Badger Rampage: Multi-Dimensional Balanced Partitioning of Facebook-scale Graphs

Grigory Yaroslavtsev
(Indiana University, Bloomington)
http://grigory.us/blog

Dmitry Avdyukhin (Indiana University), Sergey Pupyrev (Facebook)

2nd Workshop on Local Algorithms, MIT, June 14, 2018

"Three Schools of Thought" in Algorithms & Complexity

- Boston (MIT & Harvard)
 - Youthful & innovative attacks on problems, driven by PhD students with new ideas ("grad student descent")
 - "Relentless optimism;)": faster algorithms, e.g.
 sublinear time, gradient descent, unconditional results

"Three Schools of Thought" in Algorithms & Complexity

- New York & Chicago (Princeton, NYU, U Chicago)
 - Abstract and skeptical theory building, driven by fundamental questions and big agendas
 - "Life is hard...": polynomial-time, hardness of approximation, conditional hardness, beyond-worst case analysis

"Three Schools of Thought" in Algorithms & Complexity

- Bay area (Stanford & Berkeley)
 - No time for philosophy, driven by applications and societal needs
 - "Let's start a company and change the society!": machine learning/AI, fairness, social networks,

privacy

This talk

"Boston school"

 Fast, optimistic and specific: sublinear time, streaming, distributed, gradient descent

"Bay area school"

– Driven by applications, does it work in practice and scale to large data?

Balanced Graph Partitioning

- Partition G(V, E) into k parts $V_1, V_2, ..., V_k$:
 - Each part contains $(1 \pm \epsilon)^{\frac{|V|}{k}}$ vertices
 - # of edges inside the parts is maximized
- Goal: make it work for the real Facebook graph
 - Load balancing
 - Community detection
 - Selecting representative subsets for training

— ...

Facebook Graph

vertices $\approx 2 \times 10^9$, #edges $\approx 10^{12}$

Hard in Theory, Important in Practice

- Minimizing the cut
 - No constant-factor approximation for $\epsilon = 0, k \geq 3$ unless P = NP [Andreev, Racke'06]
 - Best approximation: polylog [Feige, Krauthgamer'02]
- Max n/2-UNCUT
 - $-\approx 0.64$ via SDP [Halperin, Zwick, IPCO'01]
- If approximate balance is allowed, what is the hardness of this problem?

Hard in Theory, Important in Practice

- Previous generation tools:
 - METIS [Karypis, Kumar, '95]
- Google:
 - Linear embedding: [Aydin, Bateni, Mirrokni, WSDM'16]
- Facebook:
 - Label propagation: [Ugander, Backstrom, WSDM'13]
 - SocialHash partitioner: [Kabiljo, Karrer, Pundir, Pupyrev, Shalita, Akhremtsev, Presta, VLDB'17]
 - Spinner [Martella, Logothetis, Loukas, Siganos, ICDE'17]
- Some other papers:
 - FENNEL [Tsourakakis, Gkantsidis, Radunovic, Vojnovic, WSDM'14]

Multidimensional Balanced Graph Partitioning

- Balance according to multiple weights (≥ 0)
 - Each vertex i has d weights: $w_{i,1}, w_{i,2}, \dots, w_{i,d}$
 - Let $w_j(S) = \sum_{i \in S} w_{ij}$ for each $j \in [d]$
 - Want $w_j(V_t) = \frac{(1 \pm \epsilon)w_j(V)}{k}$ for each part V_t
- Balanced graph partitioning: d = 1, $\forall i$: $w_{i1} = 1$
- Balance of the sum of degrees in each part:

$$w_{i2} = \deg(i)$$

Note: can be impossible as weights are unrelated

Existing approaches are combinatorial

- Local search, branch and bound, "linear embedding", etc ...
- Difficult to extend to the multi-dimensional case
 - Don't scale very well
 - Don't produce good results
- Our approach is gradient descent based:
 - Easy to implement
 - Scales well on Facebook-scale graphs
 - Handles multiple balance constraints naturally

Quadratic Integer Program

- Variable x_i for each vertex:
 - $i \in V_1: x_i = 1$
 - $i \in V_2$: $x_i = -1$

Maximize:
$$\sum_{(i_1,i_2)\in E} \frac{1}{2} (x_{i_1} x_{i_2} + 1)$$

Subject to:
$$\left|\sum_{i=1}^{n} w_{ij} x_i\right| \le \epsilon \sum_{i=1}^{n} w_{ij} \quad \forall j \in [d]$$

$$x_i \in \{-1,1\} \qquad \forall i \in V$$

Non-convex relaxation

• $x_i \rightarrow$ continuous variables

Maximize:
$$\sum_{(i_1,i_2)\in E} \frac{1}{2} (x_{i_1} x_{i_2} + 1)$$

Subject to:
$$\left|\sum_{i=1}^{n} w_{ij} x_i\right| \le \epsilon \sum_{i=1}^{n} w_{ij} \quad \forall j \in [d]$$

$$x_i \in [-1,1] \quad \forall i \in V$$

Randomized Projected Gradient Descent

- Objective: $f(x) = x^T A x$ (up to constants)
 - $-\nabla f(\mathbf{x}) = A\mathbf{x}, \ \nabla^2 f(\mathbf{x}) = A$
- Projected Gradient Descent
 - $-\operatorname{Set} x_0 = \mathbf{0}$
 - For i = 1 ... t:
 - Gradient step: $y_i = x_i + \gamma \cdot \nabla f(x_i) = x_i(I + \gamma A)$
 - Project on the feasible space: $x_{i+1} = Proj(y_i)$
- Note that $\mathbf{x}_0 = \mathbf{0}$ is a saddle point
 - Add random noise: $x'_i = x_i + N_d(0,1)$

