
OpenStack Ops Guide July 3, 2014

i

OpenStack Operations Guide
Copyright © 2014 OpenStack Foundation Some rights reserved.

This book provides information about designing and operating OpenStack clouds.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/legalcode

http://creativecommons.org/licenses/by/3.0/legalcode
http://creativecommons.org/licenses/by/3.0/legalcode
http://creativecommons.org/licenses/by/3.0/legalcode

OpenStack Ops Guide July 3, 2014

iii

Acknowledgments
The OpenStack Foundation supported the creation of this book with
plane tickets to Austin, lodging (including one adventurous evening
without power after a windstorm), and delicious food. For about USD
$10,000, we could collaborate intensively for a week in the same room
at the Rackspace Austin office. The authors are all members of the
OpenStack Foundation, which you can join. Go to the Foundation web site
at http://openstack.org/join.

We want to acknowledge our excellent host Rackers at Rackspace in
Austin:

• Emma Richards of Rackspace Guest Relations took excellent care of our
lunch orders and even set aside a pile of sticky notes that had fallen off
the walls.

• Betsy Hagemeier, a Fanatical Executive Assistant, took care of a room
reshuffle and helped us settle in for the week.

• The Real Estate team at Rackspace in Austin, also known as "The
Victors," were super responsive.

• Adam Powell in Racker IT supplied us with bandwidth each day and
second monitors for those of us needing more screens.

• On Wednesday night we had a fun happy hour with the Austin
OpenStack Meetup group and Racker Katie Schmidt took great care of
our group.

We also had some excellent input from outside of the room:

• Tim Bell from CERN gave us feedback on the outline before we started
and reviewed it mid-week.

• Sébastien Han has written excellent blogs and generously gave his
permission for re-use.

• Oisin Feeley read it, made some edits, and provided emailed feedback
right when we asked.

Inside the book sprint room with us each day was our book sprint
facilitator Adam Hyde. Without his tireless support and encouragement,
we would have thought a book of this scope was impossible in five
days. Adam has proven the book sprint method effectively again and

https://www.openstack.org/join

OpenStack Ops Guide July 3, 2014

iv

again. He creates both tools and faith in collaborative authoring at
www.booksprints.net.

We couldn't have pulled it off without so much supportive help and
encouragement.

http://www.booksprints.net/

OpenStack Ops Guide July 3, 2014

v

Table of Contents
Preface .. 15

Introduction to OpenStack ... 15
Getting Started with OpenStack ... 15
Who This Book Is For ... 17
How This Book Is Organized .. 19
Why and How We Wrote This Book ... 22
How to Contribute to This Book .. 26
Conventions Used in This Book .. 28

I. Architecture .. 1
1. Example Architectures .. 3

Example Architecture—Legacy Networking (nova) 3
Example Architecture—OpenStack Networking 9
Parting Thoughts on Architectures 24

2. Provisioning and Deployment ... 25
Automated Deployment .. 25
Automated Configuration .. 28
Remote Management .. 29
Parting Thoughts for Provisioning and Deploying
OpenStack ... 29
Conclusion ... 30

3. Designing for Cloud Controllers and Cloud Management 31
Hardware Considerations ... 33
Separation of Services .. 33
Database ... 34
Message Queue ... 35
Conductor Services ... 35
Application Programming Interface (API) 36
Extensions .. 36
Scheduling ... 37
Images ... 37
Dashboard ... 38
Authentication and Authorization .. 38
Network Considerations ... 39

4. Compute Nodes ... 41
Choosing a CPU ... 41
Choosing a Hypervisor ... 42
Instance Storage Solutions ... 43
Overcommitting ... 47
Logging ... 48
Networking .. 48
Conclusion ... 48

OpenStack Ops Guide July 3, 2014

vi

5. Scaling ... 49
The Starting Point .. 49
Adding Cloud Controller Nodes .. 51
Segregating Your Cloud ... 52
Scalable Hardware ... 56

6. Storage Decisions ... 59
Ephemeral Storage ... 59
Persistent Storage .. 59
OpenStack Storage Concepts ... 62
Choosing Storage Backends ... 63
Conclusion ... 68

7. Network Design ... 69
Management Network ... 69
Public Addressing Options .. 70
IP Address Planning ... 70
Network Topology ... 72
Services for Networking ... 74
Conclusion ... 74

II. Operations ... 77
8. Lay of the Land ... 79

Using the OpenStack Dashboard for Administration 79
Command-Line Tools .. 79
Network Inspection .. 87
Users and Projects .. 88
Running Instances .. 88
Summary ... 89

9. Managing Projects and Users ... 91
Projects or Tenants? ... 91
Managing Projects ... 91
Quotas ... 93
User Management ... 102
Creating New Users .. 102
Associating Users with Projects ... 104
Summary .. 108

10. User-Facing Operations ... 109
Images ... 109
Flavors ... 112
Security Groups .. 114
Block Storage ... 118
Instances .. 119
Associating Security Groups .. 124
Floating IPs .. 125
Attaching Block Storage ... 125

OpenStack Ops Guide July 3, 2014

vii

Taking Snapshots ... 127
Instances in the Database .. 130
Good Luck! .. 131

11. Maintenance, Failures, and Debugging 133
Cloud Controller and Storage Proxy Failures and
Maintenance .. 133
Compute Node Failures and Maintenance 135
Storage Node Failures and Maintenance 141
Handling a Complete Failure .. 143
Configuration Management ... 143
Working with Hardware ... 144
Databases .. 145
HDWMY .. 146
Determining Which Component Is Broken 147
Uninstalling .. 150

12. Network Troubleshooting ... 151
Using "ip a" to Check Interface States 151
Visualizing nova-network Traffic in the Cloud 152
Visualizing OpenStack Networking Service Traffic in the
Cloud ... 153
Finding a Failure in the Path ... 160
tcpdump .. 160
iptables .. 162
Network Configuration in the Database for nova-network
... 163
Debugging DHCP Issues with nova-network 164
Debugging DNS Issues .. 168
Troubleshooting Open vSwitch ... 170
Dealing with Network Namespaces 171
Summary .. 172

13. Logging and Monitoring ... 173
Where Are the Logs? ... 173
Reading the Logs ... 174
Tracing Instance Requests .. 176
Adding Custom Logging Statements 176
RabbitMQ Web Management Interface or rabbitmqctl 177
Centrally Managing Logs .. 178
StackTach ... 180
Monitoring ... 180
Summary .. 187

14. Backup and Recovery ... 189
What to Back Up ... 189
Database Backups .. 190

OpenStack Ops Guide July 3, 2014

viii

File System Backups ... 190
Recovering Backups .. 192
Summary .. 193

15. Customization .. 195
Create an OpenStack Development Environment 195
Customizing Object Storage (Swift) Middleware 198
Customizing the OpenStack Compute (nova) Scheduler 205
Customizing the Dashboard (Horizon) 210
Conclusion ... 210

16. Upstream OpenStack .. 211
Getting Help .. 211
Reporting Bugs .. 212
Join the OpenStack Community .. 215
How to Contribute to the Documentation 216
Security Information ... 216
Finding Additional Information .. 217

17. Advanced Configuration ... 219
Differences Between Various Drivers 219
Implementing Periodic Tasks .. 220
Specific Configuration Topics .. 221

18. Upgrades ... 223
Pre-Upgrade Testing Environment 223
Preparing for a Rollback ... 225
Upgrades ... 226
How to Perform an Upgrade from Grizzly to Havana—
Ubuntu .. 227
How to Perform an Upgrade from Grizzly to Havana—Red
Hat Enterprise Linux and Derivatives 234
How to Perform an Upgrade from Havana to Icehouse—
Ubuntu .. 241
How to Perform an Upgrade from Havana to Icehouse—
Red Hat Enterprise Linux and Derivatives 250
Cleaning Up and Final Configuration File Updates 258
Rolling Back a Failed Upgrade .. 259

A. Use Cases .. 265
NeCTAR ... 265
MIT CSAIL .. 266
DAIR .. 267
CERN ... 268

B. Tales From the Cryp^H^H^H^H Cloud ... 271
Double VLAN ... 271
"The Issue" ... 274
Disappearing Images .. 276

OpenStack Ops Guide July 3, 2014

ix

The Valentine's Day Compute Node Massacre 278
Down the Rabbit Hole ... 279
Havana Haunted by the Dead .. 281

C. Working with Roadmaps .. 283
Information Available to You ... 284
Influencing the Roadmap ... 285
Aspects to Watch ... 286
Replacement of Open vSwitch Plug-in with Modular Layer 2 288
Compute V3 API .. 288
OpenStack on OpenStack (TripleO) .. 288
Data Processing (Sahara) .. 288
Bare-Metal Deployment (Ironic) ... 288
Database as a Service (Trove) ... 289
Messaging as a Service (Marconi) ... 289
Scheduler Improvements .. 289

D. Resources .. 291
OpenStack ... 291
Cloud (General) .. 291
Python ... 291
Networking .. 291
Systems Administration .. 292
Virtualization ... 292
Configuration Management ... 292

Glossary ... 293
Index ... 351

OpenStack Ops Guide July 3, 2014

xi

List of Figures
1. OpenStack Havana Logical Architecture () .. 2
1.1. Basic node deployment ... 16
1.2. Performance node deployment ... 17
1.3. Controller node ... 18
1.4. Compute node .. 19
1.5. Network node ... 19
1.6. Storage node .. 20
2.1. Partition setup of drives .. 27
9.1. Dashboard's Create Project form ... 92
9.2. Edit Project Members tab ... 105
12.1. Traffic route for ping packet .. 152
12.2. Neutron network paths ... 154
C.1. Release cycle diagram ... 284

OpenStack Ops Guide July 3, 2014

xiii

List of Tables
1.1. Node types ... 12
1.2. Third-party component configuration .. 20
1.3. OpenStack component configuration .. 22
3.1. Cloud controller hardware sizing considerations 33
3.2. Deployment scenarios ... 34
5.1. OpenStack default flavors ... 50
5.2. OpenStack segregation methods ... 52
6.1. OpenStack storage .. 62
6.2. Persistent file-based storage support ... 63
7.1. Networking deployment options ... 72
9.1. Compute quota descriptions .. 94
9.2. Block Storage quota descriptions ... 100
10.1. Flavor parameters .. 113
11.1. Example service restoration priority list 143
13.1. OpenStack log locations .. 173

OpenStack Ops Guide July 3, 2014

15

Preface
Introduction to OpenStack ... 15
Getting Started with OpenStack ... 15
Who This Book Is For ... 17
How This Book Is Organized .. 19
Why and How We Wrote This Book ... 22
How to Contribute to This Book .. 26
Conventions Used in This Book .. 28

OpenStack is an open source platform that lets you build an Infrastructure
as a Service (IaaS) cloud that runs on commodity hardware.

Introduction to OpenStack
OpenStack believes in open source, open design, open development, all in
an open community that encourages participation by anyone. The long-
term vision for OpenStack is to produce a ubiquitous open source cloud
computing platform that meets the needs of public and private cloud
providers regardless of size. OpenStack services control large pools of
compute, storage, and networking resources throughout a data center.

The technology behind OpenStack consists of a series of interrelated
projects delivering various components for a cloud infrastructure solution.
Each service provides an open API so that all of these resources can be
managed through a dashboard that gives administrators control while
empowering users to provision resources through a web interface, a
command-line client, or software development kits that support the API.
Many OpenStack APIs are extensible, meaning you can keep compatibility
with a core set of calls while providing access to more resources and
innovating through API extensions. The OpenStack project is a global
collaboration of developers and cloud computing technologists. The
project produces an open standard cloud computing platform for both
public and private clouds. By focusing on ease of implementation, massive
scalability, a variety of rich features, and tremendous extensibility, the
project aims to deliver a practical and reliable cloud solution for all types of
organizations.

Getting Started with OpenStack
As an open source project, one of the unique aspects of OpenStack is that
it has many different levels at which you can begin to engage with it—you
don't have to do everything yourself.

OpenStack Ops Guide July 3, 2014

16

Using OpenStack
You could ask, "Do I even need to build a cloud?" If you want to start using
a compute or storage service by just swiping your credit card, you can go
to eNovance, HP, Rackspace, or other organizations to start using their
public OpenStack clouds. Using their OpenStack cloud resources is similar
to accessing the publicly available Amazon Web Services Elastic Compute
Cloud (EC2) or Simple Storage Solution (S3).

Plug and Play OpenStack
However, the enticing part of OpenStack might be to build your own
private cloud, and there are several ways to accomplish this goal.
Perhaps the simplest of all is an appliance-style solution. You purchase an
appliance, unpack it, plug in the power and the network, and watch it
transform into an OpenStack cloud with minimal additional configuration.
Few, if any, other open source cloud products have such turnkey options.
If a turnkey solution is interesting to you, take a look at Nebula One.

However, hardware choice is important for many applications, so if that
applies to you, consider that there are several software distributions
available that you can run on servers, storage, and network products
of your choosing. Canonical (where OpenStack replaced Eucalyptus as
the default cloud option in 2011), Red Hat, and SUSE offer enterprise
OpenStack solutions and support. You may also want to take a look at
some of the specialized distributions, such as those from Rackspace, Piston,
SwiftStack, or Cloudscaling.

Alternatively, if you want someone to help guide you through the
decisions about the underlying hardware or your applications, perhaps
adding in a few features or integrating components along the way,
consider contacting one of the system integrators with OpenStack
experience, such as Mirantis or Metacloud.

If your preference is to build your own OpenStack expertise internally,
a good way to kick-start that might be to attend or arrange a training
session. The OpenStack Foundation recently launched a Training
Marketplace where you can look for nearby events. Also, the OpenStack
community is working to produce open source training materials.

Roll Your Own OpenStack
However, this guide has a different audience—those seeking flexibility
from the OpenStack framework by conducting do-it-yourself solutions.

http://opsgui.de/NPH6JZ
http://opsgui.de/NPH6JZ
http://opsgui.de/1eLCyio

OpenStack Ops Guide July 3, 2014

17

OpenStack is designed for horizontal scalability, so you can easily add
new compute, network, and storage resources to grow your cloud over
time. In addition to the pervasiveness of massive OpenStack public clouds,
many organizations, such as PayPal, Intel, and Comcast, build large-scale
private clouds. OpenStack offers much more than a typical software
package because it lets you integrate a number of different technologies
to construct a cloud. This approach provides great flexibility, but the
number of options might be daunting at first.

Who This Book Is For
This book is for those of you starting to run OpenStack clouds as well as
those of you who were handed an operational one and want to keep it
running well. Perhaps you're on a DevOps team, perhaps you are a system
administrator starting to dabble in the cloud, or maybe you want to get on
the OpenStack cloud team at your company. This book is for all of you.

This guide assumes that you are familiar with a Linux distribution that
supports OpenStack, SQL databases, and virtualization. You must be
comfortable administering and configuring multiple Linux machines
for networking. You must install and maintain an SQL database and
occasionally run queries against it.

One of the most complex aspects of an OpenStack cloud is the networking
configuration. You should be familiar with concepts such as DHCP, Linux
bridges, VLANs, and iptables. You must also have access to a network
hardware expert who can configure the switches and routers required in
your OpenStack cloud.

Tip

Cloud computing is a quite advanced topic, and this book
requires a lot of background knowledge. However, if you
are fairly new to cloud computing, we recommend that you
make use of the Glossary [293] at the back of the book,
as well as the online documentation for OpenStack and
additional resources mentioned in this book in Appendix D,
Resources [291].

Further Reading

There are other books on the OpenStack documentation website that can
help you get the job done.

http://docs.openstack.org

OpenStack Ops Guide July 3, 2014

18

OpenStack Guides

OpenStack Installation Guides Describes a manual installation process,
as in, by hand, without automation,
for multiple distributions based on a
packaging system:

• Installation Guide for Debian 7.0

• Installation Guide for openSUSE and
SUSE Linux Enterprise Server

• Installation Guide for Red Hat
Enterprise Linux, CentOS, and Fedora

• Installation Guide for Ubuntu
12.04/14.04 (LTS) Server

OpenStack Configuration
Reference

Contains a reference listing of all
configuration options for core and
integrated OpenStack services by
release version

OpenStack Cloud Administrator
Guide

Contains how-to information for
managing an OpenStack cloud as
needed for your use cases, such as
storage, computing, or software-
defined-networking

OpenStack High Availability
Guide

Describes potential strategies for
making your OpenStack services and
related controllers and data stores
highly available

OpenStack Security Guide Provides best practices and conceptual
information about securing an
OpenStack cloud

Virtual Machine Image Guide Shows you how to obtain, create, and
modify virtual machine images that are
compatible with OpenStack

OpenStack End User Guide Shows OpenStack end users how to
create and manage resources in an
OpenStack cloud with the OpenStack

http://docs.openstack.org/icehouse/install-guide/install/apt-debian/content/
http://docs.openstack.org/icehouse/install-guide/install/zypper/content/
http://docs.openstack.org/icehouse/install-guide/install/zypper/content/
http://docs.openstack.org/icehouse/install-guide/install/yum/content/
http://docs.openstack.org/icehouse/install-guide/install/yum/content/
http://docs.openstack.org/icehouse/install-guide/install/apt/content/
http://docs.openstack.org/icehouse/install-guide/install/apt/content/
http://opsgui.de/1eLCDTf
http://opsgui.de/1eLCDTf
http://opsgui.de/1eLBL0N
http://opsgui.de/1eLBL0N
http://opsgui.de/1eLCEGD
http://opsgui.de/1eLCEGD
http://opsgui.de/NPG4NW
http://opsgui.de/1eLCHlR
http://opsgui.de/NPHaJI

OpenStack Ops Guide July 3, 2014

19

dashboard and OpenStack client
commands

OpenStack Admin User Guide Shows OpenStack administrators how
to create and manage resources in an
OpenStack cloud with the OpenStack
dashboard and OpenStack client
commands

OpenStack API Quick Start A brief overview of how to send
REST API requests to endpoints for
OpenStack services

How This Book Is Organized
This book is organized in two parts: the architecture decisions for
designing OpenStack clouds and the repeated operations for running
OpenStack clouds.

Part I:

Chapter 1, “Example
Architectures” [3]

Because of all the decisions the other
chapters discuss, this chapter describes
the decisions made for this particular
book and much of the justification for
the example architecture.

Chapter 2, “Provisioning and
Deployment” [25]

While this book doesn't describe
installation, we do recommend
automation for deployment and
configuration, discussed in this chapter.

Chapter 3, “Designing for
Cloud Controllers and Cloud
Management” [31]

The cloud controller is an invention
for the sake of consolidating and
describing which services run on which
nodes. This chapter discusses hardware
and network considerations as well
as how to design the cloud controller
for performance and separation of
services.

Chapter 4, “Compute
Nodes” [41]

This chapter describes the compute
nodes, which are dedicated to running
virtual machines. Some hardware

http://opsgui.de/1eLBkDJ
http://opsgui.de/NPHdVO

OpenStack Ops Guide July 3, 2014

20

choices come into play here, as well as
logging and networking descriptions.

Chapter 5, “Scaling” [49] This chapter discusses the growth of
your cloud resources through scaling
and segregation considerations.

Chapter 6, “Storage
Decisions” [59]

As with other architecture decisions,
storage concepts within OpenStack
take a lot of consideration, and this
chapter lays out the choices for you.

Chapter 7, “Network
Design” [69]

Your OpenStack cloud networking
needs to fit into your existing networks
while also enabling the best design for
your users and administrators, and this
chapter gives you in-depth information
about networking decisions.

Part II:

Chapter 8, “Lay of the
Land” [79]

This chapter is written to let you get
your hands wrapped around your
OpenStack cloud through command-
line tools and understanding what is
already set up in your cloud.

Chapter 9, “Managing Projects
and Users” [91]

This chapter walks through user-
enabling processes that all admins
must face to manage users, give them
quotas to parcel out resources, and so
on.

Chapter 10, “User-Facing
Operations” [109]

This chapter shows you how to use
OpenStack cloud resources and train
your users as well.

Chapter 11, “Maintenance,
Failures, and
Debugging” [133]

This chapter goes into the common
failures that the authors have seen
while running clouds in production,
including troubleshooting.

Chapter 12, “Network
Troubleshooting” [151]

Because network troubleshooting
is especially difficult with virtual
resources, this chapter is chock-full

OpenStack Ops Guide July 3, 2014

21

of helpful tips and tricks for tracing
network traffic, finding the root cause
of networking failures, and debugging
related services, such as DHCP and DNS.

Chapter 13, “Logging and
Monitoring” [173]

This chapter shows you where
OpenStack places logs and how to best
read and manage logs for monitoring
purposes.

Chapter 14, “Backup and
Recovery” [189]

This chapter describes what you need
to back up within OpenStack as well as
best practices for recovering backups.

Chapter 15,
“Customization” [195]

For readers who need to get a
specialized feature into OpenStack,
this chapter describes how to use
DevStack to write custom middleware
or a custom scheduler to rebalance
your resources.

Chapter 16, “Upstream
OpenStack” [211]

Because OpenStack is so, well, open,
this chapter is dedicated to helping you
navigate the community and find out
where you can help and where you can
get help.

Chapter 17, “Advanced
Configuration” [219]

Much of OpenStack is driver-oriented,
so you can plug in different solutions
to the base set of services. This chapter
describes some advanced configuration
topics.

Chapter 18,
“Upgrades” [223]

This chapter provides upgrade
information based on the architectures
used in this book.

OpenStack Ops Guide July 3, 2014

22

Back matter:

Appendix A, Use Cases [265] You can read a small selection of use
cases from the OpenStack community
with some technical details and further
resources.

Appendix B, Tales From the
Cryp^H^H^H^H Cloud [271]

These are shared legendary tales of
image disappearances, VM massacres,
and crazy troubleshooting techniques
to share those hard-learned lessons and
wisdom.

Appendix C, Working with
Roadmaps [283]

Read about how to track the
OpenStack roadmap through the
open and transparent development
processes.

Appendix D, Resources [291] So many OpenStack resources are
available online because of the fast-
moving nature of the project, but there
are also resources listed here that the
authors found helpful while learning
themselves.

Glossary [293] A list of terms used in this book is
included, which is a subset of the larger
OpenStack glossary available online.

Why and How We Wrote This Book
We wrote this book because we have deployed and maintained
OpenStack clouds for at least a year, and wanted to be able to distribute
this knowledge to others. After months of being the point people for an
OpenStack cloud, we also wanted to have a document to hand to our
system administrators so that they'd know how to operate the cloud on a
daily basis—both reactively and pro-actively. We wanted to provide more
detailed technical information about the decisions that deployers make
along the way.

We wrote this book to help you:

• Design and create an architecture for your first nontrivial OpenStack
cloud. After you read this guide, you'll know which questions to ask and

OpenStack Ops Guide July 3, 2014

23

how to organize your compute, networking, and storage resources and
the associated software packages.

• Perform the day-to-day tasks required to administer a cloud.

We wrote this book in a book sprint, which is a facilitated, rapid
development production method for books. For more information, see
the BookSprints site. Your authors cobbled this book together in five days
during February 2013, fueled by caffeine and the best takeout food that
Austin, Texas, could offer.

On the first day, we filled white boards with colorful sticky notes to start to
shape this nebulous book about how to architect and operate clouds:

We wrote furiously from our own experiences and bounced ideas between
each other. At regular intervals we reviewed the shape and organization
of the book and further molded it, leading to what you see today.

The team includes:

Tom Fifield After learning about scalability in
computing from particle physics
experiments, such as ATLAS at the
Large Hadron Collider (LHC) at CERN,

http://opsgui.de/1eLCIpY

OpenStack Ops Guide July 3, 2014

24

Tom worked on OpenStack clouds in
production to support the Australian
public research sector. Tom currently
serves as an OpenStack community
manager and works on OpenStack
documentation in his spare time.

Diane Fleming Diane works on the OpenStack API
documentation tirelessly. She helped
out wherever she could on this project.

Anne Gentle Anne is the documentation coordinator
for OpenStack and also served as an
individual contributor to the Google
Documentation Summit in 2011,
working with the Open Street Maps
team. She has worked on book sprints
in the past, with FLOSS Manuals’ Adam
Hyde facilitating. Anne lives in Austin,
Texas.

Lorin Hochstein An academic turned software-
developer-slash-operator, Lorin worked
as the lead architect for Cloud Services
at Nimbis Services, where he deploys
OpenStack for technical computing
applications. He has been working
with OpenStack since the Cactus
release. Previously, he worked on high-
performance computing extensions for
OpenStack at University of Southern
California's Information Sciences
Institute (USC-ISI).

Adam Hyde Adam facilitated this book sprint.
He also founded the books
sprint methodology and is the
most experienced book-sprint
facilitator around. See http://
www.booksprints.net for more
information. Adam founded FLOSS
Manuals—a community of some 3,000
individuals developing Free Manuals
about Free Software. He is also the
founder and project manager for

http://www.booksprints.net
http://www.booksprints.net

OpenStack Ops Guide July 3, 2014

25

Booktype, an open source project for
writing, editing, and publishing books
online and in print.

Jonathan Proulx Jon has been piloting an OpenStack
cloud as a senior technical architect at
the MIT Computer Science and Artificial
Intelligence Lab for his researchers to
have as much computing power as
they need. He started contributing
to OpenStack documentation and
reviewing the documentation so that
he could accelerate his learning.

Everett Toews Everett is a developer advocate at
Rackspace making OpenStack and
the Rackspace Cloud easy to use.
Sometimes developer, sometimes
advocate, and sometimes operator,
he's built web applications, taught
workshops, given presentations around
the world, and deployed OpenStack
for production use by academia and
business.

Joe Topjian Joe has designed and deployed several
clouds at Cybera, a nonprofit where
they are building e-infrastructure
to support entrepreneurs and local
researchers in Alberta, Canada. He
also actively maintains and operates
these clouds as a systems architect,
and his experiences have generated
a wealth of troubleshooting skills for
cloud environments.

OpenStack community
members

Many individual efforts keep a
community book alive. Our community
members updated content for this
book year-round. Also, a year after
the first sprint, Jon Proulx hosted
a second two-day mini-sprint at
MIT with the goal of updating the
book for the latest release. Since
the book's inception, more than 30

OpenStack Ops Guide July 3, 2014

26

contributors have supported this book.
We have a tool chain for reviews,
continuous builds, and translations.
Writers and developers continuously
review patches, enter doc bugs, edit
content, and fix doc bugs. We want to
recognize their efforts!

The following people have contributed
to this book: Akihiro Motoki, Alejandro
Avella, Alexandra Settle, Andreas
Jaeger, Andy McCallum, Benjamin
Stassart, Chandan Kumar, Chris Ricker,
David Cramer, David Wittman, Denny
Zhang, Emilien Macchi, Gauvain
Pocentek, Ignacio Barrio, James E. Blair,
Jay Clark, Jeff White, Jeremy Stanley,
K Jonathan Harker, KATO Tomoyuki,
Lana Brindley, Laura Alves, Lee Li,
Lukasz Jernas, Mario B. Codeniera,
Matthew Kassawara, Michael Still,
Monty Taylor, Nermina Miller, Nigel
Williams, Phil Hopkins, Russell Bryant,
Sahid Orentino Ferdjaoui, Sandy Walsh,
Sascha Peilicke, Sean M. Collins, Sergey
Lukjanov, Shilla Saebi, Stephen Gordon,
Summer Long, Uwe Stuehler, Vaibhav
Bhatkar, Veronica Musso, Ying Chun
"Daisy" Guo, Zhengguang Ou, and
ZhiQiang Fan.

How to Contribute to This Book
The genesis of this book was an in-person event, but now that the
book is in your hands, we want you to contribute to it. OpenStack
documentation follows the coding principles of iterative work, with bug
logging, investigating, and fixing. We also store the source content on
GitHub and invite collaborators through the OpenStack Gerrit installation,
which offers reviews. For the O'Reilly edition of this book, we are using the
company's Atlas system, which also stores source content on GitHub and
enables collaboration among contributors.

Learn more about how to contribute to the OpenStack docs at
Documentation How To.

http://opsgui.de/1eLCK10

OpenStack Ops Guide July 3, 2014

27

If you find a bug and can't fix it or aren't sure it's really a doc bug, log a
bug at OpenStack Manuals. Tag the bug under Extra options with the
ops-guide tag to indicate that the bug is in this guide. You can assign
the bug to yourself if you know how to fix it. Also, a member of the
OpenStack doc-core team can triage the doc bug.

http://opsgui.de/NPHdoC

OpenStack Ops Guide July 3, 2014

28

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic Indicates new terms, URLs, email addresses,
filenames, and file extensions.

Constant width Used for program listings, as well as
within paragraphs to refer to program
elements such as variable or function
names, databases, data types, environment
variables, statements, and keywords.

Constant width bold Shows commands or other text that should
be typed literally by the user.

Constant width italic Shows text that should be replaced
with user-supplied values or by values
determined by context.

Command prompts Commands prefixed with the # prompt
should be executed by the root user.
These examples can also be executed using
the sudo command, if available.

Commands prefixed with the $ prompt can
be executed by any user, including root.

Tip

This element signifies a tip or suggestion.

Note

This element signifies a general note.

Warning

This element indicates a warning or caution.

Part I. Architecture
Designing an OpenStack cloud is a great achievement. It requires a robust
understanding of the requirements and needs of the cloud's users to determine
the best possible configuration to meet them. OpenStack provides a great deal of
flexibility to achieve your needs, and this part of the book aims to shine light on
many of the decisions you need to make during the process.

To design, deploy, and configure OpenStack, administrators must understand the
logical architecture. A diagram can help you envision all the integrated services
within OpenStack and how they interact with each other.

OpenStack modules are one of the following types:

Daemon Runs as a background process. On Linux
platforms, a daemon is usually installed as a
service.

Script Installs a virtual environment and runs tests.

Command-line interface (CLI) Enables users to submit API calls to OpenStack
services through commands.

As shown, end users can interact through the dashboard, CLIs, and APIs. All services
authenticate through a common Identity Service, and individual services interact with
each other through public APIs, except where privileged administrator commands are
necessary. Figure 1, “OpenStack Havana Logical Architecture ()” [2] shows the
most common, but not the only logical architecture for an OpenStack cloud.

OpenStack Ops Guide July 3, 2014

2

Figure 1. OpenStack Havana Logical Architecture (http://
opsgui.de/1kYnyy1)

http://opsgui.de/1kYnyy1
http://opsgui.de/1kYnyy1

OpenStack Ops Guide July 3, 2014

3

1. Example Architectures

Example Architecture—Legacy Networking (nova) 3
Example Architecture—OpenStack Networking 9
Parting Thoughts on Architectures ... 24

To understand the possibilities OpenStack offers, it's best to start with
basic architectures that are tried-and-true and have been tested in
production environments. We offer two such examples with basic pivots
on the base operating system (Ubuntu and Red Hat Enterprise Linux)
and the networking architectures. There are other differences between
these two examples, but you should find the considerations made for the
choices in each as well as a rationale for why it worked well in a given
environment.

Because OpenStack is highly configurable, with many different backends
and network configuration options, it is difficult to write documentation
that covers all possible OpenStack deployments. Therefore, this guide
defines example architectures to simplify the task of documenting, as well
as to provide the scope for this guide. Both of the offered architecture
examples are currently running in production and serving users.

Tip

As always, refer to the Glossary [293] if you are
unclear about any of the terminology mentioned in these
architectures.

Example Architecture—Legacy
Networking (nova)

This particular example architecture has been upgraded from Grizzly to
Havana and tested in production environments where many public IP
addresses are available for assignment to multiple instances. You can find
a second example architecture that uses OpenStack Networking (neutron)
after this section. Each example offers high availability, meaning that if a
particular node goes down, another node with the same configuration can
take over the tasks so that service continues to be available.

OpenStack Ops Guide July 3, 2014

4

Overview

The simplest architecture you can build upon for Compute has a single
cloud controller and multiple compute nodes. The simplest architecture
for Object Storage has five nodes: one for identifying users and proxying
requests to the API, then four for storage itself to provide enough
replication for eventual consistency. This example architecture does
not dictate a particular number of nodes, but shows the thinking and
considerations that went into choosing this architecture including the
features offered.

Components

Component Details

OpenStack release Havana

Host operating system Ubuntu 12.04 LTS or Red Hat Enterprise Linux 6.5,
including derivatives such as CentOS and Scientific Linux

OpenStack package repository Ubuntu Cloud Archive or RDO*

Hypervisor KVM

Database MySQL*

Message queue RabbitMQ for Ubuntu; Qpid for Red Hat Enterprise Linux
and derivatives

Networking service nova-network

Network manager FlatDHCP

Single nova-network or multi-host? multi-host*

Image Service (glance) backend file

Identity Service (keystone) driver SQL

Block Storage Service (cinder)
backend

LVM/iSCSI

Live Migration backend Shared storage using NFS*

Object storage OpenStack Object Storage (swift)

An asterisk (*) indicates when the example architecture deviates from
the settings of a default installation. We'll offer explanations for those
deviations next.

Note

The following features of OpenStack are supported by the
example architecture documented in this guide, but are
optional:

http://opsgui.de/NPHp7s
http://opsgui.de/1eLCZcm

OpenStack Ops Guide July 3, 2014

5

• Dashboard: You probably want to offer a dashboard, but
your users may be more interested in API access only.

• Block storage: You don't have to offer users block storage
if their use case only needs ephemeral storage on compute
nodes, for example.

• Floating IP address: Floating IP addresses are public IP
addresses that you allocate from a predefined pool to assign
to virtual machines at launch. Floating IP address ensure
that the public IP address is available whenever an instance
is booted. Not every organization can offer thousands of
public floating IP addresses for thousands of instances, so
this feature is considered optional.

• Live migration: If you need to move running virtual machine
instances from one host to another with little or no service
interruption, you would enable live migration, but it is
considered optional.

• Object storage: You may choose to store machine images
on a file system rather than in object storage if you do not
have the extra hardware for the required replication and
redundancy that OpenStack Object Storage offers.

Rationale

This example architecture has been selected based on the current default
feature set of OpenStack Havana, with an emphasis on stability. We
believe that many clouds that currently run OpenStack in production have
made similar choices.

You must first choose the operating system that runs on all of the physical
nodes. While OpenStack is supported on several distributions of Linux, we
used Ubuntu 12.04 LTS (Long Term Support), which is used by the majority
of the development community, has feature completeness compared with
other distributions and has clear future support plans.

We recommend that you do not use the default Ubuntu OpenStack install
packages and instead use the Ubuntu Cloud Archive. The Cloud Archive is
a package repository supported by Canonical that allows you to upgrade
to future OpenStack releases while remaining on Ubuntu 12.04.

KVM as a hypervisor complements the choice of Ubuntu—being a matched
pair in terms of support, and also because of the significant degree

http://opsgui.de/NPHp7s

OpenStack Ops Guide July 3, 2014

6

of attention it garners from the OpenStack development community
(including the authors, who mostly use KVM). It is also feature complete,
free from licensing charges and restrictions.

MySQL follows a similar trend. Despite its recent change of ownership,
this database is the most tested for use with OpenStack and is heavily
documented. We deviate from the default database, SQLite, because
SQLite is not an appropriate database for production usage.

The choice of RabbitMQ over other AMQP compatible options that are
gaining support in OpenStack, such as ZeroMQ and Qpid, is due to its ease
of use and significant testing in production. It also is the only option that
supports features such as Compute cells. We recommend clustering with
RabbitMQ, as it is an integral component of the system and fairly simple to
implement due to its inbuilt nature.

As discussed in previous chapters, there are several options for networking
in OpenStack Compute. We recommend FlatDHCP and to use Multi-Host
networking mode for high availability, running one nova-network
daemon per OpenStack compute host. This provides a robust mechanism
for ensuring network interruptions are isolated to individual compute
hosts, and allows for the direct use of hardware network gateways.

Live Migration is supported by way of shared storage, with NFS as the
distributed file system.

Acknowledging that many small-scale deployments see running Object
Storage just for the storage of virtual machine images as too costly, we
opted for the file backend in the OpenStack Image Service (Glance). If your
cloud will include Object Storage, you can easily add it as a backend.

We chose the SQL backend for Identity Service (keystone) over others,
such as LDAP. This backend is simple to install and is robust. The authors
acknowledge that many installations want to bind with existing directory
services and caution careful understanding of the array of options
available.

Block Storage (cinder) is installed natively on external storage nodes and
uses the LVM/iSCSI plug-in. Most Block Storage Service plug-ins are tied
to particular vendor products and implementations limiting their use to
consumers of those hardware platforms, but LVM/iSCSI is robust and
stable on commodity hardware.

http://opsgui.de/1eLCZJr
http://opsgui.de/1eLCZJr

OpenStack Ops Guide July 3, 2014

7

While the cloud can be run without the OpenStack Dashboard, we
consider it to be indispensable, not just for user interaction with the cloud,
but also as a tool for operators. Additionally, the dashboard's use of
Django makes it a flexible framework for extension.

Why not use the OpenStack Network Service (neutron)?

This example architecture does not use the OpenStack Network Service
(neutron), because it does not yet support multi-host networking and our
organizations (university, government) have access to a large range of
publicly-accessible IPv4 addresses.

Why use multi-host networking?

In a default OpenStack deployment, there is a single nova-network
service that runs within the cloud (usually on the cloud controller) that
provides services such as network address translation (NAT), DHCP,
and DNS to the guest instances. If the single node that runs the nova-
network service goes down, you cannot access your instances, and the
instances cannot access the Internet. The single node that runs the nova-
network service can become a bottleneck if excessive network traffic
comes in and goes out of the cloud.

Tip

Multi-host is a high-availability option for the network
configuration, where the nova-network service is run on
every compute node instead of running on only a single node.

Detailed Description

The reference architecture consists of multiple compute nodes, a cloud
controller, an external NFS storage server for instance storage, and an
OpenStack Block Storage server for volume storage. A network time
service (Network Time Protocol, or NTP) synchronizes time on all the
nodes. FlatDHCPManager in multi-host mode is used for the networking.
A logical diagram for this example architecture shows which services are
running on each node:

http://opsgui.de/NPHqbu

OpenStack Ops Guide July 3, 2014

8

The cloud controller runs the dashboard, the API services, the database
(MySQL), a message queue server (RabbitMQ), the scheduler for choosing
compute resources (nova-scheduler), Identity services (keystone,
nova-consoleauth), Image services (glance-api, glance-
registry), services for console access of guests, and Block Storage
services, including the scheduler for storage resources (cinder-api and
cinder-scheduler).

Compute nodes are where the computing resources are held, and in our
example architecture, they run the hypervisor (KVM), libvirt (the driver
for the hypervisor, which enables live migration from node to node),
nova-compute, nova-api-metadata (generally only used when
running in multi-host mode, it retrieves instance-specific metadata), nova-
vncproxy, and nova-network.

OpenStack Ops Guide July 3, 2014

9

The network consists of two switches, one for the management or private
traffic, and one that covers public access, including floating IPs. To support
this, the cloud controller and the compute nodes have two network cards.
The OpenStack Block Storage and NFS storage servers only need to access
the private network and therefore only need one network card, but
multiple cards run in a bonded configuration are recommended if possible.
Floating IP access is direct to the Internet, whereas Flat IP access goes
through a NAT. To envision the network traffic, use this diagram:

Optional Extensions

You can extend this reference architecture as follows:

• Add additional cloud controllers (see Chapter 11, “Maintenance,
Failures, and Debugging” [133]).

• Add an OpenStack Storage service (see the Object Storage chapter in
the OpenStack Installation Guide for your distribution).

• Add additional OpenStack Block Storage hosts (see Chapter 11,
“Maintenance, Failures, and Debugging” [133]).

Example Architecture—OpenStack
Networking

This chapter provides an example architecture using OpenStack
Networking, also known as the Neutron project, in a highly available
environment.

OpenStack Ops Guide July 3, 2014

10

Overview

A highly-available environment can be put into place if you require an
environment that can scale horizontally, or want your cloud to continue to
be operational in case of node failure. This example architecture has been
written based on the current default feature set of OpenStack Havana,
with an emphasis on high availability.

Components

Component Details

OpenStack release Havana

Host operating system Red Hat Enterprise Linux 6.5

OpenStack package repository Red Hat Distributed OpenStack (RDO)

Hypervisor KVM

Database MySQL

Message queue Qpid

Networking service OpenStack Networking

Tenant Network Separation VLAN

Image Service (glance) backend GlusterFS

Identity Service (keystone) driver SQL

Block Storage Service (cinder)
backend

GlusterFS

Rationale

This example architecture has been selected based on the current default
feature set of OpenStack Havana, with an emphasis on high availability.
This architecture is currently being deployed in an internal Red Hat
OpenStack cloud and used to run hosted and shared services, which by
their nature must be highly available.

This architecture's components have been selected for the following
reasons:

Red Hat Enterprise Linux You must choose an operating system
that can run on all of the physical
nodes. This example architecture is
based on Red Hat Enterprise Linux,
which offers reliability, long-term
support, certified testing, and is
hardened. Enterprise customers, now

http://opsgui.de/1eLCXBh

OpenStack Ops Guide July 3, 2014

11

moving into OpenStack usage, typically
require these advantages.

RDO The Red Hat Distributed OpenStack
package offers an easy way to
download the most current OpenStack
release that is built for the Red Hat
Enterprise Linux platform.

KVM KVM is the supported hypervisor of
choice for Red Hat Enterprise Linux
(and included in distribution). It is
feature complete and free from
licensing charges and restrictions.

MySQL MySQL is used as the database backend
for all databases in the OpenStack
environment. MySQL is the supported
database of choice for Red Hat
Enterprise Linux (and included in
distribution); the database is open
source, scalable, and handles memory
well.

Qpid Apache Qpid offers 100 percent
compatibility with the Advanced
Message Queuing Protocol Standard,
and its broker is available for both C++
and Java.

OpenStack Networking OpenStack Networking offers
sophisticated networking functionality,
including Layer 2 (L2) network
segregation and provider networks.

VLAN Using a virtual local area network
offers broadcast control, security, and
physical layer transparency. If needed,
use VXLAN to extend your address
space.

GlusterFS GlusterFS offers scalable storage.
As your environment grows, you
can continue to add more storage
nodes (instead of being restricted,

OpenStack Ops Guide July 3, 2014

12

for example, by an expensive storage
array).

Detailed Description

Node types

This section gives you a breakdown of the different nodes that make
up the OpenStack environment. A node is a physical machine that is
provisioned with an operating system, and running a defined software
stack on top of it. Table 1.1, “Node types” [12] provides node
descriptions and specifications.

Table 1.1. Node types

Type Description Example hardware

Controller Controller nodes are responsible for running the
management software services needed for the OpenStack
environment to function. These nodes:

• Provide the front door that people access as well
as the API services that all other components in the
environment talk to.

• Run a number of services in a highly available fashion,
utilizing Pacemaker and HAProxy to provide a virtual IP
and load-balancing functions so all controller nodes are
being used.

• Supply highly available "infrastructure" services, such as
MySQL and Qpid, that underpin all the services.

• Provide what is known as "persistent storage" through
services run on the host as well. This persistent storage is
backed onto the storage nodes for reliability.

