Ideal Lattices

Vadim Lyubashevsky Tel-Aviv University

Ideal Lattice FAQs

- Q: What are ideal lattices?
- A: They are lattices with some additional algebraic structure.

Lattices are groups

Ideal Lattices are ideals

- Q: What can we do with ideal lattices?
- A: 1. Build efficient cryptographic primitives
 - 2. Build a homomorphic encryption scheme

Cyclic Lattices

A set L in \mathbf{Z}^n is a cyclic lattice if:

1.) For all v,w in L, v+w is also in L

2.) For all v in L, -v is also in L

3.) For all v in L, a cyclic shift of v is also in L

Cyclic Lattices = Ideals in $\mathbf{Z}[x]/(x^n-1)$

A set L in Z^n is a cyclic lattice if L is an ideal in $Z[x]/(x^n-1)$

1.) For all v,w in L, v+w is also in L

-1 2 3 -4 + -7 -2 3 6 = -8 0 6 2

 $(-1+2x+3x^2-4x^3)+(-7-2x+3x^2+6x^3)=(-8+0x+6x^2+2x^3)$

2.) For all v in L, -v is also in L

 $(-1+2x+3x^2-4x^3)$ $(1-2x-3x^2+4x^3)$

3.) For all v in L, a cyclic shift of v is also in L vx is also in L

Why Cyclic Lattices?

- Succinct representations
 - Can represent an n-dimensional lattice with 1 vector
- Algebraic structure
 - Allows for fast arithmetic (using FFT)
 - Makes proofs possible

- NTRU cryptosystem (fast but no proofs)
- One-way functions based on the worst-case hardness of SVP in cyclic lattices [Mic02]

Is SVP_{poly(n)} Hard for Cyclic Lattices?

Short answer: we don't know but conjecture it is.

What's wrong with the following argument that SVP_n is easy?

Algorithm for solving $SVP_n(L)$ for a cyclic lattice L:

- 1. Construct 1-dimensional lattice $L'=L \cap \{1^n\}$
- 2. Find and output the shortest vector in L'

The Hard Cyclic Lattice Instances

The "hard" instances of cyclic lattices lie on plane P perpendicular to the 1ⁿ vector In algebra language:

If $R=\mathbf{Z}[x]/(x^{n}-1)$, then

$$1^{n} = (x^{n-1} + x^{n-2} + ... + 1) \approx R/(x-1) \approx \mathbf{Z}[x]/(x-1)$$

P = (x-1) \approx R/(x^{n-1} + x^{n-2} + ... + 1) \approx \mathbf{Z}[x]/(x^{n-1} + x^{n-2} + ... + 1)

f-Ideal Lattices = Ideals in **Z**[x]/(f)

Want f to have 3 properties:

1)Monic (i.e. coefficient of largest exponent is 1)
2)Irreducible over Z

3)For all polynomials g,h ||gh mod f||<poly(n)||g||*||h||

<u>Conjecture</u>: For all f that satisfy the above 3 properties, solving SVP_{poly(n)} for ideals in Z[x]/(f) takes time $2^{\Omega(n)}$.

Some "good" f to use:

 $f=x^{n-1}+x^{n-2}+\ldots+1$ where n is prime

 $f=x^n+1$ where n is a power of 2

(x^n+1) -Ideal Lattices = Ideals in $\mathbf{Z}[x]/(x^n+1)$

A set L in \mathbb{Z}^n is an (x^n+1) -ideal lattice if L is an ideal in $\mathbb{Z}[x]/(x^n+1)$

1.) For all v,w in L, v+w is also in L

1 2 3 4 + -7 -2 3 6 = -6 0 6 10

 $(1+2x+3x^2+4x^3)+(-7-2x+3x^2+6x^3)=(-6+0x+6x^2+10x^3)$

2.) For all v in L, -v is also in L

1 2 3 4 -1 -2 -3 -4

 $(1+2x+3x^2+4x^3)$ $(-1-2x-3x^2-4x^3)$

3.) For all v in L, vx is also in L

Hardness of Problems for General and (xⁿ+1)-Ideal Lattices

Exact Versions

Poly(n)-approximate Versions

	General	(x ⁿ +1)-ideal
SVP	NP-hard	?
SIVP	NP-hard	?
GapSVP	NP-hard	?
uSVP	NP-hard	N/A
BDD	NP-hard	?