Projection Step

• $Proj(y_i)$ is $x = closest^*$ point to y_i satisfying:

$$\left| \sum_{i=1}^{n} w_{ij} x_i \right| \le \epsilon \sum_{i=1}^{n} w_{ij} \quad \forall j \in [d]$$

$$x_i \in [-1,1] \qquad \forall i \in V$$

- * closest in ℓ_2 (Euclidean distance)
- Projection is a computationally expensive step
 - For d = 1 can be done in O(n) time [Maculan, et al. '03]
 - For d = 2 we give an $O(n \log^2 n)$ time algorithm
 - Open: Give $\tilde{O}(n)$ time algorithm for any fixed d

Badger Rampage: BalAnceD GRaph Partitioining via RAndoMized Projected Gradient DEscent

- Set $x_0 = 0$
- For i = 1 ... t:
 - Gradient step: $\mathbf{y}_i = (\mathbf{x}_i + N_d(0,1)) \cdot (I + \gamma A)$
 - Project on the feasible space: $x_{i+1} = Proj(y_i)$
- * If fractional values remain, use them as rounding probabilities
- Open: What can we say about convergence?
 - Randomized PGD converges to a local minimum if all constraints are equalities [Ge, Huang, Jin, Yuan, COLT'15]
 - With inequalities even computing Frank-Wolfe conditional gradient is NPhard

Projection Problem

- Feasible region: $B_{\infty} \cap \left(\bigcap_{j=1}^{d} S_{\epsilon}^{j} \right)$, where:
 - $-\ell_{\infty}$ -ball $\mathbf{B}_{\infty} = \{x \in \mathbb{R}^n \mid x_i \in [-1; 1]\}$
 - Slice $S_{\epsilon}^{j} = \{x \in \mathbb{R}^{n} \mid \left| \sum_{i=1}^{n} w_{ij} x_{i} \right| \le \epsilon \sum_{i=1}^{n} w_{ij} \}$
- Approaches:
 - Solve exactly using KKT conditions
 - Alternating projections:

$$P_{\boldsymbol{B}_{\infty}}(P_{\boldsymbol{S}_{\boldsymbol{\epsilon}}^{1}}(P_{\boldsymbol{S}_{\boldsymbol{\epsilon}}^{2}}(...P_{\boldsymbol{S}_{\boldsymbol{\epsilon}}^{d}}(P_{\boldsymbol{B}_{\infty}}(...(y)...)$$

- Finds a point in the feasible space, not necessarily closest
- Dykstra's projection algorithm
 - Converges to the projection

Projection problem

Minimize: $f(x) = ||x - y||_2^2$

Subject to:

$$x_i^2 \le 1 \qquad \forall i \in [n]$$

$$\sum_{i=1}^{n} w_{ij} x_i \le c \qquad \forall j \in [d]$$

$$\sum_{i=1}^{N} w_{ij} x_i \ge -c \qquad \forall j \in [d]$$

After simplifying KKT conditions...

- KKT is equivalent to finding $\lambda_1, \dots, \lambda_d$ such that x satisfies the constraints, where
 - $-x_i = [y_i \sum_j \lambda_j w_{ij}]$, where [] is rounding to [-1,1]
 - I.e. shift y by a lin. combination, then project on B_{∞}
- x is the projection if it satisfies constraints:

$$-\lambda_j < 0 \Rightarrow \sum_i w_{ij} x_i = c$$

$$-\lambda_i = 0 \Rightarrow \sum_i w_{ij} x_i \in [-c, c]$$

$$-\lambda_i > 0 \Rightarrow \sum_i w_{ij} x_i = -c$$

Finding $\lambda_1, \dots, \lambda_d$

• For each *j* there are 3 cases:

$$-\lambda_{j} < 0 \Rightarrow \sum_{i} w_{ij} x_{i} = c$$
$$-\lambda_{i} = 0 \Rightarrow \sum_{i} w_{ij} x_{i} \in [-c, c]$$

$$-\lambda_i > 0 \Rightarrow \sum_i w_{ij} x_i = -c$$

- Try 3^d combinations. Select the best point
 - For each unknown λ_j we have equality constraints
 - Projection on $B_{\infty} \cap (\bigcap_{i=1}^{d} A_{i})$, where A_{i} are hyperplanes
- Can find $\lambda_1, \dots, \lambda_d$ using nested binary search
 - $-O(n \log n)$ for d = 1 and $O(n \log^2 n)$ for d = 2
 - Conjecture: $\tilde{O}(n)$ for any fixed d

Balanced Graph Partitioning

Implementation in Apache Giraph

 Percentage of cut edges on subsets of the Facebook graph (allowed vertex imbalance – 3%).

Graph	Badger Rampage	SocialHash	Spinner
FB-2.5B	5.11%	8.75%	13.30%
FB-55B	4.99%	11.75%	12.79%
FB-80B	5.21%	12.04%	8.64%
FB-400B	6.88%	5.82%	6.31%
FB-800B	5.52%	5.25%	6.83%

2D Balanced Graph Partitioning

 Percentage of cut edges on public graphs (allowed imbalance on vertices and degrees – 1%).

Graph	Badger Rampage– exact projection	Badger Rampage – alternating projection	Spinner
LiveJournal	6.74%	6.74%	9.53%
Orkut	5.14%	4.9%	5.68%
ego-Gplus	12%	12.2%	44.5%

Step size selection (γ)

Cut size per iteration as a function of y

Future work

- $\tilde{O}(n)$ algorithm for fixed d?
- Guarantees on convergence of Badger Rampage?
- Practical algorithm for more than 2 parts
 - Currently use recursive partitioning
 - Can modify the approach to support k parts, but time and memory increase by factor k