

Ideal Lattices

Vadim Lyubashevsky
Tel-Aviv University

Ideal Lattice FAQs

Q: What are ideal lattices?

A: They are lattices with some additional
algebraic structure.

Lattices are groups

Ideal Lattices are ideals

Q: What can we do with ideal lattices?

A: 1. Build efficient cryptographic primitives

 2. Build a homomorphic encryption scheme

Cyclic Lattices

-432-1 63-2-7

 A set L in Zn is a cyclic lattice if:

1.) For all v,w in L, v+w is also in L

+ = 260-8

2.) For all v in L, -v is also in L

-432-1 4-3-21

3.) For all v in L, a cyclic shift of v is also in L

-432-1 -432-1 -432-1

32-1-4

-432-1 -432-1 -432-1

-432-1 -432-1 2-1-43

-432-1 -432-1 -432-1 -432-1 -432-1 -1-432

Cyclic Lattices = Ideals in Z[x]/(xn-1)

-432-1 63-2-7

 A set L in Zn is a cyclic lattice if L is an ideal in Z[x]/(xn-1)

1.) For all v,w in L, v+w is also in L

+ = 260-8

2.) For all v in L, -v is also in L

-432-1 4-3-21

3.) For all v in L, a cyclic shift of v is also in L vx is also in L

32-1-4

-432-1 -432-1 -432-1 -432-1 -432-1 -432-1

-432-1 -432-1 2-1-43

-432-1 -432-1 -432-1 -432-1 -432-1 -1-432

(-1+2x+3x2-4x3)+(-7-2x+3x2+6x3)=(-8+0x+6x2+2x3)

(-1+2x+3x2-4x3) (1-2x-3x2+4x3)

-1+2x+3x2-4x3

(-1+2x+3x2-4x3)x=-4-x+2x2+3x3

(-1+2x+3x2-4x3)x2 =3-4x-x2+2x3

(-1+2x+3x2-4x3)x3 =2+3x-4x2-x3

Why Cyclic Lattices?

● Succinct representations
– Can represent an n-dimensional lattice with 1

vector

● Algebraic structure
– Allows for fast arithmetic (using FFT)
– Makes proofs possible

● NTRU cryptosystem (fast but no proofs)
● One-way functions based on the worst-case

hardness of SVP in cyclic lattices [Mic02]

Is SVPpoly(n) Hard for Cyclic Lattices?

Short answer: we don't know but conjecture it is.

What's wrong with the following argument that
SVPn is easy?

 -432-1 -432-1 -432-1 -432-1 -432-1 4321 v is a shortest vector in L

-432-1 -432-1 -432-1 -432-1 -432-1 3214

-432-1 -432-1 -432-1 -432-1 -432-1 2143

-432-1 -432-1 -432-1 -432-1 -432-1 1432

-432-1 -432-1 -432-1 -432-1 -432-1 10101010

+
Also in L

Length at most n||v||

Algorithm for solving SVPn(L) for a cyclic lattice L:
1. Construct 1-dimensional lattice L'=L ∩ {1n}
2. Find and output the shortest vector in L'

The Hard Cyclic Lattice Instances

-432-1 -432-1 -432-1 -432-1 -432-1 -432-1 v is a shortest vector in L

-432-1 -432-1 -432-1 -432-1 -432-1 32-1-4

-432-1 -432-1 -432-1 -432-1 -432-1 2-1-43

-432-1 -432-1 -432-1 -432-1 -432-1 -1-432

-432-1 -432-1 -432-1 -432-1 -432-1 0000

+
Also in L

Length at most n||v||

1n

The “hard” instances of cyclic lattices lie on plane P perpendicular to the 1n vector

In algebra language:

If R=Z[x]/(xn-1), then

 1n = (xn-1+xn-2+...+1) ≈ R/(x-1) ≈ Z[x]/(x-1)
 P = (x-1) ≈ R/(xn-1+xn-2+...+1) ≈ Z[x]/(xn-1+xn-2+...+1)

f-Ideal Lattices = Ideals in Z[x]/(f)

Want f to have 3 properties:

1)Monic (i.e. coefficient of largest exponent is 1)

2)Irreducible over Z

3)For all polynomials g,h ||gh mod f||<poly(n)||g||*||h||

Conjecture: For all f that satisfy the above 3 properties,
solving SVPpoly(n) for ideals in Z[x]/(f) takes time 2Ω(n).

