## **INSPECTRE:** Privately Estimating the Unseen

Jayadev Acharya, ECE, Cornell University Gautam Kamath, CSAIL, MIT Ziteng Sun, ECE, Cornell University Huanyu Zhang, ECE, Cornell University

- p: unknown discrete distribution
- f(p): some property of distribution, e.g. entropy.
- α: accuracy
- Input: i.i.d. samples X<sub>1</sub><sup>n</sup> from p
- **Output:**  $\hat{f} : X_1^n \to \mathbb{R}$  such that w.p. at least 2/3,

 $\left|\hat{f}(X_1^n) - f(p)\right| < \alpha$ 

Data may contain sensitive information.

- In medical studies, data may contain health records or disease history.
- In map application, position information indicates users' residence.

**Differential Privacy:**  $\hat{f}$  is  $\epsilon$ -differentially private (DP) if for any  $X_1^n$  and  $Y_1^n$ , with  $d_{ham}(X_1^n, Y_1^n) \leq 1$ , for all measurable S,

 $\frac{\Pr\left(f(X_1^n)\in S\right)}{\Pr\left(f(Y_1^n)\in S\right)}\leq e^\epsilon.$ 

Given i.i.d. samples from an unknown distribution p, the goals are:

- Accuracy: estimate f(p) up to  $\pm \alpha$  with probability  $> \frac{2}{3}$ .
- *Privacy*: estimator must satisfy  $\epsilon$ -differential privacy.

We are interested in the following properties:

- **Entropy**, H(p): the Shannon entropy.
- **Support Coverage**, *S<sub>m</sub>(p)*: expected number of distinct symbols in *m* draws from *p*.
- Support Size, S(p): # symbols with non-zero probability.

Informally, our upper bounds show that the cost of privacy in these settings is often **negligible** compared to the non-private statistical task. Furthermore, our upper bounds are **almost tight** in all parameters.

Our algorithms use Laplace Mechanism.

- Compute a non-private estimate of the property;
- Privatize this estimator by adding Laplace noise  $X \sim Lap(\Delta_{n,\hat{f}}/\epsilon).$

We find estimators with low sensitivity for all these problems.

## Evaluation on real data

- Support coverage estimation
- Comparison on performance of private and non-private estimator
- The dataset: 2000 US Census data, and Hamlet



## The End

Details in paper online!

https://arxiv.org/abs/1803.00008