	General	(x ⁿ +1)-ideal
SVP	?	?
SIVP	?	?
GapSVP	?	Easy
uSVP	?	N/A
BDD	?	?

Legend:

?: No hardness proofs nor sub-exponential time algorithms are known.

Colored boxes: Problems are equivalent

SVP = SIVP

Lemma: If v is a vector in **Z**[x]/(f) where f is a monic, irreducible polynomial of degree n, then

V, VX, VX², ... VXⁿ⁻¹

are linearly independent.

Proof: Suppose not. Let v be in Z[x] with deg(v) < n, and $a_0, a_1, a_2, ..., a_{n-1}$ in Z such that

$$a_0 v + a_1 v x + a_2 v x^2 + ... + a_{n-1} v x^{n-1} \mod f = 0$$

 $v(a_0 + a_1 x + a_2 x^2 + ... + a_{n-1} x^{n-1}) \mod f = 0$
 $vw \mod f = 0$

f is irreducible (also prime), thus either f|v or f|w.

But deg(v), deg(w) < n, so contradiction.

SVP = SIVP

Lemma: If v is a vector in **Z**[x]/(f) where f is a monic, irreducible polynomial of degree n, then

V, VX, VX², ... VXⁿ⁻¹

are linearly independent.

Corollary: A (x^n+1) -ideal lattice cannot have a unique shortest vector.

 $GapSVP_{\sqrt{n}}$ is easy Fact: For all $(x^{n}+1)$ -ideal lattices L, $\det(L)^{1/n} \leq \lambda_1(L) \leq \sqrt{n} \det(L)^{1/n}$ So det(L)^{1/n} is a \sqrt{n} – approximation of $\lambda_1(L)$ Proof of fact: 1. $\lambda_1(L) \leq \sqrt{n} \det(L)^{1/n}$ is Minkowski's theorem. 2. Let v be the shortest vector of L. Define L'=(v). (i.e. L' is generated by vectors v, vx, vx², ... vxⁿ⁻¹) L' is a sublattice of L, so we have

 $det(L) \leq det(L') \leq ||v||^n = (\lambda_1(L))^n$

Applications of Ideal Lattices

- One-way functions based on SVP [Mic02]
- Collision-resistant hash functions based on SVP [LM06,PR06,LMPR08,ADLMPR08]
- Tighter worst-case to average-case reductions [PR07]
- One-time signatures based on SVP [LM08]
- Almost practical ID and signature schemes based on SVP [Lyu08]
- Fully homomorphic encryption based on BDD [Gen09]
- Encryption schemes based on quantum hardness of SVP [SSTX09]

Collision-Resistant Hash Function

- Collision-resistant hash function [LM06, PR06, LMPR08]
 - Provable security based on worst-case hardness of approximating $\text{SVP}_{\tilde{O}(n)}$
 - Function evaluation in Õ(n) time vs. Õ(n²) for general lattices
 - SWIFFTX hash function entered into SHA-3 competition.
 Efficient in practice. [ADLMPR08]

The Hash Function Family

Choose p to be a number $\approx O(n^{1.5})$

Choose elements $a_1, ..., a_{3log(n)}$ randomly in $\mathbf{Z}_{\mathbf{p}}[x]/(x^n+1)$

On an input from $\{0,1\}^{3nlog(n)}$:

Output: $a_1y_1 + a_2y_2 + ... + a_{3\log(n)}y_{3\log(n)} \mod p$

Function maps <u>3nlog(n)</u> bits to $log(p^n)=nlog(p)=1.5nlog(n)$ bits

Efficiency of the Hash Function

- The hash function is defined by O(log(n)) elements in Z_p[x]/(xⁿ+1)
 - Each element requires nlog(p) bits
 - Total space needed O(nlog²n) bits
- Computing $a_1y_1 + a_2y_2 + \dots + a_{3\log(n)}y_{3\log(n)}$ requires
 - 3log(n) additions: O(nlog²n) time
 - 3log(n) multiplications: O(nlog³n) time using FFT
- In practice
 - Can exploit parallelism
 - Can do a lot of pre-processing for the FFT