See Figure 1.3, “Controller node” [18].

Model: Dell R620

CPU: 2 x Intel® Xeon®
CPU E5-2620 0 @ 2.00
GHz

Memory: 32 GB

Disk: 2 x 300 GB 10000
RPM SAS Disks

Network: 2 x 10G
network ports

Compute Compute nodes run the virtual machine instances in
OpenStack. They:

• Run the bare minimum of services needed to facilitate
these instances.

• Use local storage on the node for the virtual machines
so that no VM migration or instance recovery at node
failure is possible.

See Figure 1.4, “Compute node” [19].

Model: Dell R620

CPU: 2x Intel® Xeon®
CPU E5-2650 0 @ 2.00
GHz

Memory: 128 GB

Disk: 2 x 600 GB 10000
RPM SAS Disks

Network: 4 x 10G
network ports (For
future proofing
expansion)

OpenStack Ops Guide July 3, 2014

13

Type Description Example hardware

Storage Storage nodes store all the data required for the
environment, including disk images in the Image Service
library, and the persistent storage volumes created by
the Block Storage service. Storage nodes use GlusterFS
technology to keep the data highly available and scalable.

See Figure 1.6, “Storage node” [20].

Model: Dell R720xd

CPU: 2 x Intel® Xeon®
CPU E5-2620 0 @ 2.00
GHz

Memory: 64 GB

Disk: 2 x 500 GB 7200
RPM SAS Disks + 24 x
600 GB 10000 RPM SAS
Disks

Raid Controller: PERC
H710P Integrated RAID
Controller, 1 GB NV
Cache

Network: 2 x 10G
network ports

Network Network nodes are responsible for doing all the virtual
networking needed for people to create public or private
networks and uplink their virtual machines into external
networks. Network nodes:

• Form the only ingress and egress point for instances
running on top of OpenStack.

• Run all of the environment's networking services, with
the exception of the networking API service (which runs
on the controller node).

See Figure 1.5, “Network node” [19].

Model: Dell R620

CPU: 1 x Intel® Xeon®
CPU E5-2620 0 @ 2.00
GHz

Memory: 32 GB

Disk: 2 x 300 GB 10000
RPM SAS Disks

Network: 5 x 10G
network ports

Utility Utility nodes are used by internal administration staff
only to provide a number of basic system administration
functions needed to get the environment up and running
and to maintain the hardware, OS, and software on which
it runs.

These nodes run services such as provisioning, configuration
management, monitoring, or GlusterFS management
software. They are not required to scale, although these
machines are usually backed up.

Model: Dell R620

CPU: 2x Intel® Xeon®
CPU E5-2620 0 @ 2.00
GHz

Memory: 32 GB

Disk: 2 x 500 GB 7200
RPM SAS Disks

Network: 2 x 10G
network ports

Networking layout

The network contains all the management devices for all hardware in
the environment (for example, by including Dell iDrac7 devices for the
hardware nodes, and management interfaces for network switches). The
network is accessed by internal staff only when diagnosing or recovering a
hardware issue.

OpenStack Ops Guide July 3, 2014

14

OpenStack internal network

This network is used for OpenStack management functions and traffic,
including services needed for the provisioning of physical nodes (pxe,
tftp, kickstart), traffic between various OpenStack node types using
OpenStack APIs and messages (for example, nova-compute talking to
keystone or cinder-volume talking to nova-api), and all traffic for
storage data to the storage layer underneath by the Gluster protocol. All
physical nodes have at least one network interface (typically eth0) in this
network. This network is only accessible from other VLANs on port 22 (for
ssh access to manage machines).

OpenStack Ops Guide July 3, 2014

15

Public Network

This network is a combination of:

• IP addresses for public-facing interfaces on the controller nodes (which
end users will access the OpenStack services)

• A range of publicly routable, IPv4 network addresses to be used by
OpenStack Networking for floating IPs. You may be restricted in your
access to IPv4 addresses; a large range of IPv4 addresses is not necessary.

• Routers for private networks created within OpenStack.

This network is connected to the controller nodes so users can access the
OpenStack interfaces, and connected to the network nodes to provide
VMs with publicly routable traffic functionality. The network is also
connected to the utility machines so that any utility services that need to
be made public (such as system monitoring) can be accessed.

VM traffic network

This is a closed network that is not publicly routable and is simply used
as a private, internal network for traffic between virtual machines in
OpenStack, and between the virtual machines and the network nodes
that provide l3 routes out to the public network (and floating IPs for
connections back in to the VMs). Because this is a closed network, we
are using a different address space to the others to clearly define the
separation. Only Compute and OpenStack Networking nodes need to be
connected to this network.

Node connectivity

The following section details how the nodes are connected to the different
networks (see the section called “Networking layout” [13]) and what
other considerations need to take place (for example, bonding) when
connecting nodes to the networks.

Initial deployment

Initially, the connection setup should revolve around keeping the
connectivity simple and straightforward in order to minimize deployment
complexity and time to deploy. The deployment shown in Figure 1.1,
“Basic node deployment” [16] aims to have 1 x 10G connectivity
available to all compute nodes, while still leveraging bonding on
appropriate nodes for maximum performance.

OpenStack Ops Guide July 3, 2014

16

Figure 1.1. Basic node deployment

Connectivity for maximum performance

If the networking performance of the basic layout is not enough, you
can move to Figure 1.2, “Performance node deployment” [17], which
provides 2 x 10G network links to all instances in the environment as well
as providing more network bandwidth to the storage layer.

OpenStack Ops Guide July 3, 2014

17

Figure 1.2. Performance node deployment

Node diagrams

The following diagrams (Figure 1.3, “Controller node” [18] through
Figure 1.6, “Storage node” [20]) include logical information about the
different types of nodes, indicating what services will be running on top of
them and how they interact with each other. The diagrams also illustrate
how the availability and scalability of services are achieved.

OpenStack Ops Guide July 3, 2014

18

Figure 1.3. Controller node

OpenStack Ops Guide July 3, 2014

19

Figure 1.4. Compute node

Figure 1.5. Network node

OpenStack Ops Guide July 3, 2014

20

Figure 1.6. Storage node

Example Component Configuration
Table 1.2, “Third-party component configuration” [20] and Table 1.3,
“OpenStack component configuration” [22] include example
configuration and considerations for both third-party and OpenStack
components:

Table 1.2. Third-party component configuration

ComponentTuning Availability Scalability

MySQL binlog-format = row Master/master replication.
However, both nodes are
not used at the same time.
Replication keeps all nodes
as close to being up to date
as possible (although the
asynchronous nature of
the replication means a
fully consistent state is not
possible). Connections to
the database only happen

Not heavily considered.
Once load on the MySQL
server increases enough
that scalability needs to
be considered, multiple
masters or a master/slave
setup can be used.

OpenStack Ops Guide July 3, 2014

21

ComponentTuning Availability Scalability

through a Pacemaker
virtual IP, ensuring that
most problems that
occur with master-master
replication can be avoided.

Qpid max-connections=1000
worker-threads=20
connection-
backlog=10, sasl security
enabled with SASL-BASIC
authentication

Qpid is added as a resource
to the Pacemaker software
that runs on Controller
nodes where Qpid is
situated. This ensures
only one Qpid instance
is running at one time,
and the node with the
Pacemaker virtual IP will
always be the node running
Qpid.

Not heavily considered.
However, Qpid can be
changed to run on all
controller nodes for
scalability and availability
purposes, and removed
from Pacemaker.

HAProxy maxconn 3000 HAProxy is a software
layer-7 load balancer used
to front door all clustered
OpenStack API components
and do SSL termination.
HAProxy can be added as a
resource to the Pacemaker
software that runs on the
Controller nodes where
HAProxy is situated. This
ensures that only one
HAProxy instance is running
at one time, and the node
with the Pacemaker virtual
IP will always be the node
running HAProxy.

Not considered. HAProxy
has small enough
performance overheads
that a single instance
should scale enough for
this level of workload. If
extra scalability is needed,
keepalived or other
Layer-4 load balancing can
be introduced to be placed
in front of multiple copies
of HAProxy.

MemcachedMAXCONN="8192"
CACHESIZE="30457"

Memcached is a fast in-
memory key-value cache
software that is used by
OpenStack components for
caching data and increasing
performance. Memcached
runs on all controller nodes,
ensuring that should one go
down, another instance of
Memcached is available.

Not considered. A single
instance of Memcached
should be able to scale to
the desired workloads.
If scalability is desired,
HAProxy can be placed
in front of Memcached
(in raw tcp mode) to
utilize multiple Memcached
instances for scalability.
However, this might cause
cache consistency issues.

PacemakerConfigured to use
corosync and cman as
a cluster communication
stack/quorum manager,
and as a two-node cluster.

Pacemaker is the clustering
software used to ensure
the availability of services
running on the controller
and network nodes:

• Because Pacemaker is
cluster software, the
software itself handles
its own availability,

If more nodes need to
be made cluster aware,
Pacemaker can scale to 64
nodes.

OpenStack Ops Guide July 3, 2014

22

ComponentTuning Availability Scalability

leveraging corosync
and cman underneath.

• If you use the GlusterFS
native client, no virtual IP
is needed, since the client
knows all about nodes
after initial connection
and automatically routes
around failures on the
client side.

• If you use the NFS or
SMB adaptor, you will
need a virtual IP on which
to mount the GlusterFS
volumes.

GlusterFS glusterfs performance
profile "virt" enabled on all
volumes. Volumes are setup
in two-node replication.

Glusterfs is a clustered
file system that is run
on the storage nodes
to provide persistent
scalable data storage in
the environment. Because
all connections to gluster
use the gluster native
mount points, the gluster
instances themselves
provide availability and
failover functionality.

The scalability of GlusterFS
storage can be achieved
by adding in more storage
volumes.

Table 1.3. OpenStack component configuration

ComponentNode
type

Tuning Availability Scalability

Dashboard
(horizon)

ControllerConfigured to
use Memcached
as a session
store, neutron
support is enabled,
can_set_mount_point
= False

The dashboard is run
on all controller nodes,
ensuring at least one
instance will be available
in case of node failure. It
also sits behind HAProxy,
which detects when the
software fails and routes
requests around the failing
instance.

The dashboard is run
on all controller nodes,
so scalability can be
achieved with additional
controller nodes. HAProxy
allows scalability for the
dashboard as more nodes
are added.

Identity
(keystone)

ControllerConfigured to use
Memcached for
caching and PKI for
tokens.

Identity is run on all
controller nodes, ensuring
at least one instance will
be available in case of
node failure. Identity
also sits behind HAProxy,
which detects when the
software fails and routes
requests around the failing
instance.

Identity is run on all
controller nodes, so
scalability can be achieved
with additional controller
nodes. HAProxy allows
scalability for Identity as
more nodes are added.

OpenStack Ops Guide July 3, 2014

23

ComponentNode
type

Tuning Availability Scalability

Image
Service
(glance)

Controller/var/lib/glance/
images is a GlusterFS
native mount to a
Gluster volume off the
storage layer.

The Image Service is run
on all controller nodes,
ensuring at least one
instance will be available
in case of node failure. It
also sits behind HAProxy,
which detects when the
software fails and routes
requests around the failing
instance.

The Image Service is run
on all controller nodes, so
scalability can be achieved
with additional controller
nodes. HAProxy allows
scalability for the Image
Service as more nodes are
added.

Compute
(nova)

Controller,
Compute

Configured
to use Qpid,
qpid_heartbeat
= 10, configured to
use Memcached for
caching, configured
to use libvirt,
configured to use
neutron.

Configured nova-
consoleauth to use
Memcached for session
management (so that
it can have multiple
copies and run in a
load balancer).

The nova API, scheduler,
objectstore, cert,
consoleauth, conductor,
and vncproxy services
are run on all controller
nodes, ensuring at
least one instance will
be available in case of
node failure. Compute
is also behind HAProxy,
which detects when the
software fails and routes
requests around the failing
instance.

Compute's compute and
conductor services, which
run on the compute nodes,
are only needed to run
services on that node,
so availability of those
services is coupled tightly
to the nodes that are
available. As long as a
compute node is up, it will
have the needed services
running on top of it.

The nova API, scheduler,
objectstore, cert,
consoleauth, conductor,
and vncproxy services
are run on all controller
nodes, so scalability can be
achieved with additional
controller nodes. HAProxy
allows scalability for
Compute as more nodes
are added. The scalability
of services running on the
compute nodes (compute,
conductor) is achieved
linearly by adding in more
compute nodes.

Block
Storage
(cinder)

ControllerConfigured
to use Qpid,
qpid_heartbeat =
10, configured to use
a Gluster volume from
the storage layer as
the backend for Block
Storage, using the
Gluster native client.

Block Storage API,
scheduler, and volume
services are run on all
controller nodes, ensuring
at least one instance
will be available in case
of node failure. Block
Storage also sits behind
HAProxy, which detects
if the software fails and
routes requests around the
failing instance.

Block Storage API,
scheduler and volume
services are run on all
controller nodes, so
scalability can be achieved
with additional controller
nodes. HAProxy allows
scalability for Block Storage
as more nodes are added.

OpenStack
Networking
(neutron)

Controller,
Compute,
Network

Configured
to use QPID,
qpid_heartbeat =
10, kernel namespace

The OpenStack
Networking service is run
on all controller nodes,
ensuring at least one

The OpenStack Networking
server service is run on
all controller nodes, so
scalability can be achieved

OpenStack Ops Guide July 3, 2014

24

ComponentNode
type

Tuning Availability Scalability

support enabled,
tenant_network_type
= vlan,
allow_overlapping_ips
= true,
tenant_network_type
= vlan,
bridge_uplinks
= br-ex:em2,
bridge_mappings
= physnet1:br-ex

instance will be available
in case of node failure. It
also sits behind HAProxy,
which detects if the
software fails and routes
requests around the failing
instance.

OpenStack Networking's
ovs-agent, l3-agent-
dhcp-agent, and
metadata-agent
services run on the
network nodes, as lsb
resources inside of
Pacemaker. This means
that in the case of network
node failure, services are
kept running on another
node. Finally, the ovs-
agent service is also run
on all compute nodes,
and in case of compute
node failure, the other
nodes will continue to
function using the copy
of the service running on
them.

with additional controller
nodes. HAProxy allows
scalability for OpenStack
Networking as more nodes
are added. Scalability of
services running on the
network nodes is not
currently supported by
OpenStack Networking, so
they are not be considered.
One copy of the services
should be sufficient to
handle the workload.
Scalability of the ovs-
agent running on compute
nodes is achieved by adding
in more compute nodes as
necessary.

Parting Thoughts on Architectures
With so many considerations and options available, our hope is to
provide a few clearly-marked and tested paths for your OpenStack
exploration. If you're looking for additional ideas, check out Appendix A,
Use Cases [265], the OpenStack Installation Guides, or the OpenStack
User Stories page.

http://opsgui.de/NPFTC8
http://opsgui.de/1eLAAhX
http://opsgui.de/1eLAAhX

OpenStack Ops Guide July 3, 2014

25

2. Provisioning and Deployment
Automated Deployment .. 25
Automated Configuration .. 28
Remote Management .. 29
Parting Thoughts for Provisioning and Deploying OpenStack 29
Conclusion ... 30

A critical part of a cloud's scalability is the amount of effort that it takes
to run your cloud. To minimize the operational cost of running your
cloud, set up and use an automated deployment and configuration
infrastructure with a configuration management system, such as Puppet
or Chef. Combined, these systems greatly reduce manual effort and the
chance for operator error.

This infrastructure includes systems to automatically install the operating
system's initial configuration and later coordinate the configuration of all
services automatically and centrally, which reduces both manual effort and
the chance for error. Examples include Ansible, Chef, Puppet, and Salt. You
can even use OpenStack to deploy OpenStack, fondly named TripleO, for
OpenStack On OpenStack.

Automated Deployment
An automated deployment system installs and configures operating
systems on new servers, without intervention, after the absolute minimum
amount of manual work, including physical racking, MAC-to-IP assignment,
and power configuration. Typically, solutions rely on wrappers around PXE
boot and TFTP servers for the basic operating system install and then hand
off to an automated configuration management system.

Both Ubuntu and Red Hat Enterprise Linux include mechanisms for
configuring the operating system, including preseed and kickstart, that
you can use after a network boot. Typically, these are used to bootstrap
an automated configuration system. Alternatively, you can use an image-
based approach for deploying the operating system, such as systemimager.
You can use both approaches with a virtualized infrastructure, such
as when you run VMs to separate your control services and physical
infrastructure.

When you create a deployment plan, focus on a few vital areas because
they are very hard to modify post deployment. The next two sections talk
about configurations for:

OpenStack Ops Guide July 3, 2014

26

• Disk partioning and disk array setup for scalability

• Networking configuration just for PXE booting

Disk Partitioning and RAID
At the very base of any operating system are the hard drives on which the
operating system (OS) is installed.

You must complete the following configurations on the server's hard
drives:

• Partitioning, which provides greater flexibility for layout of operating
system and swap space, as described below.

• Adding to a RAID array (RAID stands for redundant array of
independent disks), based on the number of disks you have available,
so that you can add capacity as your cloud grows. Some options are
described in more detail below.

The simplest option to get started is to use one hard drive with two
partitions:

• File system to store files and directories, where all the data lives,
including the root partition that starts and runs the system

• Swap space to free up memory for processes, as an independent area of
the physical disk used only for swapping and nothing else

RAID is not used in this simplistic one-drive setup because generally for
production clouds, you want to ensure that if one disk fails, another
can take its place. Instead, for production, use more than one disk. The
number of disks determine what types of RAID arrays to build.

We recommend that you choose one of the following multiple disk
options:

Option 1 Partition all drives in the same way in a horizontal fashion, as
shown in Figure 2.1, “Partition setup of drives” [27].

With this option, you can assign different partitions to
different RAID arrays. You can allocate partition 1 of disk
one and two to the /boot partition mirror. You can make
partition 2 of all disks the root partition mirror. You can use
partition 3 of all disks for a cinder-volumes LVM partition
running on a RAID 10 array.

OpenStack Ops Guide July 3, 2014

27

Figure 2.1. Partition setup of drives

While you might end up with unused partitions, such as
partition 1 in disk three and four of this example, this
option allows for maximum utilization of disk space. I/O
performance might be an issue as a result of all disks being
used for all tasks.

Option 2 Add all raw disks to one large RAID array, either hardware
or software based. You can partition this large array with
the boot, root, swap, and LVM areas. This option is simple to
implement and uses all partitions. However, disk I/O might
suffer.

Option 3 Dedicate entire disks to certain partitions. For example, you
could allocate disk one and two entirely to the boot, root,
and swap partitions under a RAID 1 mirror. Then, allocate
disk three and four entirely to the LVM partition, also under
a RAID 1 mirror. Disk I/O should be better because I/O is
focused on dedicated tasks. However, the LVM partition is
much smaller.

Tip

You may find that you can automate the partitioning itself. For
example, MIT uses Fully Automatic Installation (FAI) to do the
initial PXE-based partition and then install using a combination
of min/max and percentage-based partitioning.

As with most architecture choices, the right answer depends on your
environment. If you are using existing hardware, you know the disk
density of your servers and can determine some decisions based on the
options above. If you are going through a procurement process, your
user's requirements also help you determine hardware purchases. Here
are some examples from a private cloud providing web developers custom

http://fai-project.org/

OpenStack Ops Guide July 3, 2014

28

environments at AT&T. This example is from a specific deployment, so your
existing hardware or procurement opportunity may vary from this. AT&T
uses three types of hardware in its deployment:

• Hardware for controller nodes, used for all stateless OpenStack API
services. About 32–64 GB memory, small attached disk, one processor,
varied number of cores, such as 6–12.

• Hardware for compute nodes. Typically 256 or 144 GB memory, two
processors, 24 cores. 4–6 TB direct attached storage, typically in a RAID 5
configuration.

• Hardware for storage nodes. Typically for these, the disk space is
optimized for the lowest cost per GB of storage while maintaining rack-
space efficiency.

Again, the right answer depends on your environment. You have to make
your decision based on the trade-offs between space utilization, simplicity,
and I/O performance.

Network Configuration

Network configuration is a very large topic that spans multiple areas
of this book. For now, make sure that your servers can PXE boot and
successfully communicate with the deployment server.

For example, you usually cannot configure NICs for VLANs when PXE
booting. Additionally, you usually cannot PXE boot with bonded NICs. If
you run into this scenario, consider using a simple 1 GB switch in a private
network on which only your cloud communicates.

Automated Configuration
The purpose of automatic configuration management is to establish and
maintain the consistency of a system without using human intervention.
You want to maintain consistency in your deployments so that you can
have the same cloud every time, repeatably. Proper use of automatic
configuration-management tools ensures that components of the cloud
systems are in particular states, in addition to simplifying deployment, and
configuration change propagation.

These tools also make it possible to test and roll back changes, as they
are fully repeatable. Conveniently, a large body of work has been done
by the OpenStack community in this space. Puppet, a configuration

OpenStack Ops Guide July 3, 2014

29

management tool, even provides official modules for OpenStack in an
OpenStack infrastructure system known as Stackforge. Chef configuration
management is provided within https://github.com/stackforge/openstack-
chef-repo. Additional configuration management systems include
Juju, Ansible, and Salt. Also, PackStack is a command-line utility for
Red Hat Enterprise Linux and derivatives that uses Puppet modules to
support rapid deployment of OpenStack on existing servers over an SSH
connection.

An integral part of a configuration-management system is the items that
it controls. You should carefully consider all of the items that you want,
or do not want, to be automatically managed. For example, you may not
want to automatically format hard drives with user data.

Remote Management
In our experience, most operators don't sit right next to the servers
running the cloud, and many don't necessarily enjoy visiting the data
center. OpenStack should be entirely remotely configurable, but
sometimes not everything goes according to plan.

In this instance, having an out-of-band access into nodes running
OpenStack components is a boon. The IPMI protocol is the de facto
standard here, and acquiring hardware that supports it is highly
recommended to achieve that lights-out data center aim.

In addition, consider remote power control as well. While IPMI usually
controls the server's power state, having remote access to the PDU
that the server is plugged into can really be useful for situations when
everything seems wedged.

Parting Thoughts for Provisioning and
Deploying OpenStack

You can save time by understanding the use cases for the cloud you
want to create. Use cases for OpenStack are varied. Some include object
storage only; others require preconfigured compute resources to speed
development-environment set up; and others need fast provisioning
of compute resources that are already secured per tenant with private
networks. Your users may have need for highly redundant servers to make
sure their legacy applications continue to run. Perhaps a goal would be to
architect these legacy applications so that they run on multiple instances in

http://opsgui.de/NPFUpL
https://github.com/stackforge/openstack-chef-repo
https://github.com/stackforge/openstack-chef-repo

OpenStack Ops Guide July 3, 2014

30

a cloudy, fault-tolerant way, but not make it a goal to add to those clusters
over time. Your users may indicate that they need scaling considerations
because of heavy Windows server use.

You can save resources by looking at the best fit for the hardware
you have in place already. You might have some high-density storage
hardware available. You could format and repurpose those servers for
OpenStack Object Storage. All of these considerations and input from
users help you build your use case and your deployment plan.

Tip

For further research about OpenStack deployment, investigate
the supported and documented preconfigured, prepackaged
installers for OpenStack from companies such as Canonical,
Cisco, Cloudscaling, IBM, Metacloud, Mirantis, Piston,
Rackspace, Red Hat, SUSE, and SwiftStack.

Conclusion
The decisions you make with respect to provisioning and deployment will
affect your day-to-day, week-to-week, and month-to-month maintenance
of the cloud. Your configuration management will be able to evolve over
time. However, more thought and design need to be done for upfront
choices about deployment, disk partitioning, and network configuration.

http://opsgui.de/NPFSy7
http://opsgui.de/1gwRmlS
http://opsgui.de/1eLAFSL
http://opsgui.de/NPFYG3
http://opsgui.de/1eLAGWE
http://opsgui.de/NPFWOy
http://opsgui.de/1eLAHKd
http://opsgui.de/1gwRm58
http://opsgui.de/NPFXlq
http://opsgui.de/1eLALK5
http://opsgui.de/NPG0hb

OpenStack Ops Guide July 3, 2014

31

3. Designing for Cloud Controllers
and Cloud Management

Hardware Considerations ... 33
Separation of Services .. 33
Database ... 34
Message Queue ... 35
Conductor Services ... 35
Application Programming Interface (API) ... 36
Extensions .. 36
Scheduling ... 37
Images ... 37
Dashboard ... 38
Authentication and Authorization .. 38
Network Considerations ... 39

OpenStack is designed to be massively horizontally scalable, which allows
all services to be distributed widely. However, to simplify this guide,
we have decided to discuss services of a more central nature, using the
concept of a cloud controller. A cloud controller is just a conceptual
simplification. In the real world, you design an architecture for your cloud
controller that enables high availability so that if any node fails, another
can take over the required tasks. In reality, cloud controller tasks are
spread out across more than a single node.

The cloud controller provides the central management system for
OpenStack deployments. Typically, the cloud controller manages
authentication and sends messaging to all the systems through a message
queue.

For many deployments, the cloud controller is a single node. However, to
have high availability, you have to take a few considerations into account,
which we'll cover in this chapter.

The cloud controller manages the following services for the cloud:

Databases Tracks current information about
users and instances, for example, in
a database, typically one database
instance managed per service

Message queue services All AMQP—Advanced Message Queue
Protocol—messages for services are

OpenStack Ops Guide July 3, 2014

32

received and sent according to the
queue broker

Conductor services Proxy requests to a database

Authentication and
authorization for identity
management

Indicates which users can do what
actions on certain cloud resources;
quota management is spread out
among services, however

Image-management services Stores and serves images with
metadata on each, for launching in the
cloud

Scheduling services Indicates which resources to use first;
for example, spreading out where
instances are launched based on an
algorithm

User dashboard Provides a web-based frontend for
users to consume OpenStack cloud
services

API endpoints Offers each service's REST API access,
where the API endpoint catalog is
managed by the Identity Service

For our example, the cloud controller has a collection of nova-*
components that represent the global state of the cloud; talks to services
such as authentication; maintains information about the cloud in a
database; communicates to all compute nodes and storage workers
through a queue; and provides API access. Each service running on a
designated cloud controller may be broken out into separate nodes for
scalability or availability.

As another example, you could use pairs of servers for a collective cloud
controller—one active, one standby—for redundant nodes providing a
given set of related services, such as:

• Frontend web for API requests, the scheduler for choosing which
compute node to boot an instance on, Identity services, and the
dashboard

• Database and message queue server (such as MySQL, RabbitMQ)

• Image Service for the image management

OpenStack Ops Guide July 3, 2014

33

Now that you see the myriad designs for controlling your cloud, read more
about the further considerations to help with your design decisions.

Hardware Considerations
A cloud controller's hardware can be the same as a compute node, though
you may want to further specify based on the size and type of cloud that
you run.

It's also possible to use virtual machines for all or some of the services that
the cloud controller manages, such as the message queuing. In this guide,
we assume that all services are running directly on the cloud controller.

Table 3.1, “Cloud controller hardware sizing considerations” [33]
contains common considerations to review when sizing hardware for the
cloud controller design.

Table 3.1. Cloud controller hardware sizing considerations

Consideration Ramification

How many instances
will run at once?

Size your database server accordingly, and scale out beyond one cloud
controller if many instances will report status at the same time and
scheduling where a new instance starts up needs computing power.

How many compute
nodes will run at once?

Ensure that your messaging queue handles requests successfully and size
accordingly.

How many users will
access the API?

If many users will make multiple requests, make sure that the CPU load
for the cloud controller can handle it.

How many users will
access the dashboard
versus the REST API
directly?

The dashboard makes many requests, even more than the API access,
so add even more CPU if your dashboard is the main interface for your
users.

How many nova-api
services do you run at
once for your cloud?

You need to size the controller with a core per service.

How long does a single
instance run?

Starting instances and deleting instances is demanding on the compute
node but also demanding on the controller node because of all the API
queries and scheduling needs.

Does your
authentication system
also verify externally?

External systems such as LDAP or Active Directory require network
connectivity between the cloud controller and an external
authentication system. Also ensure that the cloud controller has the CPU
power to keep up with requests.

Separation of Services
While our example contains all central services in a single location, it is
possible and indeed often a good idea to separate services onto different

OpenStack Ops Guide July 3, 2014

34

physical servers. Table 3.2, “Deployment scenarios” [34] is a list of
deployment scenarios we've seen and their justifications.

Table 3.2. Deployment scenarios

Scenario Justification

Run glance-* servers
on the swift-proxy
server.

This deployment felt that the spare I/O on the Object Storage
proxy server was sufficient and that the Image Delivery portion of
glance benefited from being on physical hardware and having good
connectivity to the Object Storage backend it was using.

Run a central
dedicated database
server.

This deployment used a central dedicated server to provide the
databases for all services. This approach simplified operations by
isolating database server updates and allowed for the simple creation of
slave database servers for failover.

Run one VM per
service.

This deployment ran central services on a set of servers running KVM.
A dedicated VM was created for each service (nova-scheduler,
rabbitmq, database, etc). This assisted the deployment with scaling
because administrators could tune the resources given to each virtual
machine based on the load it received (something that was not well
understood during installation).

Use an external load
balancer.

This deployment had an expensive hardware load balancer in its
organization. It ran multiple nova-api and swift-proxy servers on
different physical servers and used the load balancer to switch between
them.

One choice that always comes up is whether to virtualize. Some services,
such as nova-compute, swift-proxy and swift-object servers,
should not be virtualized. However, control servers can often be happily
virtualized—the performance penalty can usually be offset by simply
running more of the service.

Database
OpenStack Compute uses a SQL database to store and retrieve stateful
information. MySQL is the popular database choice in the OpenStack
community.

Loss of the database leads to errors. As a result, we recommend that
you cluster your database to make it failure tolerant. Configuring
and maintaining a database cluster is done outside OpenStack and is
determined by the database software you choose to use in your cloud
environment. MySQL/Galera is a popular option for MySQL-based
databases.

OpenStack Ops Guide July 3, 2014

35

Message Queue
Most OpenStack services communicate with each other using the message
queue. For example, Compute communicates to block storage services and
networking services through the message queue. Also, you can optionally
enable notifications for any service. RabbitMQ, Qpid, and 0mq are all
popular choices for a message-queue service. In general, if the message
queue fails or becomes inaccessible, the cluster grinds to a halt and ends
up in a read-only state, with information stuck at the point where the
last message was sent. Accordingly, we recommend that you cluster the
message queue. Be aware that clustered message queues can be a pain
point for many OpenStack deployments. While RabbitMQ has native
clustering support, there have been reports of issues when running it at a
large scale. While other queuing solutions are available, such as 0mq and
Qpid, 0mq does not offer stateful queues. Qpid is the messaging system of
choice for Red Hat and its derivatives. Qpid does not have native clustering
capabilities and requires a supplemental service, such as Pacemaker or
Corsync. For your message queue, you need to determine what level of
data loss you are comfortable with and whether to use an OpenStack
project's ability to retry multiple MQ hosts in the event of a failure, such as
using Compute's ability to do so.

Conductor Services
In the previous version of OpenStack, all nova-compute services required
direct access to the database hosted on the cloud controller. This was
problematic for two reasons: security and performance. With regard to
security, if a compute node is compromised, the attacker inherently has
access to the database. With regard to performance, nova-compute
calls to the database are single-threaded and blocking. This creates a
performance bottleneck because database requests are fulfilled serially
rather than in parallel.

The conductor service resolves both of these issues by acting as a proxy
for the nova-compute service. Now, instead of nova-compute directly
accessing the database, it contacts the nova-conductor service, and
nova-conductor accesses the database on nova-compute's behalf.
Since nova-compute no longer has direct access to the database, the
security issue is resolved. Additionally, nova-conductor is a nonblocking
service, so requests from all compute nodes are fulfilled in parallel.

OpenStack Ops Guide July 3, 2014

36

Note

If you are using nova-network and multi-host networking in
your cloud environment, nova-compute still requires direct
access to the database.

The nova-conductor service is horizontally scalable. To make nova-
conductor highly available and fault tolerant, just launch more instances
of the nova-conductor process, either on the same server or across
multiple servers.

Application Programming Interface (API)
All public access, whether direct, through a command-line client, or
through the web-based dashboard, uses the API service. Find the API
reference at http://api.openstack.org/.

You must choose whether you want to support the Amazon EC2
compatibility APIs, or just the OpenStack APIs. One issue you might
encounter when running both APIs is an inconsistent experience when
referring to images and instances.

For example, the EC2 API refers to instances using IDs that contain
hexadecimal, whereas the OpenStack API uses names and digits. Similarly,
the EC2 API tends to rely on DNS aliases for contacting virtual machines, as
opposed to OpenStack, which typically lists IP addresses.

If OpenStack is not set up in the right way, it is simple to have scenarios
in which users are unable to contact their instances due to having only
an incorrect DNS alias. Despite this, EC2 compatibility can assist users
migrating to your cloud.

As with databases and message queues, having more than one API server
is a good thing. Traditional HTTP load-balancing techniques can be used to
achieve a highly available nova-api service.

Extensions
The API Specifications define the core actions, capabilities, and mediatypes
of the OpenStack API. A client can always depend on the availability of
this core API, and implementers are always required to support it in its
entirety. Requiring strict adherence to the core API allows clients to rely
upon a minimal level of functionality when interacting with multiple
implementations of the same API.

http://api.openstack.org/
http://opsgui.de/NPFK1H

OpenStack Ops Guide July 3, 2014

37

The OpenStack Compute API is extensible. An extension adds capabilities
to an API beyond those defined in the core. The introduction of new
features, MIME types, actions, states, headers, parameters, and resources
can all be accomplished by means of extensions to the core API. This allows
the introduction of new features in the API without requiring a version
change and allows the introduction of vendor-specific niche functionality.

Scheduling
The scheduling services are responsible for determining the compute
or storage node where a virtual machine or block storage volume
should be created. The scheduling services receive creation requests for
these resources from the message queue and then begin the process of
determining the appropriate node where the resource should reside. This
process is done by applying a series of user-configurable filters against the
available collection of nodes.

There are currently two schedulers: nova-scheduler for virtual
machines and cinder-scheduler for block storage volumes. Both
schedulers are able to scale horizontally, so for high-availability purposes,
or for very large or high-schedule-frequency installations, you should
consider running multiple instances of each scheduler. The schedulers
all listen to the shared message queue, so no special load balancing is
required.

Images
The OpenStack Image Service consists of two parts: glance-api and
glance-registry. The former is responsible for the delivery of images;
the compute node uses it to download images from the backend. The
latter maintains the metadata information associated with virtual machine
images and requires a database.

The glance-api part is an abstraction layer that allows a choice of
backend. Currently, it supports:

OpenStack Object Storage Allows you to store images as objects.

File system Uses any traditional file system to store
the images as files.

S3 Allows you to fetch images from
Amazon S3.

OpenStack Ops Guide July 3, 2014

38

HTTP Allows you to fetch images from a web
server. You cannot write images by
using this mode.

If you have an OpenStack Object Storage service, we recommend using
this as a scalable place to store your images. You can also use a file system
with sufficient performance or Amazon S3—unless you do not need the
ability to upload new images through OpenStack.

Dashboard
The OpenStack dashboard (horizon) provides a web-based user interface
to the various OpenStack components. The dashboard includes an end-
user area for users to manage their virtual infrastructure and an admin
area for cloud operators to manage the OpenStack environment as a
whole.

The dashboard is implemented as a Python web application that normally
runs in Apache httpd. Therefore, you may treat it the same as any other
web application, provided it can reach the API servers (including their
admin endpoints) over the network.

Authentication and Authorization
The concepts supporting OpenStack's authentication and authorization
are derived from well-understood and widely used systems of a similar
nature. Users have credentials they can use to authenticate, and they
can be a member of one or more groups (known as projects or tenants,
interchangeably).

For example, a cloud administrator might be able to list all instances in the
cloud, whereas a user can see only those in his current group. Resources
quotas, such as the number of cores that can be used, disk space, and so
on, are associated with a project.

The OpenStack Identity Service (keystone) is the point that provides the
authentication decisions and user attribute information, which is then used
by the other OpenStack services to perform authorization. Policy is set in
the policy.json file. For information on how to configure these, see
Chapter 9, “Managing Projects and Users” [91].

The Identity Service supports different plug-ins for authentication decisions
and identity storage. Examples of these plug-ins include:

OpenStack Ops Guide July 3, 2014

39

• In-memory key-value Store (a simplified internal storage structure)

• SQL database (such as MySQL or PostgreSQL)

• PAM (Pluggable Authentication Module)

• LDAP (such as OpenLDAP or Microsoft's Active Directory)

Many deployments use the SQL database; however, LDAP is also a popular
choice for those with existing authentication infrastructure that needs to
be integrated.

Network Considerations
Because the cloud controller handles so many different services, it must be
able to handle the amount of traffic that hits it. For example, if you choose
to host the OpenStack Imaging Service on the cloud controller, the cloud
controller should be able to support the transferring of the images at an
acceptable speed.

As another example, if you choose to use single-host networking where
the cloud controller is the network gateway for all instances, then the
cloud controller must support the total amount of traffic that travels
between your cloud and the public Internet.

We recommend that you use a fast NIC, such as 10 GB. You can also
choose to use two 10 GB NICs and bond them together. While you might
not be able to get a full bonded 20 GB speed, different transmission
streams use different NICs. For example, if the cloud controller transfers
two images, each image uses a different NIC and gets a full 10 GB of
bandwidth.

OpenStack Ops Guide July 3, 2014

41

4. Compute Nodes
Choosing a CPU ... 41
Choosing a Hypervisor ... 42
Instance Storage Solutions ... 43
Overcommitting ... 47
Logging ... 48
Networking .. 48
Conclusion ... 48

In this chapter, we discuss some of the choices you need to consider when
building out your compute nodes. Compute nodes form the resource core
of the OpenStack Compute cloud, providing the processing, memory,
network and storage resources to run instances.

Choosing a CPU
The type of CPU in your compute node is a very important choice. First,
ensure that the CPU supports virtualization by way of VT-x for Intel chips
and AMD-v for AMD chips.

Tip

Consult the vendor documentation to check for virtualization
support. For Intel, read “Does my processor support
Intel® Virtualization Technology?”. For AMD, read AMD
Virtualization. Note that your CPU may support virtualization
but it may be disabled. Consult your BIOS documentation for
how to enable CPU features.

The number of cores that the CPU has also affects the decision. It's
common for current CPUs to have up to 12 cores. Additionally, if an Intel
CPU supports hyperthreading, those 12 cores are doubled to 24 cores. If
you purchase a server that supports multiple CPUs, the number of cores is
further multiplied.

http://opsgui.de/1eLAoiC
http://opsgui.de/1eLAoiC
http://opsgui.de/NPFI9Z
http://opsgui.de/NPFI9Z

OpenStack Ops Guide July 3, 2014

42

Multithread Considerations

Hyper-Threading is Intel's proprietary simultaneous multithreading
implementation used to improve parallelization on their CPUs.
You might consider enabling Hyper-Threading to improve the
performance of multithreaded applications.

Whether you should enable Hyper-Threading on your CPUs depends
upon your use case. For example, disabling Hyper-Threading can
be beneficial in intense computing environments. We recommend
that you do performance testing with your local workload with both
Hyper-Threading on and off to determine what is more appropriate
in your case.

Choosing a Hypervisor
A hypervisor provides software to manage virtual machine access to the
underlying hardware. The hypervisor creates, manages, and monitors
virtual machines. OpenStack Compute supports many hypervisors to
various degrees, including:

• KVM

• LXC

• QEMU

• VMWare ESX/ESXi

• Xen

• Hyper-V

• Docker

Probably the most important factor in your choice of hypervisor is your
current usage or experience. Aside from that, there are practical concerns
to do with feature parity, documentation, and the level of community
experience.

For example, KVM is the most widely adopted hypervisor in the OpenStack
community. Besides KVM, more deployments run Xen, LXC, VMWare,
and Hyper-V than the others listed. However, each of these are lacking

http://opsgui.de/1eLApTQ
http://opsgui.de/NPFL5O
http://opsgui.de/1eLAs1W
http://opsgui.de/NPFOyn
http://opsgui.de/1eLAt5Z
http://opsgui.de/NPFMXx
http://opsgui.de/1eLAxm5

OpenStack Ops Guide July 3, 2014

43

some feature support or the documentation on how to use them with
OpenStack is out of date.

The best information available to support your choice is found on the
Hypervisor Support Matrix and in the configuration reference.

Note

It is also possible to run multiple hypervisors in a single
deployment using host aggregates or cells. However, an
individual compute node can run only a single hypervisor at a
time.

Instance Storage Solutions
As part of the procurement for a compute cluster, you must specify some
storage for the disk on which the instantiated instance runs. There are
three main approaches to providing this temporary-style storage, and it is
important to understand the implications of the choice.

They are:

• Off compute node storage—shared file system

• On compute node storage—shared file system

• On compute node storage—nonshared file system

In general, the questions you should ask when selecting storage are as
follows:

• What is the platter count you can achieve?

• Do more spindles result in better I/O despite network access?

• Which one results in the best cost-performance scenario you're aiming
for?

• How do you manage the storage operationally?

Many operators use separate compute and storage hosts. Compute
services and storage services have different requirements, and compute
hosts typically require more CPU and RAM than storage hosts. Therefore,
for a fixed budget, it makes sense to have different configurations for your
compute nodes and your storage nodes. Compute nodes will be invested
in CPU and RAM, and storage nodes will be invested in block storage.

http://opsgui.de/NPFQ9w
http://opsgui.de/1eLAwP2

OpenStack Ops Guide July 3, 2014

44

However, if you are more restricted in the number of physical hosts you
have available for creating your cloud and you want to be able to dedicate
as many of your hosts as possible to running instances, it makes sense to
run compute and storage on the same machines.

We'll discuss the three main approaches to instance storage in the next
few sections.

OpenStack Ops Guide July 3, 2014

45

Off Compute Node Storage—Shared File System

In this option, the disks storing the running instances are hosted in servers
outside of the compute nodes.

If you use separate compute and storage hosts, you can treat your
compute hosts as "stateless." As long as you don't have any instances
currently running on a compute host, you can take it offline or wipe
it completely without having any effect on the rest of your cloud. This
simplifies maintenance for the compute hosts.

There are several advantages to this approach:

• If a compute node fails, instances are usually easily recoverable.

• Running a dedicated storage system can be operationally simpler.

• You can scale to any number of spindles.

• It may be possible to share the external storage for other purposes.

The main downsides to this approach are:

• Depending on design, heavy I/O usage from some instances can affect
unrelated instances.

• Use of the network can decrease performance.

On Compute Node Storage—Shared File System

In this option, each compute node is specified with a significant amount of
disk space, but a distributed file system ties the disks from each compute
node into a single mount.

The main advantage of this option is that it scales to external storage
when you require additional storage.

However, this option has several downsides:

• Running a distributed file system can make you lose your data locality
compared with nonshared storage.