Some “good” f to use:

f=xn-1+xn-2+...+1 where n is prime

f=xn+1 where n is a power of 2

(xn+1)-Ideal Lattices = Ideals in Z[x]/(xn+1)

4321 63-2-7

 A set L in Zn is an (xn+1)-ideal lattice if L is an ideal in Z[x]/(xn+1)

1.) For all v,w in L, v+w is also in L

+ = 1060-6

2.) For all v in L, -v is also in L

4321 -4-3-2-1

3.) For all v in L, vx is also in L

321-4

-432-1 -432-1 -432-1 -432-1 -432-1 4321

-432-1 -432-1 21-4-3

-432-1 -432-1 -432-1 -432-1 -432-1 1-4-3-2

(1+2x+3x2+4x3)+(-7-2x+3x2+6x3)=(-6+0x+6x2+10x3)

(1+2x+3x2+4x3) (-1-2x-3x2-4x3)

1+2x+3x2+4x3

(1+2x+3x2+4x3)x= -4+x+2x2+3x3

(1+2x+3x2+4x3)x2 = -3-4x+x2+2x3

(1+2x+3x2+4x3)x3 = -2-3x-4x2+x3

Hardness of Problems for General
and (xn+1)-Ideal Lattices

SVP

SIVP

GapSVP

uSVP

BDD

General (xn+1)-ideal

NP-hard

NP-hard

NP-hard

NP-hard

NP-hard

?

?

?

N/A

?

SVP

SIVP

GapSVP

uSVP

BDD

General (xn+1)-ideal

?

?

?

?

?

?

?

Easy

N/A

?

Legend:
?: No hardness proofs nor sub-exponential time algorithms are known.
Colored boxes: Problems are equivalent

Exact Versions Poly(n)-approximate Versions

SVP = SIVP

Lemma: If v is a vector in Z[x]/(f) where f is a monic,
irreducible polynomial of degree n, then

v, vx, vx2, ... vxn-1

 are linearly independent.
Proof: Suppose not. Let v be in Z[x] with deg(v) < n, and a0,a1,a2,...an-1

in Z such that

a0v+a1vx+a2vx2+...+an-1vxn-1 mod f = 0

v(a0+a1x+a2x
2+...+an-1x

n-1) mod f =0

vw mod f =0

f is irreducible (also prime), thus either f|v or f|w.

But deg(v), deg(w) < n, so contradiction.

SVP = SIVP

Lemma: If v is a vector in Z[x]/(f) where f is a monic,
irreducible polynomial of degree n, then

v, vx, vx2, ... vxn-1

 are linearly independent.

321-4

-432-1 -432-1 -432-1 -432-1 -432-1 4321

-432-1 -432-1 21-4-3

-432-1 -432-1 -432-1 -432-1 -432-1 1-4-3-2

Shortest vector v

vx

vx2

vx3

||v|| = ||vx|| = ||vx2|| = ||vx3||

Corollary: A (xn+1)-ideal lattice cannot have a unique shortest vector.

GapSVP√n is easy
Fact: For all (xn+1)-ideal lattices L,

det(L)1/n ≤ λ1(L) ≤ √n det(L)1/n

So det(L)1/n is a √n – approximation of λ1(L)

Proof of fact:

1. λ1(L) ≤ √n det(L)1/n is Minkowski's theorem.

2. Let v be the shortest vector of L. Define L'=(v).

(i.e. L' is generated by vectors v, vx, vx2, ... vxn-1)

L' is a sublattice of L, so we have

 det(L) ≤ det(L') ≤ ||v||n = (λ1(L))n

Applications of Ideal Lattices

● One-way functions based on SVP [Mic02]

● Collision-resistant hash functions based on SVP
[LM06,PR06,LMPR08,ADLMPR08]

● Tighter worst-case to average-case reductions [PR07]

● One-time signatures based on SVP [LM08]

● Almost practical ID and signature schemes based on
SVP [Lyu08]

● Fully homomorphic encryption based on BDD [Gen09]

● Encryption schemes based on quantum hardness of
SVP [SSTX09]

Collision-Resistant Hash Function

● Collision-resistant hash function [LM06, PR06, LMPR08]

– Provable security based on worst-case hardness of
approximating SVPÕ(n)

– Function evaluation in Õ(n) time vs. Õ(n2) for general
lattices

– SWIFFTX hash function entered into SHA-3 competition.
Efficient in practice. [ADLMPR08]

Choose p to be a number ≈ O(n1.5)

Choose elements a1,...,a3log(n) randomly in Zp[x]/(xn+1)

On an input from {0,1}3nlog(n) :

The Hash Function Family

-432-1 -432-1 -432-1 -432-1 -432-1 1001 -432-1 -432-1 -432-1 -432-1 -432-1 1010 -432-1 -432-1 -432-1 -432-1 -432-1 0011. . .
n bitsn bits n bits n bitsn bits

y1 y2 y3log(n) in Zp[x]/(xn+1)