Comparison of Lattice Hash Functions

	General Lattices ([Ajt96, ,MR07])	(x ⁿ +1)-ideal lattices ([LM06, PR06, LMPR08])
Storage	Õ(n²)	Õ(n)
Computing Time	Õ(n²)	Õ(n)
Hardness Assumption	SIVP _{$\tilde{O}(n)$} or GapSVP _{$\tilde{O}(n)$}	$(x^{n}+1)$ -ideal SVP _{Õ(n)}
Best Known Attack Time	2 ^{Ω(n)}	2 ^{Ω(n)}

Proof of Security

- Finding collisions in a random hash function instance a₁,...,a_{3log(n)} (for a_i in Z_p[x]/(xⁿ+1)) is as hard as solving SVP_{Õ(n)} in any ideal of Z[x]/(xⁿ+1)
- Proof similar to the one for general lattices
- Proceed in iterations:

1)Have some vector in L

2)Create a random hash function

3)Finding a collision → finding a shorter vector4)Repeat

Security Proof (Getting a random hash function)

Security Proof (Getting a random hash function)

Subdivide each side of the parallelepiped into p divisions Each intersection corresponds to an element in $\mathbf{Z}_{p}[x]/(x^{n}+1)$

Round each generated point to the nearest intersection The 3log(n) intersection points define the random hash function

Security Proof (Finding a collision \rightarrow finding a shorter vector) Have a random hash function defined by $a_1,...,a_{3log(n)}$

Suppose we find a collision

 $a_1y_1 + ... + a_{3\log(n)}y_{3\log(n)} = a_1y'_1 + ... + a_{3\log(n)}y'_{3\log(n)} \mod p$ where y_i , y'_i have 0/1 coefficients Then $a_1(y_1 - y'_1) + ... + a_{3\log(n)}(y_{3\log(n)} - y'_{3\log(n)}) = 0 \mod p$ So, $a_1z_1 + ... + a_{3\log(n)}z_{3\log(n)} = 0 \mod p$ where z_i have -1/0/1 coefficients

Security Proof (Finding a collision \rightarrow finding a shorter vector)

Consider $h = w_1 z_1 + ... + w_{3\log(n)} z_{3\log(n)}$ (h is in L because w_i are in L and z_i are in Z[x]/(xⁿ+1)) $h = (r_1 + (va_1)/p)z_1 + ... + (r_{3\log(n)} + (va_{3\log(n)})/p)z_{3\log(n)})$

 $= r_1 z_1 + \dots r_{3\log(n)} z_{3\log(n)} + v(a_1 z_1 + \dots + a_{3\log(n)} z_{3\log(n)})/p$

 $=r_{1}z_{1}+...r_{3\log(n)}z_{3\log(n)}+vpg/p \text{ for some g in } Z[x]/(x^{n}+1) \qquad (va_{i})/p \text{ (multiplication over } \mathbf{R}[x]/(x^{n}+1) \text{)}$

Security Proof (Finding a collision \rightarrow finding a shorter vector) Found a vector $r_1 z_1 + \dots r_{3\log(n)} z_{3\log(n)}$ How big is it? z_i have -1/0/1 coefficients (that's small) How big are r_i? (at most n||v||/p = ||v||/√n) (approximately $||v||/\sqrt{n}$) VX So $||r_i||$ is on the order of $||v||/\sqrt{n}$

Security Proof (Finding a collision \rightarrow finding a shorter vector)

Using the fact that r_i are chosen randomly, and the fact that $||r_i||$ is on the order of $||v||/\sqrt{n}$,

$$||r_1 z_1 + ... r_{3\log(n)} z_{3\log(n)}|| = O(||v||)$$

By modifying a few variables by polylog terms, we can make it strictly less than ||v||

One more thing... need to make sure it's not 0 (Same idea as for general lattices)