• Recovery of instances is complicated by depending on multiple hosts.

• The chassis size of the compute node can limit the number of spindles
able to be used in a compute node.

OpenStack Ops Guide July 3, 2014

46

• Use of the network can decrease performance.

On Compute Node Storage—Nonshared File
System

In this option, each compute node is specified with enough disks to store
the instances it hosts.

There are two main reasons why this is a good idea:

• Heavy I/O usage on one compute node does not affect instances on
other compute nodes.

• Direct I/O access can increase performance.

This has several downsides:

• If a compute node fails, the instances running on that node are lost.

• The chassis size of the compute node can limit the number of spindles
able to be used in a compute node.

• Migrations of instances from one node to another are more complicated
and rely on features that may not continue to be developed.

• If additional storage is required, this option does not scale.

Running a shared file system on a storage system apart from the computes
nodes is ideal for clouds where reliability and scalability are the most
important factors. Running a shared file system on the compute nodes
themselves may be best in a scenario where you have to deploy to
preexisting servers for which you have little to no control over their
specifications. Running a nonshared file system on the compute nodes
themselves is a good option for clouds with high I/O requirements and low
concern for reliability.

Issues with Live Migration
We consider live migration an integral part of the operations of the cloud.
This feature provides the ability to seamlessly move instances from one
physical host to another, a necessity for performing upgrades that require
reboots of the compute hosts, but only works well with shared storage.

Live migration can also be done with nonshared storage, using a feature
known as KVM live block migration. While an earlier implementation of

OpenStack Ops Guide July 3, 2014

47

block-based migration in KVM and QEMU was considered unreliable, there
is a newer, more reliable implementation of block-based live migration
as of QEMU 1.4 and libvirt 1.0.2 that is also compatible with OpenStack.
However, none of the authors of this guide have first-hand experience
using live block migration.

Choice of File System

If you want to support shared-storage live migration, you need to
configure a distributed file system.

Possible options include:

• NFS (default for Linux)

• GlusterFS

• MooseFS

• Lustre

We've seen deployments with all, and recommend that you choose the
one you are most familiar with operating. If you are not familiar with any
of these, choose NFS, as it is the easiest to set up and there is extensive
community knowledge about it.

Overcommitting
OpenStack allows you to overcommit CPU and RAM on compute nodes.
This allows you to increase the number of instances you can have running
on your cloud, at the cost of reducing the performance of the instances.
OpenStack Compute uses the following ratios by default:

• CPU allocation ratio: 16:1

• RAM allocation ratio: 1.5:1

The default CPU allocation ratio of 16:1 means that the scheduler allocates
up to 16 virtual cores per physical core. For example, if a physical node
has 12 cores, the scheduler sees 192 available virtual cores. With typical
flavor definitions of 4 virtual cores per instance, this ratio would provide 48
instances on a physical node.

The formula for the number of virtual instances on a compute node is
(OR*PC)/VC, where:

OpenStack Ops Guide July 3, 2014

48

OR CPU overcommit ratio (virtual cores per physical core)

PC Number of physical cores

VC Number of virtual cores per instance

Similarly, the default RAM allocation ratio of 1.5:1 means that the
scheduler allocates instances to a physical node as long as the total
amount of RAM associated with the instances is less than 1.5 times the
amount of RAM available on the physical node.

For example, if a physical node has 48 GB of RAM, the scheduler allocates
instances to that node until the sum of the RAM associated with the
instances reaches 72 GB (such as nine instances, in the case where each
instance has 8 GB of RAM).

You must select the appropriate CPU and RAM allocation ratio for your
particular use case.

Logging
Logging is detailed more fully in Chapter 13, “Logging and
Monitoring” [173]. However, it is an important design consideration to
take into account before commencing operations of your cloud.

OpenStack produces a great deal of useful logging information, however;
but for the information to be useful for operations purposes, you should
consider having a central logging server to send logs to, and a log parsing/
analysis system (such as logstash).

Networking
Networking in OpenStack is a complex, multifaceted challenge. See
Chapter 7, “Network Design” [69].

Conclusion
Compute nodes are the workhorse of your cloud and the place where your
users' applications will run. They are likely to be affected by your decisions
on what to deploy and how you deploy it. Their requirements should be
reflected in the choices you make.

OpenStack Ops Guide July 3, 2014

49

5. Scaling
The Starting Point .. 49
Adding Cloud Controller Nodes .. 51
Segregating Your Cloud ... 52
Scalable Hardware ... 56

Whereas traditional applications required larger hardware to scale
("vertical scaling"), cloud-based applications typically request more, discrete
hardware ("horizontal scaling"). If your cloud is successful, eventually you
must add resources to meet the increasing demand.

To suit the cloud paradigm, OpenStack itself is designed to be horizontally
scalable. Rather than switching to larger servers, you procure more servers
and simply install identically configured services. Ideally, you scale out and
load balance among groups of functionally identical services (for example,
compute nodes or nova-api nodes), that communicate on a message
bus.

The Starting Point
Determining the scalability of your cloud and how to improve it is an
exercise with many variables to balance. No one solution meets everyone's
scalability goals. However, it is helpful to track a number of metrics. Since
you can define virtual hardware templates, called "flavors" in OpenStack,
you can start to make scaling decisions based on the flavors you'll provide.
These templates define sizes for memory in RAM, root disk size, amount of
ephemeral data disk space available, and number of cores for starters.

The default OpenStack flavors are shown in Table 5.1, “OpenStack default
flavors” [50].

OpenStack Ops Guide July 3, 2014

50

Table 5.1. OpenStack default flavors

Name Virtual cores Memory Disk Ephemeral

m1.tiny 1 512 MB 1 GB 0 GB

m1.small 1 2 GB 10 GB 20 GB

m1.medium 2 4 GB 10 GB 40 GB

m1.large 4 8 GB 10 GB 80 GB

m1.xlarge 8 16 GB 10 GB 160 GB

The starting point for most is the core count of your cloud. By applying
some ratios, you can gather information about:

• The number of virtual machines (VMs) you expect to run,
((overcommit fraction × cores) / virtual cores per
instance)

• How much storage is required (flavor disk size × number of
instances)

You can use these ratios to determine how much additional infrastructure
you need to support your cloud.

Here is an example using the ratios for gathering scalability information for
the number of VMs expected as well as the storage needed. The following
numbers support (200 / 2) × 16 = 1600 VM instances and require 80 TB of
storage for /var/lib/nova/instances:

• 200 physical cores.

• Most instances are size m1.medium (two virtual cores, 50 GB of
storage).

• Default CPU overcommit ratio (cpu_allocation_ratio in nova.conf)
of 16:1.

However, you need more than the core count alone to estimate the load
that the API services, database servers, and queue servers are likely to
encounter. You must also consider the usage patterns of your cloud.

As a specific example, compare a cloud that supports a managed web-
hosting platform with one running integration tests for a development
project that creates one VM per code commit. In the former, the heavy
work of creating a VM happens only every few months, whereas the latter
puts constant heavy load on the cloud controller. You must consider your

OpenStack Ops Guide July 3, 2014

51

average VM lifetime, as a larger number generally means less load on the
cloud controller.

Aside from the creation and termination of VMs, you must consider the
impact of users accessing the service—particularly on nova-api and its
associated database. Listing instances garners a great deal of information
and, given the frequency with which users run this operation, a cloud
with a large number of users can increase the load significantly. This can
occur even without their knowledge—leaving the OpenStack dashboard
instances tab open in the browser refreshes the list of VMs every 30
seconds.

After you consider these factors, you can determine how many cloud
controller cores you require. A typical eight core, 8 GB of RAM server is
sufficient for up to a rack of compute nodes — given the above caveats.

You must also consider key hardware specifications for the performance
of user VMs, as well as budget and performance needs, including storage
performance (spindles/core), memory availability (RAM/core), network
bandwidth (Gbps/core), and overall CPU performance (CPU/core).

Tip

For a discussion of metric tracking, including how to extract
metrics from your cloud, see Chapter 13, “Logging and
Monitoring” [173].

Adding Cloud Controller Nodes
You can facilitate the horizontal expansion of your cloud by adding nodes.
Adding compute nodes is straightforward—they are easily picked up by the
existing installation. However, you must consider some important points
when you design your cluster to be highly available.

Recall that a cloud controller node runs several different services. You can
install services that communicate only using the message queue internally
—nova-scheduler and nova-console—on a new server for expansion.
However, other integral parts require more care.

You should load balance user-facing services such as dashboard, nova-
api, or the Object Storage proxy. Use any standard HTTP load-balancing
method (DNS round robin, hardware load balancer, or software such as
Pound or HAProxy). One caveat with dashboard is the VNC proxy, which

OpenStack Ops Guide July 3, 2014

52

uses the WebSocket protocol—something that an L7 load balancer might
struggle with. See also Horizon session storage.

You can configure some services, such as nova-api and glance-api,
to use multiple processes by changing a flag in their configuration file—
allowing them to share work between multiple cores on the one machine.

Tip

Several options are available for MySQL load balancing, and
the supported AMQP brokers have built-in clustering support.
Information on how to configure these and many of the other
services can be found in Part II, “Operations” [77].

Segregating Your Cloud
When you want to offer users different regions to provide legal
considerations for data storage, redundancy across earthquake fault
lines, or for low-latency API calls, you segregate your cloud. Use one of
the following OpenStack methods to segregate your cloud: cells, regions,
availability zones, or host aggregates.

Each method provides different functionality and can be best divided into
two groups:

• Cells and regions, which segregate an entire cloud and result in running
separate Compute deployments.

• Availability zones and host aggregates, which merely divide a single
Compute deployment.

Table 5.2, “OpenStack segregation methods” [52] provides a
comparison view of each segregation method currently provided by
OpenStack Compute.

Table 5.2. OpenStack segregation methods

Cells Regions Availability zones Host aggregates

Use when you
need

A single API
endpoint for
compute, or
you require a
second level of
scheduling.

Discrete regions
with separate API
endpoints and
no coordination
between regions.

Logical separation
within your nova
deployment for
physical isolation
or redundancy.

To schedule a
group of hosts
with common
features.

Example A cloud with
multiple sites

A cloud with
multiple sites,

A single-site cloud
with equipment

Scheduling
to hosts with

http://opsgui.de/1eLAOFE

OpenStack Ops Guide July 3, 2014

53

Cells Regions Availability zones Host aggregates

where you can
schedule VMs
"anywhere" or on
a particular site.

where you
schedule VMs
to a particular
site and you
want a shared
infrastructure.

fed by separate
power supplies.

trusted hardware
support.

Overhead Considered
experimental.

A new service,
nova-cells.

Each cell has a full
nova installation
except nova-api.

A different API
endpoint for
every region.

Each region
has a full nova
installation.

Configuration
changes to
nova.conf.

Configuration
changes to
nova.conf.

Shared services Keystone

nova-api

Keystone Keystone

All nova services

Keystone

All nova services

Cells and Regions

OpenStack Compute cells are designed to allow running the cloud
in a distributed fashion without having to use more complicated
technologies, or be invasive to existing nova installations. Hosts in a cloud
are partitioned into groups called cells. Cells are configured in a tree. The
top-level cell ("API cell") has a host that runs the nova-api service, but no
nova-compute services. Each child cell runs all of the other typical nova-
* services found in a regular installation, except for the nova-api service.
Each cell has its own message queue and database service and also runs
nova-cells, which manages the communication between the API cell
and child cells.

This allows for a single API server being used to control access to multiple
cloud installations. Introducing a second level of scheduling (the cell
selection), in addition to the regular nova-scheduler selection of hosts,
provides greater flexibility to control where virtual machines are run.

Contrast this with regions. Regions have a separate API endpoint per
installation, allowing for a more discrete separation. Users wanting to
run instances across sites have to explicitly select a region. However, the
additional complexity of a running a new service is not required.

The OpenStack dashboard (horizon) currently uses only a single region, so
one dashboard service should be run per region. Regions are a robust way
to share some infrastructure between OpenStack Compute installations,
while allowing for a high degree of failure tolerance.

OpenStack Ops Guide July 3, 2014

54

Availability Zones and Host Aggregates
You can use availability zones, host aggregates, or both to partition a nova
deployment.

Availability zones are implemented through and configured in a similar
way to host aggregates.

However, you use them for different reasons.

Availability zone

This enables you to arrange OpenStack compute hosts into logical groups
and provides a form of physical isolation and redundancy from other
availability zones, such as by using a separate power supply or network
equipment.

You define the availability zone in which a specified compute host resides
locally on each server. An availability zone is commonly used to identify a
set of servers that have a common attribute. For instance, if some of the
racks in your data center are on a separate power source, you can put
servers in those racks in their own availability zone. Availability zones can
also help separate different classes of hardware.

When users provision resources, they can specify from which availability
zone they want their instance to be built. This allows cloud consumers
to ensure that their application resources are spread across disparate
machines to achieve high availability in the event of hardware failure.

Host aggregates zone

This enables you to partition OpenStack Compute deployments into logical
groups for load balancing and instance distribution. You can use host
aggregates to further partition an availability zone. For example, you
might use host aggregates to partition an availability zone into groups of
hosts that either share common resources, such as storage and network, or
have a special property, such as trusted computing hardware.

A common use of host aggregates is to provide information for use with
the nova-scheduler. For example, you might use a host aggregate to
group a set of hosts that share specific flavors or images.

The general case for this is setting key-value pairs in the aggregate
metadata and matching key-value pairs in instance type extra specs. The
AggregateInstanceExtraSpecsFilter in the filter scheduler will

OpenStack Ops Guide July 3, 2014

55

enforce that instances be scheduled only on hosts in aggregates that
define the same key to the same value.

An advanced use of this general concept allows different instance types to
run with different CPU and RAM allocation rations so that high-intensity
computing loads and low-intensity development and testing systems
can share the same cloud without either starving the high-use systems
or wasting resources on low-utilization systems. This works by setting
metadata in your host aggregates and matching extra_specs in your
instance types.

The first step is setting the aggregate metadata keys
cpu_allocation_ratio and ram_allocation_ratio to a
floating-point value. The filter schedulers AggregateCoreFilter and
AggregateRamFilter will use those values rather than the global
defaults in nova.conf when scheduling to hosts in the aggregate. It is
important to be cautious when using this feature, since each host can be
in multiple aggregates but should have only one allocation ratio for each
resources. It is up to you to avoid putting a host in multiple aggregates
that define different values for the same resource.

This is the first half of the equation. To get instance types that are
guaranteed a particular ratio, you must set the extra_specs in the
instance type to the key-value pair you want to match in the aggregate.
For example, if you define extra specs cpu_allocation_ratio
to "1.0", then instances of that type will run in aggregates only where
the metadata key cpu_allocation_ratio is also defined as "1.0."
In practice, it is better to define an additional key-value pair in the
aggregate metadata to match on rather than match directly on
cpu_allocation_ratio or core_allocation_ratio. This allows
better abstraction. For example, by defining a key overcommit and
setting a value of "high," "medium," or "low," you could then tune the
numeric allocation ratios in the aggregates without also needing to
change all instance types relating to them.

Note

Previously, all services had an availability zone. Currently, only
the nova-compute service has its own availability zone.
Services such as nova-scheduler, nova-network, and
nova-conductor have always spanned all availability zones.

When you run any of the following operations, the
services appear in their own internal availability zone
(CONF.internal_service_availability_zone):

OpenStack Ops Guide July 3, 2014

56

• nova host-list (os-hosts)

• euca-describe-availability-zones verbose

• nova-manage service list

The internal availability zone is hidden in euca-describe-
availability_zones (nonverbose).

CONF.node_availability_zone has been renamed to
CONF.default_availability_zone and is used only by the nova-
api and nova-scheduler services.

CONF.node_availability_zone still works but is deprecated.

Scalable Hardware
While several resources already exist to help with deploying and
installing OpenStack, it's very important to make sure that you have your
deployment planned out ahead of time. This guide presumes that you
have at least set aside a rack for the OpenStack cloud but also offers
suggestions for when and what to scale.

Hardware Procurement

“The Cloud” has been described as a volatile environment where servers
can be created and terminated at will. While this may be true, it does
not mean that your servers must be volatile. Ensuring that your cloud’s
hardware is stable and configured correctly means that your cloud
environment remains up and running. Basically, put effort into creating a
stable hardware environment so that you can host a cloud that users may
treat as unstable and volatile.

OpenStack can be deployed on any hardware supported by an OpenStack-
compatible Linux distribution.

Hardware does not have to be consistent, but it should at least have the
same type of CPU to support instance migration.

The typical hardware recommended for use with OpenStack is the
standard value-for-money offerings that most hardware vendors stock. It
should be straightforward to divide your procurement into building blocks
such as "compute," "object storage," and "cloud controller," and request as

OpenStack Ops Guide July 3, 2014

57

many of these as you need. Alternatively, should you be unable to spend
more, if you have existing servers—provided they meet your performance
requirements and virtualization technology—they are quite likely to be
able to support OpenStack.

Capacity Planning

OpenStack is designed to increase in size in a straightforward manner.
Taking into account the considerations that we've mentioned in this
chapter—particularly on the sizing of the cloud controller—it should be
possible to procure additional compute or object storage nodes as needed.
New nodes do not need to be the same specification, or even vendor, as
existing nodes.

For compute nodes, nova-scheduler will take care of differences in
sizing having to do with core count and RAM amounts; however, you
should consider that the user experience changes with differing CPU
speeds. When adding object storage nodes, a weight should be specified
that reflects the capability of the node.

Monitoring the resource usage and user growth will enable you to know
when to procure. Chapter 13, “Logging and Monitoring” [173] details
some useful metrics.

Burn-in Testing

Server hardware's chance of failure is high at the start and the end of
its life. As a result, much effort in dealing with hardware failures while
in production can be avoided by appropriate burn-in testing to attempt
to trigger the early-stage failures. The general principle is to stress the
hardware to its limits. Examples of burn-in tests include running a CPU or
disk benchmark for several days.

OpenStack Ops Guide July 3, 2014

59

6. Storage Decisions
Ephemeral Storage .. 59
Persistent Storage .. 59
OpenStack Storage Concepts ... 62
Choosing Storage Backends ... 63
Conclusion ... 68

Storage is found in many parts of the OpenStack stack, and the differing
types can cause confusion to even experienced cloud engineers. This
section focuses on persistent storage options you can configure with your
cloud. It's important to understand the distinction between ephemeral
storage and persistent storage.

Ephemeral Storage
If you deploy only the OpenStack Compute Service (nova), your users do
not have access to any form of persistent storage by default. The disks
associated with VMs are "ephemeral," meaning that (from the user's point
of view) they effectively disappear when a virtual machine is terminated.

Persistent Storage
Persistent storage means that the storage resource outlives any other
resource and is always available, regardless of the state of a running
instance.

Today, OpenStack clouds explicitly support two types of persistent storage:
object storage and block storage.

Object Storage

With object storage, users access binary objects through a REST API. You
may be familiar with Amazon S3, which is a well-known example of an
object storage system. Object storage is implemented in OpenStack by
the OpenStack Object Storage (swift) project. If your intended users need
to archive or manage large datasets, you want to provide them with
object storage. In addition, OpenStack can store your virtual machine (VM)
images inside of an object storage system, as an alternative to storing the
images on a file system.

OpenStack Ops Guide July 3, 2014

60

OpenStack Object Storage provides a highly scalable, highly available
storage solution by relaxing some of the constraints of traditional file
systems. In designing and procuring for such a cluster, it is important to
understand some key concepts about its operation. Essentially, this type of
storage is built on the idea that all storage hardware fails, at every level, at
some point. Infrequently encountered failures that would hamstring other
storage systems, such as issues taking down RAID cards or entire servers,
are handled gracefully with OpenStack Object Storage.

A good document describing the Object Storage architecture is found
within the developer documentation—read this first. Once you understand
the architecture, you should know what a proxy server does and how
zones work. However, some important points are often missed at first
glance.

When designing your cluster, you must consider durability and availability.
Understand that the predominant source of these is the spread and
placement of your data, rather than the reliability of the hardware.
Consider the default value of the number of replicas, which is three. This
means that before an object is marked as having been written, at least
two copies exist—in case a single server fails to write, the third copy may or
may not yet exist when the write operation initially returns. Altering this
number increases the robustness of your data, but reduces the amount of
storage you have available. Next, look at the placement of your servers.
Consider spreading them widely throughout your data center's network
and power-failure zones. Is a zone a rack, a server, or a disk?

Object Storage's network patterns might seem unfamiliar at first. Consider
these main traffic flows:

• Among object, container, and account servers

• Between those servers and the proxies

• Between the proxies and your users

Object Storage is very "chatty" among servers hosting data—even a small
cluster does megabytes/second of traffic, which is predominantly, “Do you
have the object?”/“Yes I have the object!” Of course, if the answer to the
aforementioned question is negative or the request times out, replication
of the object begins.

Consider the scenario where an entire server fails and 24 TB of data needs
to be transferred "immediately" to remain at three copies—this can put
significant load on the network.

http://opsgui.de/NPG0xO

OpenStack Ops Guide July 3, 2014

61

Another fact that's often forgotten is that when a new file is being
uploaded, the proxy server must write out as many streams as there are
replicas—giving a multiple of network traffic. For a three-replica cluster,
10 Gbps in means 30 Gbps out. Combining this with the previous high
bandwidth demands of replication is what results in the recommendation
that your private network be of significantly higher bandwidth than
your public need be. Oh, and OpenStack Object Storage communicates
internally with unencrypted, unauthenticated rsync for performance—you
do want the private network to be private.

The remaining point on bandwidth is the public-facing portion. The
swift-proxy service is stateless, which means that you can easily add
more and use HTTP load-balancing methods to share bandwidth and
availability between them.

More proxies means more bandwidth, if your storage can keep up.

Block Storage

Block storage (sometimes referred to as volume storage) provides users
with access to block-storage devices. Users interact with block storage by
attaching volumes to their running VM instances.

These volumes are persistent: they can be detached from one instance
and re-attached to another, and the data remains intact. Block storage
is implemented in OpenStack by the OpenStack Block Storage (cinder)
project, which supports multiple backends in the form of drivers. Your
choice of a storage backend must be supported by a Block Storage driver.

Most block storage drivers allow the instance to have direct access to the
underlying storage hardware's block device. This helps increase the overall
read/write IO.

Experimental support for utilizing files as volumes began in the Folsom
release. This initially started as a reference driver for using NFS with cinder.
By Grizzly's release, this has expanded into a full NFS driver as well as a
GlusterFS driver.

These drivers work a little differently than a traditional "block" storage
driver. On an NFS or GlusterFS file system, a single file is created and then
mapped as a "virtual" volume into the instance. This mapping/translation
is similar to how OpenStack utilizes QEMU's file-based virtual machines
stored in /var/lib/nova/instances.

OpenStack Ops Guide July 3, 2014

62

OpenStack Storage Concepts
Table 6.1, “OpenStack storage” [62] explains the different storage
concepts provided by OpenStack.

Table 6.1. OpenStack storage

Ephemeral storage Block storage Object storage

Used to… Run operating system
and scratch space

Add additional
persistent storage to a
virtual machine (VM)

Store data, including
VM images

Accessed through… A file system A block device that
can be partitioned,
formatted, and
mounted (such as, /
dev/vdc)

The REST API

Accessible from… Within a VM Within a VM Anywhere

Managed by… OpenStack Compute
(nova)

OpenStack Block
Storage (cinder)

OpenStack Object
Storage (swift)

Persists until… VM is terminated Deleted by user Deleted by user

Sizing determined by… Administrator
configuration of size
settings, known as
flavors

User specification in
initial request

Amount of available
physical storage

Example of typical
usage…

10 GB first disk, 30 GB
second disk

1 TB disk 10s of TBs of dataset
storage

File-level Storage (for Live Migration)

With file-level storage, users access stored data using the operating
system's file system interface. Most users, if they have used a
network storage solution before, have encountered this form of
networked storage. In the Unix world, the most common form of
this is NFS. In the Windows world, the most common form is called
CIFS (previously, SMB).

OpenStack clouds do not present file-level storage to end users.
However, it is important to consider file-level storage for storing
instances under /var/lib/nova/instances when designing
your cloud, since you must have a shared file system if you want to
support live migration.

OpenStack Ops Guide July 3, 2014

63

Choosing Storage Backends
Users will indicate different needs for their cloud use cases. Some may
need fast access to many objects that do not change often, or want to
set a time-to-live (TTL) value on a file. Others may access only storage
that is mounted with the file system itself, but want it to be replicated
instantly when starting a new instance. For other systems, ephemeral
storage—storage that is released when a VM attached to it is shut down—
is the preferred way. When you select storage backends, ask the following
questions on behalf of your users:

• Do my users need block storage?

• Do my users need object storage?

• Do I need to support live migration?

• Should my persistent storage drives be contained in my compute nodes,
or should I use external storage?

• What is the platter count I can achieve? Do more spindles result in
better I/O despite network access?

• Which one results in the best cost-performance scenario I'm aiming for?

• How do I manage the storage operationally?

• How redundant and distributed is the storage? What happens if a
storage node fails? To what extent can it mitigate my data-loss disaster
scenarios?

To deploy your storage by using only commodity hardware, you can use a
number of open-source packages, as shown in Table 6.2, “Persistent file-
based storage support” [63].

Table 6.2. Persistent file-based storage support

 Object Block File-levela

Swift

LVM

Ceph Experimental

Gluster

NFS

OpenStack Ops Guide July 3, 2014

64

 Object Block File-levela

ZFS

Sheepdog
aThis list of open source file-level shared storage solutions is not exhaustive; other open source solutions
exist (MooseFS). Your organization may already have deployed a file-level shared storage solution that
you can use.

Storage Driver Support

In addition to the open source technologies, there are a number
of proprietary solutions that are officially supported by OpenStack
Block Storage. They are offered by the following vendors:

• IBM (Storwize family/SVC, XIV)

• NetApp

• Nexenta

• SolidFire

You can find a matrix of the functionality provided by all of the
supported Block Storage drivers on the OpenStack wiki.

Also, you need to decide whether you want to support object storage in
your cloud. The two common use cases for providing object storage in a
compute cloud are:

• To provide users with a persistent storage mechanism

• As a scalable, reliable data store for virtual machine images

Commodity Storage Backend Technologies

This section provides a high-level overview of the differences among the
different commodity storage backend technologies. Depending on your
cloud user's needs, you can implement one or many of these technologies
in different combinations:

OpenStack Object Storage
(swift)

The official OpenStack Object Store
implementation. It is a mature
technology that has been used
for several years in production by
Rackspace as the technology behind

http://opsgui.de/1eLAQxg

OpenStack Ops Guide July 3, 2014

65

Rackspace Cloud Files. As it is highly
scalable, it is well-suited to managing
petabytes of storage. OpenStack
Object Storage's advantages are better
integration with OpenStack (integrates
with OpenStack Identity, works with
the OpenStack dashboard interface)
and better support for multiple data
center deployment through support
of asynchronous eventual consistency
replication.

Therefore, if you eventually plan on
distributing your storage cluster across
multiple data centers, if you need
unified accounts for your users for both
compute and object storage, or if you
want to control your object storage
with the OpenStack dashboard, you
should consider OpenStack Object
Storage. More detail can be found
about OpenStack Object Storage in the
section below.

Ceph A scalable storage solution that
replicates data across commodity
storage nodes. Ceph was originally
developed by one of the founders of
DreamHost and is currently used in
production there.

Ceph was designed to expose different
types of storage interfaces to the end
user: it supports object storage, block
storage, and file-system interfaces,
although the file-system interface
is not yet considered production-
ready. Ceph supports the same API
as swift for object storage and can
be used as a backend for cinder block
storage as well as backend storage for
glance images. Ceph supports "thin
provisioning," implemented using copy-
on-write.

OpenStack Ops Guide July 3, 2014

66

This can be useful when booting
from volume because a new volume
can be provisioned very quickly.
Ceph also supports keystone-based
authentication (as of version 0.56),
so it can be a seamless swap in
for the default OpenStack swift
implementation.

Ceph's advantages are that it gives
the administrator more fine-grained
control over data distribution and
replication strategies, enables you
to consolidate your object and block
storage, enables very fast provisioning
of boot-from-volume instances using
thin provisioning, and supports a
distributed file-system interface,
though this interface is not yet
recommended for use in production
deployment by the Ceph project.

If you want to manage your object and
block storage within a single system, or
if you want to support fast boot-from-
volume, you should consider Ceph.

Gluster A distributed, shared file system. As of
Gluster version 3.3, you can use Gluster
to consolidate your object storage
and file storage into one unified file
and object storage solution, which is
called Gluster For OpenStack (GFO).
GFO uses a customized version of swift
that enables Gluster to be used as the
backend storage.

The main reason to use GFO rather
than regular swift is if you also want
to support a distributed file system,
either to support shared storage live
migration or to provide it as a separate
service to your end users. If you want

http://opsgui.de/NPG1BD
http://opsgui.de/NPG1BD

OpenStack Ops Guide July 3, 2014

67

to manage your object and file storage
within a single system, you should
consider GFO.

LVM The Logical Volume Manager is a
Linux-based system that provides an
abstraction layer on top of physical
disks to expose logical volumes to the
operating system. The LVM backend
implements block storage as LVM
logical partitions.

On each host that will house block
storage, an administrator must initially
create a volume group dedicated to
Block Storage volumes. Blocks are
created from LVM logical volumes.

Note

LVM does not provide
any replication. Typically,
administrators configure
RAID on nodes that use
LVM as block storage to
protect against failures
of individual hard drives.
However, RAID does not
protect against a failure of
the entire host.

ZFS The Solaris iSCSI driver for OpenStack
Block Storage implements blocks as
ZFS entities. ZFS is a file system that
also has the functionality of a volume
manager. This is unlike on a Linux
system, where there is a separation of
volume manager (LVM) and file system
(such as, ext3, ext4, xfs, and btrfs).
ZFS has a number of advantages over
ext4, including improved data-integrity
checking.

OpenStack Ops Guide July 3, 2014

68

The ZFS backend for OpenStack Block
Storage supports only Solaris-based
systems, such as Illumos. While there is
a Linux port of ZFS, it is not included in
any of the standard Linux distributions,
and it has not been tested with
OpenStack Block Storage. As with LVM,
ZFS does not provide replication across
hosts on its own; you need to add a
replication solution on top of ZFS if
your cloud needs to be able to handle
storage-node failures.

We don't recommend ZFS unless
you have previous experience with
deploying it, since the ZFS backend for
Block Storage requires a Solaris-based
operating system, and we assume that
your experience is primarily with Linux-
based systems.

Conclusion
We hope that you now have some considerations in mind and questions
to ask your future cloud users about their storage use cases. As you can
see, your storage decisions will also influence your network design for
performance and security needs. Continue with us to make more informed
decisions about your OpenStack cloud design.

OpenStack Ops Guide July 3, 2014

69

7. Network Design
Management Network ... 69
Public Addressing Options .. 70
IP Address Planning ... 70
Network Topology ... 72
Services for Networking ... 74
Conclusion ... 74

OpenStack provides a rich networking environment, and this chapter
details the requirements and options to deliberate when designing your
cloud.

Warning

If this is the first time you are deploying a cloud infrastructure
in your organization, after reading this section, your first
conversations should be with your networking team. Network
usage in a running cloud is vastly different from traditional
network deployments and has the potential to be disruptive at
both a connectivity and a policy level.

For example, you must plan the number of IP addresses that you need
for both your guest instances as well as management infrastructure.
Additionally, you must research and discuss cloud network connectivity
through proxy servers and firewalls.

In this chapter, we'll give some examples of network implementations
to consider and provide information about some of the network layouts
that OpenStack uses. Finally, we have some brief notes on the networking
services that are essential for stable operation.

Management Network
A management network (a separate network for use by your cloud
operators) typically consists of a separate switch and separate NICs
(network interface cards), and is a recommended option. This segregation
prevents system administration and the monitoring of system access from
being disrupted by traffic generated by guests.

Consider creating other private networks for communication between
internal components of OpenStack, such as the message queue and

OpenStack Ops Guide July 3, 2014

70

OpenStack Compute. Using a virtual local area network (VLAN) works
well for these scenarios because it provides a method for creating multiple
virtual networks on a physical network.

Public Addressing Options
There are two main types of IP addresses for guest virtual machines: fixed
IPs and floating IPs. Fixed IPs are assigned to instances on boot, whereas
floating IP addresses can change their association between instances
by action of the user. Both types of IP addresses can be either public or
private, depending on your use case.

Fixed IP addresses are required, whereas it is possible to run OpenStack
without floating IPs. One of the most common use cases for floating IPs is
to provide public IP addresses to a private cloud, where there are a limited
number of IP addresses available. Another is for a public cloud user to have
a "static" IP address that can be reassigned when an instance is upgraded
or moved.

Fixed IP addresses can be private for private clouds, or public for public
clouds. When an instance terminates, its fixed IP is lost. It is worth noting
that newer users of cloud computing may find their ephemeral nature
frustrating.

IP Address Planning
An OpenStack installation can potentially have many subnets (ranges of
IP addresses) and different types of services in each. An IP address plan
can assist with a shared understanding of network partition purposes
and scalability. Control services can have public and private IP addresses,
and as noted above, there are a couple of options for an instance's public
addresses.

An IP address plan might be broken down into the following sections:

Subnet router Packets leaving the subnet go via this
address, which could be a dedicated
router or a nova-network service.

Control services public
interfaces

Public access to swift-proxy, nova-
api, glance-api, and horizon come
to these addresses, which could be on

OpenStack Ops Guide July 3, 2014

71

one side of a load balancer or pointing
at individual machines.

Object Storage cluster internal
communications

Traffic among object/account/
container servers and between these
and the proxy server's internal interface
uses this private network.

Compute and storage
communications

If ephemeral or block storage is
external to the compute node, this
network is used.

Out-of-band remote
management

If a dedicated remote access controller
chip is included in servers, often these
are on a separate network.

In-band remote management Often, an extra (such as 1 GB) interface
on compute or storage nodes is
used for system administrators or
monitoring tools to access the host
instead of going through the public
interface.

Spare space for future growth Adding more public-facing control
services or guest instance IPs should
always be part of your plan.

For example, take a deployment that has both OpenStack Compute and
Object Storage, with private ranges 172.22.42.0/24 and 172.22.87.0/26
available. One way to segregate the space might be as follows:
172.22.42.0/24:
172.22.42.1 - 172.22.42.3 - subnet routers
172.22.42.4 - 172.22.42.20 - spare for networks
172.22.42.21 - 172.22.42.104 - Compute node remote access controllers
 (inc spare)
172.22.42.105 - 172.22.42.188 - Compute node management interfaces (inc spare)
172.22.42.189 - 172.22.42.208 - Swift proxy remote access controllers
 (inc spare)
172.22.42.209 - 172.22.42.228 - Swift proxy management interfaces (inc spare)
172.22.42.229 - 172.22.42.252 - Swift storage servers remote access controllers
 (inc spare)
172.22.42.253 - 172.22.42.254 - spare
172.22.87.0/26:
172.22.87.1 - 172.22.87.3 - subnet routers
172.22.87.4 - 172.22.87.24 - Swift proxy server internal interfaces
 (inc spare)
172.22.87.25 - 172.22.87.63 - Swift object server internal interfaces
 (inc spare)

A similar approach can be taken with public IP addresses, taking note that
large, flat ranges are preferred for use with guest instance IPs. Take into
account that for some OpenStack networking options, a public IP address

OpenStack Ops Guide July 3, 2014

72

in the range of a guest instance public IP address is assigned to the nova-
compute host.

Network Topology
OpenStack Compute with nova-network provides predefined network
deployment models, each with its own strengths and weaknesses. The
selection of a network manager changes your network topology, so the
choice should be made carefully. You also have a choice between the
tried-and-true legacy nova-network settings or the neutron project for
OpenStack Networking. Both offer networking for launched instances
with different implementations and requirements.

For OpenStack Networking with the neutron project, typical
configurations are documented with the idea that any setup you can
configure with real hardware you can re-create with a software-defined
equivalent. Each tenant can contain typical network elements such as
routers, and services such as DHCP.

Table 7.1, “Networking deployment options” [72] discusses the
networking deployment options for both legacy nova-network options
and an equivalent neutron configuration.

Table 7.1. Networking deployment options

Network deployment
model

Strengths Weaknesses Neutron equivalent

Flat Extremely simple topology.

No DHCP overhead.

Requires file injection into the
instance to configure network
interfaces.

Configure a single bridge as the integration bridge (br-int) and
connect it to a physical network interface with the Modular
Layer 2 (ML2) plug-in, which uses Open vSwitch by default.

FlatDHCP Relatively simple to deploy.

Standard networking.

Works with all guest operating
systems.

Requires its own DHCP broadcast
domain.

Configure DHCP agents and routing agents. Network Address
Translation (NAT) performed outside of compute nodes,
typically on one or more network nodes.

VlanManager Each tenant is isolated to its own
VLANs.

More complex to set up.

Requires its own DHCP broadcast
domain.

Requires many VLANs to be trunked
onto a single port.

Standard VLAN number limitation.

Switches must support 802.1q VLAN
tagging.

Isolated tenant networks implement some form of isolation of
layer 2 traffic between distinct networks. VLAN tagging is key
concept, where traffic is “tagged” with an ordinal identifier for
the VLAN. Isolated network implementations may or may not
include additional services like DHCP, NAT, and routing.

OpenStack Ops Guide July 3, 2014

73

Network deployment
model

Strengths Weaknesses Neutron equivalent

FlatDHCP Multi-host with
high availability (HA)

Networking failure is isolated to
the VMs running on the affected
hypervisor.

DHCP traffic can be isolated within
an individual host.

Network traffic is distributed to the
compute nodes.

More complex to set up.

Compute nodes typically need IP
addresses accessible by external
networks.

Options must be carefully configured
for live migration to work with
networking services.

Configure neutron with multiple DHCP and layer-3 agents.
Network nodes are not able to failover to each other, so the
controller runs networking services, such as DHCP. Compute
nodes run the ML2 plug-in with support for agents such as Open
vSwitch or Linux Bridge.

Both nova-network and neutron services provide similar capabilities,
such as VLAN between VMs. You also can provide multiple NICs on VMs
with either service. Further discussion follows.

VLAN Configuration Within OpenStack VMs

VLAN configuration can be as simple or as complicated as desired. The
use of VLANs has the benefit of allowing each project its own subnet
and broadcast segregation from other projects. To allow OpenStack to
efficiently use VLANs, you must allocate a VLAN range (one for each
project) and turn each compute node switch port into a trunk port.

For example, if you estimate that your cloud must support a maximum
of 100 projects, pick a free VLAN range that your network infrastructure
is currently not using (such as VLAN 200–299). You must configure
OpenStack with this range and also configure your switch ports to allow
VLAN traffic from that range.

Multi-NIC Provisioning

OpenStack Compute has the ability to assign multiple NICs to instances
on a per-project basis. This is generally an advanced feature and not an
everyday request. This can easily be done on a per-request basis, though.
However, be aware that a second NIC uses up an entire subnet or VLAN.
This decrements your total number of supported projects by one.

Multi-Host and Single-Host Networking

The nova-network service has the ability to operate in a multi-host or
single-host mode. Multi-host is when each compute node runs a copy
of nova-network and the instances on that compute node use the
compute node as a gateway to the Internet. The compute nodes also host
the floating IPs and security groups for instances on that node. Single-

OpenStack Ops Guide July 3, 2014

74

host is when a central server—for example, the cloud controller—runs
the nova-network service. All compute nodes forward traffic from the
instances to the cloud controller. The cloud controller then forwards traffic
to the Internet. The cloud controller hosts the floating IPs and security
groups for all instances on all compute nodes in the cloud.

There are benefits to both modes. Single-node has the downside of a
single point of failure. If the cloud controller is not available, instances
cannot communicate on the network. This is not true with multi-host, but
multi-host requires that each compute node has a public IP address to
communicate on the Internet. If you are not able to obtain a significant
block of public IP addresses, multi-host might not be an option.

Services for Networking
OpenStack, like any network application, has a number of standard
considerations to apply, such as NTP and DNS.

NTP

Time synchronization is a critical element to ensure continued operation
of OpenStack components. Correct time is necessary to avoid errors in
instance scheduling, replication of objects in the object store, and even
matching log timestamps for debugging.

All servers running OpenStack components should be able to access an
appropriate NTP server. You may decide to set up one locally or use the
public pools available from the Network Time Protocol project.

DNS

OpenStack does not currently provide DNS services, aside from the
dnsmasq daemon, which resides on nova-network hosts. You could
consider providing a dynamic DNS service to allow instances to update a
DNS entry with new IP addresses. You can also consider making a generic
forward and reverse DNS mapping for instances' IP addresses, such as
vm-203-0-113-123.example.com.

Conclusion
Armed with your IP address layout and numbers and knowledge about the
topologies and services you can use, it's now time to prepare the network

http://opsgui.de/NPFRua

OpenStack Ops Guide July 3, 2014

75

for your installation. Be sure to also check out the OpenStack Security
Guide for tips on securing your network. We wish you a good relationship
with your networking team!

http://opsgui.de/NPG4NW
http://opsgui.de/NPG4NW

Part II. Operations
Congratulations! By now, you should have a solid design for your cloud. We
now recommend that you turn to the OpenStack Installation Guide (http://
opsgui.de/1eLCvD8 for Ubuntu, for example), which contains a step-by-step guide on
how to manually install the OpenStack packages and dependencies on your cloud.

While it is important for an operator to be familiar with the steps involved in
deploying OpenStack, we also strongly encourage you to evaluate configuration-
management tools, such as Puppet or Chef, which can help automate this
deployment process.

In the remainder of this guide, we assume that you have successfully deployed an
OpenStack cloud and are able to perform basic operations such as adding images,
booting instances, and attaching volumes.

As your focus turns to stable operations, we recommend that you do skim the
remainder of this book to get a sense of the content. Some of this content is useful
to read in advance so that you can put best practices into effect to simplify your life
in the long run. Other content is more useful as a reference that you might turn to
when an unexpected event occurs (such as a power failure), or to troubleshoot a
particular problem.

http://opsgui.de/1eLCvD8
http://opsgui.de/1eLCvD8

OpenStack Ops Guide July 3, 2014

79

8. Lay of the Land
Using the OpenStack Dashboard for Administration 79
Command-Line Tools .. 79
Network Inspection .. 87
Users and Projects .. 88
Running Instances .. 88
Summary ... 89

This chapter helps you set up your working environment and use it to take
a look around your cloud.

Using the OpenStack Dashboard for
Administration

As a cloud administrative user, you can use the OpenStack dashboard
to create and manage projects, users, images, and flavors. Users are
allowed to create and manage images within specified projects and to
share images, depending on the Image Service configuration. Typically, the
policy configuration allows admin users only to set quotas and create and
manage services. The dashboard provides an Admin tab with a System
Panel and Identity Panel. These interfaces give you access to system
information and usage as well as to settings for configuring what end
users can do. Refer to the OpenStack Admin User Guide for detailed how-
to information about using the dashboard as an admin user.