Output: a1y1+a2y2+...+a3log(n)y3log(n) mod p

Function maps 3nlog(n) bits to log(pn)=nlog(p)=1.5nlog(n) bits

Efficiency of the Hash Function

● The hash function is defined by O(log(n))
elements in Zp[x]/(xn+1)

– Each element requires nlog(p) bits
– Total space needed O(nlog2n) bits

● Computing a1y1+a2y2+...+a3log(n)y3log(n) requires

– 3log(n) additions: O(nlog2n) time
– 3log(n) multiplications: O(nlog3n) time using FFT

● In practice

– Can exploit parallelism
– Can do a lot of pre-processing for the FFT

Comparison of Lattice
Hash Functions

Storage

Computing Time

Hardness Assumption

Best Known Attack Time

General Lattices
([Ajt96, ... ,MR07])

(xn+1)-ideal lattices
([LM06, PR06, LMPR08])

Õ(n2)

Õ(n2)

SIVPÕ(n) or GapSVPÕ(n)

2Ω(n)

Õ(n)

Õ(n)

(xn+1)-ideal SVPÕ(n)

2Ω(n)

Proof of Security

● Finding collisions in a random hash function
instance a1,...,a3log(n) (for ai in Zp[x]/(xn+1)) is as
hard as solving SVPÕ(n) in any ideal of Z[x]/(xn+1)

● Proof similar to the one for general lattices

● Proceed in iterations:

1)Have some vector in L

2)Create a random hash function

3)Finding a collision → finding a shorter vector

4)Repeat

Security Proof
(From one vector to n vectors)

v

vx

The vectors v, vx, vx2, ... vxn-1 generate a full-dimensional sub-lattice of L

For simplicity, we'll assume that they generate L

||v|| > n λ1(L)

Security Proof
(Getting a random hash function)

v

vx

Repeat 3log(n) times:

1. Generate a point close to the origin according to a Gaussian distribution
with a “large-enough” variance
2. Reduce the point into the parallelepiped
 (By [MR07], the points are statistically close to uniform in Rn/L)

Security Proof
(Getting a random hash function)

v

vx

Result of sampling:

Have randomly-distributed points in the parallelepiped
Each element has a lattice point “not too far away”

 (approximately ||v||/√n >√n λ1(L) away)

Security Proof
(Getting a random hash function)

p divisions

p divisions

Subdivide each side of the parallelepiped into p divisions
Each intersection corresponds to an element in Zp[x]/(xn+1)

Round each generated point to the nearest intersection
The 3log(n) intersection points define the random hash function

1
2

3
4 5

1
2

3
4

5

0

Security Proof
(Finding a collision → finding a shorter vector)
Have a random hash function defined by

a1,...,a3log(n)

Suppose we find a collision

a1y1+...+a3log(n)y3log(n) = a1y'1+...+a3log(n)y'3log(n) mod p

where yi, y'i have 0/1 coefficients

Then a1(y1-y'1)+...+a3log(n)(y3log(n) – y'3log(n)) = 0 mod p

So, a1z1+...+a3log(n)z3log(n) = 0 mod p

 where zi have -1/0/1 coefficients

Security Proof
(Finding a collision → finding a shorter vector)

v

vx

(vai)/p (multiplication over R[x]/(xn+1))

Lattice point wi close to (vai)/p
ri = wi - (vai)/p

Consider h=w1z1+...+w3log(n)z3log(n) (h is in L because wi are in L and zi are in Z[x]/(xn+1))

h=(r1+(va1)/p)z1 +...+(r3log(n)+(va3log(n))/p)z3log(n)

 =r1z1+...r3log(n)z3log(n) +v(a1z1+...+a3log(n)z3log(n))/p

 =r1z1+...r3log(n)z3log(n) +vpg/p for some g in Z[x]/(xn+1)

 =r1z1+...r3log(n)z3log(n) +vg

So r1z1+...r3log(n)z3log(n) is in L

 So ||ri|| is on the order of ||v||/√n

Security Proof
(Finding a collision → finding a shorter vector)

Found a vector r1z1+...r3log(n)z3log(n)

How big is it?

zi have -1/0/1 coefficients (that's small)

How big are ri?

v

vx
(approximately ||v||/√n)

(at most n||v||/p = ||v||/√n)

Security Proof
(Finding a collision → finding a shorter vector)

Using the fact that ri are chosen randomly, and
the fact that ||ri|| is on the order of ||v||/√n,

||r1z1+...r3log(n)z3log(n)|| =O(||v||)

By modifying a few variables by polylog terms,
we can make it strictly less than ||v||

One more thing... need to make sure it's not 0

(Same idea as for general lattices)

One-time Signatures

● Nearly-optimal (asymptotically) 1-time signatures [LM08]

– Signing and verification takes Õ(n) time.