One-time Signatures

- Nearly-optimal (asymptotically) 1-time signatures [LM08]
 - Signing and verification takes $\tilde{O}(n)$ time.
 - Breaking signature is conjectured to be $2^{\Omega(n)}$ -hard
 - No other such constructions (even ad-hoc) are known
 - A black box conversion from 1-way functions would require $\Omega(n^2)$ time for $2^{\Omega(n)}$ -security [BM08]
- Our construction:
 - Based on the hardness of finding collisions in the ideal lattice based hash function
 - Similar in spirit to some number-theoretic constructions

Modules and Hash Functions

Module: Like a vector space, but scalars can be in a ring instead of a field

Module M=(G,R)

G is an Abelian group. R is a ring. Module homomorphism h: $M_1 \rightarrow M_2$ satisfies:

- h(gr)=h(g)r
- $h(g_1+g_2)=h(g_1)+h(g_2)$

Hardness assumption: hard to find g_1, g_2 such that $h(g_1)=h(g_2)$

One-time Signature Scheme

 $M_1 = (G_1, R_1)$ \mathbf{g}_1 $g_1r'+g_2$ g_1r+g_2 S s' \mathbf{g}_{2} $h(g_2)$ h(g₁)r h(g₁)r $+h(g_{2})$ $+h(g_{2})$ h(a

Generate g_1, g_2 randomly in G_1

Secret Key = (g_1, g_2) Public Key= $(h(g_1), h(g_2))$

Message r in R_1 Signature of r is $s=g_1r+g_2$

Accept if $h(s)=h(g_1)r+h(g_2)$

Security proof idea:

Suppose an adversary finds message r' and signature s'

Then we can sign r' and the hash of our signature should equal to h(r')

Can we do this for ideal lattices?

- M=(G,R)
 - $R = Z_p[x]/(x^n+1)$
 - $G = R^{3\log(n)}$
- $h(y_1,...,y_{3\log(n)}) = a_1y_1 + ... + a_{3\log(n)}y_{3\log(n)} \mod p$
- Is h collision-resistant?
 - No. It's easy to find $(y_1, ..., y_{3\log(n)})$ and $(y'_1, ..., y'_{3\log(n)})$ such that $h(y_1, ..., y_{3\log(n)}) = h(y'_1, ..., y'_{3\log(n)})$
 - It's hard to find **small** $(y_1, ..., y_{3\log(n)})$ and $(y'_1, ..., y'_{3\log(n)})$ such that $h(y_1, ..., y_{3\log(n)}) = h(y'_1, ..., y'_{3\log(n)})$

One-time Signature Scheme

 $M_1 = (G_1, R_1)$ \mathbf{g}_1 $g_1r'+g_2$ g_1r+g_2 S s' \mathbf{g}_{2} $h(g_2)$ h(g₁)r h(g₁)r $+h(g_{2})$ $+h(g_{2})$ h(a

Generate *short* g_1, g_2 randomly in G_1

Secret Key = (g_1, g_2) Public Key= $(h(g_1), h(g_2))$

Message is a *short* r in R_1 Signature of r is $s=g_1r+g_2$

Accept if h(s)=h(g_1)r+h(g_2) and s is small

Security proof idea:

Suppose an adversary finds message r' and signature s'

Then we can sign r' and the hash of our signature should equal to h(r')

Making the lattice scheme work

- Intuitively,
 - Choose secret keys using a distribution such that larger keys are always possible
 - Expected key size is small
 - For any public key and signature, no secret key has too high a prior probability

Some Open Problems

- Design truly practical schemes based on ideal lattices
 - May involve making additional assumptions
- Prove some hardness results for ideal lattice problems
 - If that fails, make up a problem that's hard for ideal lattices
- Prove some non-hardness results for ideal lattice problems
 - e.g. show that SVP_k is not NP hard for $k < \sqrt{n}$
- Show that solving SVP in ideals of $\mathbf{Z}[x]/(f)$ is easy for certain f
 - Might be a good idea to look at f that are "very reducible"
- Does quantum computing help?
 - Ideal lattices have a lot more structure than general lattices
- Design more cryptographic primitives based on ideal lattice problems
 - Almost everything can be done with general lattices. Very few things can be done with ideal lattices