Command-Line Tools
We recommend using a combination of the OpenStack command-line
interface (CLI) tools and the OpenStack dashboard for administration.
Some users with a background in other cloud technologies may be using
the EC2 Compatibility API, which uses naming conventions somewhat
different from the native API. We highlight those differences.

We strongly suggest that you install the command-line clients from the
Python Package Index (PyPI) instead of from the distribution packages.
The clients are under heavy development, and it is very likely at any given
time that the version of the packages distributed by your operating-system
vendor are out of date.

The pip utility is used to manage package installation from the PyPI archive
and is available in the python-pip package in most Linux distributions. Each

http://opsgui.de/NPGcgz
http://opsgui.de/1eLBdb8

OpenStack Ops Guide July 3, 2014

80

OpenStack project has its own client, so depending on which services your
site runs, install some or all of the following packages:

• python-novaclient (nova CLI)

• python-glanceclient (glance CLI)

• python-keystoneclient (keystone CLI)

• python-cinderclient (cinder CLI)

• python-swiftclient (swift CLI)

• python-neutronclient (neutron CLI)

Installing the Tools

To install (or upgrade) a package from the PyPI archive with pip, as root:

pip install [--upgrade] <package-name>

To remove the package:

pip uninstall <package-name>

If you need even newer versions of the clients, pip can install directly from
the upstream git repository using the -e flag. You must specify a name for
the Python egg that is installed. For example:

pip install -e git+https://github.com/openstack/
 python-novaclient.git#egg=python-novaclient

If you support the EC2 API on your cloud, you should also install the
euca2ools package or some other EC2 API tool so that you can get the
same view your users have. Using EC2 API-based tools is mostly out of the
scope of this guide, though we discuss getting credentials for use with it.

Administrative Command-Line Tools

There are also several *-manage command-line tools. These are installed
with the project's services on the cloud controller and do not need to be
installed separately:

• nova-manage

• glance-manage

• keystone-manage

OpenStack Ops Guide July 3, 2014

81

• cinder-manage

Unlike the CLI tools mentioned above, the *-manage tools must be run
from the cloud controller, as root, because they need read access to the
config files such as /etc/nova/nova.conf and to make queries directly
against the database rather than against the OpenStack API endpoints.

Warning

The existence of the *-manage tools is a legacy issue. It is a
goal of the OpenStack project to eventually migrate all of the
remaining functionality in the *-manage tools into the API-
based tools. Until that day, you need to SSH into the cloud
controller node to perform some maintenance operations that
require one of the *-manage tools.

Getting Credentials

You must have the appropriate credentials if you want to use the
command-line tools to make queries against your OpenStack cloud. By
far, the easiest way to obtain authentication credentials to use with
command-line clients is to use the OpenStack dashboard. From the top-
right navigation row, select Project, then Access & Security, then API
Access to access the user settings page where you can set your language
and timezone preferences for the dashboard view. This action displays two
buttons, Download OpenStack RC File and Download EC2 Credentials,
which let you generate files that you can source in your shell to populate
the environment variables the command-line tools require to know where
your service endpoints and your authentication information are. The user
you logged in to the dashboard dictates the filename for the openrc file,
such as demo-openrc.sh. When logged in as admin, the file is named
admin-openrc.sh.

The generated file looks something like this:
#!/bin/bash

With the addition of Keystone, to use an openstack cloud you should
authenticate against keystone, which returns a **Token** and **Service
Catalog**. The catalog contains the endpoint for all services the
user/tenant has access to--including nova, glance, keystone, swift.
#
NOTE: Using the 2.0 *auth api* does not mean that compute api is 2.0.
We use the 1.1 *compute api*
export OS_AUTH_URL=http://203.0.113.10:5000/v2.0

With the addition of Keystone we have standardized on the term **tenant**
as the entity that owns the resources.
export OS_TENANT_ID=98333aba48e756fa8f629c83a818ad57
export OS_TENANT_NAME="test-project"

OpenStack Ops Guide July 3, 2014

82

In addition to the owning entity (tenant), openstack stores the entity
performing the action as the **user**.
export OS_USERNAME=demo

With Keystone you pass the keystone password.
echo "Please enter your OpenStack Password: "
read -s OS_PASSWORD_INPUT
export OS_PASSWORD=$OS_PASSWORD_INPUT

Warning

This does not save your password in plain text, which is a
good thing. But when you source or run the script, it prompts
you for your password and then stores your response in the
environment variable OS_PASSWORD. It is important to note
that this does require interactivity. It is possible to store a value
directly in the script if you require a noninteractive operation,
but you then need to be extremely cautious with the security
and permissions of this file.

EC2 compatibility credentials can be downloaded by selecting Project,
then Access & Security, then API Access to display the Download EC2
Credentials button. Click the button to generate a ZIP file with server x509
certificates and a shell script fragment. Create a new directory in a secure
location because these are live credentials containing all the authentication
information required to access your cloud identity, unlike the default
user-openrc. Extract the ZIP file here. You should have cacert.pem,
cert.pem, ec2rc.sh, and pk.pem. The ec2rc.sh is similar to this:
#!/bin/bash

NOVARC=$(readlink -f "${BASH_SOURCE:-${0}}" 2>/dev/null) ||\
NOVARC=$(python -c 'import os,sys; \
print os.path.abspath(os.path.realpath(sys.argv[1]))' "${BASH_SOURCE:-${0}}")
NOVA_KEY_DIR=${NOVARC%/*}
export EC2_ACCESS_KEY=df7f93ec47e84ef8a347bbb3d598449a
export EC2_SECRET_KEY=ead2fff9f8a344e489956deacd47e818
export EC2_URL=http://203.0.113.10:8773/services/Cloud
export EC2_USER_ID=42 # nova does not use user id, but bundling requires it
export EC2_PRIVATE_KEY=${NOVA_KEY_DIR}/pk.pem
export EC2_CERT=${NOVA_KEY_DIR}/cert.pem
export NOVA_CERT=${NOVA_KEY_DIR}/cacert.pem
export EUCALYPTUS_CERT=${NOVA_CERT} # euca-bundle-image seems to require this

alias ec2-bundle-image="ec2-bundle-image --cert $EC2_CERT --privatekey \
$EC2_PRIVATE_KEY --user 42 --ec2cert $NOVA_CERT"
alias ec2-upload-bundle="ec2-upload-bundle -a $EC2_ACCESS_KEY -s \
$EC2_SECRET_KEY --url $S3_URL --ec2cert $NOVA_CERT"

To put the EC2 credentials into your environment, source the ec2rc.sh
file.

Inspecting API Calls

The command-line tools can be made to show the OpenStack API calls they
make by passing the --debug flag to them. For example:

nova --debug list

OpenStack Ops Guide July 3, 2014

83

This example shows the HTTP requests from the client and the responses
from the endpoints, which can be helpful in creating custom tools written
to the OpenStack API.

Tip

Keyring Support enables you to securely save your OpenStack
password in an encrypted file.

This feature is disabled by default. To enable it, add the --os-
cache flag or set the environment variable OS_CACHE=1.

Configuring OS_CACHE causes the command-line tool to
authenticate on each and every interaction with the cloud.
This can assist with working around this scenario. However, it
increases the time taken to run commands and also the load
on the server.

Using cURL for further inspection

Underlying the use of the command-line tools is the OpenStack API,
which is a RESTful API that runs over HTTP. There may be cases where
you want to interact with the API directly or need to use it because of a
suspected bug in one of the CLI tools. The best way to do this is to use a
combination of cURL and another tool, such as jq, to parse the JSON from
the responses.

The first thing you must do is authenticate with the cloud using your
credentials to get an authentication token.

Your credentials are a combination of username, password, and tenant
(project). You can extract these values from the openrc.sh discussed
above. The token allows you to interact with your other service endpoints
without needing to reauthenticate for every request. Tokens are typically
good for 24 hours, and when the token expires, you are alerted with a 401
(Unauthorized) response and you can request another token.

1. Look at your OpenStack service catalog:

$ curl -s -X POST http://203.0.113.10:35357/v2.0/tokens \
-d '{"auth": {"passwordCredentials": {"username":"test-user", \
 "password":"test-password"}, \
 "tenantName":"test-project"}}' \
-H "Content-type: application/json" | jq .

2. Read through the JSON response to get a feel for how the catalog is
laid out.

http://opsgui.de/NPGeVy
http://opsgui.de/1eLBfQy
http://opsgui.de/NPGdB5

OpenStack Ops Guide July 3, 2014

84

To make working with subsequent requests easier, store the token in an
environment variable:

$ TOKEN=`curl -s -X POST http://203.0.113.10:35357/v2.0/tokens \
-d '{"auth": {"passwordCredentials": {"username":"test-user", \
 "password":"test-password"}, \
 "tenantName":"test-project"}}' \
-H "Content-type: application/json" | jq -r .access.token.id`

Now you can refer to your token on the command line as $TOKEN.

3. Pick a service endpoint from your service catalog, such as compute. Try
a request, for example, listing instances (servers):

$ curl -s \
-H "X-Auth-Token: $TOKEN" \
http://203.0.113.10:8774/v2/98333aba48e756fa8f629c83a818ad57/servers | jq .

To discover how API requests should be structured, read the OpenStack
API Reference. To chew through the responses using jq, see the jq Manual.

The -s flag used in the cURL commands above are used to prevent
the progress meter from being shown. If you are having trouble
running cURL commands, you'll want to remove it. Likewise, to help you
troubleshoot cURL commands, you can include the -v flag to show you
the verbose output. There are many more extremely useful features in
cURL; refer to the man page for all the options.

Servers and Services

As an administrator, you have a few ways to discover what your
OpenStack cloud looks like simply by using the OpenStack tools available.
This section gives you an idea of how to get an overview of your cloud, its
shape, size, and current state.

First, you can discover what servers belong to your OpenStack cloud by
running:
nova-manage service list | sort

The output looks like the following:
Binary Host Zone Status State Updated_At
nova-cert cloud.example.com nova enabled :-) 2013-02-25 19:32:38
nova-compute c01.example.com nova enabled :-) 2013-02-25 19:32:35
nova-compute c02.example.com nova enabled :-) 2013-02-25 19:32:32
nova-compute c03.example.com nova enabled :-) 2013-02-25 19:32:36
nova-compute c04.example.com nova enabled :-) 2013-02-25 19:32:32
nova-compute c05.example.com nova enabled :-) 2013-02-25 19:32:41
nova-conductor cloud.example.com nova enabled :-) 2013-02-25 19:32:40
nova-consoleauth cloud.example.com nova enabled :-) 2013-02-25 19:32:36
nova-network cloud.example.com nova enabled :-) 2013-02-25 19:32:32
nova-scheduler cloud.example.com nova enabled :-) 2013-02-25 19:32:33

http://opsgui.de/1eLBhrz
http://opsgui.de/1eLBhrz
http://opsgui.de/NPGeoH

OpenStack Ops Guide July 3, 2014

85

The output shows that there are five compute nodes and one cloud
controller. You see a smiley face, such as :-), which indicates that the
services are up and running. If a service is no longer available, the :-)
symbol changes to XXX. This is an indication that you should troubleshoot
why the service is down.

If you are using cinder, run the following command to see a similar listing:

cinder-manage host list | sort

host zone
c01.example.com nova
c02.example.com nova
c03.example.com nova
c04.example.com nova
c05.example.com nova
cloud.example.com nova

With these two tables, you now have a good overview of what servers and
services make up your cloud.

You can also use the Identity Service (keystone) to see what services are
available in your cloud as well as what endpoints have been configured for
the services.

The following command requires you to have your shell environment
configured with the proper administrative variables:

$ keystone catalog

Service: image
+-------------+--+
| Property | Value |
+-------------+--+
adminURL	http://cloud.internal.example.com:9292
internalURL	http://cloud.example.com:9292
publicURL	http://cloud.example.com:9292
region	RegionOne
+-------------+--+

Service: identity
+-------------+--+
| Property | Value |
+-------------+--+
adminURL	http://cloud.internal.example.com:35357/v2.0
internalURL	http://cloud.example.com:5000/v2.0
publicURL	http://cloud.example.com:5000/v2.0
region	RegionOne
+-------------+--+

OpenStack Ops Guide July 3, 2014

86

The preceding output has been truncated to show only two services. You
will see one service block for each service that your cloud provides. Note
how the endpoint domain can be different depending on the endpoint
type. Different endpoint domains per type are not required, but this can
be done for different reasons, such as endpoint privacy or network traffic
segregation.

You can find the version of the Compute installation by using the nova-
manage command:

nova-manage version list

Diagnose Your Compute Nodes

You can obtain extra information about virtual machines that are running
—their CPU usage, the memory, the disk I/O or network I/O—per instance,
by running the nova diagnostics command with a server ID:

$ nova diagnostics <serverID>

The output of this command varies depending on the hypervisor because
hypervisors support different attributes. The following demonstrates the
difference between the two most popular hypervisors. Here is example
output when the hypervisor is Xen:

+----------------+-----------------+
| Property | Value |
+----------------+-----------------+
cpu0	4.3627
memory	1171088064.0000
memory_target	1171088064.0000
vbd_xvda_read	0.0
vbd_xvda_write	0.0
vif_0_rx	3223.6870
vif_0_tx	0.0
vif_1_rx	104.4955
vif_1_tx	0.0
+----------------+-----------------+

While the command should work with any hypervisor that is controlled
through libvirt (e.g., KVM, QEMU, or LXC), it has been tested only with
KVM. Here is example output when the hypervisor is KVM:

OpenStack Ops Guide July 3, 2014

87

+------------------+------------+
| Property | Value |
+------------------+------------+
cpu0_time	2870000000
memory	524288
vda_errors	-1
vda_read	262144
vda_read_req	112
vda_write	5606400
vda_write_req	376
vnet0_rx	63343
vnet0_rx_drop	0
vnet0_rx_errors	0
vnet0_rx_packets	431
vnet0_tx	4905
vnet0_tx_drop	0
vnet0_tx_errors	0
vnet0_tx_packets	45
+------------------+------------+

Network Inspection
To see which fixed IP networks are configured in your cloud, you can use
the nova command-line client to get the IP ranges:

$ nova network-list
+--------------------------------------+--------+--------------+
| ID | Label | Cidr |
+--------------------------------------+--------+--------------+
| 3df67919-9600-4ea8-952e-2a7be6f70774 | test01 | 10.1.0.0/24 |
| 8283efb2-e53d-46e1-a6bd-bb2bdef9cb9a | test02 | 10.1.1.0/24 |
+--------------------------------------+--------+--------------+

The nova-manage tool can provide some additional details:

nova-manage network list
id IPv4 IPv6 start address DNS1 DNS2 VlanID project
 uuid
1 10.1.0.0/24 None 10.1.0.3 None None 300 2725bbd
 beacb3f2
2 10.1.1.0/24 None 10.1.1.3 None None 301 none
 d0b1a796

This output shows that two networks are configured, each network
containing 255 IPs (a /24 subnet). The first network has been assigned to a
certain project, while the second network is still open for assignment. You
can assign this network manually; otherwise, it is automatically assigned
when a project launches its first instance.

To find out whether any floating IPs are available in your cloud, run:

OpenStack Ops Guide July 3, 2014

88

nova-manage floating list

2725bb...59f43f 1.2.3.4 None nova vlan20
None 1.2.3.5 48a415...b010ff nova vlan20

Here, two floating IPs are available. The first has been allocated to a
project, while the other is unallocated.

Users and Projects
To see a list of projects that have been added to the cloud, run:
$ keystone tenant-list

+-----+----------+---------+
| id | name | enabled |
+-----+----------+---------+
...	jtopjian	True
...	alvaro	True
...	everett	True
...	admin	True
...	services	True
...	jonathan	True
...	lorin	True
...	anne	True
...	rhulsker	True
...	tom	True
...	adam	True
+-----+----------+---------+

To see a list of users, run:
$ keystone user-list

+-----+----------+---------+------------------------------+
| id | name | enabled | email |
+-----+----------+---------+------------------------------+
...	everett	True	everett.towne@backspace.com
...	jonathan	True	jon@sfcu.edu
...	nova	True	nova@localhost
...	rhulsker	True	ryan.hulkster@cyberalbert.ca
...	lorin	True	lorinhoch@nsservices.com
...	alvaro	True	Alvaro.Perry@cyberalbert.ca
...	anne	True	anne.green@backspace.com
...	admin	True	root@localhost
...	cinder	True	cinder@localhost
...	glance	True	glance@localhost
...	jtopjian	True	joe.topjian@cyberalbert.com
...	adam	True	adam@ossmanuals.net
...	tom	True	fafield@univm.edu.au
+-----+----------+---------+------------------------------+

Note

Sometimes a user and a group have a one-to-one mapping.
This happens for standard system accounts, such as cinder,
glance, nova, and swift, or when only one user is part of a
group.

Running Instances
To see a list of running instances, run:

OpenStack Ops Guide July 3, 2014

89

$ nova list --all-tenants

+-----+------------------+--------+---+
| ID | Name | Status | Networks |
+-----+------------------+--------+---+
...	Windows	ACTIVE	novanetwork_1=10.1.1.3, 199.116.232.39
...	cloud controller	ACTIVE	novanetwork_0=10.1.0.6; jtopjian=10.1.2.3
...	compute node 1	ACTIVE	novanetwork_0=10.1.0.4; jtopjian=10.1.2.4
...	devbox	ACTIVE	novanetwork_0=10.1.0.3
...	devstack	ACTIVE	novanetwork_0=10.1.0.5
...	initial	ACTIVE	nova_network=10.1.7.4, 10.1.8.4
...	lorin-head	ACTIVE	nova_network=10.1.7.3, 10.1.8.3
+-----+------------------+--------+---+

Unfortunately, this command does not tell you various details about the
running instances, such as what compute node the instance is running on,
what flavor the instance is, and so on. You can use the following command
to view details about individual instances:

$ nova show <uuid>

For example:

nova show 81db556b-8aa5-427d-a95c-2a9a6972f630

+-------------------------------------+-----------------------------------+
| Property | Value |
+-------------------------------------+-----------------------------------+
OS-DCF:diskConfig	MANUAL
OS-EXT-SRV-ATTR:host	c02.example.com
OS-EXT-SRV-ATTR:hypervisor_hostname	c02.example.com
OS-EXT-SRV-ATTR:instance_name	instance-00000029
OS-EXT-STS:power_state	1
OS-EXT-STS:task_state	None
OS-EXT-STS:vm_state	active
accessIPv4	
accessIPv6	
config_drive	
created	2013-02-13T20:08:36Z
flavor	m1.small (6)
hostId	...
id	...
image	Ubuntu 12.04 cloudimg amd64 (...)
key_name	jtopjian-sandbox
metadata	{}
name	devstack
novanetwork_0 network	10.1.0.5
progress	0
security_groups	[{u'name': u'default'}]
status	ACTIVE
tenant_id	...
updated	2013-02-13T20:08:59Z
user_id	...
+-------------------------------------+-----------------------------------+

This output shows that an instance named devstack was created from
an Ubuntu 12.04 image using a flavor of m1.small and is hosted on the
compute node c02.example.com.

Summary
We hope you have enjoyed this quick tour of your working environment,
including how to interact with your cloud and extract useful information.

OpenStack Ops Guide July 3, 2014

90

From here, you can use the Admin User Guide as your reference for all of
the command-line functionality in your cloud.

http://opsgui.de/1eLBkDJ

OpenStack Ops Guide July 3, 2014

91

9. Managing Projects and Users
Projects or Tenants? .. 91
Managing Projects ... 91
Quotas ... 93
User Management ... 102
Creating New Users ... 102
Associating Users with Projects ... 104
Summary .. 108

An OpenStack cloud does not have much value without users. This chapter
covers topics that relate to managing users, projects, and quotas. This
chapter describes users and projects as described by version 2 of the
OpenStack Identity API.

Warning

While version 3 of the Identity API is available, the client tools
do not yet implement those calls, and most OpenStack clouds
are still implementing Identity API v2.0.

Projects or Tenants?
In OpenStack user interfaces and documentation, a group of users is
referred to as a project or tenant. These terms are interchangeable.

The initial implementation of the OpenStack Compute Service (nova)
had its own authentication system and used the term project. When
authentication moved into the OpenStack Identity Service (keystone)
project, it used the term tenant to refer to a group of users. Because of
this legacy, some of the OpenStack tools refer to projects and some refer
to tenants.

Tip

This guide uses the term project, unless an example shows
interaction with a tool that uses the term tenant.

Managing Projects
Users must be associated with at least one project, though they may
belong to many. Therefore, you should add at least one project before
adding users.

OpenStack Ops Guide July 3, 2014

92

Adding Projects

To create a project through the OpenStack dashboard:

1. Log in as an administrative user.

2. Select the Admin tab in the left navigation bar.

3. Under Identity Panel, click Projects.

4. Click the Create Project button.

You are prompted for a project name and an optional, but recommended,
description. Select the checkbox at the bottom of the form to enable this
project. By default, it is enabled, as shown in Figure 9.1, “Dashboard's
Create Project form” [92].

Figure 9.1. Dashboard's Create Project form

It is also possible to add project members and adjust the project quotas.
We'll discuss those actions later, but in practice, it can be quite convenient
to deal with all these operations at one time.

OpenStack Ops Guide July 3, 2014

93

To add a project through the command line, you must use the keystone
utility, which uses tenant in place of project:

keystone tenant-create --name=demo

This command creates a project named "demo." Optionally, you can
add a description string by appending --description tenant-
description, which can be very useful. You can also create a group in
a disabled state by appending --enabled false to the command. By
default, projects are created in an enabled state.

Quotas
To prevent system capacities from being exhausted without notification,
you can set up quotas. Quotas are operational limits. For example, the
number of gigabytes allowed per tenant can be controlled to ensure that
a single tenant cannot consume all of the disk space. Quotas are currently
enforced at the tenant (or project) level, rather than by users.

Warning

Because without sensible quotas a single tenant could use up
all the available resources, default quotas are shipped with
OpenStack. You should pay attention to which quota settings
make sense for your hardware capabilities.

Using the command-line interface, you can manage quotas for the
OpenStack Compute Service and the Block Storage Service.

Typically, default values are changed because a tenant requires more
than the OpenStack default of 10 volumes per tenant, or more than the
OpenStack default of 1 TB of disk space on a compute node.

Note

To view all tenants, run:

$ keystone tenant-list

+---------------------------------+----------
+---------+
| id | name | enabled
 |
+---------------------------------+----------
+---------+
| a981642d22c94e159a4a6540f70f9f8 | admin | True
 |

OpenStack Ops Guide July 3, 2014

94

| 934b662357674c7b9f5e4ec6ded4d0e | tenant01 | True
 |
| 7bc1dbfd7d284ec4a856ea1eb82dca8 | tenant02 | True
 |
| 9c554aaef7804ba49e1b21cbd97d218 | services | True
 |
+---------------------------------+----------
+---------+

Set Image Quotas
OpenStack Havana introduced a basic quota feature for the Image service,
so you can now restrict a project's image storage by total number of bytes.
Currently, this quota is applied cloud-wide, so if you were to set an Image
quota limit of 5 GB, then all projects in your cloud will be able to store only
5 GB of images and snapshots.

To enable this feature, edit the /etc/glance/glance-api.conf file,
and under the [DEFAULT] section, add:

user_storage_quota = <bytes>

For example, to restrict a project's image storage to 5 GB, do this:

user_storage_quota = 5368709120

Note

In the Icehouse release, there is a configuration option in
glance-api.conf that limits the number of members
allowed per image, called image_member_quota, set to 128
by default. That setting is a different quota from the storage
quota.

Set Compute Service Quotas
As an administrative user, you can update the Compute Service quotas for
an existing tenant, as well as update the quota defaults for a new tenant.
See Table 9.1, “Compute quota descriptions” [94].

Table 9.1. Compute quota descriptions

Quota Description Property name

Fixed IPs Number of fixed IP addresses allowed per
tenant. This number must be equal to
or greater than the number of allowed
instances.

fixed-ips

OpenStack Ops Guide July 3, 2014

95

Quota Description Property name

Floating IPs Number of floating IP addresses allowed
per tenant.

floating-ips

Injected file
content bytes

Number of content bytes allowed per
injected file.

injected-file-content-
bytes

Injected file path
bytes

Number of bytes allowed per injected file
path.

injected-file-path-bytes

Injected files Number of injected files allowed per
tenant.

injected-files

Instances Number of instances allowed per tenant. instances

Key pairs Number of key pairs allowed per user. key-pairs

Metadata items Number of metadata items allowed per
instance.

metadata-items

RAM Megabytes of instance RAM allowed per
tenant.

ram

Security group
rules

Number of rules per security group. security-group-rules

Security groups Number of security groups per tenant. security-groups

VCPUs Number of instance cores allowed per
tenant.

cores

View and update compute quotas for a tenant (project)

As an administrative user, you can use the nova quota-* commands,
which are provided by the python-novaclient package, to view and
update tenant quotas.

To view and update default quota values

1. List all default quotas for all tenants, as follows:

$ nova quota-defaults

For example:

$ nova quota-defaults
+-----------------------------+-------+
| Property | Value |
+-----------------------------+-------+
metadata_items	128
injected_file_content_bytes	10240
ram	51200
floating_ips	10
key_pairs	100
instances	10
security_group_rules	20
injected_files	5

OpenStack Ops Guide July 3, 2014

96

cores	20
fixed_ips	-1
injected_file_path_bytes	255
security_groups	10
+-----------------------------+-------+

2. Update a default value for a new tenant, as follows:

$ nova quota-class-update default key value

For example:

$ nova quota-class-update default instances 15

OpenStack Ops Guide July 3, 2014

97

To view quota values for a tenant (project)

1. Place the tenant ID in a useable variable, as follows:

$ tenant=$(keystone tenant-list | awk '/tenantName/ {print
 $2}')

2. List the currently set quota values for a tenant, as follows:

$ nova quota-show --tenant $tenant

For example:

$ nova quota-show --tenant $tenant
+-----------------------------+-------+
| Property | Value |
+-----------------------------+-------+
metadata_items	128
injected_file_content_bytes	10240
ram	51200
floating_ips	12
key_pairs	100
instances	10
security_group_rules	20
injected_files	5
cores	20
fixed_ips	-1
injected_file_path_bytes	255
security_groups	10
+-----------------------------+-------+

To update quota values for a tenant (project)

1. Obtain the tenant ID, as follows:

$ tenant=$(keystone tenant-list | awk '/tenantName/ {print
 $2}')

2. Update a particular quota value, as follows:

nova quota-update --quotaName quotaValue tenantID

For example:

nova quota-update --floating-ips 20 $tenant
nova quota-show --tenant $tenant
+-----------------------------+-------+
| Property | Value |
+-----------------------------+-------+
| metadata_items | 128 |
| injected_file_content_bytes | 10240 |

OpenStack Ops Guide July 3, 2014

98

ram	51200
floating_ips	20
key_pairs	100
instances	10
security_group_rules	20
injected_files	5
cores	20
fixed_ips	-1
injected_file_path_bytes	255
security_groups	10
+-----------------------------+-------+

Note

To view a list of options for the quota-update
command, run:

$ nova help quota-update

Set Object Storage Quotas
Object Storage quotas were introduced in Swift 1.8 (OpenStack Grizzly).
There are currently two categories of quotas for Object Storage:

Container quotas Limit the total size (in bytes) or number of objects
that can be stored in a single container.

Account quotas Limit the total size (in bytes) that a user has
available in the Object Storage service.

To take advantage of either container quotas or account quotas,
your Object Storage proxy server must have container_quotas
or account_quotas (or both) added to the [pipeline:main]
pipeline. Each quota type also requires its own section in the proxy-
server.conf file:

[pipeline:main]
pipeline = healthcheck [...] container_quotas account_quotas
 proxy-server

[filter:account_quotas]
use = egg:swift#account_quotas

[filter:container_quotas]
use = egg:swift#container_quotas

To view and update Object Storage quotas, use the swift command
provided by the python-swiftclient package. Any user included in

OpenStack Ops Guide July 3, 2014

99

the project can view the quotas placed on their project. To update Object
Storage quotas on a project, you must have the role of ResellerAdmin in
the project that the quota is being applied to.

OpenStack Ops Guide July 3, 2014

100

To view account quotas placed on a project:

$ swift stat

 Account: AUTH_b36ed2d326034beba0a9dd1fb19b70f9
Containers: 0
 Objects: 0
 Bytes: 0
Meta Quota-Bytes: 214748364800
X-Timestamp: 1351050521.29419
Content-Type: text/plain; charset=utf-8
Accept-Ranges: bytes

To apply or update account quotas on a project:

$ swift post -m quota-bytes:
 <bytes>

For example, to place a 5 GB quota on an account:

$ swift post -m quota-bytes:
 5368709120

To verify the quota, run the swift stat command again:

$ swift stat

 Account: AUTH_b36ed2d326034beba0a9dd1fb19b70f9
Containers: 0
 Objects: 0
 Bytes: 0
Meta Quota-Bytes: 5368709120
X-Timestamp: 1351541410.38328
Content-Type: text/plain; charset=utf-8
Accept-Ranges: bytes

Set Block Storage Quotas

As an administrative user, you can update the Block Storage Service quotas
for a tenant, as well as update the quota defaults for a new tenant. See
Table 9.2, “Block Storage quota descriptions” [100].

Table 9.2. Block Storage quota descriptions

Property name Description

gigabytes Number of volume gigabytes allowed per tenant

snapshots Number of Block Storage snapshots allowed per tenant.

volumes Number of Block Storage volumes allowed per tenant

OpenStack Ops Guide July 3, 2014

101

View and update Block Storage quotas for a tenant (project)

As an administrative user, you can use the cinder quota-* commands,
which are provided by the python-cinderclient package, to view and
update tenant quotas.

To view and update default Block Storage quota values

1. List all default quotas for all tenants, as follows:

$ cinder quota-defaults

For example:

$ cinder quota-defaults
+-----------+-------+
| Property | Value |
+-----------+-------+
gigabytes	1000
snapshots	10
volumes	10
+-----------+-------+

2. To update a default value for a new tenant, update the property in
the /etc/cinder/cinder.conf file.

To view Block Storage quotas for a tenant (project)

• View quotas for the tenant, as follows:

cinder quota-show tenantName

For example:

cinder quota-show tenant01
+-----------+-------+
| Property | Value |
+-----------+-------+
gigabytes	1000
snapshots	10
volumes	10
+-----------+-------+

To update Block Storage quotas for a tenant (project)

1. Place the tenant ID in a useable variable, as follows:

$ tenant=$(keystone tenant-list | awk '/tenantName/ {print
 $2}')

OpenStack Ops Guide July 3, 2014

102

2. Update a particular quota value, as follows:

cinder quota-update --quotaName NewValue tenantID

For example:

cinder quota-update --volumes 15 $tenant
cinder quota-show tenant01
+-----------+-------+
| Property | Value |
+-----------+-------+
gigabytes	1000
snapshots	10
volumes	15
+-----------+-------+

User Management
The command-line tools for managing users are inconvenient to use
directly. They require issuing multiple commands to complete a single
task, and they use UUIDs rather than symbolic names for many items. In
practice, humans typically do not use these tools directly. Fortunately, the
OpenStack dashboard provides a reasonable interface to this. In addition,
many sites write custom tools for local needs to enforce local policies and
provide levels of self-service to users that aren't currently available with
packaged tools.

Creating New Users
To create a user, you need the following information:

• Username

• Email address

• Password

• Primary project

• Role

Username and email address are self-explanatory, though your site
may have local conventions you should observe. Setting and changing
passwords in the Identity service requires administrative privileges. As
of the Folsom release, users cannot change their own passwords. This is
a large driver for creating local custom tools, and must be kept in mind

OpenStack Ops Guide July 3, 2014

103

when assigning and distributing passwords. The primary project is simply
the first project the user is associated with and must exist prior to creating
the user. Role is almost always going to be "member." Out of the box,
OpenStack comes with two roles defined:

OpenStack Ops Guide July 3, 2014

104

member A typical user

admin An administrative super user, which has full permissions across
all projects and should be used with great care

It is possible to define other roles, but doing so is uncommon.

Once you've gathered this information, creating the user in the dashboard
is just another web form similar to what we've seen before and can be
found by clicking the Users link in the Admin navigation bar and then
clicking the Create User button at the top right.

Modifying users is also done from this Users page. If you have a large
number of users, this page can get quite crowded. The Filter search box
at the top of the page can be used to limit the users listing. A form very
similar to the user creation dialog can be pulled up by selecting Edit from
the actions dropdown menu at the end of the line for the user you are
modifying.

Associating Users with Projects
Many sites run with users being associated with only one project. This is
a more conservative and simpler choice both for administration and for
users. Administratively, if a user reports a problem with an instance or
quota, it is obvious which project this relates to. Users needn't worry about
what project they are acting in if they are only in one project. However,
note that, by default, any user can affect the resources of any other user
within their project. It is also possible to associate users with multiple
projects if that makes sense for your organization.

Associating existing users with an additional project or removing them
from an older project is done from the Projects page of the dashboard by
selecting Modify Users from the Actions column, as shown in Figure 9.2,
“Edit Project Members tab” [105].

From this view, you can do a number of useful things, as well as a few
dangerous ones.

The first column of this form, named All Users, includes a list of all the
users in your cloud who are not already associated with this project. The
second column shows all the users who are. These lists can be quite long,
but they can be limited by typing a substring of the username you are
looking for in the filter field at the top of the column.

From here, click the + icon to add users to the project. Click the - to remove
them.

OpenStack Ops Guide July 3, 2014

105

Figure 9.2. Edit Project Members tab

The dangerous possibility comes with the ability to change member roles.
This is the dropdown list below the username in the Project Members
list. In virtually all cases, this value should be set to Member. This example
purposefully shows an administrative user where this value is admin.

Warning

The admin is global, not per project, so granting a user the
admin role in any project gives the user administrative rights
across the whole cloud.

Typical use is to only create administrative users in a single project, by
convention the admin project, which is created by default during cloud
setup. If your administrative users also use the cloud to launch and
manage instances, it is strongly recommended that you use separate user
accounts for administrative access and normal operations and that they be
in distinct projects.

Customizing Authorization

The default authorization settings allow administrative users only to create
resources on behalf of a different project. OpenStack handles two kinds of
authorization policies:

OpenStack Ops Guide July 3, 2014

106

Operation based Policies specify access criteria for specific operations,
possibly with fine-grained control over specific
attributes.

Resource based Whether access to a specific resource might be
granted or not according to the permissions
configured for the resource (currently available only
for the network resource). The actual authorization
policies enforced in an OpenStack service vary from
deployment to deployment.

The policy engine reads entries from the policy.json file. The actual
location of this file might vary from distribution to distribution: for nova,
it is typically in /etc/nova/policy.json. You can update entries while
the system is running, and you do not have to restart services. Currently,
the only way to update such policies is to edit the policy file.

The OpenStack service's policy engine matches a policy directly. A rule
indicates evaluation of the elements of such policies. For instance, in a
compute:create: [["rule:admin_or_owner"]] statement, the
policy is compute:create, and the rule is admin_or_owner.

Policies are triggered by an OpenStack policy engine whenever one
of them matches an OpenStack API operation or a specific attribute
being used in a given operation. For instance, the engine tests the
create:compute policy every time a user sends a POST /v2/
{tenant_id}/servers request to the OpenStack Compute API server.
Policies can be also related to specific API extensions. For instance, if a user
needs an extension like compute_extension:rescue, the attributes
defined by the provider extensions trigger the rule test for that operation.

An authorization policy can be composed by one or more rules. If more
rules are specified, evaluation policy is successful if any of the rules
evaluates successfully; if an API operation matches multiple policies, then
all the policies must evaluate successfully. Also, authorization rules are
recursive. Once a rule is matched, the rule(s) can be resolved to another
rule, until a terminal rule is reached. These are the rules defined:

Role-based rules Evaluate successfully if the user submitting the
request has the specified role. For instance,
"role:admin" is successful if the user
submitting the request is an administrator.

Field-based rules Evaluate successfully if a field of the
resource specified in the current request

OpenStack Ops Guide July 3, 2014

107

matches a specific value. For instance,
"field:networks:shared=True" is
successful if the attribute shared of the network
resource is set to true.

Generic rules Compare an attribute in the resource with an
attribute extracted from the user's security
credentials and evaluates successfully if
the comparison is successful. For instance,
"tenant_id:%(tenant_id)s" is successful
if the tenant identifier in the resource is equal to
the tenant identifier of the user submitting the
request.

Here are snippets of the default nova policy.json file:

{
 "context_is_admin": [["role:admin"]],
 "admin_or_owner": [["is_admin:True"], \

 ["project_id:%(project_id)s"]],

 "default": [["rule:admin_or_owner"]],
 "compute:create": [],
 "compute:create:attach_network": [],
 "compute:create:attach_volume": [],
 "compute:get_all": [],
 "admin_api": [["is_admin:True"]],
 "compute_extension:accounts": [["rule:admin_api"]],
 "compute_extension:admin_actions": [["rule:admin_api"]],
 "compute_extension:admin_actions:pause": [["rule:admin_or_owner"]],
 "compute_extension:admin_actions:unpause": [["rule:admin_or_owner"]],
 ...
 "compute_extension:admin_actions:migrate": [["rule:admin_api"]],
 "compute_extension:aggregates": [["rule:admin_api"]],
 "compute_extension:certificates": [],
 ...
 "compute_extension:flavorextraspecs": [],

 "compute_extension:flavormanage": [["rule:admin_api"]],
 }

Shows a rule that evaluates successfully if the current user is an
administrator or the owner of the resource specified in the request
(tenant identifier is equal).
Shows the default policy, which is always evaluated if an API
operation does not match any of the policies in policy.json.
Shows a policy restricting the ability to manipulate flavors to
administrators using the Admin API only.

In some cases, some operations should be restricted to administrators only.
Therefore, as a further example, let us consider how this sample policy file
could be modified in a scenario where we enable users to create their own
flavors:

OpenStack Ops Guide July 3, 2014

108

"compute_extension:flavormanage": [],

Users Who Disrupt Other Users

Users on your cloud can disrupt other users, sometimes intentionally and
maliciously and other times by accident. Understanding the situation
allows you to make a better decision on how to handle the disruption.

For example, a group of users have instances that are utilizing a large
amount of compute resources for very compute-intensive tasks. This is
driving the load up on compute nodes and affecting other users. In this
situation, review your user use cases. You may find that high compute
scenarios are common, and should then plan for proper segregation in
your cloud, such as host aggregation or regions.

Another example is a user consuming a very large amount of bandwidth.
Again, the key is to understand what the user is doing. If she naturally
needs a high amount of bandwidth, you might have to limit her
transmission rate as to not affect other users or move her to an area with
more bandwidth available. On the other hand, maybe her instance has
been hacked and is part of a botnet launching DDOS attacks. Resolution
of this issue is the same as though any other server on your network has
been hacked. Contact the user and give her time to respond. If she doesn't
respond, shut down the instance.

A final example is if a user is hammering cloud resources repeatedly.
Contact the user and learn what he is trying to do. Maybe he doesn't
understand that what he’s doing is inappropriate, or maybe there is an
issue with the resource he is trying to access that is causing his requests to
queue or lag.

Summary
One key element of systems administration that is often overlooked is
that end users are the reason systems administrators exist. Don't go the
BOFH route and terminate every user who causes an alert to go off. Work
with users to understand what they're trying to accomplish and see how
your environment can better assist them in achieving their goals. Meet
your users needs by organizing your users into projects, applying policies,
managing quotas, and working with them.

OpenStack Ops Guide July 3, 2014

109

10. User-Facing Operations
Images ... 109
Flavors ... 112
Security Groups .. 114
Block Storage ... 118
Instances .. 119
Associating Security Groups .. 124
Floating IPs .. 125
Attaching Block Storage ... 125
Taking Snapshots ... 127
Instances in the Database .. 130
Good Luck! .. 131

This guide is for OpenStack operators and does not seek to be an
exhaustive reference for users, but as an operator, you should have a basic
understanding of how to use the cloud facilities. This chapter looks at
OpenStack from a basic user perspective, which helps you understand your
users' needs and determine, when you get a trouble ticket, whether it is a
user issue or a service issue. The main concepts covered are images, flavors,
security groups, block storage, and instances.

Images
OpenStack images can often be thought of as "virtual machine templates."
Images can also be standard installation media such as ISO images.
Essentially, they contain bootable file systems that are used to launch
instances.

Adding Images

Several premade images exist and can easily be imported into the Image
Service. A common image to add is the CirrOS image, which is very small
and used for testing purposes. To add this image, simply do:

$ wget http://download.cirros-cloud.net/0.3.1/cirros-0.3.1-
x86_64-disk.img
$ glance image-create --name='cirros image' --is-public=true \
 --container-format=bare --disk-format=qcow2 < cirros-0.3.1-
x86_64-disk.img

The glance image-create command provides a large set of options
for working with your image. For example, the min-disk option is useful

OpenStack Ops Guide July 3, 2014

110

for images that require root disks of a certain size (for example, large
Windows images). To view these options, do:

$ glance help image-create

The location option is important to note. It does not copy the entire
image into the Image Service, but references an original location where
the image can be found. Upon launching an instance of that image, the
Image Service accesses the image from the location specified.

The copy-from option copies the image from the location specified into
the /var/lib/glance/images directory. The same thing is done when
using the STDIN redirection with <, as shown in the example.

Run the following command to view the properties of existing images:

$ glance details

Sharing Images Between Projects
In a multitenant cloud environment, users sometimes want to share their
personal images or snapshots with other projects. This can be done on the
command line with the glance tool by the owner of the image.

To share an image or snapshot with another project, do the following:

1. Obtain the UUID of the image:

$ glance image-list

2. Obtain the UUID of the project with which you want to share
your image. Unfortunately, nonadmin users are unable to use the
keystone command to do this. The easiest solution is to obtain the
UUID either from an administrator of the cloud or from a user located
in the project.

3. Once you have both pieces of information, run the glance
command:

$ glance member-create <image-uuid> <project-uuid>

For example:

$ glance member-create 733d1c44-a2ea-414b-aca7-69decf20d810
 \
 771ed149ef7e4b2b88665cc1c98f77ca

Project 771ed149ef7e4b2b88665cc1c98f77ca will now have access to
image 733d1c44-a2ea-414b-aca7-69decf20d810.

OpenStack Ops Guide July 3, 2014

111

Deleting Images

To delete an image, just execute:

$ glance image-delete <image uuid>

Note

Deleting an image does not affect instances or snapshots that
were based on the image.

Other CLI Options

A full set of options can be found using:

$ glance help

or the OpenStack Image Service CLI Guide.

The Image Service and the Database

The only thing that the Image Service does not store in a database is the
image itself. The Image Service database has two main tables:

• images

• image_properties

Working directly with the database and SQL queries can provide you
with custom lists and reports of images. Technically, you can update
properties about images through the database, although this is not
generally recommended.