– Breaking signature is conjectured to be 2Ω(n)-hard

– No other such constructions (even ad-hoc) are known

– A black box conversion from 1-way functions would require
Ω(n2) time for 2Ω(n)-security [BM08]

● Our construction:

– Based on the hardness of finding collisions in the ideal
lattice based hash function

– Similar in spirit to some number-theoretic constructions

Modules and Hash Functions

Module: Like a vector space, but scalars can be
in a ring instead of a field

Module M=(G,R)

G is an Abelian group. R is a ring.

Module homomorphism h: M1 → M2 satisfies:

● h(gr)=h(g)r

● h(g1+g2)=h(g1)+h(g2)

Hardness assumption: hard to find g1,g2 such
that h(g1)=h(g2)

One-time Signature Scheme

g1

g2

h(g1)

h(g2)

 g1r+g2 s

 h(g1)r
+h(g2)

s'

 h(g1)r'
+h(g2)

g1r'+g2

Generate g1,g2 randomly in G1

Secret Key = (g1,g2)
Public Key=(h(g1),h(g2))

Message r in R1

Signature of r is s=g1r+g2

Accept if
h(s)=h(g1)r+h(g2)

M1=(G1,R1)

M2

Security proof idea:

Suppose an adversary finds
message r' and signature s'

Then we can sign r' and the
hash of our signature should
equal to h(r')

What if s'=g1r'+g2 ?

g1

g2

h(g1)

h(g2)

 g1r+g2 s

 h(g1)r
+h(g2)

 h(g1)r'
+h(g2)

g1r'+g2s'

M1=(G1,R1)

M2

Attacker knows:

s=g1r+g2

s'=g1r'+g2

g1=(s-s')/(r-r')
g2=s-g1r

Not giving us a
collision implies

knowing g1 and g2

g1 and g2 are
information-theoretically hidden

g1

g2

h(g1)

h(g2)

 g1r+g2 s

M1=(G1,R1)

M2

g1'

g2'

g1'r+g2'

Attacker knows:

r
h(g1)
h(g2)

s=g1r+g2

 Let z be in the kernel of h
(i.e. h(z)=0)

Consider:
g1'=g1-z

g2'=g2+zr

Can we do this for ideal lattices?

● M=(G,R)

– R=Zp[x]/(xn+1)

– G=R3log(n)

● h(y1,...,y3log(n))=a1y1+...+a3log(n)y3log(n) mod p

● Is h collision-resistant?

– No. It's easy to find (y1,...,y3log(n)) and (y'1,...,y'3log(n))
such that h(y1,...,y3log(n))=h(y'1,...,y'3log(n))

– It's hard to find small (y1,...,y3log(n)) and (y'1,...,y'3log(n))
such that h(y1,...,y3log(n))=h(y'1,...,y'3log(n))

One-time Signature Scheme

g1

g2

h(g1)

h(g2)

 g1r+g2 s

 h(g1)r
+h(g2)

s'

 h(g1)r'
+h(g2)

g1r'+g2

Generate short g1,g2 randomly
in G1

Secret Key = (g1,g2)
Public Key=(h(g1),h(g2))

Message is a short r in R1

Signature of r is s=g1r+g2

Accept if
h(s)=h(g1)r+h(g2) and
s is small

M1=(G1,R1)

M2

Security proof idea:

Suppose an adversary finds
message r' and signature s'

Then we can sign r' and the
hash of our signature should
equal to h(r')

g1 and g2 are
information-theoretically hidden

g1

g2

h(g1)

h(g2)

 g1r+g2 s

M1=(G1,R1)

M2

g1'

g2'

g1'r+g2'

Attacker knows:

r
h(g1)
h(g2)

s=g1r+g2

 Let z be in the kernel of h
(i.e. h(z)=0)

Consider:
g1'=g1-z

g2'=g2+zr

Issue: g1', g2' may not be
valid secret keys!

Making the lattice scheme work

● Intuitively,
– Choose secret keys using a distribution such that

larger keys are always possible
– Expected key size is small
– For any public key and signature, no secret key

has too high a prior probability

Some Open Problems
● Design truly practical schemes based on ideal lattices

– May involve making additional assumptions

● Prove some hardness results for ideal lattice problems

– If that fails, make up a problem that's hard for ideal lattices

● Prove some non-hardness results for ideal lattice problems

– e.g. show that SVPk is not NP hard for k<√n

● Show that solving SVP in ideals of Z[x]/(f) is easy for certain f

– Might be a good idea to look at f that are “very reducible”

● Does quantum computing help?

– Ideal lattices have a lot more structure than general lattices

● Design more cryptographic primitives based on ideal lattice problems

– Almost everything can be done with general lattices. Very few things can be
done with ideal lattices

