%</td>
<td>5.82%</td>
<td>6.31%</td>
</tr>
<tr>
<td>FB-800B</td>
<td>5.52%</td>
<td>5.25%</td>
<td>6.83%</td>
</tr>
</tbody>
</table>
2D Balanced Graph Partitioning

- Percentage of cut edges on public graphs (allowed imbalance on vertices and degrees – 1%).

<table>
<thead>
<tr>
<th>Graph</th>
<th>Badger Rampage–exact projection</th>
<th>Badger Rampage – alternating projection</th>
<th>Spinner</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiveJournal</td>
<td>6.74%</td>
<td>6.74%</td>
<td>9.53%</td>
</tr>
<tr>
<td>Orkut</td>
<td>5.14%</td>
<td>4.9%</td>
<td>5.68%</td>
</tr>
<tr>
<td>ego-Gplus</td>
<td>12%</td>
<td>12.2%</td>
<td>44.5%</td>
</tr>
</tbody>
</table>
Step size selection (γ)

- Cut size per iteration as a function of γ
Future work

• $\tilde{O}(n)$ algorithm for fixed d?
• Guarantees on convergence of Badger Rampage?
• Practical algorithm for more than 2 parts
 – Currently use recursive partitioning
 – Can modify the approach to support k parts, but time and memory increase by factor k