Example Image Service Database Queries

One interesting example is modifying the table of images and the owner
of that image. This can be easily done if you simply display the unique ID of
the owner. This example goes one step further and displays the readable
name of the owner:

mysql> select glance.images.id,
 glance.images.name, keystone.tenant.name,
 is_public from
 glance.images inner join keystone.tenant on

http://opsgui.de/NPH3Od

OpenStack Ops Guide July 3, 2014

112

 glance.images.owner=keystone.tenant.id;

Another example is displaying all properties for a certain image:

mysql> select name, value from
 image_properties where id = <image_id>

Flavors
Virtual hardware templates are called "flavors" in OpenStack, defining sizes
for RAM, disk, number of cores, and so on. The default install provides five
flavors.

These are configurable by admin users (the rights may also be
delegated to other users by redefining the access controls for
compute_extension:flavormanage in /etc/nova/policy.json
on the nova-api server). To get the list of available flavors on your
system, run:

$ nova flavor-list
+----+-----------+-----------+------+-----------+\+-------+-\
+-------------+
| ID | Name | Memory_MB | Disk | Ephemeral |/| VCPUs | /|
 extra_specs |
+----+-----------+-----------+------+-----------+\+-------+-\
+-------------+
| 1 | m1.tiny | 512 | 1 | 0 |/| 1 | /|
 {} |
| 2 | m1.small | 2048 | 10 | 20 |\| 1 | \|
 {} |
| 3 | m1.medium | 4096 | 10 | 40 |/| 2 | /|
 {} |
| 4 | m1.large | 8192 | 10 | 80 |\| 4 | \|
 {} |
| 5 | m1.xlarge | 16384 | 10 | 160 |/| 8 | /|
 {} |
+----+-----------+-----------+------+-----------+\+-------+-\
+-------------+

The nova flavor-create command allows authorized users to create
new flavors. Additional flavor manipulation commands can be shown with
the command:

$ nova help | grep flavor

Flavors define a number of parameters, resulting in the user having
a choice of what type of virtual machine to run—just like they would
have if they were purchasing a physical server. Table 10.1, “Flavor

OpenStack Ops Guide July 3, 2014

113

parameters” [113] lists the elements that can be set. Note in particular
extra_specs, which can be used to define free-form characteristics,
giving a lot of flexibility beyond just the size of RAM, CPU, and Disk.

Table 10.1. Flavor parameters

Column Description

ID A unique numeric ID.

Name A descriptive name, such as xx.size_name, is conventional but not
required, though some third-party tools may rely on it.

Memory_MB Virtual machine memory in megabytes.

Disk Virtual root disk size in gigabytes. This is an ephemeral disk the base
image is copied into. You don't use it when you boot from a persistent
volume. The "0" size is a special case that uses the native base image size
as the size of the ephemeral root volume.

Ephemeral Specifies the size of a secondary ephemeral data disk. This is an empty,
unformatted disk and exists only for the life of the instance.

Swap Optional swap space allocation for the instance.

VCPUs Number of virtual CPUs presented to the instance.

RXTX_Factor Optional property that allows created servers to have a different
bandwidth cap from that defined in the network they are attached
to. This factor is multiplied by the rxtx_base property of the network.
Default value is 1.0 (that is, the same as the attached network).

Is_Public Boolean value that indicates whether the flavor is available to all users
or private. Private flavors do not get the current tenant assigned to
them. Defaults to True.

extra_specs Additional optional restrictions on which compute nodes the flavor can
run on. This is implemented as key-value pairs that must match against
the corresponding key-value pairs on compute nodes. Can be used to
implement things like special resources (such as flavors that can run only
on compute nodes with GPU hardware).

Private Flavors

A user might need a custom flavor that is uniquely tuned for a project she
is working on. For example, the user might require 128 GB of memory. If
you create a new flavor as described above, the user would have access to
the custom flavor, but so would all other tenants in your cloud. Sometimes
this sharing isn't desirable. In this scenario, allowing all users to have access
to a flavor with 128 GB of memory might cause your cloud to reach full
capacity very quickly. To prevent this, you can restrict access to the custom
flavor using the nova command:

$ nova flavor-access-add <flavor-id> <project-id>

To view a flavor's access list, do the following:

OpenStack Ops Guide July 3, 2014

114

$ nova flavor-access-list <flavor-id>

Best Practices

Once access to a flavor has been restricted, no other projects
besides the ones granted explicit access will be able to see the
flavor. This includes the admin project. Make sure to add the
admin project in addition to the original project.

It's also helpful to allocate a specific numeric range for custom
and private flavors. On UNIX-based systems, nonsystem
accounts usually have a UID starting at 500. A similar approach
can be taken with custom flavors. This helps you easily identify
which flavors are custom, private, and public for the entire
cloud.

How Do I Modify an Existing Flavor?

The OpenStack dashboard simulates the ability to modify a flavor by
deleting an existing flavor and creating a new one with the same name.

Security Groups
A common new-user issue with OpenStack is failing to set an appropriate
security group when launching an instance. As a result, the user is unable
to contact the instance on the network.

Security groups are sets of IP filter rules that are applied to an instance's
networking. They are project specific, and project members can edit the
default rules for their group and add new rules sets. All projects have a
"default" security group, which is applied to instances that have no other
security group defined. Unless changed, this security group denies all
incoming traffic.

General Security Groups Configuration

The nova.conf option allow_same_net_traffic (which defaults
to true) globally controls whether the rules apply to hosts that share a
network. When set to true, hosts on the same subnet are not filtered and
are allowed to pass all types of traffic between them. On a flat network,
this allows all instances from all projects unfiltered communication. With
VLAN networking, this allows access between instances within the same
project. If allow_same_net_traffic is set to false, security groups

OpenStack Ops Guide July 3, 2014

115

are enforced for all connections. In this case, it is possible for projects
to simulate allow_same_net_traffic by configuring their default
security group to allow all traffic from their subnet.

Tip

As noted in the previous chapter, the number
of rules per security group is controlled by the
quota_security_group_rules, and the number of
allowed security groups per project is controlled by the
quota_security_groups quota.

End-User Configuration of Security Groups

Security groups for the current project can be found on the OpenStack
dashboard under Access & Security. To see details of an existing group,
select the edit action for that security group. Obviously, modifying existing
groups can be done from this edit interface. There is a Create Security
Group button on the main Access & Security page for creating new
groups. We discuss the terms used in these fields when we explain the
command-line equivalents.

From the command line, you can get a list of security groups for the
project you're acting in using the nova command:

OpenStack Ops Guide July 3, 2014

116

$ nova secgroup-list
+---------+-------------+
| Name | Description |
+---------+-------------+
| default | default |
| open | all ports |
+---------+-------------+

To view the details of the "open" security group:

$ nova secgroup-list-rules open
+-------------+-----------+---------+-----------+--------------+
| IP Protocol | From Port | To Port | IP Range | Source Group |
+-------------+-----------+---------+-----------+--------------+
icmp	-1	255	0.0.0.0/0	
tcp	1	65535	0.0.0.0/0	
udp	1	65535	0.0.0.0/0	
+-------------+-----------+---------+-----------+--------------+

These rules are all "allow" type rules, as the default is deny. The first
column is the IP protocol (one of icmp, tcp, or udp), and the second and
third columns specify the affected port range. The fourth column specifies
the IP range in CIDR format. This example shows the full port range for all
protocols allowed from all IPs.

When adding a new security group, you should pick a descriptive but
brief name. This name shows up in brief descriptions of the instances that
use it where the longer description field often does not. Seeing that an
instance is using security group http is much easier to understand than
bobs_group or secgrp1.

As an example, let's create a security group that allows web traffic
anywhere on the Internet. We'll call this group global_http, which is
clear and reasonably concise, encapsulating what is allowed and from
where. From the command line, do:

$ nova secgroup-create \
 global_http "allow web traffic from the Internet"
+-------------+-------------------------------------+
| Name | Description |
+-------------+-------------------------------------+
| global_http | allow web traffic from the Internet |
+-------------+-------------------------------------+

This creates the empty security group. To make it do what we want, we
need to add some rules:

$ nova secgroup-add-rule <secgroup> <ip-proto> <from-port> <to-
port> <cidr>
$ nova secgroup-add-rule global_http tcp 80 80 0.0.0.0/0

OpenStack Ops Guide July 3, 2014

117

+-------------+-----------+---------+-----------+--------------+
| IP Protocol | From Port | To Port | IP Range | Source Group |
+-------------+-----------+---------+-----------+--------------+
| tcp | 80 | 80 | 0.0.0.0/0 | |
+-------------+-----------+---------+-----------+--------------+

Note that the arguments are positional, and the from-port and to-
port arguments specify the allowed local port range connections.
These arguments are not indicating source and destination ports of the
connection. More complex rule sets can be built up through multiple
invocations of nova secgroup-add-rule. For example, if you want to
pass both http and https traffic, do this:

$ nova secgroup-add-rule global_http tcp 443 443 0.0.0.0/0
+-------------+-----------+---------+-----------+--------------+
| IP Protocol | From Port | To Port | IP Range | Source Group |
+-------------+-----------+---------+-----------+--------------+
| tcp | 443 | 443 | 0.0.0.0/0 | |
+-------------+-----------+---------+-----------+--------------+

Despite only outputting the newly added rule, this operation is additive:

$ nova secgroup-list-rules global_http
+-------------+-----------+---------+-----------+--------------+
| IP Protocol | From Port | To Port | IP Range | Source Group |
+-------------+-----------+---------+-----------+--------------+
| tcp | 80 | 80 | 0.0.0.0/0 | |
| tcp | 443 | 443 | 0.0.0.0/0 | |
+-------------+-----------+---------+-----------+--------------+

The inverse operation is called secgroup-delete-rule, using the same
format. Whole security groups can be removed with secgroup-delete.

To create security group rules for a cluster of instances, you want to use
SourceGroups.

SourceGroups are a special dynamic way of defining the CIDR of allowed
sources. The user specifies a SourceGroup (security group name) and then
all the users' other instances using the specified SourceGroup are selected
dynamically. This dynamic selection alleviates the need for individual rules
to allow each new member of the cluster.

The code is structured like this: nova secgroup-add-group-rule
<secgroup> <source-group> <ip-proto> <from-port> <to-
port>. An example usage is shown here:

$ nova secgroup-add-group-rule cluster global-http tcp 22 22

The "cluster" rule allows SSH access from any other instance that uses the
global-http group.

OpenStack Ops Guide July 3, 2014

118

Block Storage
OpenStack volumes are persistent block-storage devices that may be
attached and detached from instances, but they can be attached to only
one instance at a time. Similar to an external hard drive, they do not
provide shared storage in the way a network file system or object store
does. It is left to the operating system in the instance to put a file system
on the block device and mount it, or not.

As with other removable disk technology, it is important that the
operating system is not trying to make use of the disk before removing
it. On Linux instances, this typically involves unmounting any file systems
mounted from the volume. The OpenStack volume service cannot tell
whether it is safe to remove volumes from an instance, so it does what
it is told. If a user tells the volume service to detach a volume from an
instance while it is being written to, you can expect some level of file
system corruption as well as faults from whatever process within the
instance was using the device.

There is nothing OpenStack-specific in being aware of the steps needed to
access block devices from within the instance operating system, potentially
formatting them for first use and being cautious when removing them.
What is specific is how to create new volumes and attach and detach them
from instances. These operations can all be done from the Volumes page
of the dashboard or by using the cinder command-line client.

To add new volumes, you need only a name and a volume size in
gigabytes. Either put these into the create volume web form or use the
command line:

$ cinder create --display-name test-volume 10

This creates a 10 GB volume named test-volume. To list existing
volumes and the instances they are connected to, if any:

$ cinder list
+------------+---------+--------------------+------
+-------------+-------------+
| ID | Status | Display Name | Size | Volume Type
 | Attached to |
+------------+---------+--------------------+------
+-------------+-------------+
| 0821...19f | active | test-volume | 10 | None
 | |
+------------+---------+--------------------+------
+-------------+-------------+

OpenStack Ops Guide July 3, 2014

119

OpenStack Block Storage also allows for creating snapshots of volumes.
Remember that this is a block-level snapshot that is crash consistent, so it
is best if the volume is not connected to an instance when the snapshot
is taken and second best if the volume is not in use on the instance it is
attached to. If the volume is under heavy use, the snapshot may have an
inconsistent file system. In fact, by default, the volume service does not
take a snapshot of a volume that is attached to an image, though it can be
forced to. To take a volume snapshot, either select Create Snapshot from
the actions column next to the volume name on the dashboard volume
page, or run this from the command line:

usage: cinder snapshot-create [--force <True|False>]
[--display-name <display-name>]
[--display-description <display-description>]
<volume-id>
Add a new snapshot.
Positional arguments: <volume-id> ID of the volume to
 snapshot
Optional arguments: --force <True|False> Optional flag to
 indicate whether to
 snapshot a volume
 even if its
 attached to an
 instance.
 (Default=False)
--display-name <display-name> Optional snapshot
 name.
 (Default=None)
--display-description <display-description>
Optional snapshot description. (Default=None)

Block Storage Creation Failures

If a user tries to create a volume and the volume immediately goes into an
error state, the best way to troubleshoot is to grep the cinder log files for
the volume's UUID. First try the log files on the cloud controller, and then
try the storage node where the volume was attempted to be created:

grep 903b85d0-bacc-4855-a261-10843fc2d65b /var/log/cinder/*.
log

Instances
Instances are the running virtual machines within an OpenStack cloud. This
section deals with how to work with them and their underlying images,
their network properties, and how they are represented in the database.

OpenStack Ops Guide July 3, 2014

120

Starting Instances

To launch an instance, you need to select an image, a flavor, and a name.
The name needn't be unique, but your life will be simpler if it is because
many tools will use the name in place of the UUID so long as the name is
unique. You can start an instance from the dashboard from the Launch
Instance button on the Instances page or by selecting the Launch action
next to an image or snapshot on the Images & Snapshots page.

On the command line, do this:

$ nova boot --flavor <flavor> --image <image> <name>

There are a number of optional items that can be specified. You should
read the rest of this section before trying to start an instance, but this is
the base command that later details are layered upon.

To delete instances from the dashboard, select the Terminate instance
action next to the instance on the Instances page. From the command
line, do this:

$ nova delete <instance-uuid>

It is important to note that powering off an instance does not terminate it
in the OpenStack sense.

Instance Boot Failures

If an instance fails to start and immediately moves to an error state, there
are a few different ways to track down what has gone wrong. Some of
these can be done with normal user access, while others require access to
your log server or compute nodes.

The simplest reasons for nodes to fail to launch are quota violations or the
scheduler being unable to find a suitable compute node on which to run
the instance. In these cases, the error is apparent when you run a nova
show on the faulted instance:

$ nova show test-instance

+------------------------+---\
| Property | Value /
+------------------------+---\
| OS-DCF:diskConfig | MANUAL /
| OS-EXT-STS:power_state | 0 \
| OS-EXT-STS:task_state | None /
| OS-EXT-STS:vm_state | error \
| accessIPv4 | /
| accessIPv6 | \

OpenStack Ops Guide July 3, 2014

121

| config_drive | /
| created | 2013-03-01T19:28:24Z \
| fault | {u'message': u'NoValidHost', u'code': 500, u'created/
| flavor | xxl.super (11) \
| hostId | /
| id | 940f3b2f-bd74-45ad-bee7-eb0a7318aa84 \
| image | quantal-test (65b4f432-7375-42b6-a9b8-7f654a1e676e) /
| key_name | None \
| metadata | {} /
| name | test-instance \
| security_groups | [{u'name': u'default'}] /
| status | ERROR \
| tenant_id | 98333a1a28e746fa8c629c83a818ad57 /
| updated | 2013-03-01T19:28:26Z \
| user_id | a1ef823458d24a68955fec6f3d390019 /
+------------------------+---\

In this case, looking at the fault message shows NoValidHost,
indicating that the scheduler was unable to match the instance
requirements.

If nova show does not sufficiently explain the failure, searching for the
instance UUID in the nova-compute.log on the compute node it was
scheduled on or the nova-scheduler.log on your scheduler hosts is a
good place to start looking for lower-level problems.

Using nova show as an admin user will show the compute node the
instance was scheduled on as hostId. If the instance failed during
scheduling, this field is blank.

Using Instance-Specific Data

There are two main types of instance-specific data: metadata and user
data.

Instance metadata

For Compute, instance metadata is a collection of key-value pairs
associated with an instance. Compute reads and writes to these key-value
pairs any time during the instance lifetime, from inside and outside the
instance, when the end user uses the Compute API to do so. However, you
cannot query the instance-associated key-value pairs with the metadata
service that is compatible with the Amazon EC2 metadata service.

For an example of instance metadata, users can generate and register SSH
keys using the nova command:

$ nova keypair-add mykey > mykey.pem

This creates a key named mykey, which you can associate with instances.
The file mykey.pem is the private key, which should be saved to a secure

OpenStack Ops Guide July 3, 2014

122

location because it allows root access to instances the mykey key is
associated with.

Use this command to register an existing key with OpenStack:

$ nova keypair-add --pub-key mykey.pub mykey

Note

You must have the matching private key to access instances
associated with this key.

To associate a key with an instance on boot, add --key_name mykey to
your command line. For example:

$ nova boot --image ubuntu-cloudimage --flavor 2 --key_name
 mykey myimage

When booting a server, you can also add arbitrary metadata so that you
can more easily identify it among other running instances. Use the --meta
option with a key-value pair, where you can make up the string for both
the key and the value. For example, you could add a description and also
the creator of the server:

$ nova boot --image=test-image --flavor=1 \
 --meta description='Small test image' smallimage

When viewing the server information, you can see the metadata included
on the metadata line:

OpenStack Ops Guide July 3, 2014

123

$ nova show smallimage
+------------------------
+---+
| Property | Value
 |
+------------------------
+---+
| OS-DCF:diskConfig | MANUAL
 |
| OS-EXT-STS:power_state | 1
 |
| OS-EXT-STS:task_state | None
 |
| OS-EXT-STS:vm_state | active
 |
| accessIPv4 |
 |
| accessIPv6 |
 |
| config_drive |
 |
| created | 2012-05-16T20:48:23Z
 |
| flavor | m1.small
 |
| hostId | de0...487
 |
| id | 8ec...f915
 |
| image | natty-image
 |
| key_name |
 |
| metadata | {u'description': u'Small test image'}
 |
| name | smallimage
 |
| private network | 172.16.101.11
 |
| progress | 0
 |
| public network | 10.4.113.11
 |
| status | ACTIVE
 |
| tenant_id | e83...482
 |
| updated | 2012-05-16T20:48:35Z
 |
| user_id | de3...0a9
 |

OpenStack Ops Guide July 3, 2014

124

+------------------------
+---+

Instance user data

The user-data key is a special key in the metadata service that holds a
file that cloud-aware applications within the guest instance can access. For
example, cloudinit is an open source package from Ubuntu, but available
in most distributions, that handles early initialization of a cloud instance
that makes use of this user data.

This user data can be put in a file on your local system and then passed in
at instance creation with the flag --user-data <user-data-file>.
For example:

$ nova boot --image ubuntu-cloudimage --flavor 1 --user-data
 mydata.file

To understand the difference between user data and metadata, realize
that user data is created before an instance is started. User data is
accessible from within the instance when it is running. User data can be
used to store configuration, a script, or anything the tenant wants.

File injection

Arbitrary local files can also be placed into the instance file system at
creation time by using the --file <dst-path=src-path> option. You
may store up to five files.

For example, let's say you have a special authorized_keys file named
special_authorized_keysfile that for some reason you want to put on the
instance instead of using the regular SSH key injection. In this case, you can
use the following command:

$ nova boot --image ubuntu-cloudimage --flavor 1 \
 --file /root/.ssh/authorized_keys=special_authorized_keysfile

Associating Security Groups
Security groups, as discussed earlier, are typically required to allow
network traffic to an instance, unless the default security group for a
project has been modified to be more permissive.

Adding security groups is typically done on instance boot. When launching
from the dashboard, you do this on the Access & Security tab of the

http://opsgui.de/1eLCtLs

OpenStack Ops Guide July 3, 2014

125

Launch Instance dialog. When launching from the command line, append
--security-groups with a comma-separated list of security groups.

It is also possible to add and remove security groups when an instance is
running. Currently this is only available through the command-line tools.
Here is an example:

$ nova add-secgroup <server> <securitygroup>

$ nova remove-secgroup <server> <securitygroup>

Floating IPs
Where floating IPs are configured in a deployment, each project will have
a limited number of floating IPs controlled by a quota. However, these
need to be allocated to the project from the central pool prior to their use
—usually by the administrator of the project. To allocate a floating IP to
a project, use the Allocate IP to Project button on the Access & Security
page of the dashboard. The command line can also be used:

$ nova floating-ip-create

Once allocated, a floating IP can be assigned to running instances from
the dashboard either by selecting Associate Floating IP from the actions
drop-down next to the IP on the Access & Security page or by making
this selection next to the instance you want to associate it with on the
Instances page. The inverse action, Dissociate Floating IP, is available only
from the Access & Security page and not from the Instances page.

To associate or disassociate a floating IP with a server from the command
line, use the following commands:

$ nova add-floating-ip <server> <address>

$ nova remove-floating-ip <server> <address>

Attaching Block Storage
You can attach block storage to instances from the dashboard on the
Volumes page. Click the Edit Attachments action next to the volume you
want to attach.

To perform this action from command line, run the following command:

$ nova volume-attach <server> <volume> <device>

OpenStack Ops Guide July 3, 2014

126

You can also specify block device mapping at instance boot time through
the nova command-line client with this option set:

--block-device-mapping <dev-name=mapping>

The block device mapping format is <dev-
name>=<id>:<type>:<size(GB)>:<delete-on-terminate>,
where:

dev-name A device name where the volume is attached
in the system at /dev/dev_name

id The ID of the volume to boot from, as shown
in the output of nova volume-list

type Either snap, which means that the volume
was created from a snapshot, or anything
other than snap (a blank string is valid). In
the preceding example, the volume was not
created from a snapshot, so we leave this field
blank in our following example.

size (GB) The size of the volume in gigabytes. It is safe
to leave this blank and have the Compute
Service infer the size.

delete-on-terminate A boolean to indicate whether the volume
should be deleted when the instance is
terminated. True can be specified as True or
1. False can be specified as False or 0.

The following command will boot a new instance and attach a volume at
the same time. The volume of ID 13 will be attached as /dev/vdc. It is
not a snapshot, does not specify a size, and will not be deleted when the
instance is terminated:

$ nova boot --image 4042220e-4f5e-4398-9054-39fbd75a5dd7 \
 --flavor 2 --key-name mykey --block-device-mapping
 vdc=13:::0 \
 boot-with-vol-test

If you have previously prepared block storage with a bootable file system
image, it is even possible to boot from persistent block storage. The
following command boots an image from the specified volume. It is similar
to the previous command, but the image is omitted and the volume is now
attached as /dev/vda:

OpenStack Ops Guide July 3, 2014

127

$ nova boot --flavor 2 --key-name mykey \
 --block-device-mapping vda=13:::0 boot-from-vol-test

Read more detailed instructions for launching an instance from a bootable
volume in the OpenStack End User Guide.

To boot normally from an image and attach block storage, map to a
device other than vda. You can find instructions for launching an instance
and attaching a volume to the instance and for copying the image to the
attached volume in the OpenStack End User Guide.

Taking Snapshots
The OpenStack snapshot mechanism allows you to create new images
from running instances. This is very convenient for upgrading base images
or for taking a published image and customizing it for local use. To
snapshot a running instance to an image using the CLI, do this:

$ nova image-create <instance name or uuid> <name of new image>

The dashboard interface for snapshots can be confusing because the
Images & Snapshots page splits content up into several areas:

• Images

• Instance snapshots

• Volume snapshots

However, an instance snapshot is an image. The only difference between
an image that you upload directly to the Image Service and an image
that you create by snapshot is that an image created by snapshot has
additional properties in the glance database. These properties are found in
the image_properties table and include:

Name Value

image_type snapshot

instance_uuid <uuid of instance that was snapshotted>

base_image_ref <uuid of original image of instance that was
snapshotted>

image_location snapshot

Live Snapshots
Live snapshots is a feature that allows users to snapshot the running
virtual machines without pausing them. These snapshots are simply disk-

http://opsgui.de/NPH30v
http://opsgui.de/1eLCwHb

OpenStack Ops Guide July 3, 2014

128

only snapshots. Snapshotting an instance can now be performed with no
downtime (assuming QEMU 1.3+ and libvirt 1.0+ are used).

Ensuring Snapshots Are Consistent

The following section is from Sébastien Han's “OpenStack: Perform
Consistent Snapshots” blog entry.

A snapshot captures the state of the file system, but not the state of
the memory. Therefore, to ensure your snapshot contains the data
that you want, before your snapshot you need to ensure that:

• Running programs have written their contents to disk

• The file system does not have any "dirty" buffers: where programs
have issued the command to write to disk, but the operating
system has not yet done the write

To ensure that important services have written their contents
to disk (such as databases), we recommend that you read the
documentation for those applications to determine what commands
to issue to have them sync their contents to disk. If you are unsure
how to do this, the safest approach is to simply stop these running
services normally.

To deal with the "dirty" buffer issue, we recommend using the sync
command before snapshotting:

sync

Running sync writes dirty buffers (buffered blocks that have been
modified but not written yet to the disk block) to disk.

Just running sync is not enough to ensure that the file system is
consistent. We recommend that you use the fsfreeze tool, which
halts new access to the file system, and create a stable image on
disk that is suitable for snapshotting. The fsfreeze tool supports
several file systems, including ext3, ext4, and XFS. If your virtual
machine instance is running on Ubuntu, install the util-linux package
to get fsfreeze:

apt-get install util-linux

If your operating system doesn't have a version of fsfreeze
available, you can use xfs_freeze instead, which is available on
Ubuntu in the xfsprogs package. Despite the "xfs" in the name,
xfs_freeze also works on ext3 and ext4 if you are using a Linux kernel

http://opsgui.de/NPH5Wn
http://opsgui.de/NPH5Wn

OpenStack Ops Guide July 3, 2014

129

version 2.6.29 or greater, since it works at the virtual file system
(VFS) level starting at 2.6.29. The xfs_freeze version supports the
same command-line arguments as fsfreeze.

Consider the example where you want to take a snapshot of a
persistent block storage volume, detected by the guest operating
system as /dev/vdb and mounted on /mnt. The fsfreeze command
accepts two arguments:

-f Freeze the system

-u Thaw (unfreeze) the system

To freeze the volume in preparation for snapshotting, you would do
the following, as root, inside the instance:

fsfreeze -f /mnt

You must mount the file system before you run the fsfreeze
command.

When the fsfreeze -f command is issued, all ongoing
transactions in the file system are allowed to complete, new write
system calls are halted, and other calls that modify the file system
are halted. Most importantly, all dirty data, metadata, and log
information are written to disk.

Once the volume has been frozen, do not attempt to read from or
write to the volume, as these operations hang. The operating system
stops every I/O operation and any I/O attempts are delayed until the
file system has been unfrozen.

Once you have issued the fsfreeze command, it is safe to perform
the snapshot. For example, if your instance was named mon-
instance and you wanted to snapshot it to an image named mon-
snapshot, you could now run the following:

$ nova image-create mon-instance mon-snapshot

When the snapshot is done, you can thaw the file system with the
following command, as root, inside of the instance:

fsfreeze -u /mnt

If you want to back up the root file system, you can't simply run the
preceding command because it will freeze the prompt. Instead, run
the following one-liner, as root, inside the instance:

OpenStack Ops Guide July 3, 2014

130

fsfreeze -f / && sleep 30 && fsfreeze -u /

Instances in the Database
While instance information is stored in a number of database tables, the
table you most likely need to look at in relation to user instances is the
instances table.

The instances table carries most of the information related to both
running and deleted instances. It has a bewildering array of fields; for an
exhaustive list, look at the database. These are the most useful fields for
operators looking to form queries:

• The deleted field is set to 1 if the instance has been deleted and NULL
if it has not been deleted. This field is important for excluding deleted
instances from your queries.

• The uuid field is the UUID of the instance and is used throughout other
tables in the database as a foreign key. This ID is also reported in logs,
the dashboard, and command-line tools to uniquely identify an instance.

• A collection of foreign keys are available to find relations to the
instance. The most useful of these—user_id and project_id—are
the UUIDs of the user who launched the instance and the project it was
launched in.

• The host field tells which compute node is hosting the instance.

• The hostname field holds the name of the instance when it is launched.
The display-name is initially the same as hostname but can be reset using
the nova rename command.

A number of time-related fields are useful for tracking when state changes
happened on an instance:

• created_at

• updated_at

• deleted_at

• scheduled_at

• launched_at

OpenStack Ops Guide July 3, 2014

131

• terminated_at

Good Luck!
This section was intended as a brief introduction to some of the most
useful of many OpenStack commands. For an exhaustive list, please refer
to the Admin User Guide, and for additional hints and tips, see the Cloud
Admin Guide. We hope your users remain happy and recognize your
hard work! (For more hard work, turn the page to the next chapter,
where we discuss the system-facing operations: maintenance, failures and
debugging.)

http://opsgui.de/1eLBkDJ
http://opsgui.de/1eLBL0N
http://opsgui.de/1eLBL0N

OpenStack Ops Guide July 3, 2014

133

11. Maintenance, Failures, and
Debugging

Cloud Controller and Storage Proxy Failures and Maintenance 133
Compute Node Failures and Maintenance .. 135
Storage Node Failures and Maintenance .. 141
Handling a Complete Failure .. 143
Configuration Management ... 143
Working with Hardware ... 144
Databases .. 145
HDWMY .. 146
Determining Which Component Is Broken .. 147
Uninstalling .. 150

Downtime, whether planned or unscheduled, is a certainty when running
a cloud. This chapter aims to provide useful information for dealing
proactively, or reactively, with these occurrences.

Cloud Controller and Storage Proxy
Failures and Maintenance

The cloud controller and storage proxy are very similar to each other when
it comes to expected and unexpected downtime. One of each server type
typically runs in the cloud, which makes them very noticeable when they
are not running.

For the cloud controller, the good news is if your cloud is using the
FlatDHCP multi-host HA network mode, existing instances and volumes
continue to operate while the cloud controller is offline. For the storage
proxy, however, no storage traffic is possible until it is back up and
running.

Planned Maintenance

One way to plan for cloud controller or storage proxy maintenance is
to simply do it off-hours, such as at 1 a.m. or 2 a.m. This strategy affects
fewer users. If your cloud controller or storage proxy is too important to
have unavailable at any point in time, you must look into high-availability
options.

OpenStack Ops Guide July 3, 2014

134

Rebooting a Cloud Controller or Storage Proxy

All in all, just issue the "reboot" command. The operating system cleanly
shuts down services and then automatically reboots. If you want to be very
thorough, run your backup jobs just before you reboot.

After a Cloud Controller or Storage Proxy Reboots

After a cloud controller reboots, ensure that all required services were
successfully started. The following commands use ps and grep to
determine if nova, glance, and keystone are currently running:

ps aux | grep nova-
ps aux | grep glance-
ps aux | grep keystone
ps aux | grep cinder

Also check that all services are functioning. The following set of commands
sources the openrc file, then runs some basic glance, nova, and keystone
commands. If the commands work as expected, you can be confident that
those services are in working condition:

source openrc
glance index
nova list
keystone tenant-list

For the storage proxy, ensure that the Object Storage service has resumed:

ps aux | grep swift

Also check that it is functioning:

swift stat

Total Cloud Controller Failure

The cloud controller could completely fail if, for example, its motherboard
goes bad. Users will immediately notice the loss of a cloud controller
since it provides core functionality to your cloud environment. If your
infrastructure monitoring does not alert you that your cloud controller has
failed, your users definitely will. Unfortunately, this is a rough situation.
The cloud controller is an integral part of your cloud. If you have only one
controller, you will have many missing services if it goes down.

To avoid this situation, create a highly available cloud controller cluster.
This is outside the scope of this document, but you can read more in the
draft OpenStack High Availability Guide.

http://opsgui.de/NPGlAo

OpenStack Ops Guide July 3, 2014

135

The next best approach is to use a configuration-management tool, such
as Puppet, to automatically build a cloud controller. This should not take
more than 15 minutes if you have a spare server available. After the
controller rebuilds, restore any backups taken (see Chapter 14, “Backup
and Recovery” [189]).

Also, in practice, the nova-compute services on the compute nodes do
not always reconnect cleanly to rabbitmq hosted on the controller when
it comes back up after a long reboot; a restart on the nova services on the
compute nodes is required.

Compute Node Failures and Maintenance
Sometimes a compute node either crashes unexpectedly or requires a
reboot for maintenance reasons.

Planned Maintenance

If you need to reboot a compute node due to planned maintenance (such
as a software or hardware upgrade), first ensure that all hosted instances
have been moved off the node. If your cloud is utilizing shared storage,
use the nova live-migration command. First, get a list of instances
that need to be moved:

nova list --host c01.example.com --all-tenants

Next, migrate them one by one:

nova live-migration <uuid> c02.example.com

If you are not using shared storage, you can use the --block-migrate
option:

nova live-migration --block-migrate <uuid> c02.example.com

After you have migrated all instances, ensure that the nova-compute
service has stopped:

stop nova-compute

If you use a configuration-management system, such as Puppet, that
ensures the nova-compute service is always running, you can temporarily
move the init files:

mkdir /root/tmp
mv /etc/init/nova-compute.conf /root/tmp
mv /etc/init.d/nova-compute /root/tmp

OpenStack Ops Guide July 3, 2014

136

Next, shut down your compute node, perform your maintenance, and
turn the node back on. You can reenable the nova-compute service by
undoing the previous commands:

mv /root/tmp/nova-compute.conf /etc/init
mv /root/tmp/nova-compute /etc/init.d/

Then start the nova-compute service:

start nova-compute

You can now optionally migrate the instances back to their original
compute node.

After a Compute Node Reboots
When you reboot a compute node, first verify that it booted successfully.
This includes ensuring that the nova-compute service is running:

ps aux | grep nova-compute
status nova-compute

Also ensure that it has successfully connected to the AMQP server:

grep AMQP /var/log/nova/nova-compute
2013-02-26 09:51:31 12427 INFO nova.openstack.common.rpc.common [-] Connected to
 AMQP server on 199.116.232.36:5672

After the compute node is successfully running, you must deal with the
instances that are hosted on that compute node because none of them are
running. Depending on your SLA with your users or customers, you might
have to start each instance and ensure that they start correctly.

Instances
You can create a list of instances that are hosted on the compute node by
performing the following command:

nova list --host c01.example.com --all-tenants

After you have the list, you can use the nova command to start each
instance:

nova reboot <uuid>

Note

Any time an instance shuts down unexpectedly, it might have
problems on boot. For example, the instance might require an
fsck on the root partition. If this happens, the user can use
the dashboard VNC console to fix this.

OpenStack Ops Guide July 3, 2014

137

If an instance does not boot, meaning virsh list never shows the
instance as even attempting to boot, do the following on the compute
node:

tail -f /var/log/nova/nova-compute.log

Try executing the nova reboot command again. You should see an error
message about why the instance was not able to boot

In most cases, the error is the result of something in libvirt's XML file (/
etc/libvirt/qemu/instance-xxxxxxxx.xml) that no longer
exists. You can enforce re-creation of the XML file as well as rebooting the
instance by running the following command:

nova reboot --hard <uuid>

Inspecting and Recovering Data from Failed
Instances

In some scenarios, instances are running but are inaccessible through
SSH and do not respond to any command. The VNC console could be
displaying a boot failure or kernel panic error messages. This could be
an indication of file system corruption on the VM itself. If you need to
recover files or inspect the content of the instance, qemu-nbd can be used
to mount the disk.

Warning

If you access or view the user's content and data, get approval
first!

To access the instance's disk (/var/lib/nova/instances/
instance-xxxxxx/disk), use the following steps:

1. Suspend the instance using the virsh command.

2. Connect the qemu-nbd device to the disk.

3. Mount the qemu-nbd device.

4. Unmount the device after inspecting.

5. Disconnect the qemu-nbd device.

6. Resume the instance.

OpenStack Ops Guide July 3, 2014

138

If you do not follow steps 4 through 6, OpenStack Compute cannot
manage the instance any longer. It fails to respond to any command issued
by OpenStack Compute, and it is marked as shut down.

Once you mount the disk file, you should be able to access it and treat it
as a collection of normal directories with files and a directory structure.
However, we do not recommend that you edit or touch any files because
this could change the access control lists (ACLs) that are used to determine
which accounts can perform what operations on files and directories.
Changing ACLs can make the instance unbootable if it is not already.

1. Suspend the instance using the virsh command, taking note of the
internal ID:

virsh list
Id Name State

1 instance-00000981 running
2 instance-000009f5 running
30 instance-0000274a running

virsh suspend 30
Domain 30 suspended

2. Connect the qemu-nbd device to the disk:

cd /var/lib/nova/instances/instance-0000274a
ls -lh
total 33M
-rw-rw---- 1 libvirt-qemu kvm 6.3K Oct 15 11:31 console.log
-rw-r--r-- 1 libvirt-qemu kvm 33M Oct 15 22:06 disk
-rw-r--r-- 1 libvirt-qemu kvm 384K Oct 15 22:06 disk.local
-rw-rw-r-- 1 nova nova 1.7K Oct 15 11:30 libvirt.xml
qemu-nbd -c /dev/nbd0 `pwd`/disk

3. Mount the qemu-nbd device.

The qemu-nbd device tries to export the instance disk's different
partitions as separate devices. For example, if vda is the disk and vda1 is
the root partition, qemu-nbd exports the device as /dev/nbd0 and /
dev/nbd0p1, respectively:

mount /dev/nbd0p1 /mnt/

You can now access the contents of /mnt, which correspond to the first
partition of the instance's disk.

To examine the secondary or ephemeral disk, use an alternate mount
point if you want both primary and secondary drives mounted at the
same time:

umount /mnt
qemu-nbd -c /dev/nbd1 `pwd`/disk.local
mount /dev/nbd1 /mnt/

OpenStack Ops Guide July 3, 2014

139

ls -lh /mnt/
total 76K
lrwxrwxrwx. 1 root root 7 Oct 15 00:44 bin -> usr/bin
dr-xr-xr-x. 4 root root 4.0K Oct 15 01:07 boot
drwxr-xr-x. 2 root root 4.0K Oct 15 00:42 dev
drwxr-xr-x. 70 root root 4.0K Oct 15 11:31 etc
drwxr-xr-x. 3 root root 4.0K Oct 15 01:07 home
lrwxrwxrwx. 1 root root 7 Oct 15 00:44 lib -> usr/lib
lrwxrwxrwx. 1 root root 9 Oct 15 00:44 lib64 -> usr/lib64
drwx------. 2 root root 16K Oct 15 00:42 lost+found
drwxr-xr-x. 2 root root 4.0K Feb 3 2012 media
drwxr-xr-x. 2 root root 4.0K Feb 3 2012 mnt
drwxr-xr-x. 2 root root 4.0K Feb 3 2012 opt
drwxr-xr-x. 2 root root 4.0K Oct 15 00:42 proc
dr-xr-x---. 3 root root 4.0K Oct 15 21:56 root
drwxr-xr-x. 14 root root 4.0K Oct 15 01:07 run
lrwxrwxrwx. 1 root root 8 Oct 15 00:44 sbin -> usr/sbin
drwxr-xr-x. 2 root root 4.0K Feb 3 2012 srv
drwxr-xr-x. 2 root root 4.0K Oct 15 00:42 sys
drwxrwxrwt. 9 root root 4.0K Oct 15 16:29 tmp
drwxr-xr-x. 13 root root 4.0K Oct 15 00:44 usr
drwxr-xr-x. 17 root root 4.0K Oct 15 00:44 var

4. Once you have completed the inspection, unmount the mount point
and release the qemu-nbd device:

umount /mnt
qemu-nbd -d /dev/nbd0
/dev/nbd0 disconnected

5. Resume the instance using virsh:

virsh list
Id Name State

1 instance-00000981 running
2 instance-000009f5 running
30 instance-0000274a paused

virsh resume 30
Domain 30 resumed

Volumes
If the affected instances also had attached volumes, first generate a list of
instance and volume UUIDs:

mysql> select nova.instances.uuid as instance_uuid,
cinder.volumes.id as volume_uuid, cinder.volumes.status,
cinder.volumes.attach_status, cinder.volumes.mountpoint,
cinder.volumes.display_name from cinder.volumes
inner join nova.instances on cinder.volumes.instance_uuid=nova.instances.uuid
 where nova.instances.host = 'c01.example.com';

You should see a result similar to the following:

+--------------+------------+-------+--------------+-----------+--------------+
|instance_uuid |volume_uuid |status |attach_status |mountpoint | display_name |
+--------------+------------+-------+--------------+-----------+--------------+
|9b969a05 |1f0fbf36 |in-use |attached |/dev/vdc | test |
+--------------+------------+-------+--------------+-----------+--------------+
1 row in set (0.00 sec)

OpenStack Ops Guide July 3, 2014

140

Next, manually detach and reattach the volumes, where X is the proper
mount point:

nova volume-detach <instance_uuid> <volume_uuid>
nova volume-attach <instance_uuid> <volume_uuid> /dev/vdX

Be sure that the instance has successfully booted and is at a login screen
before doing the above.

Total Compute Node Failure

Compute nodes can fail the same way a cloud controller can fail. A
motherboard failure or some other type of hardware failure can cause
an entire compute node to go offline. When this happens, all instances
running on that compute node will not be available. Just like with a cloud
controller failure, if your infrastructure monitoring does not detect a failed
compute node, your users will notify you because of their lost instances.

If a compute node fails and won't be fixed for a few hours (or at all), you
can relaunch all instances that are hosted on the failed node if you use
shared storage for /var/lib/nova/instances.

To do this, generate a list of instance UUIDs that are hosted on the failed
node by running the following query on the nova database:

mysql> select uuid from instances where host = \
 'c01.example.com' and deleted = 0;

Next, update the nova database to indicate that all instances that used to
be hosted on c01.example.com are now hosted on c02.example.com:

mysql> update instances set host = 'c02.example.com' where host = \
 'c01.example.com' and deleted = 0;

After that, use the nova command to reboot all instances that were on
c01.example.com while regenerating their XML files at the same time:

nova reboot --hard <uuid>

Finally, reattach volumes using the same method described in the section
Volumes.

/var/lib/nova/instances

It's worth mentioning this directory in the context of failed compute
nodes. This directory contains the libvirt KVM file-based disk images for the
instances that are hosted on that compute node. If you are not running
your cloud in a shared storage environment, this directory is unique across
all compute nodes.

OpenStack Ops Guide July 3, 2014

141

/var/lib/nova/instances contains two types of directories.

The first is the _base directory. This contains all the cached base images
from glance for each unique image that has been launched on that
compute node. Files ending in _20 (or a different number) are the
ephemeral base images.

The other directories are titled instance-xxxxxxxx. These directories
correspond to instances running on that compute node. The files inside
are related to one of the files in the _base directory. They're essentially
differential-based files containing only the changes made from the original
_base directory.

All files and directories in /var/lib/nova/instances are uniquely
named. The files in _base are uniquely titled for the glance image that
they are based on, and the directory names instance-xxxxxxxx are
uniquely titled for that particular instance. For example, if you copy all
data from /var/lib/nova/instances on one compute node to
another, you do not overwrite any files or cause any damage to images
that have the same unique name, because they are essentially the same
file.

Although this method is not documented or supported, you can use it
when your compute node is permanently offline but you have instances
locally stored on it.

Storage Node Failures and Maintenance
Because of the high redundancy of Object Storage, dealing with object
storage node issues is a lot easier than dealing with compute node issues.

Rebooting a Storage Node

If a storage node requires a reboot, simply reboot it. Requests for data
hosted on that node are redirected to other copies while the server is
rebooting.

Shutting Down a Storage Node

If you need to shut down a storage node for an extended period of time
(one or more days), consider removing the node from the storage ring. For
example:

OpenStack Ops Guide July 3, 2014

142

swift-ring-builder account.builder remove <ip address of storage node>
swift-ring-builder container.builder remove <ip address of storage node>
swift-ring-builder object.builder remove <ip address of storage node>
swift-ring-builder account.builder rebalance
swift-ring-builder container.builder rebalance
swift-ring-builder object.builder rebalance

Next, redistribute the ring files to the other nodes:

for i in s01.example.com s02.example.com s03.example.com
> do
> scp *.ring.gz $i:/etc/swift
> done

These actions effectively take the storage node out of the storage cluster.

When the node is able to rejoin the cluster, just add it back to the ring.
The exact syntax you use to add a node to your swift cluster with swift-
ring-builder heavily depends on the original options used when you
originally created your cluster. Please refer back to those commands.

Replacing a Swift Disk

If a hard drive fails in an Object Storage node, replacing it is relatively easy.
This assumes that your Object Storage environment is configured correctly,
where the data that is stored on the failed drive is also replicated to other
drives in the Object Storage environment.

This example assumes that /dev/sdb has failed.

First, unmount the disk:

umount /dev/sdb

Next, physically remove the disk from the server and replace it with a
working disk.

Ensure that the operating system has recognized the new disk:

dmesg | tail

You should see a message about /dev/sdb.

Because it is recommended to not use partitions on a swift disk, simply
format the disk as a whole:

mkfs.xfs /dev/sdb

Finally, mount the disk:

mount -a

OpenStack Ops Guide July 3, 2014

143

Swift should notice the new disk and that no data exists. It then begins
replicating the data to the disk from the other existing replicas.

Handling a Complete Failure
A common way of dealing with the recovery from a full system failure,
such as a power outage of a data center, is to assign each service a priority,
and restore in order. Table 11.1, “Example service restoration priority
list” [143] shows an example.

Table 11.1. Example service restoration priority list

Priority Services

1 Internal network connectivity

2 Backing storage services

3 Public network connectivity for user virtual
machines

4 nova-compute, nova-network, cinder hosts

5 User virtual machines

10 Message queue and database services

15 Keystone services

20 cinder-scheduler

21 Image Catalog and Delivery services

22 nova-scheduler services

98 cinder-api

99 nova-api services

100 Dashboard node

Use this example priority list to ensure that user-affected services are
restored as soon as possible, but not before a stable environment is
in place. Of course, despite being listed as a single-line item, each step
requires significant work. For example, just after starting the database,
you should check its integrity, or, after starting the nova services, you
should verify that the hypervisor matches the database and fix any
mismatches.

Configuration Management
Maintaining an OpenStack cloud requires that you manage multiple
physical servers, and this number might grow over time. Because
managing nodes manually is error prone, we strongly recommend that you
use a configuration-management tool. These tools automate the process

OpenStack Ops Guide July 3, 2014

144

of ensuring that all your nodes are configured properly and encourage
you to maintain your configuration information (such as packages and
configuration options) in a version-controlled repository.

Tip

Several configuration-management tools are available, and
this guide does not recommend a specific one. The two most
popular ones in the OpenStack community are Puppet, with
available OpenStack Puppet modules; and Chef, with available
OpenStack Chef recipes. Other newer configuration tools
include Juju, Ansible, and Salt; and more mature configuration
management tools include CFEngine and Bcfg2.

Working with Hardware
As for your initial deployment, you should ensure that all hardware is
appropriately burned in before adding it to production. Run software that
uses the hardware to its limits—maxing out RAM, CPU, disk, and network.
Many options are available, and normally double as benchmark software,
so you also get a good idea of the performance of your system.

Adding a Compute Node

If you find that you have reached or are reaching the capacity limit of
your computing resources, you should plan to add additional compute
nodes. Adding more nodes is quite easy. The process for adding compute
nodes is the same as when the initial compute nodes were deployed to
your cloud: use an automated deployment system to bootstrap the bare-
metal server with the operating system and then have a configuration-
management system install and configure OpenStack Compute. Once the
Compute Service has been installed and configured in the same way as
the other compute nodes, it automatically attaches itself to the cloud. The
cloud controller notices the new node(s) and begins scheduling instances
to launch there.

If your OpenStack Block Storage nodes are separate from your compute
nodes, the same procedure still applies because the same queuing and
polling system is used in both services.

We recommend that you use the same hardware for new compute and
block storage nodes. At the very least, ensure that the CPUs are similar in
the compute nodes to not break live migration.

http://opsgui.de/1eLBsD7
http://opsgui.de/NPGmnU
http://opsgui.de/1eLBtqO
http://opsgui.de/NPGnID
http://opsgui.de/1eLBxqm
http://opsgui.de/NPGpQQ
http://opsgui.de/1eLBACD
http://opsgui.de/NPGoMP
http://opsgui.de/1eLBB9M

OpenStack Ops Guide July 3, 2014

145

Adding an Object Storage Node

Adding a new object storage node is different from adding compute or
block storage nodes. You still want to initially configure the server by using
your automated deployment and configuration-management systems.
After that is done, you need to add the local disks of the object storage
node into the object storage ring. The exact command to do this is the
same command that was used to add the initial disks to the ring. Simply
rerun this command on the object storage proxy server for all disks on the
new object storage node. Once this has been done, rebalance the ring and
copy the resulting ring files to the other storage nodes.

Note

If your new object storage node has a different number of
disks than the original nodes have, the command to add the
new node is different from the original commands. These
parameters vary from environment to environment.

Replacing Components

Failures of hardware are common in large-scale deployments such as an
infrastructure cloud. Consider your processes and balance time saving
against availability. For example, an Object Storage cluster can easily live
with dead disks in it for some period of time if it has sufficient capacity. Or,
if your compute installation is not full, you could consider live migrating
instances off a host with a RAM failure until you have time to deal with the
problem.

Databases
Almost all OpenStack components have an underlying database to store
persistent information. Usually this database is MySQL. Normal MySQL
administration is applicable to these databases. OpenStack does not
configure the databases out of the ordinary. Basic administration includes
performance tweaking, high availability, backup, recovery, and repairing.
For more information, see a standard MySQL administration guide.

You can perform a couple of tricks with the database to either more
quickly retrieve information or fix a data inconsistency error—for example,
an instance was terminated, but the status was not updated in the
database. These tricks are discussed throughout this book.

OpenStack Ops Guide July 3, 2014

146

Database Connectivity
Review the component's configuration file to see how each OpenStack
component accesses its corresponding database. Look for either
sql_connection or simply connection. The following command uses
grep to display the SQL connection string for nova, glance, cinder, and
keystone:
grep -hE "connection ?=" /etc/nova/nova.conf /etc/glance/glance-*.conf
/etc/cinder/cinder.conf /etc/keystone/keystone.conf
sql_connection = mysql://nova:nova@cloud.alberta.sandbox.cybera.ca/nova
sql_connection = mysql://glance:password@cloud.example.com/glance
sql_connection = mysql://glance:password@cloud.example.com/glance
sql_connection = mysql://cinder:password@cloud.example.com/cinder
 connection = mysql://keystone_admin:password@cloud.example.com/keystone

The connection strings take this format:
mysql:// <username> : <password> @ <hostname> / <database name>

Performance and Optimizing
As your cloud grows, MySQL is utilized more and more. If you suspect that
MySQL might be becoming a bottleneck, you should start researching
MySQL optimization. The MySQL manual has an entire section dedicated
to this topic: Optimization Overview.

HDWMY
Here's a quick list of various to-do items for each hour, day, week, month,
and year. Please note that these tasks are neither required nor definitive
but helpful ideas:

Hourly
• Check your monitoring system for alerts and act on them.

• Check your ticket queue for new tickets.

Daily
• Check for instances in a failed or weird state and investigate why.

• Check for security patches and apply them as needed.

Weekly
• Check cloud usage:

http://opsgui.de/NPGqUV

OpenStack Ops Guide July 3, 2014

147

• User quotas

• Disk space

• Image usage

• Large instances

• Network usage (bandwidth and IP usage)

• Verify your alert mechanisms are still working.

Monthly
• Check usage and trends over the past month.

• Check for user accounts that should be removed.

• Check for operator accounts that should be removed.

Quarterly
• Review usage and trends over the past quarter.

• Prepare any quarterly reports on usage and statistics.

• Review and plan any necessary cloud additions.

• Review and plan any major OpenStack upgrades.

Semiannually
• Upgrade OpenStack.

• Clean up after an OpenStack upgrade (any unused or new services to be
aware of?).

Determining Which Component Is Broken
OpenStack's collection of different components interact with each other
strongly. For example, uploading an image requires interaction from
nova-api, glance-api, glance-registry, keystone, and potentially
swift-proxy. As a result, it is sometimes difficult to determine exactly
where problems lie. Assisting in this is the purpose of this section.

OpenStack Ops Guide July 3, 2014

148

Tailing Logs

The first place to look is the log file related to the command you are trying
to run. For example, if nova list is failing, try tailing a nova log file and
running the command again:

Terminal 1:

tail -f /var/log/nova/nova-api.log

Terminal 2:

nova list

Look for any errors or traces in the log file. For more information, see
Chapter 13, “Logging and Monitoring” [173].

If the error indicates that the problem is with another component, switch
to tailing that component's log file. For example, if nova cannot access
glance, look at the glance-api log:

Terminal 1:

tail -f /var/log/glance/api.log

Terminal 2:

nova list

Wash, rinse, and repeat until you find the core cause of the problem.

Running Daemons on the CLI

Unfortunately, sometimes the error is not apparent from the log files.
In this case, switch tactics and use a different command; maybe run the
service directly on the command line. For example, if the glance-api
service refuses to start and stay running, try launching the daemon from
the command line:

sudo -u glance -H glance-api

This might print the error and cause of the problem.

Note

The -H flag is required when running the daemons with sudo
because some daemons will write files relative to the user's
home directory, and this write may fail if -H is left off.

OpenStack Ops Guide July 3, 2014

149

Example of Complexity

One morning, a compute node failed to run any instances. The log
files were a bit vague, claiming that a certain instance was unable to
be started. This ended up being a red herring because the instance
was simply the first instance in alphabetical order, so it was the first
instance that nova-compute would touch.

Further troubleshooting showed that libvirt was not running at all.
This made more sense. If libvirt wasn't running, then no instance
could be virtualized through KVM. Upon trying to start libvirt, it
would silently die immediately. The libvirt logs did not explain why.

Next, the libvirtd daemon was run on the command line. Finally
a helpful error message: it could not connect to d-bus. As ridiculous
as it sounds, libvirt, and thus nova-compute, relies on d-bus and
somehow d-bus crashed. Simply starting d-bus set the entire chain
back on track, and soon everything was back up and running.

OpenStack Ops Guide July 3, 2014

150

Uninstalling
While we'd always recommend using your automated deployment system
to reinstall systems from scratch, sometimes you do need to remove
OpenStack from a system the hard way. Here's how:

• Remove all packages.

• Remove remaining files.

• Remove databases.

These steps depend on your underlying distribution, but in general you
should be looking for "purge" commands in your package manager, like
aptitude purge ~c $package. Following this, you can look for
orphaned files in the directories referenced throughout this guide. To
uninstall the database properly, refer to the manual appropriate for the
product in use.

OpenStack Ops Guide July 3, 2014

151

12. Network Troubleshooting
Using "ip a" to Check Interface States ... 151
Visualizing nova-network Traffic in the Cloud 152
Visualizing OpenStack Networking Service Traffic in the Cloud 153
Finding a Failure in the Path .. 160
tcpdump .. 160
iptables .. 162
Network Configuration in the Database for nova-network 163
Debugging DHCP Issues with nova-network .. 164
Debugging DNS Issues ... 168
Troubleshooting Open vSwitch ... 170
Dealing with Network Namespaces .. 171
Summary .. 172

Network troubleshooting can unfortunately be a very difficult and
confusing procedure. A network issue can cause a problem at several
points in the cloud. Using a logical troubleshooting procedure can help
mitigate the confusion and more quickly isolate where exactly the network
issue is. This chapter aims to give you the information you need to identify
any issues for either nova-network or OpenStack Networking (neutron)
with Linux Bridge or Open vSwitch.

Using "ip a" to Check Interface States
On compute nodes and nodes running nova-network, use the following
command to see information about interfaces, including information
about IPs, VLANs, and whether your interfaces are up:

ip a

If you're encountering any sort of networking difficulty, one good initial
sanity check is to make sure that your interfaces are up. For example:

$ ip a | grep state
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state
 UNKNOWN
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
 pfifo_fast state UP
 qlen 1000
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
 pfifo_fast
 master br100 state UP qlen 1000
4: virbr0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc
 noqueue state DOWN

OpenStack Ops Guide July 3, 2014

152

5: br100: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
 noqueue state UP

You can safely ignore the state of virbr0, which is a default bridge
created by libvirt and not used by OpenStack.

Visualizing nova-network Traffic in the
Cloud

If you are logged in to an instance and ping an external host—for example,
Google—the ping packet takes the route shown in Figure 12.1, “Traffic
route for ping packet” [152].

Figure 12.1. Traffic route for ping packet

1. The instance generates a packet and places it on the virtual Network
Interface Card (NIC) inside the instance, such as eth0.

2. The packet transfers to the virtual NIC of the compute host, such as,
vnet1. You can find out what vnet NIC is being used by looking at the
/etc/libvirt/qemu/instance-xxxxxxxx.xml file.

3. From the vnet NIC, the packet transfers to a bridge on the compute
node, such as br100.

If you run FlatDHCPManager, one bridge is on the compute node. If you
run VlanManager, one bridge exists for each VLAN.

To see which bridge the packet will use, run the command:

$ brctl show

OpenStack Ops Guide July 3, 2014

153

Look for the vnet NIC. You can also reference nova.conf and look for
the flat_interface_bridge option.

4. The packet transfers to the main NIC of the compute node. You can
also see this NIC in the brctl output, or you can find it by referencing
the flat_interface option in nova.conf.

5. After the packet is on this NIC, it transfers to the compute node's
default gateway. The packet is now most likely out of your control at
this point. The diagram depicts an external gateway. However, in the
default configuration with multi-host, the compute host is the gateway.

Reverse the direction to see the path of a ping reply. From this path, you
can see that a single packet travels across four different NICs. If a problem
occurs with any of these NICs, a network issue occurs.

Visualizing OpenStack Networking
Service Traffic in the Cloud

The OpenStack Networking Service, neutron, has many more degrees of
freedom than nova-network does because of its pluggable backend. It
can be configured with open source or vendor proprietary plug-ins that
control software defined networking (SDN) hardware or plug-ins that use
Linux native facilities on your hosts, such as Open vSwitch or Linux Bridge.

The networking chapter of the OpenStack Cloud Administrator Guide
shows a variety of networking scenarios and their connection paths.
The purpose of this section is to give you the tools to troubleshoot the
various components involved however they are plumbed together in your
environment.

For this example, we will use the Open vSwitch (OVS) backend. Other
backend plug-ins will have very different flow paths. OVS is the most
popularly deployed network driver, according to the October 2013
OpenStack User Survey, with 50 percent more sites using it than the
second place Linux Bridge driver. We'll describe each step in turn, with
Figure 12.2, “Neutron network paths” [154] for reference.

1. The instance generates a packet and places it on the virtual NIC inside
the instance, such as eth0.

2. The packet transfers to a Test Access Point (TAP) device on the compute
host, such as tap690466bc-92. You can find out what TAP is being used

http://opsgui.de/1eLBD1f

OpenStack Ops Guide July 3, 2014

154

by looking at the /etc/libvirt/qemu/instance-xxxxxxxx.xml
file.

The TAP device name is constructed using the first 11 characters of the
port ID (10 hex digits plus an included '-'), so another means of finding
the device name is to use the neutron command. This returns a pipe-
delimited list, the first item of which is the port ID. For example, to get
the port ID associated with IP address 10.0.0.10, do this:

neutron port-list |grep 10.0.0.10|cut -d \
| -f 2 ff387e54-9e54-442b-94a3-aa4481764f1d

Taking the first 11 characters, we can construct a device name of
tapff387e54-9e from this output.

Figure 12.2. Neutron network paths

3. The TAP device is connected to the integration bridge, br-int. This
bridge connects all the instance TAP devices and any other bridges

OpenStack Ops Guide July 3, 2014

155

on the system. In this example, we have int-br-eth1 and patch-
tun. int-br-eth1 is one half of a veth pair connecting to the bridge
br-eth1, which handles VLAN networks trunked over the physical
Ethernet device eth1. patch-tun is an Open vSwitch internal port
that connects to the br-tun bridge for GRE networks.

The TAP devices and veth devices are normal Linux network devices and
may be inspected with the usual tools, such as ip and tcpdump. Open
vSwitch internal devices, such as patch-tun, are only visible within the
Open vSwitch environment. If you try to run tcpdump -i patch-
tun, it will raise an error, saying that the device does not exist.

It is possible to watch packets on internal interfaces, but it does take a
little bit of networking gymnastics. First you need to create a dummy
network device that normal Linux tools can see. Then you need to add
it to the bridge containing the internal interface you want to snoop
on. Finally, you need to tell Open vSwitch to mirror all traffic to or from
the internal port onto this dummy port. After all this, you can then run
tcpdump on the dummy interface and see the traffic on the internal
port.

To capture packets from the patch-tun internal interface
on integration bridge, br-int:

1. Create and bring up a dummy interface, snooper0:

ip link add name snooper0 type dummy

ip link set dev snooper0 up

2. Add device snooper0 to bridge br-int:

ovs-vsctl add-port br-int snooper0

3. Create mirror of patch-tun to snooper0 (returns UUID of mirror
port):

ovs-vsctl -- set Bridge br-int mirrors=@m -- --id=
@snooper0 \
get Port snooper0 -- --id=@patch-tun get Port patch-tun
 \
-- --id=@m create Mirror name=mymirror select-dst-port=
@patch-tun \
select-src-port=@patch-tun output-port=@snooper0 \
90eb8cb9-8441-4f6d-8f67-0ea037f40e6c

OpenStack Ops Guide July 3, 2014

156

4. Profit. You can now see traffic on patch-tun by running
tcpdump -i snooper0.

5. Clean up by clearing all mirrors on br-int and deleting the
dummy interface:

ovs-vsctl clear Bridge br-int mirrors

ip link delete dev snooper0

On the integration bridge, networks are distinguished using internal
VLANs regardless of how the networking service defines them. This
allows instances on the same host to communicate directly without
transiting the rest of the virtual, or physical, network. These internal
VLAN IDs are based on the order they are created on the node and
may vary between nodes. These IDs are in no way related to the
segmentation IDs used in the network definition and on the physical
wire.

VLAN tags are translated between the external tag defined in the
network settings, and internal tags in several places. On the br-int,
incoming packets from the int-br-eth1 are translated from external
tags to internal tags. Other translations also happen on the other
bridges and will be discussed in those sections.

4. The next step depends on whether the virtual network is configured to
use 802.1q VLAN tags or GRE:

a. VLAN-based networks exit the integration bridge via veth interface
int-br-eth1 and arrive on the bridge br-eth1 on the other
member of the veth pair phy-br-eth1. Packets on this interface
arrive with internal VLAN tags and are translated to external tags in
the reverse of the process described above:

ovs-ofctl dump-flows br-eth1|grep 2113
cookie=0x0, duration=184168.225s, table=0, n_packets=0,
 n_bytes=0, \
idle_age=65534, hard_age=65534, priority=4,in_port=1,
dl_vlan=7 \
actions=mod_vlan_vid:2113,NORMAL

Packets, now tagged with the external VLAN tag, then exit onto
the physical network via eth1. The Layer2 switch this interface is
connected to must be configured to accept traffic with the VLAN ID
used. The next hop for this packet must also be on the same layer-2
network.

OpenStack Ops Guide July 3, 2014

157

b. GRE-based networks are passed with patch-tun to the tunnel
bridge br-tun on interface patch-int. This bridge also contains
one port for each GRE tunnel peer, so one for each compute
node and network node in your network. The ports are named
sequentially from gre-1 onward.

Matching gre-<n> interfaces to tunnel endpoints is possible by
looking at the Open vSwitch state:

ovs-vsctl show |grep -A 3 -e Port\ \"gre-
 Port "gre-1"
 Interface "gre-1"
 type: gre
 options: {in_key=flow, local_ip="10.10.128.
21", \
 out_key=flow, remote_ip="10.10.128.16"}

In this case, gre-1 is a tunnel from IP 10.10.128.21, which should
match a local interface on this node, to IP 10.10.128.16 on the
remote side.

These tunnels use the regular routing tables on the host to route the
resulting GRE packet, so there is no requirement that GRE endpoints
are all on the same layer-2 network, unlike VLAN encapsulation.

All interfaces on the br-tun are internal to Open vSwitch. To
monitor traffic on them, you need to set up a mirror port as
described above for patch-tun in the br-int bridge.

All translation of GRE tunnels to and from internal VLANs happens
on this bridge.

To discover which internal VLAN tag is in use for a GRE
tunnel by using the ovs-ofctl command:

1. Find the provider:segmentation_id of the network you're
interested in. This is the same field used for the VLAN ID in VLAN-
based networks:

neutron net-show --fields provider:segmentation_id
 <network name>
+--------------------------+-------+
| Field | Value |
+--------------------------+-------+
| provider:network_type | gre |
| provider:segmentation_id | 3 |

OpenStack Ops Guide July 3, 2014

158

+--------------------------+-------+

2. Grep for 0x<provider:segmentation_id>, 0x3 in this case, in
the output of ovs-ofctl dump-flows br-int:

ovs-ofctl dump-flows br-int|grep 0x3
cookie=0x0, duration=380575.724s, table=2, n_packets=
1800, \
n_bytes=286104, priority=1,tun_id=0x3 \
actions=mod_vlan_vid:1,resubmit(,10)
 cookie=0x0, duration=715.529s, table=20, n_packets=5, \
n_bytes=830, hard_timeout=300,priority=1, \
vlan_tci=0x0001/0x0fff,dl_dst=fa:16:3e:a6:48:24 \
actions=load:0->NXM_OF_VLAN_TCI[], \
load:0x3->NXM_NX_TUN_ID[],output:53
 cookie=0x0, duration=193729.242s, table=21, n_packets=
58761, \
n_bytes=2618498, dl_vlan=1 actions=strip_vlan,
set_tunnel:0x3, \
output:4,output:58,output:56,output:11,output:12,
output:47, \
output:13,output:48,output:49,output:44,output:43,
output:45, \
output:46,output:30,output:31,output:29,output:28,
output:26, \
output:27,output:24,output:25,output:32,output:19,
output:21, \
output:59,output:60,output:57,output:6,output:5,
output:20, \
output:18,output:17,output:16,output:15,output:14,
output:7, \
output:9,output:8,output:53,output:10,output:3,output:2,
 \
output:38,output:37,output:39,output:40,output:34,
output:23, \
output:36,output:35,output:22,output:42,output:41,
output:54, \
output:52,output:51,output:50,output:55,output:33

Here, you see three flows related to this GRE tunnel. The first is the
translation from inbound packets with this tunnel ID to internal
VLAN ID 1. The second shows a unicast flow to output port 53 for
packets destined for MAC address fa:16:3e:a6:48:24. The third
shows the translation from the internal VLAN representation to
the GRE tunnel ID flooded to all output ports. For further details
of the flow descriptions, see the man page for ovs-ofctl. As
in the previous VLAN example, numeric port IDs can be matched
with their named representations by examining the output of ovs-
ofctl show br-tun.

OpenStack Ops Guide July 3, 2014

159

5. The packet is then received on the network node. Note that any traffic
to the l3-agent or dhcp-agent will be visible only within their network
namespace. Watching any interfaces outside those namespaces,
even those that carry the network traffic, will only show broadcast
packets like Address Resolution Protocols (ARPs), but unicast traffic
to the router or DHCP address will not be seen. See the section called
“Dealing with Network Namespaces” [171] for detail on how to run
commands within these namespaces.

Alternatively, it is possible to configure VLAN-based networks to use
external routers rather than the l3-agent shown here, so long as the
external router is on the same VLAN:

a. VLAN-based networks are received as tagged packets on a physical
network interface, eth1 in this example. Just as on the compute
node, this interface is a member of the br-eth1 bridge.

b. GRE-based networks will be passed to the tunnel bridge br-tun,
which behaves just like the GRE interfaces on the compute node.

6. Next, the packets from either input go through the integration bridge,
again just as on the compute node.

7. The packet then makes it to the l3-agent. This is actually another TAP
device within the router's network namespace. Router namespaces are
named in the form qrouter-<router-uuid>. Running ip a within
the namespace will show the TAP device name, qr-e6256f7d-31 in this
example:

ip netns exec qrouter-e521f9d0-a1bd-4ff4-bc81-78a60dd88fe5
 ip a|grep state
10: qr-e6256f7d-31: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc
 noqueue \
 state UNKNOWN
11: qg-35916e1f-36: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu
 1500 \
 qdisc pfifo_fast state UNKNOWN qlen 500
28: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state
 UNKNOWN

8. The qg-<n> interface in the l3-agent router namespace sends the
packet on to its next hop through device eth0 on the external bridge
br-ex. This bridge is constructed similarly to br-eth1 and may be
inspected in the same way.

OpenStack Ops Guide July 3, 2014

160

9. This external bridge also includes a physical network interface, eth0 in
this example, which finally lands the packet on the external network
destined for an external router or destination.

10.DHCP agents running on OpenStack networks run in namespaces similar
to the l3-agents. DHCP namespaces are named qdhcp-<uuid> and
have a TAP device on the integration bridge. Debugging of DHCP issues
usually involves working inside this network namespace.

Finding a Failure in the Path
Use ping to quickly find where a failure exists in the network path. In
an instance, first see whether you can ping an external host, such as
google.com. If you can, then there shouldn't be a network problem at all.

If you can't, try pinging the IP address of the compute node where the
instance is hosted. If you can ping this IP, then the problem is somewhere
between the compute node and that compute node's gateway.

If you can't ping the IP address of the compute node, the problem is
between the instance and the compute node. This includes the bridge
connecting the compute node's main NIC with the vnet NIC of the
instance.

One last test is to launch a second instance and see whether the two
instances can ping each other. If they can, the issue might be related to the
firewall on the compute node.

tcpdump
One great, although very in-depth, way of troubleshooting network issues
is to use tcpdump. We recommended using tcpdump at several points
along the network path to correlate where a problem might be. If you
prefer working with a GUI, either live or by using a tcpdump capture, do
also check out Wireshark.

For example, run the following command:

tcpdump -i any -n -v \ 'icmp[icmptype] = icmp-echoreply or
 icmp[icmptype] =
icmp-echo'

Run this on the command line of the following areas:

http://opsgui.de/NPGrIm

OpenStack Ops Guide July 3, 2014

161

1. An external server outside of the cloud

2. A compute node

3. An instance running on that compute node

In this example, these locations have the following IP addresses:

Instance
 10.0.2.24
 203.0.113.30
 Compute Node
 10.0.0.42
 203.0.113.34
 External Server
 1.2.3.4

Next, open a new shell to the instance and then ping the external host
where tcpdump is running. If the network path to the external server and
back is fully functional, you see something like the following:

On the external server:

12:51:42.020227 IP (tos 0x0, ttl 61, id 0, offset 0, flags [DF],
 \
proto ICMP (1), length 84)
 203.0.113.30 > 1.2.3.4: ICMP echo request, id 24895, seq 1,
 length 64
12:51:42.020255 IP (tos 0x0, ttl 64, id 8137, offset 0, flags
 [none], \
proto ICMP (1), length 84)
 1.2.3.4 > 203.0.113.30: ICMP echo reply, id 24895, seq 1, \
 length 64

On the compute node:

12:51:42.019519 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF],
 \
proto ICMP (1), length 84)
 10.0.2.24 > 1.2.3.4: ICMP echo request, id 24895, seq 1,
 length 64
12:51:42.019519 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF],
 \
proto ICMP (1), length 84)
 10.0.2.24 > 1.2.3.4: ICMP echo request, id 24895, seq 1,
 length 64
12:51:42.019545 IP (tos 0x0, ttl 63, id 0, offset 0, flags [DF],
 \
proto ICMP (1), length 84)

OpenStack Ops Guide July 3, 2014

162

 203.0.113.30 > 1.2.3.4: ICMP echo request, id 24895, seq 1,
 length 64
12:51:42.019780 IP (tos 0x0, ttl 62, id 8137, offset 0, flags
 [none], \
proto ICMP (1), length 84)
 1.2.3.4 > 203.0.113.30: ICMP echo reply, id 24895, seq 1,
 length 64
12:51:42.019801 IP (tos 0x0, ttl 61, id 8137, offset 0, flags
 [none], \
proto ICMP (1), length 84)
 1.2.3.4 > 10.0.2.24: ICMP echo reply, id 24895, seq 1,
 length 64
12:51:42.019807 IP (tos 0x0, ttl 61, id 8137, offset 0, flags
 [none], \
proto ICMP (1), length 84)
 1.2.3.4 > 10.0.2.24: ICMP echo reply, id 24895, seq 1,
 length 64

On the instance:

12:51:42.020974 IP (tos 0x0, ttl 61, id 8137, offset 0, flags
 [none], \
proto ICMP (1), length 84)
 1.2.3.4 > 10.0.2.24: ICMP echo reply, id 24895, seq 1, length
 64

Here, the external server received the ping request and sent a ping reply.
On the compute node, you can see that both the ping and ping reply
successfully passed through. You might also see duplicate packets on the
compute node, as seen above, because tcpdump captured the packet on
both the bridge and outgoing interface.

iptables
Through nova-network, OpenStack Compute automatically manages
iptables, including forwarding packets to and from instances on a compute
node, forwarding floating IP traffic, and managing security group rules.

Run the following command to view the current iptables configuration:

iptables-save

Note

If you modify the configuration, it reverts the next time you
restart nova-network. You must use OpenStack to manage
iptables.

OpenStack Ops Guide July 3, 2014

163

Network Configuration in the Database
for nova-network

With nova-network, the nova database table contains a few tables with
networking information:

fixed_ips Contains each possible IP address for the
subnet(s) added to Compute. This table is
related to the instances table by way of the
fixed_ips.instance_uuid column.

floating_ips Contains each floating IP address that was added to
Compute. This table is related to the fixed_ips table
by way of the floating_ips.fixed_ip_id column.

instances Not entirely network specific, but it contains
information about the instance that is utilizing the
fixed_ip and optional floating_ip.

From these tables, you can see that a floating IP is technically never directly
related to an instance; it must always go through a fixed IP.

Manually Deassociating a Floating IP
Sometimes an instance is terminated but the floating IP was not
correctly de-associated from that instance. Because the database is in an
inconsistent state, the usual tools to deassociate the IP no longer work. To
fix this, you must manually update the database.

First, find the UUID of the instance in question:

mysql> select uuid from instances where hostname = 'hostname';

Next, find the fixed IP entry for that UUID:

mysql> select * from fixed_ips where instance_uuid = '<uuid>';

You can now get the related floating IP entry:

mysql> select * from floating_ips where fixed_ip_id =
 '<fixed_ip_id>';

And finally, you can deassociate the floating IP:

mysql> update floating_ips set fixed_ip_id = NULL, host = NULL
 where

OpenStack Ops Guide July 3, 2014

164

 fixed_ip_id = '<fixed_ip_id>';

You can optionally also deallocate the IP from the user's pool:

mysql> update floating_ips set project_id = NULL where
 fixed_ip_id = '<fixed_ip_id>';

Debugging DHCP Issues with nova-
network

One common networking problem is that an instance boots successfully
but is not reachable because it failed to obtain an IP address from
dnsmasq, which is the DHCP server that is launched by the nova-
network service.

The simplest way to identify that this is the problem with your instance
is to look at the console output of your instance. If DHCP failed, you can
retrieve the console log by doing:

$ nova console-log <instance name or uuid>

If your instance failed to obtain an IP through DHCP, some messages
should appear in the console. For example, for the Cirros image, you see
output that looks like the following:

udhcpc (v1.17.2) started
Sending discover...
Sending discover...
Sending discover...
No lease, forking to background
starting DHCP forEthernet interface eth0 [[1;32mOK[0;39m]
cloud-setup: checking http://169.254.169.254/2009-04-04/meta-
data/instance-id
wget: can't connect to remote host (169.254.169.254): Network is
unreachable

After you establish that the instance booted properly, the task is to figure
out where the failure is.

A DHCP problem might be caused by a misbehaving dnsmasq process.
First, debug by checking logs and then restart the dnsmasq processes
only for that project (tenant). In VLAN mode, there is a dnsmasq process
for each tenant. Once you have restarted targeted dnsmasq processes,
the simplest way to rule out dnsmasq causes is to kill all of the dnsmasq
processes on the machine and restart nova-network. As a last resort, do
this as root:

OpenStack Ops Guide July 3, 2014

165

killall dnsmasq
restart nova-network

Note

Use openstack-nova-network on RHEL/CentOS/Fedora
but nova-network on Ubuntu/Debian.

Several minutes after nova-network is restarted, you should see new
dnsmasq processes running:

OpenStack Ops Guide July 3, 2014

166

ps aux | grep dnsmasq

nobody 3735 0.0 0.0 27540 1044 ? S 15:40 0:00 /usr/sbin/dnsmasq
 --strict-order \
 --bind-interfaces --conf-file= \
 --domain=novalocal --pid-file=/var/lib/nova/networks/nova-
br100.pid \
 --listen-address=192.168.100.1 --except-interface=lo \
 --dhcp-range=set:'novanetwork',192.168.100.2,static,120s \
 --dhcp-lease-max=256 \
 --dhcp-hostsfile=/var/lib/nova/networks/nova-br100.conf \
 --dhcp-script=/usr/bin/nova-dhcpbridge --leasefile-ro
root 3736 0.0 0.0 27512 444 ? S 15:40 0:00 /usr/sbin/dnsmasq --
strict-order \
 --bind-interfaces --conf-file= \
 --domain=novalocal --pid-file=/var/lib/nova/networks/nova-
br100.pid \
 --listen-address=192.168.100.1 --except-interface=lo \
 --dhcp-range=set:'novanetwork',192.168.100.2,static,120s \
 --dhcp-lease-max=256
 --dhcp-hostsfile=/var/lib/nova/networks/nova-br100.conf
 --dhcp-script=/usr/bin/nova-dhcpbridge --leasefile-ro

If your instances are still not able to obtain IP addresses, the next thing to
check is whether dnsmasq is seeing the DHCP requests from the instance.
On the machine that is running the dnsmasq process, which is the compute
host if running in multi-host mode, look at /var/log/syslog to see the
dnsmasq output. If dnsmasq is seeing the request properly and handing
out an IP, the output looks like this:

Feb 27 22:01:36 mynode dnsmasq-dhcp[2438]: DHCPDISCOVER(br100)
 fa:16:3e:56:0b:6f
Feb 27 22:01:36 mynode dnsmasq-dhcp[2438]: DHCPOFFER(br100) 192.
168.100.3
 fa:16:3e:56:0b:6f
Feb 27 22:01:36 mynode dnsmasq-dhcp[2438]: DHCPREQUEST(br100)
 192.168.100.3
 fa:16:3e:56:0b:6f
Feb 27 22:01:36 mynode dnsmasq-dhcp[2438]: DHCPACK(br100) 192.
168.100.3
fa:16:3e:56:0b:6f test

If you do not see the DHCPDISCOVER, a problem exists with the packet
getting from the instance to the machine running dnsmasq. If you see all
of the preceding output and your instances are still not able to obtain IP
addresses, then the packet is able to get from the instance to the host
running dnsmasq, but it is not able to make the return trip.

You might also see a message such as this:

OpenStack Ops Guide July 3, 2014

167

Feb 27 22:01:36 mynode dnsmasq-dhcp[25435]: DHCPDISCOVER(br100)
 fa:16:3e:78:44:84 no address available

This may be a dnsmasq and/or nova-network related issue. (For the
preceding example, the problem happened to be that dnsmasq did not
have any more IP addresses to give away because there were no more
fixed IPs available in the OpenStack Compute database.)

If there's a suspicious-looking dnsmasq log message, take a look at the
command-line arguments to the dnsmasq processes to see if they look
correct:

$ ps aux | grep dnsmasq

The output looks something like the following:

108 1695 0.0 0.0 25972 1000 ? S Feb26 0:00 /usr/sbin/dnsmasq
-u libvirt-dnsmasq \
--strict-order --bind-interfaces
 --pid-file=/var/run/libvirt/network/default.pid --conf-file=
 --except-interface lo --listen-address 192.168.122.1
 --dhcp-range 192.168.122.2,192.168.122.254
 --dhcp-leasefile=/var/lib/libvirt/dnsmasq/default.leases
 --dhcp-lease-max=253 --dhcp-no-override
nobody 2438 0.0 0.0 27540 1096 ? S Feb26 0:00 /usr/sbin/dnsmasq
 --strict-order
--bind-interfaces --conf-file=
 --domain=novalocal --pid-file=/var/lib/nova/networks/nova-
br100.pid
 --listen-address=192.168.100.1
 --except-interface=lo \
 --dhcp-range=set:'novanetwork',192.168.100.2,static,120s
 --dhcp-lease-max=256
 --dhcp-hostsfile=/var/lib/nova/networks/nova-br100.conf
 --dhcp-script=/usr/bin/nova-dhcpbridge --leasefile-ro
 root 2439 0.0 0.0 27512 472 ? S Feb26 0:00 /usr/sbin/dnsmasq
 --strict-order
--bind-interfaces --conf-file=
 --domain=novalocal --pid-file=/var/lib/nova/networks/nova-
br100.pid
 --listen-address=192.168.100.1
 --except-interface=lo
 --dhcp-range=set:'novanetwork',192.168.100.2,static,120s
 --dhcp-lease-max=256
 --dhcp-hostsfile=/var/lib/nova/networks/nova-br100.conf
 --dhcp-script=/usr/bin/nova-dhcpbridge --leasefile-ro

The output shows three different dnsmasq processes. The dnsmasq
process that has the DHCP subnet range of 192.168.122.0 belongs to libvirt
and can be ignored. The other two dnsmasq processes belong to nova-

OpenStack Ops Guide July 3, 2014

168

network. The two processes are actually related—one is simply the parent
process of the other. The arguments of the dnsmasq processes should
correspond to the details you configured nova-network with.

If the problem does not seem to be related to dnsmasq itself, at this
point use tcpdump on the interfaces to determine where the packets are
getting lost.

DHCP traffic uses UDP. The client sends from port 68 to port 67 on the
server. Try to boot a new instance and then systematically listen on the
NICs until you identify the one that isn't seeing the traffic. To use tcpdump
to listen to ports 67 and 68 on br100, you would do:

tcpdump -i br100 -n port 67 or port 68

You should be doing sanity checks on the interfaces using command such
as ip a and brctl show to ensure that the interfaces are actually up
and configured the way that you think that they are.

Debugging DNS Issues
If you are able to use SSH to log into an instance, but it takes a very long
time (on the order of a minute) to get a prompt, then you might have
a DNS issue. The reason a DNS issue can cause this problem is that the
SSH server does a reverse DNS lookup on the IP address that you are
connecting from. If DNS lookup isn't working on your instances, then you
must wait for the DNS reverse lookup timeout to occur for the SSH login
process to complete.

When debugging DNS issues, start by making sure that the host where the
dnsmasq process for that instance runs is able to correctly resolve. If the
host cannot resolve, then the instances won't be able to either.

A quick way to check whether DNS is working is to resolve a hostname
inside your instance by using the host command. If DNS is working, you
should see:

$ host openstack.org
openstack.org has address 174.143.194.225
openstack.org mail is handled by 10 mx1.emailsrvr.com.
openstack.org mail is handled by 20 mx2.emailsrvr.com.

If you're running the Cirros image, it doesn't have the "host" program
installed, in which case you can use ping to try to access a machine by

OpenStack Ops Guide July 3, 2014

169

hostname to see whether it resolves. If DNS is working, the first line of
ping would be:

$ ping openstack.org
PING openstack.org (174.143.194.225): 56 data bytes

If the instance fails to resolve the hostname, you have a DNS problem. For
example:

$ ping openstack.org
ping: bad address 'openstack.org'

In an OpenStack cloud, the dnsmasq process acts as the DNS server for
the instances in addition to acting as the DHCP server. A misbehaving
dnsmasq process may be the source of DNS-related issues inside the
instance. As mentioned in the previous section, the simplest way to rule
out a misbehaving dnsmasq process is to kill all the dnsmasq processes
on the machine and restart nova-network. However, be aware that
this command affects everyone running instances on this node, including
tenants that have not seen the issue. As a last resort, as root:

killall dnsmasq
restart nova-network

After the dnsmasq processes start again, check whether DNS is working.

If restarting the dnsmasq process doesn't fix the issue, you might need
to use tcpdump to look at the packets to trace where the failure is. The
DNS server listens on UDP port 53. You should see the DNS request on the
bridge (such as, br100) of your compute node. Let's say you start listening
with tcpdump on the compute node:

tcpdump -i br100 -n -v udp port 53
tcpdump: listening on br100, link-type EN10MB (Ethernet),
 capture size 65535
bytes

Then, if you use SSH to log into your instance and try ping
openstack.org, you should see something like:

16:36:18.807518 IP (tos 0x0, ttl 64, id 56057, offset 0, flags
 [DF],
proto UDP (17), length 59)
 192.168.100.4.54244 > 192.168.100.1.53: 2+ A? openstack.org.
 (31)
16:36:18.808285 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF],
proto UDP (17), length 75)
 192.168.100.1.53 > 192.168.100.4.54244: 2 1/0/0 openstack.org.
 A

OpenStack Ops Guide July 3, 2014

170

 174.143.194.225 (47)

Troubleshooting Open vSwitch
Open vSwitch as used in the previous OpenStack Networking Service
examples is a full-featured multilayer virtual switch licensed under the
open source Apache 2.0 license. Full documentation can be found at the
project's website. In practice, given the preceding configuration, the most
common issues are being sure that the required bridges (br-int, br-
tun, br-ex, etc.) exist and have the proper ports connected to them.

The Open vSwitch driver should and usually does manage this
automatically, but it is useful to know how to do this by hand with the
ovs-vsctl command. This command has many more subcommands than
we will use here; see the man page or use ovs-vsctl --help for the
full listing.

To list the bridges on a system, use ovs-vsctl list-br. This example
shows a compute node that has an internal bridge and a tunnel bridge.
VLAN networks are trunked through the eth1 network interface:

ovs-vsctl list-br
br-int
br-tun
eth1-br

Working from the physical interface inwards, we can see the chain of
ports and bridges. First, the bridge eth1-br, which contains the physical
network interface eth1 and the virtual interface phy-eth1-br:

ovs-vsctl list-ports eth1-br
eth1
phy-eth1-br

Next, the internal bridge, br-int, contains int-eth1-br, which pairs
with phy-eth1-br to connect to the physical network shown in the
previous bridge, patch-tun, which is used to connect to the GRE tunnel
bridge and the TAP devices that connect to the instances currently running
on the system:

ovs-vsctl list-ports br-int
int-eth1-br
patch-tun
tap2d782834-d1
tap690466bc-92
tap8a864970-2d

http://opsgui.de/1eLBFGA
http://opsgui.de/1eLBFGA

OpenStack Ops Guide July 3, 2014

171

The tunnel bridge, br-tun, contains the patch-int interface and gre-
<N> interfaces for each peer it connects to via GRE, one for each compute
and network node in your cluster:

ovs-vsctl list-ports br-tun
patch-int
gre-1
.
.
.
gre-<N>

If any of these links is missing or incorrect, it suggests a configuration
error. Bridges can be added with ovs-vsctl add-br, and ports can be
added to bridges with ovs-vsctl add-port. While running these by
hand can be useful debugging, it is imperative that manual changes that
you intend to keep be reflected back into your configuration files.

Dealing with Network Namespaces
Linux network namespaces are a kernel feature the networking service
uses to support multiple isolated layer-2 networks with overlapping IP
address ranges. The support may be disabled, but it is on by default. If it
is enabled in your environment, your network nodes will run their dhcp-
agents and l3-agents in isolated namespaces. Network interfaces and
traffic on those interfaces will not be visible in the default namespace.

To see whether you are using namespaces, run ip netns:

ip netns
qdhcp-e521f9d0-a1bd-4ff4-bc81-78a60dd88fe5
qdhcp-a4d00c60-f005-400e-a24c-1bf8b8308f98
qdhcp-fe178706-9942-4600-9224-b2ae7c61db71
qdhcp-0a1d0a27-cffa-4de3-92c5-9d3fd3f2e74d
qrouter-8a4ce760-ab55-4f2f-8ec5-a2e858ce0d39

L3-agent router namespaces are named qrouter-<router_uuid>,
and dhcp-agent name spaces are named qdhcp-<net_uuid>. This
output shows a network node with four networks running dhcp-agents,
one of which is also running an l3-agent router. It's important to know
which network you need to be working in. A list of existing networks
and their UUIDs can be obtained buy running neutron net-list with
administrative credentials.

OpenStack Ops Guide July 3, 2014

172

Once you've determined which namespace you need to work in, you can
use any of the debugging tools mention earlier by prefixing the command
with ip netns exec <namespace>. For example, to see what network
interfaces exist in the first qdhcp namespace returned above, do this:

ip netns exec qdhcp-e521f9d0-a1bd-4ff4-bc81-78a60dd88fe5 ip a
10: tape6256f7d-31: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc
 noqueue state UNKNOWN
 link/ether fa:16:3e:aa:f7:a1 brd ff:ff:ff:ff:ff:ff
 inet 10.0.1.100/24 brd 10.0.1.255 scope global
 tape6256f7d-31
 inet 169.254.169.254/16 brd 169.254.255.255 scope global
 tape6256f7d-31
 inet6 fe80::f816:3eff:feaa:f7a1/64 scope link
 valid_lft forever preferred_lft forever
28: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state
 UNKNOWN
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever

From this you see that the DHCP server on that network is using the
tape6256f7d-31 device and has an IP address of 10.0.1.100. Seeing the
address 169.254.169.254, you can also see that the dhcp-agent is running
a metadata-proxy service. Any of the commands mentioned previously in
this chapter can be run in the same way. It is also possible to run a shell,
such as bash, and have an interactive session within the namespace.
In the latter case, exiting the shell returns you to the top-level default
namespace.

Summary
The authors have spent too much time looking at packet dumps in order
to distill this information for you. We trust that, following the methods
outlined in this chapter, you will have an easier time! Aside from working
with the tools and steps above, don't forget that sometimes an extra pair
of eyes goes a long way to assist.

OpenStack Ops Guide July 3, 2014

173

13. Logging and Monitoring

Where Are the Logs? ... 173
Reading the Logs ... 174
Tracing Instance Requests .. 176
Adding Custom Logging Statements .. 176
RabbitMQ Web Management Interface or rabbitmqctl 177
Centrally Managing Logs .. 178
StackTach ... 180
Monitoring ... 180
Summary .. 187

As an OpenStack cloud is composed of so many different services, there
are a large number of log files. This chapter aims to assist you in locating
and working with them and describes other ways to track the status of
your deployment.

Where Are the Logs?
Most services use the convention of writing their log files to subdirectories
of the /var/log directory, as listed in Table 13.1, “OpenStack log
locations” [173].

Table 13.1. OpenStack log locations

Node type Service Log location

Cloud controller nova-* /var/log/nova

Cloud controller glance-* /var/log/glance

Cloud controller cinder-* /var/log/cinder

Cloud controller keystone-* /var/log/keystone

Cloud controller neutron-* /var/log/neutron

Cloud controller horizon /var/log/apache2/

All nodes misc (swift, dnsmasq) /var/log/syslog

Compute nodes libvirt /var/log/libvirt/
libvirtd.log

Compute nodes Console (boot up messages)
for VM instances:

/var/lib/nova/
instances/
instance-<instance
id>/console.log

Block Storage nodes cinder-volume /var/log/cinder/
cinder-volume.log

OpenStack Ops Guide July 3, 2014

174

Reading the Logs
OpenStack services use the standard logging levels, at increasing severity:
DEBUG, INFO, AUDIT, WARNING, ERROR, CRITICAL, and TRACE. That
is, messages only appear in the logs if they are more "severe" than the
particular log level, with DEBUG allowing all log statements through.
For example, TRACE is logged only if the software has a stack trace,
while INFO is logged for every message including those that are only for
information.

To disable DEBUG-level logging, edit /etc/nova/nova.conf as follows:

debug=false

Keystone is handled a little differently. To modify the logging level, edit
the /etc/keystone/logging.conf file and look at the logger_root
and handler_file sections.

Logging for horizon is configured in /etc/openstack_dashboard/
local_settings.py. Because horizon is a Django web application, it
follows the Django Logging framework conventions.

The first step in finding the source of an error is typically to search for a
CRITICAL, TRACE, or ERROR message in the log starting at the bottom of
the log file.

Here is an example of a CRITICAL log message, with the corresponding
TRACE (Python traceback) immediately following:

2013-02-25 21:05:51 17409 CRITICAL cinder [-] Bad or unexpected
 response from the storage volume backend API: volume group
 cinder-volumes doesn't exist
2013-02-25 21:05:51 17409 TRACE cinder Traceback (most recent
 call last):
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/bin/cinder-
volume", line 48, in <module>
2013-02-25 21:05:51 17409 TRACE cinder service.wait()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/
dist-packages/cinder/service.py", line 422, in wait
2013-02-25 21:05:51 17409 TRACE cinder _launcher.wait()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/
dist-packages/cinder/service.py", line 127, in wait
2013-02-25 21:05:51 17409 TRACE cinder service.wait()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/
dist-packages/eventlet/greenthread.py", line 166, in wait
2013-02-25 21:05:51 17409 TRACE cinder return self._exit_event.
wait()

http://opsgui.de/NPGgww

OpenStack Ops Guide July 3, 2014

175

2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/
dist-packages/eventlet/event.py", line 116, in wait
2013-02-25 21:05:51 17409 TRACE cinder return hubs.get_hub().
switch()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/
dist-packages/eventlet/hubs/hub.py", line 177, in switch
2013-02-25 21:05:51 17409 TRACE cinder return self.greenlet.
switch()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/
dist-packages/eventlet/greenthread.py", line 192, in main
2013-02-25 21:05:51 17409 TRACE cinder result = function(*args,
 **kwargs)
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/
dist-packages/cinder/service.py", line 88, in run_server
2013-02-25 21:05:51 17409 TRACE cinder server.start()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/
dist-packages/cinder/service.py", line 159, in start
2013-02-25 21:05:51 17409 TRACE cinder self.manager.init_host()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/
dist-packages/cinder/volume/manager.py", line 95,
 in init_host
2013-02-25 21:05:51 17409 TRACE cinder self.driver.
check_for_setup_error()
2013-02-25 21:05:51 17409 TRACE cinder File "/usr/lib/python2.7/
dist-packages/cinder/volume/driver.py", line 116,
 in check_for_setup_error
2013-02-25 21:05:51 17409 TRACE cinder raise exception.
VolumeBackendAPIException(data=exception_message)
2013-02-25 21:05:51 17409 TRACE cinder
 VolumeBackendAPIException: Bad or unexpected response from the
 storage volume
 backend API: volume group cinder-volumes doesn't exist
2013-02-25 21:05:51 17409 TRACE cinder

In this example, cinder-volumes failed to start and has provided a stack
trace, since its volume backend has been unable to set up the storage
volume—probably because the LVM volume that is expected from the
configuration does not exist.

Here is an example error log:

2013-02-25 20:26:33 6619 ERROR nova.openstack.common.rpc.common
 [-] AMQP server on localhost:5672 is unreachable:
 [Errno 111] ECONNREFUSED. Trying again in 23 seconds.

In this error, a nova service has failed to connect to the RabbitMQ server
because it got a connection refused error.

OpenStack Ops Guide July 3, 2014

176

Tracing Instance Requests
When an instance fails to behave properly, you will often have to trace
activity associated with that instance across the log files of various nova-*
services and across both the cloud controller and compute nodes.

The typical way is to trace the UUID associated with an instance across the
service logs.

Consider the following example:

$ nova list
+--------------------------------+--------+--------
+--------------------------+
| ID | Name | Status | Networks
 |
+--------------------------------+--------+--------
+--------------------------+
| fafed8-4a46-413b-b113-f1959ffe | cirros | ACTIVE |
 novanetwork=192.168.100.3|
+--------------------------------------+--------+--------
+--------------------+

Here, the ID associated with the instance is faf7ded8-4a46-413b-
b113-f19590746ffe. If you search for this string on the cloud controller
in the /var/log/nova-*.log files, it appears in nova-api.log and
nova-scheduler.log. If you search for this on the compute nodes in /
var/log/nova-*.log, it appears in nova-network.log and nova-
compute.log. If no ERROR or CRITICAL messages appear, the most
recent log entry that reports this may provide a hint about what has gone
wrong.

Adding Custom Logging Statements
If there is not enough information in the existing logs, you may need to
add your own custom logging statements to the nova-* services.

The source files are located in /usr/lib/python2.7/dist-
packages/nova.

To add logging statements, the following line should be near the top of
the file. For most files, these should already be there:

from nova.openstack.common import log as logging
LOG = logging.getLogger(__name__)

OpenStack Ops Guide July 3, 2014

177

To add a DEBUG logging statement, you would do:

LOG.debug("This is a custom debugging statement")

You may notice that all the existing logging messages are preceded by an
underscore and surrounded by parentheses, for example:

LOG.debug(_("Logging statement appears here"))

This formatting is used to support translation of logging messages into
different languages using the gettext internationalization library. You
don't need to do this for your own custom log messages. However, if
you want to contribute the code back to the OpenStack project that
includes logging statements, you must surround your log messages with
underscores and parentheses.

RabbitMQ Web Management Interface or
rabbitmqctl

Aside from connection failures, RabbitMQ log files are generally not useful
for debugging OpenStack related issues. Instead, we recommend you
use the RabbitMQ web management interface. Enable it on your cloud
controller:

/usr/lib/rabbitmq/bin/rabbitmq-plugins enable
 rabbitmq_management

service rabbitmq-server restart

The RabbitMQ web management interface is accessible on your cloud
controller at http://localhost:55672.

Note

Ubuntu 12.04 installs RabbitMQ version 2.7.1, which uses
port 55672. RabbitMQ versions 3.0 and above use port 15672
instead. You can check which version of RabbitMQ you have
running on your local Ubuntu machine by doing:

$ dpkg -s rabbitmq-server | grep "Version:"
Version: 2.7.1-0ubuntu4

An alternative to enabling the RabbitMQ web management interface
is to use the rabbitmqctl commands. For example, rabbitmqctl
list_queues| grep cinder displays any messages left in the queue.

http://opsgui.de/1eLBlHT

OpenStack Ops Guide July 3, 2014

178

If there are messages, it's a possible sign that cinder services didn't connect
properly to rabbitmq and might have to be restarted.

Items to monitor for RabbitMQ include the number of items in each of the
queues and the processing time statistics for the server.

Centrally Managing Logs
Because your cloud is most likely composed of many servers, you must
check logs on each of those servers to properly piece an event together. A
better solution is to send the logs of all servers to a central location so that
they can all be accessed from the same area.

Ubuntu uses rsyslog as the default logging service. Since it is natively able
to send logs to a remote location, you don't have to install anything extra
to enable this feature, just modify the configuration file. In doing this,
consider running your logging over a management network or using an
encrypted VPN to avoid interception.

rsyslog Client Configuration

To begin, configure all OpenStack components to log to syslog in addition
to their standard log file location. Also configure each component to
log to a different syslog facility. This makes it easier to split the logs into
individual components on the central server:

nova.conf:

use_syslog=True
syslog_log_facility=LOG_LOCAL0

glance-api.conf and glance-registry.conf:

use_syslog=True
syslog_log_facility=LOG_LOCAL1

cinder.conf:

use_syslog=True
syslog_log_facility=LOG_LOCAL2

keystone.conf:

use_syslog=True
syslog_log_facility=LOG_LOCAL3

By default, Object Storage logs to syslog.

OpenStack Ops Guide July 3, 2014

179

Next, create /etc/rsyslog.d/client.conf with the following line:

. @192.168.1.10

This instructs rsyslog to send all logs to the IP listed. In this example, the IP
points to the cloud controller.

rsyslog Server Configuration

Designate a server as the central logging server. The best practice is to
choose a server that is solely dedicated to this purpose. Create a file called
/etc/rsyslog.d/server.conf with the following contents:

Enable UDP
$ModLoad imudp
Listen on 192.168.1.10 only
$UDPServerAddress 192.168.1.10
Port 514
$UDPServerRun 514

Create logging templates for nova
$template NovaFile,"/var/log/rsyslog/%HOSTNAME%/nova.log"
$template NovaAll,"/var/log/rsyslog/nova.log"

Log everything else to syslog.log
$template DynFile,"/var/log/rsyslog/%HOSTNAME%/syslog.log"
. ?DynFile

Log various openstack components to their own individual file
local0.* ?NovaFile
local0.* ?NovaAll
& ~

This example configuration handles the nova service only. It first configures
rsyslog to act as a server that runs on port 514. Next, it creates a series
of logging templates. Logging templates control where received logs are
stored. Using the last example, a nova log from c01.example.com goes to
the following locations:

• /var/log/rsyslog/c01.example.com/nova.log

• /var/log/rsyslog/nova.log

This is useful, as logs from c02.example.com go to:

• /var/log/rsyslog/c02.example.com/nova.log

• /var/log/rsyslog/nova.log

OpenStack Ops Guide July 3, 2014

180

You have an individual log file for each compute node as well as an
aggregated log that contains nova logs from all nodes.

StackTach
StackTach is a tool created by Rackspace to collect and report the
notifications sent by nova. Notifications are essentially the same as logs
but can be much more detailed. A good overview of notifications can be
found at System Usage Data.

To enable nova to send notifications, add the following to nova.conf:

notification_topics=monitor
notification_driver=nova.openstack.common.notifier.rabbit_notifier

Once nova is sending notifications, install and configure StackTach.
Since StackTach is relatively new and constantly changing, installation
instructions would quickly become outdated. Please refer to the StackTach
GitHub repo for instructions as well as a demo video.

Monitoring
There are two types of monitoring: watching for problems and watching
usage trends. The former ensures that all services are up and running,
creating a functional cloud. The latter involves monitoring resource usage
over time in order to make informed decisions about potential bottlenecks
and upgrades.

http://opsgui.de/NPGh3H
http://opsgui.de/1eLBpqQ
http://opsgui.de/1eLBpqQ

OpenStack Ops Guide July 3, 2014

181

Nagios

Nagios is an open source monitoring service. It's capable of executing
arbitrary commands to check the status of server and network
services, remotely executing arbitrary commands directly on servers,
and allowing servers to push notifications back in the form of passive
monitoring. Nagios has been around since 1999. Although newer
monitoring services are available, Nagios is a tried-and-true systems
administration staple.

Process Monitoring

A basic type of alert monitoring is to simply check and see whether a
required process is running. For example, ensure that the nova-api
service is running on the cloud controller:

ps aux | grep nova-api
nova 12786 0.0 0.0 37952 1312 ? Ss Feb11 0:00 su -s /bin/sh -c
 exec nova-api
--config-file=/etc/nova/nova.conf nova
nova 12787 0.0 0.1 135764 57400 ? S Feb11 0:01 /usr/bin/python
 /usr/bin/nova-api --config-file=/etc/nova/nova.conf
nova 12792 0.0 0.0 96052 22856 ? S Feb11 0:01 /usr/bin/python
/usr/bin/nova-api --config-file=/etc/nova/nova.conf
nova 12793 0.0 0.3 290688 115516 ? S Feb11 1:23 /usr/bin/python
/usr/bin/nova-api --config-file=/etc/nova/nova.conf
nova 12794 0.0 0.2 248636 77068 ? S Feb11 0:04 /usr/bin/python
/usr/bin/nova-api --config-file=/etc/nova/nova.conf
root 24121 0.0 0.0 11688 912 pts/5 S+ 13:07 0:00 grep nova-api

You can create automated alerts for critical processes by using Nagios and
NRPE. For example, to ensure that the nova-compute process is running
on compute nodes, create an alert on your Nagios server that looks like
this:

define service {
 host_name c01.example.com
 check_command check_nrpe_1arg!check_nova-compute
 use generic-service
 notification_period 24x7
 contact_groups sysadmins
 service_description nova-compute
}

Then on the actual compute node, create the following NRPE
configuration:

OpenStack Ops Guide July 3, 2014

182

\command[check_nova-compute]=/usr/lib/nagios/plugins/check_procs
 -c 1: \
-a nova-compute

Nagios checks that at least one nova-compute service is running at all
times.

Resource Alerting
Resource alerting provides notifications when one or more resources are
critically low. While the monitoring thresholds should be tuned to your
specific OpenStack environment, monitoring resource usage is not specific
to OpenStack at all—any generic type of alert will work fine.

Some of the resources that you want to monitor include:

• Disk usage

• Server load

• Memory usage

• Network I/O

• Available vCPUs

For example, to monitor disk capacity on a compute node with Nagios,
add the following to your Nagios configuration:

define service {
 host_name c01.example.com
 check_command check_nrpe!check_all_disks!20% 10%
 use generic-service
 contact_groups sysadmins
 service_description Disk
}

On the compute node, add the following to your NRPE configuration:

command[check_all_disks]=/usr/lib/nagios/plugins/check_disk -w $ARG1$ -c
 \
$ARG2$ -e

Nagios alerts you with a WARNING when any disk on the compute node is
80 percent full and CRITICAL when 90 percent is full.

Metering and Telemetry with Ceilometer
An integrated OpenStack project (code-named ceilometer) collects
metering data and provides alerts for Compute, Storage, and Networking.

OpenStack Ops Guide July 3, 2014

183

Data collected by the metering system could be used for billing.
Depending on deployment configuration, metered data may be accessible
to users based on the deployment configuration. The Telemetry service
provides a REST API documented at http://api.openstack.org/api-
ref-telemetry.html. You can read more about the project at http://
docs.openstack.org/developer/ceilometer.

OpenStack-Specific Resources

Resources such as memory, disk, and CPU are generic resources that all
servers (even non-OpenStack servers) have and are important to the
overall health of the server. When dealing with OpenStack specifically,
these resources are important for a second reason: ensuring that enough
are available to launch instances. There are a few ways you can see
OpenStack resource usage. The first is through the nova command:

nova usage-list

This command displays a list of how many instances a tenant has running
and some light usage statistics about the combined instances. This
command is useful for a quick overview of your cloud, but it doesn't really
get into a lot of details.

Next, the nova database contains three tables that store usage
information.

The nova.quotas and nova.quota_usages tables store quota
information. If a tenant's quota is different from the default quota
settings, its quota is stored in the nova.quotas table. For example:

mysql> select project_id, resource, hard_limit from quotas;
+----------------------------------
+-----------------------------+------------+
| project_id | resource
 | hard_limit |
+----------------------------------
+-----------------------------+------------+
| 628df59f091142399e0689a2696f5baa | metadata_items
 | 128 |
| 628df59f091142399e0689a2696f5baa | injected_file_content_bytes
 | 10240 |
| 628df59f091142399e0689a2696f5baa | injected_files
 | 5 |
| 628df59f091142399e0689a2696f5baa | gigabytes
 | 1000 |
| 628df59f091142399e0689a2696f5baa | ram
 | 51200 |

http://api.openstack.org/api-ref-telemetry.html
http://api.openstack.org/api-ref-telemetry.html
http://docs.openstack.org/developer/ceilometer
http://docs.openstack.org/developer/ceilometer

OpenStack Ops Guide July 3, 2014

184

| 628df59f091142399e0689a2696f5baa | floating_ips
 | 10 |
| 628df59f091142399e0689a2696f5baa | instances
 | 10 |
| 628df59f091142399e0689a2696f5baa | volumes
 | 10 |
| 628df59f091142399e0689a2696f5baa | cores
 | 20 |
+----------------------------------
+-----------------------------+------------+

The nova.quota_usages table keeps track of how many resources the
tenant currently has in use:

mysql> select project_id, resource, in_use from quota_usages
 where project_id like '628%';
+----------------------------------+--------------+--------+
| project_id | resource | in_use |
+----------------------------------+--------------+--------+
628df59f091142399e0689a2696f5baa	instances	1
628df59f091142399e0689a2696f5baa	ram	512
628df59f091142399e0689a2696f5baa	cores	1
628df59f091142399e0689a2696f5baa	floating_ips	1
628df59f091142399e0689a2696f5baa	volumes	2
628df59f091142399e0689a2696f5baa	gigabytes	12
628df59f091142399e0689a2696f5baa	images	1
+----------------------------------+--------------+--------+

By comparing a tenant's hard limit with their current resource usage,
you can see their usage percentage. For example, if this tenant is using 1
floating IP out of 10, then they are using 10 percent of their floating IP
quota. Rather than doing the calculation manually, you can use SQL or the
scripting language of your choice and create a formatted report:

+----------------------------------+------------+-------------
+---------------+
| some_tenant
 |
+-----------------------------------+------------+------------
+---------------+
| Resource | Used | Limit |
 |
+-----------------------------------+------------+------------
+---------------+
| cores | 1 | 20 |
 5 % |
| floating_ips | 1 | 10 |
 10 % |
| gigabytes | 12 | 1000 |
 1 % |

OpenStack Ops Guide July 3, 2014

185

| images | 1 | 4 |
 25 % |
| injected_file_content_bytes | 0 | 10240 |
 0 % |
| injected_file_path_bytes | 0 | 255 |
 0 % |
| injected_files | 0 | 5 |
 0 % |
| instances | 1 | 10 |
 10 % |
| key_pairs | 0 | 100 |
 0 % |
| metadata_items | 0 | 128 |
 0 % |
| ram | 512 | 51200 |
 1 % |
| reservation_expire | 0 | 86400 |
 0 % |
| security_group_rules | 0 | 20 |
 0 % |
| security_groups | 0 | 10 |
 0 % |
| volumes | 2 | 10 |
 20 % |
+-----------------------------------+------------+------------
+---------------+

The preceding information was generated by using a custom script that
can be found on GitHub.

Note

This script is specific to a certain OpenStack installation and
must be modified to fit your environment. However, the logic
should easily be transferable.

Intelligent Alerting

Intelligent alerting can be thought of as a form of continuous integration
for operations. For example, you can easily check to see whether the
Image Service is up and running by ensuring that the glance-api and
glance-registry processes are running or by seeing whether glace-
api is responding on port 9292.

But how can you tell whether images are being successfully uploaded to
the Image Service? Maybe the disk that Image Service is storing the images
on is full or the S3 backend is down. You could naturally check this by
doing a quick image upload:

http://opsgui.de/NPGjbX

OpenStack Ops Guide July 3, 2014

186

#!/bin/bash
#
assumes that reasonable credentials have been stored at
/root/auth

. /root/openrc
wget https://launchpad.net/cirros/trunk/0.3.0/+download/ \
 cirros-0.3.0-x86_64-disk.img
glance image-create --name='cirros image' --is-public=true
--container-format=bare --disk-format=qcow2 < cirros-0.3.0-x8
6_64-disk.img

By taking this script and rolling it into an alert for your monitoring system
(such as Nagios), you now have an automated way of ensuring that image
uploads to the Image Catalog are working.

Note

You must remove the image after each test. Even better, test
whether you can successfully delete an image from the Image
Service.

Intelligent alerting takes considerably more time to plan and implement
than the other alerts described in this chapter. A good outline to
implement intelligent alerting is:

• Review common actions in your cloud.

• Create ways to automatically test these actions.

• Roll these tests into an alerting system.

Some other examples for Intelligent Alerting include:

• Can instances launch and be destroyed?

• Can users be created?

• Can objects be stored and deleted?

• Can volumes be created and destroyed?

Trending
Trending can give you great insight into how your cloud is performing
day to day. You can learn, for example, if a busy day was simply a rare
occurrence or if you should start adding new compute nodes.

OpenStack Ops Guide July 3, 2014

187

Trending takes a slightly different approach than alerting. While alerting
is interested in a binary result (whether a check succeeds or fails), trending
records the current state of something at a certain point in time. Once
enough points in time have been recorded, you can see how the value has
changed over time.

All of the alert types mentioned earlier can also be used for trend
reporting. Some other trend examples include:

• The number of instances on each compute node

• The types of flavors in use

• The number of volumes in use

• The number of Object Storage requests each hour

• The number of nova-api requests each hour

• The I/O statistics of your storage services

As an example, recording nova-api usage can allow you to track the
need to scale your cloud controller. By keeping an eye on nova-api
requests, you can determine whether you need to spawn more nova-api
processes or go as far as introducing an entirely new server to run nova-
api. To get an approximate count of the requests, look for standard INFO
messages in /var/log/nova/nova-api.log:

grep INFO /var/log/nova/nova-api.log | wc

You can obtain further statistics by looking for the number of successful
requests:

grep " 200 " /var/log/nova/nova-api.log | wc

By running this command periodically and keeping a record of the result,
you can create a trending report over time that shows whether your
nova-api usage is increasing, decreasing, or keeping steady.

A tool such as collectd can be used to store this information. While collectd
is out of the scope of this book, a good starting point would be to use
collectd to store the result as a COUNTER data type. More information can
be found in collectd's documentation.

Summary
For stable operations, you want to detect failure promptly and determine
causes efficiently. With a distributed system, it's even more important to

http://opsgui.de/1eLBriA

OpenStack Ops Guide July 3, 2014

188

track the right items to meet a service-level target. Learning where these
logs are located in the file system or API gives you an advantage. This
chapter also showed how to read, interpret, and manipulate information
from OpenStack services so that you can monitor effectively.

OpenStack Ops Guide July 3, 2014

189

14. Backup and Recovery
What to Back Up ... 189
Database Backups .. 190
File System Backups ... 190
Recovering Backups ... 192
Summary .. 193

Standard backup best practices apply when creating your OpenStack
backup policy. For example, how often to back up your data is closely
related to how quickly you need to recover from data loss.

Note

If you cannot have any data loss at all, you should also focus
on a highly available deployment. The OpenStack High
Availability Guide offers suggestions for elimination of a single
point of failure that could cause system downtime. While it is
not a completely prescriptive document, it offers methods and
techniques for avoiding downtime and data loss.

Other backup considerations include:

• How many backups to keep?

• Should backups be kept off-site?

• How often should backups be tested?

Just as important as a backup policy is a recovery policy (or at least
recovery testing).

What to Back Up
While OpenStack is composed of many components and moving parts,
backing up the critical data is quite simple.

This chapter describes only how to back up configuration files and
databases that the various OpenStack components need to run. This
chapter does not describe how to back up objects inside Object Storage
or data contained inside Block Storage. Generally these areas are left for
users to back up on their own.

http://opsgui.de/1eLAYwS
http://opsgui.de/1eLAYwS

OpenStack Ops Guide July 3, 2014

190

Database Backups
The example OpenStack architecture designates the cloud controller as
the MySQL server. This MySQL server hosts the databases for nova, glance,
cinder, and keystone. With all of these databases in one place, it's very
easy to create a database backup:

mysqldump --opt --all-databases > openstack.sql

If you only want to backup a single database, you can instead run:

mysqldump --opt nova > nova.sql

where nova is the database you want to back up.

You can easily automate this process by creating a cron job that runs the
following script once per day:

#!/bin/bash
backup_dir="/var/lib/backups/mysql"
filename="${backup_dir}/mysql-`hostname`-`eval date +%Y%m%d`.sql.gz"
Dump the entire MySQL database
/usr/bin/mysqldump --opt --all-databases | gzip > $filename
Delete backups older than 7 days
find $backup_dir -ctime +7 -type f -delete

This script dumps the entire MySQL database and deletes any backups
older than seven days.

File System Backups
This section discusses which files and directories should be backed up
regularly, organized by service.

Compute

The /etc/nova directory on both the cloud controller and compute
nodes should be regularly backed up.

/var/log/nova does not need to be backed up if you have all logs going
to a central area. It is highly recommended to use a central logging server
or back up the log directory.

/var/lib/nova is another important directory to back up. The
exception to this is the /var/lib/nova/instances subdirectory on
compute nodes. This subdirectory contains the KVM images of running
instances. You would want to back up this directory only if you need to

OpenStack Ops Guide July 3, 2014

191

maintain backup copies of all instances. Under most circumstances, you
do not need to do this, but this can vary from cloud to cloud and your
service levels. Also be aware that making a backup of a live KVM instance
can cause that instance to not boot properly if it is ever restored from a
backup.

Image Catalog and Delivery

/etc/glance and /var/log/glance follow the same rules as their
nova counterparts.

/var/lib/glance should also be backed up. Take special notice of /
var/lib/glance/images. If you are using a file-based backend of
glance, /var/lib/glance/images is where the images are stored and
care should be taken.

There are two ways to ensure stability with this directory. The first is to
make sure this directory is run on a RAID array. If a disk fails, the directory
is available. The second way is to use a tool such as rsync to replicate the
images to another server:

rsync -az --progress /var/lib/glance/images \
backup-server:/var/lib/glance/images/

Identity

/etc/keystone and /var/log/keystone follow the same rules as
other components.

/var/lib/keystone, although it should not contain any data being
used, can also be backed up just in case.

Block Storage

/etc/cinder and /var/log/cinder follow the same rules as other
components.

/var/lib/cinder should also be backed up.

Object Storage

/etc/swift is very important to have backed up. This directory contains
the swift configuration files as well as the ring files and ring builder files,
which if lost, render the data on your cluster inaccessible. A best practice

OpenStack Ops Guide July 3, 2014

192

is to copy the builder files to all storage nodes along with the ring files.
Multiple backup copies are spread throughout your storage cluster.

Recovering Backups
Recovering backups is a fairly simple process. To begin, first ensure that
the service you are recovering is not running. For example, to do a full
recovery of nova on the cloud controller, first stop all nova services:

OpenStack Ops Guide July 3, 2014

193

stop nova-api
stop nova-cert
stop nova-consoleauth
stop nova-novncproxy
stop nova-objectstore
stop nova-scheduler

Now you can import a previously backed-up database:

mysql nova < nova.sql

You can also restore backed-up nova directories:

mv /etc/nova{,.orig}
cp -a /path/to/backup/nova /etc/

Once the files are restored, start everything back up:

start mysql
for i in nova-api nova-cert nova-consoleauth nova-novncproxy
nova-objectstore nova-scheduler
> do
> start $i
> done

Other services follow the same process, with their respective directories
and databases.

Summary
Backup and subsequent recovery is one of the first tasks system
administrators learn. However, each system has different items that need
attention. By taking care of your database, image service, and appropriate
file system locations, you can be assured that you can handle any event
requiring recovery.

OpenStack Ops Guide July 3, 2014

195

15. Customization
Create an OpenStack Development Environment 195
Customizing Object Storage (Swift) Middleware 198
Customizing the OpenStack Compute (nova) Scheduler 205
Customizing the Dashboard (Horizon) .. 210
Conclusion ... 210

OpenStack might not do everything you need it to do out of the box. To
add a new feature, you can follow different paths.

To take the first path, you can modify the OpenStack code directly. Learn
how to contribute, follow the code review workflow, make your changes,
and contribute them back to the upstream OpenStack project. This
path is recommended if the feature you need requires deep integration
with an existing project. The community is always open to contributions
and welcomes new functionality that follows the feature-development
guidelines. This path still requires you to use DevStack for testing your
feature additions, so this chapter walks you through the DevStack
environment.

For the second path, you can write new features and plug them in
using changes to a configuration file. If the project where your feature
would need to reside uses the Python Paste framework, you can create
middleware for it and plug it in through configuration. There may also be
specific ways of customizing a project, such as creating a new scheduler
driver for Compute or a custom tab for the dashboard.

This chapter focuses on the second path for customizing OpenStack
by providing two examples for writing new features. The first example
shows how to modify Object Storage (swift) middleware to add a new
feature, and the second example provides a new scheduler feature for
OpenStack Compute (nova). To customize OpenStack this way you need
a development environment. The best way to get an environment up and
running quickly is to run DevStack within your cloud.

Create an OpenStack Development
Environment

To create a development environment, you can use DevStack. DevStack is
essentially a collection of shell scripts and configuration files that builds an
OpenStack development environment for you. You use it to create such an
environment for developing a new feature.

http://opsgui.de/NPG68B
http://opsgui.de/1eLB2ww

OpenStack Ops Guide July 3, 2014

196

You can find all of the documentation at the DevStack website.

To run DevStack for the stable Havana branch on an instance in
your OpenStack cloud:

1. Boot an instance from the dashboard or the nova command-line
interface (CLI) with the following parameters:

• Name: devstack-havana

• Image: Ubuntu 12.04 LTS

• Memory Size: 4 GB RAM

• Disk Size: minimum 5 GB

If you are using the nova client, specify --flavor 3 for the nova
boot command to get adequate memory and disk sizes.

2. Log in and set up DevStack. Here's an example of the commands you
can use to set up DevStack on a virtual machine:

a. Log in to the instance:

$ ssh username@my.instance.ip.address

b. Update the virtual machine's operating system:

apt-get -y update

c. Install git:

apt-get -y install git

d. Clone the stable/havana branch of the devstack repository:

$ git clone https://github.com/openstack-dev/devstack.
git -b
stable/havana devstack/

e. Change to the devstack repository:

$ cd devstack

3. (Optional) If you've logged in to your instance as the root user, you
must create a "stack" user; otherwise you'll run into permission issues.
If you've logged in as a user other than root, you can skip these steps:

a. Run the DevStack script to create the stack user:

http://opsgui.de/NPG9kK

OpenStack Ops Guide July 3, 2014

197

tools/create-stack-user.sh

b. Give ownership of the devstack directory to the stack user:

chown -R stack:stack /root/devstack

c. Set some permissions you can use to view the DevStack screen
later:

chmod o+rwx /dev/pts/0

d. Switch to the stack user:

$ su stack

4. Edit the localrc configuration file that controls what DevStack will
deploy. Copy the example localrc file at the end of this section
(Example 15.1, “localrc” [198]):

$ vim localrc

5. Run the stack script that will install OpenStack:

$./stack.sh

6. When the stack script is done, you can open the screen session it
started to view all of the running OpenStack services:

$ screen -r stack

7. Press Ctrl+A followed by 0 to go to the first screen window.

Note

• The stack.sh script takes a while to run. Perhaps you can
take this opportunity to join the OpenStack Foundation.

• Screen is a useful program for viewing many related
services at once. For more information, see the GNU screen
quick reference.

Now that you have an OpenStack development environment, you're
free to hack around without worrying about damaging your production
deployment. Example 15.1, “localrc” [198] provides a working
environment for running OpenStack Identity, Compute, Block Storage,
Image Service, the OpenStack dashboard, and Object Storage with the
stable/havana branches as the starting point.

http://opsgui.de/1eLB5bJ
http://opsgui.de/NPG9Bi
http://opsgui.de/NPG9Bi

OpenStack Ops Guide July 3, 2014

198

Example 15.1. localrc

Credentials
ADMIN_PASSWORD=devstack
MYSQL_PASSWORD=devstack
RABBIT_PASSWORD=devstack
SERVICE_PASSWORD=devstack
SERVICE_TOKEN=devstack

OpenStack Identity Service branch
KEYSTONE_BRANCH=stable/havana

OpenStack Compute branch
NOVA_BRANCH=stable/havana

OpenStack Block Storage branch
CINDER_BRANCH=stable/havana

OpenStack Image Service branch
GLANCE_BRANCH=stable/havana

OpenStack Dashboard branch
HORIZON_BRANCH=stable/havana

OpenStack Object Storage branch
SWIFT_BRANCH=stable/havana

enable_service swift

Object Storage Settings
SWIFT_HASH=66a3d6b56c1f479c8b4e70ab5c2000f5
SWIFT_REPLICAS=1

Block Storage Setting
VOLUME_BACKING_FILE_SIZE=20480M

Output
LOGFILE=/opt/stack/logs/stack.sh.log
VERBOSE=True
LOG_COLOR=False
SCREEN_LOGDIR=/opt/stack/logs

Customizing Object Storage (Swift)
Middleware

OpenStack Object Storage, known as swift when reading the code,
is based on the Python Paste framework. The best introduction to its
architecture is A Do-It-Yourself Framework. Because of the swift project's
use of this framework, you are able to add features to a project by placing
some custom code in a project's pipeline without having to change any of
the core code.

http://opsgui.de/1eLB8Ew
http://opsgui.de/NPG8xl

OpenStack Ops Guide July 3, 2014

199

Imagine a scenario where you have public access to one of your containers,
but what you really want is to restrict access to that to a set of IPs based
on a whitelist. In this example, we'll create a piece of middleware for
swift that allows access to a container from only a set of IP addresses, as
determined by the container's metadata items. Only those IP addresses
that you explicitly whitelist using the container's metadata will be able to
access the container.

Warning

This example is for illustrative purposes only. It should not
be used as a container IP whitelist solution without further
development and extensive security testing.

When you join the screen session that stack.sh starts with screen -r
stack, you see a screen for each service running, which can be a few or
several, depending on how many services you configured DevStack to run.

The asterisk * indicates which screen window you are viewing. This
example shows we are viewing the key (for keystone) screen window:

0$ shell 1$ key* 2$ horizon 3$ s-proxy 4$ s-object 5$ s-
container 6$ s-account

The purpose of the screen windows are as follows:

shell A shell where you can get some work done

key* The keystone service

horizon The horizon dashboard web application

s-{name} The swift services

To create the middleware and plug it in through Paste
configuration:

All of the code for OpenStack lives in /opt/stack. Go to the swift
directory in the shell screen and edit your middleware module.

1. Change to the directory where Object Storage is installed:

$ cd /opt/stack/swift

2. Create the ip_whitelist.py Python source code file:

OpenStack Ops Guide July 3, 2014

200

$ vim swift/common/middleware/ip_whitelist.py

3. Copy the code in Example 15.2, “ip_whitelist.py” [200] into
ip_whitelist.py. The following code is a middleware example
that restricts access to a container based on IP address as explained
at the beginning of the section. Middleware passes the request on
to another application. This example uses the swift "swob" library to
wrap Web Server Gateway Interface (WSGI) requests and responses
into objects for swift to interact with. When you're done, save and
close the file.

Example 15.2. ip_whitelist.py

vim: tabstop=4 shiftwidth=4 softtabstop=4
Copyright (c) 2014 OpenStack Foundation
All Rights Reserved.
#
Licensed under the Apache License, Version 2.0 (the "License");
 you may
not use this file except in compliance with the License. You
 may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing,
 software
distributed under the License is distributed on an "AS IS"
 BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied. See the
License for the specific language governing permissions and
 limitations
under the License.

import socket

from swift.common.utils import get_logger
from swift.proxy.controllers.base import get_container_info
from swift.common.swob import Request, Response

class IPWhitelistMiddleware(object):
 """
 IP Whitelist Middleware

 Middleware that allows access to a container from only a set of
 IP
 addresses as determined by the container's metadata items that
 start
 with the prefix 'allow'. E.G. allow-dev=192.168.0.20
 """

 def __init__(self, app, conf, logger=None):
 self.app = app

OpenStack Ops Guide July 3, 2014

201

 if logger:
 self.logger = logger
 else:
 self.logger = get_logger(conf, log_route='ip_whitelist')

 self.deny_message = conf.get('deny_message', "IP Denied")
 self.local_ip = socket.gethostbyname(socket.gethostname())

 def __call__(self, env, start_response):
 """
 WSGI entry point.
 Wraps env in swob.Request object and passes it down.

 :param env: WSGI environment dictionary
 :param start_response: WSGI callable
 """
 req = Request(env)

 try:
 version, account, container, obj = req.split_path(1, 4,
 True)
 except ValueError:
 return self.app(env, start_response)

 container_info = get_container_info(
 req.environ, self.app, swift_source=
'IPWhitelistMiddleware')

 remote_ip = env['REMOTE_ADDR']
 self.logger.debug("Remote IP: %(remote_ip)s",
 {'remote_ip': remote_ip})

 meta = container_info['meta']
 allow = {k:v for k,v in meta.iteritems() if k.
startswith('allow')}
 allow_ips = set(allow.values())
 allow_ips.add(self.local_ip)
 self.logger.debug("Allow IPs: %(allow_ips)s",
 {'allow_ips': allow_ips})

 if remote_ip in allow_ips:
 return self.app(env, start_response)
 else:
 self.logger.debug(
 "IP %(remote_ip)s denied access to Account=
%(account)s "
 "Container=%(container)s. Not in %(allow_ips)s",
 locals())
 return Response(
 status=403,
 body=self.deny_message,
 request=req)(env, start_response)

def filter_factory(global_conf, **local_conf):
 """
 paste.deploy app factory for creating WSGI proxy apps.

OpenStack Ops Guide July 3, 2014

202

 """
 conf = global_conf.copy()
 conf.update(local_conf)

 def ip_whitelist(app):
 return IPWhitelistMiddleware(app, conf)
 return ip_whitelist

There is a lot of useful information in env and conf that you can use
to decide what to do with the request. To find out more about what
properties are available, you can insert the following log statement
into the __init__ method:

self.logger.debug("conf = %(conf)s", locals())

and the following log statement into the __call__ method:

self.logger.debug("env = %(env)s", locals())

4. To plug this middleware into the swift Paste pipeline, you edit one
configuration file, /etc/swift/proxy-server.conf:

$ vim /etc/swift/proxy-server.conf

5. Find the [filter:ratelimit] section in /etc/swift/proxy-
server.conf, and copy in the following configuration section after
it:

[filter:ip_whitelist]
paste.filter_factory = swift.common.middleware.
ip_whitelist:filter_factory
You can override the default log routing for this filter here:
set log_name = ratelimit
set log_facility = LOG_LOCAL0
set log_level = INFO
set log_headers = False
set log_address = /dev/log
deny_message = You shall not pass!

6. Find the [pipeline:main] section in /etc/swift/proxy-
server.conf, and add ip_whitelist after ratelimit to the list like
so. When you're done, save and close the file:

[pipeline:main]
pipeline = catch_errors healthcheck proxy-logging cache bulk slo
 ratelimit ip_whitelist ...

7. Restart the swift proxy service to make swift use your middleware.
Start by switching to the swift-proxy screen:

a. Press Ctrl+A followed by 3.

b. Press Ctrl+C to kill the service.

OpenStack Ops Guide July 3, 2014

203

c. Press Up Arrow to bring up the last command.

d. Press Enter to run it.

8. Test your middleware with the swift CLI. Start by switching to the
shell screen and finish by switching back to the swift-proxy screen
to check the log output:

a. Press Ctrl+A followed by 0.

b. Make sure you're in the devstack directory:

$ cd /root/devstack

c. Source openrc to set up your environment variables for the CLI:

$ source openrc

d. Create a container called middleware-test:

$ swift post middleware-test

e. Press Ctrl+A followed by 3 to check the log output.

9. Among the log statements you'll see the lines:

proxy-server Remote IP: my.instance.ip.address (txn: ...)
proxy-server Allow IPs: set(['my.instance.ip.address'])
 (txn: ...)

These two statements are produced by our middleware and show
that the request was sent from our DevStack instance and was
allowed.

10. Test the middleware from outside DevStack on a remote machine that
has access to your DevStack instance:

a. Install the keystone and swift clients on your local machine:

pip install python-keystoneclient python-swiftclient

b. Attempt to list the objects in the middleware-test container:

$ swift --os-auth-url=http://my.instance.ip.
address:5000/v2.0/ \
--os-region-name=RegionOne --os-username=demo:demo \
--os-password=devstack list middleware-test
Container GET failed: http://my.instance.ip.
address:8080/v1/AUTH_.../

OpenStack Ops Guide July 3, 2014

204

 middleware-test?format=json 403 Forbidden You
 shall not pass!

11. Press Ctrl+A followed by 3 to check the log output. Look at the swift
log statements again, and among the log statements, you'll see the
lines:

proxy-server Authorizing from an overriding middleware (i.e:
 tempurl) (txn: ...)
proxy-server ... IPWhitelistMiddleware
proxy-server Remote IP: my.local.ip.address (txn: ...)
proxy-server Allow IPs: set(['my.instance.ip.address'])
 (txn: ...)
proxy-server IP my.local.ip.address denied access to
 Account=AUTH_... \
 Container=None. Not in set(['my.instance.ip.address'])
 (txn: ...)

Here we can see that the request was denied because the remote IP
address wasn't in the set of allowed IPs.

12. Back in your DevStack instance on the shell screen, add some
metadata to your container to allow the request from the remote
machine:

a. Press Ctrl+A followed by 0.

b. Add metadata to the container to allow the IP:

$ swift post --meta allow-dev:my.local.ip.address
 middleware-test

c. Now try the command from Step 10 again and it succeeds.
There are no objects in the container, so there is nothing to list;
however, there is also no error to report.

Warning

Functional testing like this is not a replacement for proper unit
and integration testing, but it serves to get you started.

You can follow a similar pattern in other projects that use the Python
Paste framework. Simply create a middleware module and plug it in
through configuration. The middleware runs in sequence as part of that
project's pipeline and can call out to other services as necessary. No project
core code is touched. Look for a pipeline value in the project's conf or
ini configuration files in /etc/<project> to identify projects that use
Paste.

OpenStack Ops Guide July 3, 2014

205

When your middleware is done, we encourage you to open source it and
let the community know on the OpenStack mailing list. Perhaps others
need the same functionality. They can use your code, provide feedback,
and possibly contribute. If enough support exists for it, perhaps you can
propose that it be added to the official swift middleware.

Customizing the OpenStack Compute
(nova) Scheduler

Many OpenStack projects allow for customization of specific features using
a driver architecture. You can write a driver that conforms to a particular
interface and plug it in through configuration. For example, you can easily
plug in a new scheduler for Compute. The existing schedulers for Compute
are feature full and well documented at Scheduling. However, depending
on your user's use cases, the existing schedulers might not meet your
requirements. You might need to create a new scheduler.

To create a scheduler, you must inherit from the class
nova.scheduler.driver.Scheduler. Of the five methods that you
can override, you must override the two methods marked with an asterisk
(*) below:

• update_service_capabilities

• hosts_up

• group_hosts

• * schedule_run_instance

• * select_destinations

To demonstrate customizing OpenStack, we'll create an example of a
Compute scheduler that randomly places an instance on a subset of hosts,
depending on the originating IP address of the request and the prefix of
the hostname. Such an example could be useful when you have a group of
users on a subnet and you want all of their instances to start within some
subset of your hosts.

Warning

This example is for illustrative purposes only. It should not be
used as a scheduler for Compute without further development
and testing.

http://opsgui.de/1eLB87p
http://opsgui.de/NPGaFk

OpenStack Ops Guide July 3, 2014

206

When you join the screen session that stack.sh starts with screen -r
stack, you are greeted with many screen windows:

0$ shell* 1$ key 2$ horizon ... 9$ n-api ... 14$ n-sch ...

shell A shell where you can get some work done

key The keystone service

horizon The horizon dashboard web application

n-{name} The nova services

n-sch The nova scheduler service

To create the scheduler and plug it in through configuration:

1. The code for OpenStack lives in /opt/stack, so go to the nova
directory and edit your scheduler module. Change to the directory
where nova is installed:

$ cd /opt/stack/nova

2. Create the ip_scheduler.py Python source code file:

$ vim nova/scheduler/ip_scheduler.py

3. The code in Example 15.3, “ip_scheduler.py” [206] is a driver that
will schedule servers to hosts based on IP address as explained at the
beginning of the section. Copy the code into ip_scheduler.py.
When you're done, save and close the file.

Example 15.3. ip_scheduler.py
vim: tabstop=4 shiftwidth=4 softtabstop=4
Copyright (c) 2014 OpenStack Foundation
All Rights Reserved.
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

"""
IP Scheduler implementation
"""

import random

OpenStack Ops Guide July 3, 2014

207

from oslo.config import cfg

from nova.compute import rpcapi as compute_rpcapi
from nova import exception
from nova.openstack.common import log as logging
from nova.openstack.common.gettextutils import _
from nova.scheduler import driver

CONF = cfg.CONF
CONF.import_opt('compute_topic', 'nova.compute.rpcapi')
LOG = logging.getLogger(__name__)

class IPScheduler(driver.Scheduler):
 """
 Implements Scheduler as a random node selector based on
 IP address and hostname prefix.
 """

 def __init__(self, *args, **kwargs):
 super(IPScheduler, self).__init__(*args, **kwargs)
 self.compute_rpcapi = compute_rpcapi.ComputeAPI()

 def _filter_hosts(self, request_spec, hosts, filter_properties,
 hostname_prefix):
 """Filter a list of hosts based on hostname prefix."""

 hosts = [host for host in hosts if host.startswith(hostname_prefix)]
 return hosts

 def _schedule(self, context, topic, request_spec, filter_properties):
 """Picks a host that is up at random."""

 elevated = context.elevated()
 hosts = self.hosts_up(elevated, topic)
 if not hosts:
 msg = _("Is the appropriate service running?")
 raise exception.NoValidHost(reason=msg)

 remote_ip = context.remote_address

 if remote_ip.startswith('10.1'):
 hostname_prefix = 'doc'
 elif remote_ip.startswith('10.2'):
 hostname_prefix = 'ops'
 else:
 hostname_prefix = 'dev'

 hosts = self._filter_hosts(request_spec, hosts, filter_properties,
 hostname_prefix)
 if not hosts:
 msg = _("Could not find another compute")
 raise exception.NoValidHost(reason=msg)

 host = random.choice(hosts)
 LOG.debug("Request from %(remote_ip)s scheduled to %(host)s" %
 locals())

 return host

 def select_destinations(self, context, request_spec, filter_properties):
 """Selects random destinations."""
 num_instances = request_spec['num_instances']
 # NOTE(timello): Returns a list of dicts with 'host', 'nodename' and
 # 'limits' as keys for compatibility with filter_scheduler.
 dests = []
 for i in range(num_instances):
 host = self._schedule(context, CONF.compute_topic,

OpenStack Ops Guide July 3, 2014

208

 request_spec, filter_properties)
 host_state = dict(host=host, nodename=None, limits=None)
 dests.append(host_state)

 if len(dests) < num_instances:
 raise exception.NoValidHost(reason='')
 return dests

 def schedule_run_instance(self, context, request_spec,
 admin_password, injected_files,
 requested_networks, is_first_time,
 filter_properties, legacy_bdm_in_spec):
 """Create and run an instance or instances."""
 instance_uuids = request_spec.get('instance_uuids')
 for num, instance_uuid in enumerate(instance_uuids):
 request_spec['instance_properties']['launch_index'] = num
 try:
 host = self._schedule(context, CONF.compute_topic,
 request_spec, filter_properties)
 updated_instance = driver.instance_update_db(context,
 instance_uuid)
 self.compute_rpcapi.run_instance(context,
 instance=updated_instance, host=host,
 requested_networks=requested_networks,
 injected_files=injected_files,
 admin_password=admin_password,
 is_first_time=is_first_time,
 request_spec=request_spec,
 filter_properties=filter_properties,
 legacy_bdm_in_spec=legacy_bdm_in_spec)
 except Exception as ex:
 # NOTE(vish): we don't reraise the exception here to make sure
 # that all instances in the request get set to
 # error properly
 driver.handle_schedule_error(context, ex, instance_uuid,
 request_spec)

There is a lot of useful information in context, request_spec,
and filter_properties that you can use to decide where to
schedule the instance. To find out more about what properties
are available, you can insert the following log statements into the
schedule_run_instance method of the scheduler above:

LOG.debug("context = %(context)s" % {'context': context.__dict__})
LOG.debug("request_spec = %(request_spec)s" % locals())
LOG.debug("filter_properties = %(filter_properties)s" % locals())

4. To plug this scheduler into nova, edit one configuration file, /etc/
nova/nova.conf:

$ vim /etc/nova/nova.conf

5. Find the scheduler_driver config and change it like so:

scheduler_driver=nova.scheduler.ip_scheduler.IPScheduler

6. Restart the nova scheduler service to make nova use your scheduler.
Start by switching to the n-sch screen:

a. Press Ctrl+A followed by 9.

OpenStack Ops Guide July 3, 2014

209

b. Press Ctrl+A followed by N until you reach the n-sch screen.

c. Press Ctrl+C to kill the service.

d. Press Up Arrow to bring up the last command.

e. Press Enter to run it.

7. Test your scheduler with the nova CLI. Start by switching to the
shell screen and finish by switching back to the n-sch screen to
check the log output:

a. Press Ctrl+A followed by 0.

b. Make sure you're in the devstack directory:

$ cd /root/devstack

c. Source openrc to set up your environment variables for the CLI:

$ source openrc

d. Put the image ID for the only installed image into an environment
variable:

$ IMAGE_ID=`nova image-list | egrep cirros | egrep -v
 "kernel|ramdisk" | awk '{print $2}'`

e. Boot a test server:

$ nova boot --flavor 1 --image $IMAGE_ID scheduler-test

8. Switch back to the n-sch screen. Among the log statements, you'll
see the line:

2014-01-23 19:57:47.262 DEBUG nova.scheduler.ip_scheduler \
[req-... demo demo] Request from 162.242.221.84 \
scheduled to devstack-havana \
_schedule /opt/stack/nova/nova/scheduler/ip_scheduler.py:76

Warning

Functional testing like this is not a replacement for proper unit
and integration testing, but it serves to get you started.

A similar pattern can be followed in other projects that use the driver
architecture. Simply create a module and class that conform to the driver
interface and plug it in through configuration. Your code runs when that

OpenStack Ops Guide July 3, 2014

210

feature is used and can call out to other services as necessary. No project
core code is touched. Look for a "driver" value in the project's .conf
configuration files in /etc/<project> to identify projects that use a
driver architecture.

When your scheduler is done, we encourage you to open source it and
let the community know on the OpenStack mailing list. Perhaps others
need the same functionality. They can use your code, provide feedback,
and possibly contribute. If enough support exists for it, perhaps you can
propose that it be added to the official Compute schedulers.

Customizing the Dashboard (Horizon)
The dashboard is based on the Python Django web application framework.
The best guide to customizing it has already been written and can be
found at Building on Horizon.

Conclusion
When operating an OpenStack cloud, you may discover that your users can
be quite demanding. If OpenStack doesn't do what your users need, it may
be up to you to fulfill those requirements. This chapter provided you with
some options for customization and gave you the tools you need to get
started.

http://opsgui.de/1eLBbA1
http://opsgui.de/NPGbZX
http://opsgui.de/1eLBcnE

OpenStack Ops Guide July 3, 2014

211

16. Upstream OpenStack
Getting Help .. 211
Reporting Bugs .. 212
Join the OpenStack Community ... 215
How to Contribute to the Documentation .. 216
Security Information ... 216
Finding Additional Information .. 217

OpenStack is founded on a thriving community that is a source of help and
welcomes your contributions. This chapter details some of the ways you
can interact with the others involved.

Getting Help
There are several avenues available for seeking assistance. The quickest
way is to help the community help you. Search the Q&A sites, mailing list
archives, and bug lists for issues similar to yours. If you can't find anything,
follow the directions for reporting bugs or use one of the channels for
support, which are listed below.

Your first port of call should be the official OpenStack documentation,
found on http://docs.openstack.org. You can get questions answered on
http://ask.openstack.org.

Mailing lists are also a great place to get help. The wiki page has more
information about the various lists. As an operator, the main lists you
should be aware of are:

General list openstack@lists.openstack.org. The
scope of this list is the current state of
OpenStack. This is a very high-traffic
mailing list, with many, many emails
per day.

Operators list openstack-
operators@lists.openstack.org. This
list is intended for discussion among
existing OpenStack cloud operators,
such as yourself. Currently, this list is
relatively low traffic, on the order of
one email a day.

http://docs.openstack.org
http://ask.openstack.org
http://opsgui.de/NPGELC
http://opsgui.de/1eLBZoy
http://opsgui.de/NPGF2c

OpenStack Ops Guide July 3, 2014

212

Development list openstack-dev@lists.openstack.org. The
scope of this list is the future state of
OpenStack. This is a high-traffic mailing
list, with multiple emails per day.

We recommend that you subscribe to the general list and the operator
list, although you must set up filters to manage the volume for the general
list. You'll also find links to the mailing list archives on the mailing list wiki
page, where you can search through the discussions.

Multiple IRC channels are available for general questions and
developer discussions. The general discussion channel is #openstack on
irc.freenode.net.

Reporting Bugs
As an operator, you are in a very good position to report unexpected
behavior with your cloud. Since OpenStack is flexible, you may be the only
individual to report a particular issue. Every issue is important to fix, so it is
essential to learn how to easily submit a bug report.

All OpenStack projects use Launchpad for bug tracking. You'll need to
create an account on Launchpad before you can submit a bug report.

Once you have a Launchpad account, reporting a bug is as simple as
identifying the project or projects that are causing the issue. Sometimes
this is more difficult than expected, but those working on the bug triage
are happy to help relocate issues if they are not in the right place initially:

• Report a bug in nova.

• Report a bug in python-novaclient.

• Report a bug in swift.

• Report a bug in python-swiftclient.

• Report a bug in glance.

• Report a bug in python-glanceclient.

• Report a bug in keystone.

• Report a bug in python-keystoneclient.

• Report a bug in neutron.

http://opsgui.de/1eLC2Rk
http://opsgui.de/NPGIuU
http://opsgui.de/1eLC2ku
http://opsgui.de/NPGLa0
http://opsgui.de/1eLC3Vv
http://opsgui.de/NPGMea
http://opsgui.de/1eLC4Zu
http://opsgui.de/NPGOmf
http://opsgui.de/1eLC8bQ
http://opsgui.de/NPGRhX
http://opsgui.de/1eLC8Z6
http://opsgui.de/NPGSm2

OpenStack Ops Guide July 3, 2014

213

• Report a bug in python-neutronclient.

• Report a bug in cinder.

• Report a bug in python-cinderclient.

• Report a bug in horizon.

• Report a bug with the documentation.

• Report a bug with the API documentation.

To write a good bug report, the following process is essential. First, search
for the bug to make sure there is no bug already filed for the same issue.
If you find one, be sure to click on "This bug affects X people. Does this
bug affect you?" If you can't find the issue, then enter the details of your
report. It should at least include:

• The release, or milestone, or commit ID corresponding to the software
that you are running

• The operating system and version where you've identified the bug

• Steps to reproduce the bug, including what went wrong

• Description of the expected results instead of what you saw

• Portions of your log files so that you include only relevant excerpts

When you do this, the bug is created with:

• Status: New

In the bug comments, you can contribute instructions on how to fix a
given bug, and set it to Triaged. Or you can directly fix it: assign the bug
to yourself, set it to In progress, branch the code, implement the fix, and
propose your change for merging. But let's not get ahead of ourselves;
there are bug triaging tasks as well.

Confirming and Prioritizing
This stage is about checking that a bug is real and assessing its impact.
Some of these steps require bug supervisor rights (usually limited to core
teams). If the bug lacks information to properly reproduce or assess the
importance of the bug, the bug is set to:

• Status: Incomplete

http://opsgui.de/1eLC9ME
http://opsgui.de/NPGTGy
http://opsgui.de/1eLCcs7
http://opsgui.de/NPGUdz
http://opsgui.de/1eLCcZ8
http://opsgui.de/NPGUKx

OpenStack Ops Guide July 3, 2014

214

Once you have reproduced the issue (or are 100 percent confident that
this is indeed a valid bug) and have permissions to do so, set:

• Status: Confirmed

Core developers also prioritize the bug, based on its impact:

• Importance: <Bug impact>

The bug impacts are categorized as follows:

OpenStack Ops Guide July 3, 2014

215

1. Critical if the bug prevents a key feature from working properly
(regression) for all users (or without a simple workaround) or results in
data loss

2. High if the bug prevents a key feature from working properly for some
users (or with a workaround)

3. Medium if the bug prevents a secondary feature from working properly

4. Low if the bug is mostly cosmetic

5. Wishlist if the bug is not really a bug but rather a welcome change in
behavior

If the bug contains the solution, or a patch, set the bug status to Triaged.

Bug Fixing
At this stage, a developer works on a fix. During that time, to avoid
duplicating the work, the developer should set:

• Status: In Progress

• Assignee: <yourself>

When the fix is ready, the developer proposes a change and gets the
change reviewed.

After the Change Is Accepted
After the change is reviewed, accepted, and lands in master, it
automatically moves to:

• Status: Fix Committed

When the fix makes it into a milestone or release branch, it automatically
moves to:

• Milestone: Milestone the bug was fixed in

• Status: Fix Released

Join the OpenStack Community
Since you've made it this far in the book, you should consider becoming
an official individual member of the community and join the OpenStack

http://opsgui.de/1eLCejs

OpenStack Ops Guide July 3, 2014

216

Foundation. The OpenStack Foundation is an independent body providing
shared resources to help achieve the OpenStack mission by protecting,
empowering, and promoting OpenStack software and the community
around it, including users, developers, and the entire ecosystem. We all
share the responsibility to make this community the best it can possibly be,
and signing up to be a member is the first step to participating. Like the
software, individual membership within the OpenStack Foundation is free
and accessible to anyone.

How to Contribute to the Documentation
OpenStack documentation efforts encompass operator and administrator
docs, API docs, and user docs.

The genesis of this book was an in-person event, but now that the
book is in your hands, we want you to contribute to it. OpenStack
documentation follows the coding principles of iterative work, with bug
logging, investigating, and fixing.

Just like the code, http://docs.openstack.org is updated constantly using
the Gerrit review system, with source stored in GitHub in the openstack-
manuals repository and the api-site repository, in DocBook format.

To review the documentation before it's published, go to the
OpenStack Gerrit server at http://review.openstack.org and search for
project:openstack/openstack-manuals or project:openstack/api-site.

See the How To Contribute page on the wiki for more information on
the steps you need to take to submit your first documentation review or
change.

Security Information
As a community, we take security very seriously and follow a specific
process for reporting potential issues. We vigilantly pursue fixes and
regularly eliminate exposures. You can report security issues you discover
through this specific process. The OpenStack Vulnerability Management
Team is a very small group of experts in vulnerability management
drawn from the OpenStack community. The team's job is facilitating
the reporting of vulnerabilities, coordinating security fixes and handling
progressive disclosure of the vulnerability information. Specifically, the
team is responsible for the following functions:

http://opsgui.de/1eLCejs
http://docs.openstack.org
http://opsgui.de/1eLCf75
http://opsgui.de/1eLCf75
http://opsgui.de/NPGYda
http://review.openstack.org
http://opsgui.de/NPGXpV
http://opsgui.de/1eLClM1
http://opsgui.de/NPG68B

OpenStack Ops Guide July 3, 2014

217

Vulnerability management All vulnerabilities discovered by
community members (or users) can be
reported to the team.

Vulnerability tracking The team will curate a set of
vulnerability related issues in the issue
tracker. Some of these issues are
private to the team and the affected
product leads, but once remediation is
in place, all vulnerabilities are public.

Responsible disclosure As part of our commitment to work
with the security community, the team
ensures that proper credit is given to
security researchers who responsibly
report issues in OpenStack.

We provide two ways to report issues to the OpenStack Vulnerability
Management Team, depending on how sensitive the issue is:

• Open a bug in Launchpad and mark it as a "security bug." This makes the
bug private and accessible to only the Vulnerability Management Team.

• If the issue is extremely sensitive, send an encrypted email to one of the
team's members. Find their GPG keys at OpenStack Security.

You can find the full list of security-oriented teams you can join at Security
Teams. The vulnerability management process is fully documented at
Vulnerability Management.

Finding Additional Information
In addition to this book, there are many other sources of information
about OpenStack. The OpenStack website is a good starting point,
with OpenStack Docs and OpenStack API Docs providing technical
documentation about OpenStack. The OpenStack wiki contains a lot of
general information that cuts across the OpenStack projects, including a
list of recommended tools. Finally, there are a number of blogs aggregated
at Planet OpenStack.

http://opsgui.de/1eLCkaQ
http://opsgui.de/NPGZxO
http://opsgui.de/NPGZxO
http://opsgui.de/1eLCkYk
http://opsgui.de/NPGZOt
http://opsgui.de/NPFTC8
http://opsgui.de/1eLAlDq
http://opsgui.de/1eLCrDo
http://opsgui.de/NPH3hd
http://opsgui.de/1eLCsXY

OpenStack Ops Guide July 3, 2014

219

17. Advanced Configuration

Differences Between Various Drivers .. 219
Implementing Periodic Tasks .. 220
Specific Configuration Topics .. 221

OpenStack is intended to work well across a variety of installation flavors,
from very small private clouds to large public clouds. To achieve this, the
developers add configuration options to their code that allow the behavior
of the various components to be tweaked depending on your needs.
Unfortunately, it is not possible to cover all possible deployments with the
default configuration values.

At the time of writing, OpenStack has more than 1,500 configuration
options. You can see them documented at the OpenStack configuration
reference guide. This chapter cannot hope to document all of these, but
we do try to introduce the important concepts so that you know where to
go digging for more information.

Differences Between Various Drivers
Many OpenStack projects implement a driver layer, and each of these
drivers will implement its own configuration options. For example,
in OpenStack Compute (nova), there are various hypervisor drivers
implemented—libvirt, xenserver, hyper-v, and vmware, for example. Not all
of these hypervisor drivers have the same features, and each has different
tuning requirements.

Note

The currently implemented hypervisors are listed on the
OpenStack documentation website. You can see a matrix of
the various features in OpenStack Compute (nova) hypervisor
drivers on the OpenStack wiki at the Hypervisor support matrix
page.

The point we are trying to make here is that just because an option exists
doesn't mean that option is relevant to your driver choices. Normally, the
documentation notes which drivers the configuration applies to.

http://opsgui.de/1eLATt4
http://opsgui.de/1eLATt4
http://opsgui.de/1eLAwP2
http://opsgui.de/1eLAwP2
http://opsgui.de/NPFQ9w
http://opsgui.de/NPFQ9w

OpenStack Ops Guide July 3, 2014

220

Implementing Periodic Tasks
Another common concept across various OpenStack projects is that of
periodic tasks. Periodic tasks are much like cron jobs on traditional Unix
systems, but they are run inside an OpenStack process. For example, when
OpenStack Compute (nova) needs to work out what images it can remove
from its local cache, it runs a periodic task to do this.

Periodic tasks are important to understand because of limitations in
the threading model that OpenStack uses. OpenStack uses cooperative
threading in Python, which means that if something long and complicated
is running, it will block other tasks inside that process from running unless
it voluntarily yields execution to another cooperative thread.

A tangible example of this is the nova-compute process. In order to
manage the image cache with libvirt, nova-compute has a periodic
process that scans the contents of the image cache. Part of this scan is
calculating a checksum for each of the images and making sure that
checksum matches what nova-compute expects it to be. However,
images can be very large, and these checksums can take a long time to
generate. At one point, before it was reported as a bug and fixed, nova-
compute would block on this task and stop responding to RPC requests.
This was visible to users as failure of operations such as spawning or
deleting instances.

The take away from this is if you observe an OpenStack process that
appears to "stop" for a while and then continue to process normally, you
should check that periodic tasks aren't the problem. One way to do this is
to disable the periodic tasks by setting their interval to zero. Additionally,
you can configure how often these periodic tasks run—in some cases, it
might make sense to run them at a different frequency from the default.

The frequency is defined separately for each periodic task. Therefore,
to disable every periodic task in OpenStack Compute (nova), you would
need to set a number of configuration options to zero. The current list of
configuration options you would need to set to zero are:

• bandwidth_poll_interval

• sync_power_state_interval

• heal_instance_info_cache_interval

• host_state_interval

OpenStack Ops Guide July 3, 2014

221

• image_cache_manager_interval

• reclaim_instance_interval

• volume_usage_poll_interval

• shelved_poll_interval

• shelved_offload_time

• instance_delete_interval

To set a configuration option to zero, include a line such as
image_cache_manager_interval=0 in your nova.conf file.

This list will change between releases, so please refer to your configuration
guide for up-to-date information.

Specific Configuration Topics
This section covers specific examples of configuration options you might
consider tuning. It is by no means an exhaustive list.

Security Configuration for Compute, Networking,
and Storage

The OpenStack Security Guide provides a deep dive into securing an
OpenStack cloud, including SSL/TLS, key management, PKI and certificate
management, data transport and privacy concerns, and compliance.

High Availability

The OpenStack High Availability Guide offers suggestions for elimination
of a single point of failure that could cause system downtime. While it is
not a completely prescriptive document, it offers methods and techniques
for avoiding downtime and data loss.

Enabling IPv6 Support

The Havana release with OpenStack Networking (neutron) does not offer
complete support of IPv6. Better support is planned for the Icehouse
release. You can follow along the progress being made by watching the
neutron IPv6 Subteam at work.

http://opsgui.de/NPG4NW
http://opsgui.de/1eLAYwS
http://opsgui.de/NPG5kQ

OpenStack Ops Guide July 3, 2014

222

By modifying your configuration setup, you can set up IPv6 when using
nova-network for networking, and a tested setup is documented
for FlatDHCP and a multi-host configuration. The key is to make
nova-network think a radvd command ran successfully. The entire
configuration is detailed in a Cybera blog post, “An IPv6 enabled cloud”.

Periodic Task Frequency for Compute

Before the Grizzly release, the frequency of periodic tasks was specified
in seconds between runs. This meant that if the periodic task took 30
minutes to run and the frequency was set to hourly, then the periodic task
actually ran every 90 minutes, because the task would wait an hour after
running before running again. This changed in Grizzly, and we now time
the frequency of periodic tasks from the start of the work the task does.
So, our 30 minute periodic task will run every hour, with a 30 minute wait
between the end of the first run and the start of the next.

Geographical Considerations for Object Storage

Enhanced support for global clustering of object storage servers
continues to be added since the Grizzly (1.8.0) release, when regions
were introduced. You would implement these global clusters to ensure
replication across geographic areas in case of a natural disaster and also to
ensure that users can write or access their objects more quickly based on
the closest data center. You configure a default region with one zone for
each cluster, but be sure your network (WAN) can handle the additional
request and response load between zones as you add more zones and
build a ring that handles more zones. Refer to Geographically Distributed
Clusters in the documentation for additional information.

http://opsgui.de/1eLB0F2
http://opsgui.de/NPG6FJ
http://opsgui.de/NPG6FJ

OpenStack Ops Guide July 3, 2014

223

18. Upgrades
Pre-Upgrade Testing Environment .. 223
Preparing for a Rollback ... 225
Upgrades ... 226
How to Perform an Upgrade from Grizzly to Havana—Ubuntu 227
How to Perform an Upgrade from Grizzly to Havana—Red Hat
Enterprise Linux and Derivatives ... 234
How to Perform an Upgrade from Havana to Icehouse—Ubuntu 241
How to Perform an Upgrade from Havana to Icehouse—Red Hat
Enterprise Linux and Derivatives ... 250
Cleaning Up and Final Configuration File Updates 258
Rolling Back a Failed Upgrade .. 259

With the exception of Object Storage, upgrading from one version of
OpenStack to another can take a great deal of effort. Until the situation
improves, this chapter provides some guidance on the operational aspects
that you should consider for performing an upgrade based on detailed
steps for a basic architecture.

Pre-Upgrade Testing Environment
The most important step is the pre-upgrade testing. If you are upgrading
immediately after release of a new version, undiscovered bugs might
hinder your progress. Some deployers prefer to wait until the first point
release is announced. However, if you have a significant deployment, you
might follow the development and testing of the release to ensure that
bugs for your use cases are fixed.

Even if you have what seems to be a near-identical architecture as the one
described in this guide, each OpenStack cloud is different. As a result, you
must still test upgrades between versions in your environment. For this,
you need an approximate clone of your environment.

However, that is not to say that it needs to be the same size or use
identical hardware as the production environment—few of us have that
luxury. It is important to consider the hardware and scale of the cloud that
you are upgrading, but these tips can help you avoid that incredible cost:

Use your own cloud The simplest place to start testing
the next version of OpenStack is by
setting up a new environment inside
your own cloud. This might seem odd

OpenStack Ops Guide July 3, 2014

224

—especially the double virtualization
used in running compute nodes—but
it's a sure way to very quickly test your
configuration.

Use a public cloud Especially because your own cloud is
unlikely to have sufficient space to
scale test to the level of the entire
cloud, consider using a public cloud to
test the scalability limits of your cloud
controller configuration. Most public
clouds bill by the hour, which means it
can be inexpensive to perform even a
test with many nodes.

Make another storage endpoint
on the same system

If you use an external storage plug-in
or shared file system with your cloud,
in many cases, you can test whether
it works by creating a second share or
endpoint. This action enables you to
test the system before entrusting the
new version onto your storage.

Watch the network Even at smaller-scale testing, look
for excess network packets to
determine whether something is going
horribly wrong in inter-component
communication.

To set up the test environment, you can use one of several methods:

• Do a full manual install by using the OpenStack Installation Guide
for your platform. Review the final configuration files and installed
packages.

• Create a clone of your automated configuration infrastructure with
changed package repository URLs.

Alter the configuration until it works.

Either approach is valid. Use the approach that matches your experience.

An upgrade pre-testing system is excellent for getting the configuration to
work; however, it is important to note that the historical use of the system
and differences in user interaction can affect the success of upgrades, too.

http://docs.openstack.org/

OpenStack Ops Guide July 3, 2014

225

We've seen experiences where database migrations encountered a bug
(later fixed!) because of slight table differences between fresh Grizzly
installs and those that migrated from Folsom to Grizzly.

Artificial scale testing can go only so far. After your cloud is upgraded, you
must pay careful attention to the performance aspects of your cloud.

Preparing for a Rollback
Like all major system upgrades, your upgrade could fail for one or more
difficult-to-determine reasons. You should prepare for this situation by
leaving the ability to roll back your environment to the previous release,
including databases, configuration files, and packages. We provide an
example process for rolling back your environment in the section called
“Rolling Back a Failed Upgrade” [259].

OpenStack Ops Guide July 3, 2014

226

Upgrades
The upgrade process generally follows these steps:

1. Perform some "cleaning" of the environment prior to starting the
upgrade process to ensure a consistent state. For example, instances not
fully purged from the system after deletion might cause indeterminate
behavior.

2. Read the release notes and documentation.

3. Find incompatibilities between your versions.

4. Develop an upgrade procedure and assess it thoroughly by using a test
environment similar to your production environment.

5. Run the upgrade procedure on the production environment.

You can perform an upgrade with operational instances, but this strategy
can be dangerous. You might consider using live migration to temporarily
relocate instances to other compute nodes while performing upgrades.
However, you must ensure database consistency throughout the process;
otherwise your environment might become unstable. Also, don't forget to
provide sufficient notice to your users, including giving them plenty of time
to perform their own backups.

The following order for service upgrades seems the most successful:

1. Upgrade the OpenStack Identity Service (keystone).

2. Upgrade the OpenStack Image Service (glance).

3. Upgrade OpenStack Compute (nova), including networking
components.

4. Upgrade OpenStack Block Storage (cinder).

5. Upgrade the OpenStack dashboard.

The general upgrade process includes the following steps:

1. Create a backup of configuration files and databases.

2. Update the configuration files according to the release notes.

3. Upgrade the packages by using your distribution's package manager.

OpenStack Ops Guide July 3, 2014

227

4. Stop services, update database schemas, and restart services.

5. Verify proper operation of your environment.

How to Perform an Upgrade from Grizzly
to Havana—Ubuntu

For this section, we assume that you are starting with the architecture
provided in the OpenStack OpenStack Installation Guide and upgrading to
the same architecture for Havana. All nodes should run Ubuntu 12.04 LTS.
This section primarily addresses upgrading core OpenStack services, such
as the Identity Service (keystone), Image Service (glance), Compute (nova)
including networking, Block Storage (cinder), and the dashboard.

Impact on Users

The upgrade process interrupts management of your environment,
including the dashboard. If you properly prepare for this upgrade, tenant
instances continue to operate normally.

Upgrade Considerations

Always review the release notes before performing an upgrade to learn
about newly available features that you might want to enable and
deprecated features that you should disable.

Perform a Backup

Save the configuration files on all nodes, as shown here:

for i in keystone glance nova cinder openstack-dashboard; \
 do mkdir $i-grizzly; \
 done
for i in keystone glance nova cinder openstack-dashboard; \
 do cp -r /etc/$i/* $i-grizzly/; \
 done

Note

You can modify this example script on each node to handle
different services.

Back up all databases on the controller:

http://opsgui.de/NPGunp
http://opsgui.de/1eLzHFY

OpenStack Ops Guide July 3, 2014

228

mysqldump -u root -p --opt --add-drop-database \
--all-databases > grizzly-db-backup.sql

Manage Repositories

On all nodes, remove the repository for Grizzly packages and add the
repository for Havana packages:

apt-add-repository -r cloud-archive:grizzly
apt-add-repository cloud-archive:havana

Warning

Make sure any automatic updates are disabled.

Update Configuration Files

Update the glance configuration on the controller node for compatibility
with Havana.

Add or modify the following keys in the /etc/glance/glance-
api.conf and /etc/glance/glance-registry.conf files:

[keystone_authtoken]
auth_uri = http://controller:5000
auth_host = controller
admin_tenant_name = service
admin_user = glance
admin_password = GLANCE_PASS

[paste_deploy]
flavor = keystone

If currently present, remove the following key from the
[filter:authtoken] section in the /etc/glance/glance-api-
paste.ini and /etc/glance/glance-registry-paste.ini files:

[filter:authtoken]
flavor = keystone

Update the nova configuration on all nodes for compatibility with Havana.

Add the [database] section and associated key to the /etc/nova/
nova.conf file:

[database]
connection = mysql://nova:NOVA_DBPASS@controller/nova

OpenStack Ops Guide July 3, 2014

229

Remove defunct configuration from the [DEFAULT] section in the /etc/
nova/nova.conf file:

[DEFAULT]
sql_connection = mysql://nova:NOVA_DBPASS@controller/nova

Add or modify the following keys in the /etc/nova/nova.conf file:

[keystone_authtoken]
auth_uri = http://controller:5000/v2.0
auth_host = controller
auth_port = 35357
auth_protocol = http
admin_tenant_name = service
admin_user = nova
admin_password = NOVA_PASS

On all compute nodes, increase the DHCP lease time (measured in seconds)
in the /etc/nova/nova.conf file to enable currently active instances to
continue leasing their IP addresses during the upgrade process:

[DEFAULT]
dhcp_lease_time = 86400

Warning

Setting this value too high might cause more dynamic
environments to run out of available IP addresses. Use an
appropriate value for your environment.

You must restart dnsmasq and the networking component of Compute to
enable the new DHCP lease time:

pkill -9 dnsmasq
service nova-network restart

Update the Cinder configuration on the controller and storage nodes for
compatibility with Havana.

Add the [database] section and associated key to the /etc/cinder/
cinder.conf file:

[database]
connection = mysql://cinder:CINDER_DBPASS@controller/cinder

Remove defunct configuration from the [DEFAULT] section in the /etc/
cinder/cinder.conf file:

[DEFAULT]
sql_connection = mysql://cinder:CINDER_DBPASS@controller/cinder

OpenStack Ops Guide July 3, 2014

230

Add or modify the following key in the /etc/cinder/cinder.conf
file:

[keystone_authtoken]
auth_uri = http://controller:5000

Update the dashboard configuration on the controller node for
compatibility with Havana.

The dashboard installation procedure and configuration file changed
substantially between Grizzly and Havana. Particularly, if you are
running Django 1.5 or later, you must ensure that /etc/openstack-
dashboard/local_settings contains a correctly configured
ALLOWED_HOSTS key that contains a list of host names recognized by the
dashboard.

If users access your dashboard by using http://dashboard.example.com,
define ALLOWED_HOSTS, as follows:

ALLOWED_HOSTS=['dashboard.example.com']

If users access your dashboard on the local system, define
ALLOWED_HOSTS, as follows:

ALLOWED_HOSTS=['localhost']

If users access your dashboard by using an IP address in addition to a host
name, define ALLOWED_HOSTS, as follows:

ALLOWED_HOSTS=['dashboard.example.com', '192.168.122.200']

Upgrade Packages on the Controller Node

Upgrade packages on the controller node to Havana, as follows:

apt-get update
apt-get dist-upgrade

Note

Depending on your specific configuration, performing a
dist-upgrade might restart services supplemental to your
OpenStack environment. For example, if you use Open-iSCSI
for Block Storage volumes and the upgrade includes a new
open-scsi package, the package manager restarts Open-
iSCSI services, which might cause the volumes for your users to
be disconnected.

OpenStack Ops Guide July 3, 2014

231

The package manager prompts you to update various configuration files.
Reject these changes. The package manager appends .dpkg-dist to
the newer versions of existing configuration files. You should consider
adopting conventions associated with the newer configuration files and
merging them with your existing configuration files after completing the
upgrade process.

Stop Services, Update Database Schemas, and
Restart Services on the Controller Node

Stop each service, run the database synchronization command if necessary
to update the associated database schema, and restart each service to
apply the new configuration. Some services require additional commands:

OpenStack Identity # service keystone stop
keystone-manage token_flush
keystone-manage db_sync
service keystone start

OpenStack Image Service # service glance-api stop
service glance-registry stop
glance-manage db_sync
service glance-api start
service glance-registry start

OpenStack Compute # service nova-api stop
service nova-scheduler stop
service nova-conductor stop
service nova-cert stop
service nova-consoleauth stop
service nova-novncproxy stop
nova-manage db sync
service nova-api start
service nova-scheduler start
service nova-conductor start
service nova-cert start
service nova-consoleauth start
service nova-novncproxy start

OpenStack Block Storage # service cinder-api stop
service cinder-scheduler stop
cinder-manage db sync
service cinder-api start
service cinder-scheduler start

The controller node update is complete. Now you can upgrade the
compute nodes.

OpenStack Ops Guide July 3, 2014

232

Upgrade Packages and Restart Services on the
Compute Nodes

Upgrade packages on the compute nodes to Havana:

apt-get update
apt-get dist-upgrade

Note

Make sure you have removed the repository for Grizzly
packages and added the repository for Havana packages.

Warning

Due to a packaging issue, this command might fail with the
following error:

Errors were encountered while processing:
 /var/cache/apt/archives/
 qemu-utils_1.5.0+dfsg-3ubuntu5~cloud0_amd64.deb
 /var/cache/apt/archives/
 qemu-system-common_1.5.0+dfsg-3ubuntu5~cloud0_
 amd64.deb
 E: Sub-process /usr/bin/dpkg
 returned an error code (1)

Fix this issue by running this command:

apt-get -f install

The packaging system prompts you to update the /etc/nova/api-
paste.ini file. As with the controller upgrade, we recommend that you
reject these changes and review the .dpkg-dist file after the upgrade
process completes.

To restart compute services:

service nova-compute restart
service nova-network restart
service nova-api-metadata restart

Upgrade Packages and Restart Services on the
Block Storage Nodes

Upgrade packages on the storage nodes to Havana:

OpenStack Ops Guide July 3, 2014

233

apt-get update
apt-get dist-upgrade

Note

Make sure you have removed the repository for Grizzly
packages and added the repository for Havana packages.

The packaging system prompts you to update the /etc/cinder/api-
paste.ini file. Like the controller upgrade, reject these changes and
review the .dpkg-dist file after the the upgrade process completes.

OpenStack Ops Guide July 3, 2014

234

To restart Block Storage services:

service cinder-volume restart

How to Perform an Upgrade from Grizzly
to Havana—Red Hat Enterprise Linux and
Derivatives

For this section, we assume that you are starting with the architecture
provided in the OpenStack OpenStack Installation Guide and upgrading to
the same architecture for Havana. All nodes should run Red Hat Enterprise
Linux 6.4 or compatible derivatives. Newer minor releases should also
work. This section primarily addresses upgrading core OpenStack services,
such as the Identity Service (keystone), Image Service (glance), Compute
(nova) including networking, Block Storage (cinder), and the dashboard.

Impact on Users
The upgrade process interrupts management of your environment,
including the dashboard. If you properly prepare for this upgrade, tenant
instances continue to operate normally.

Upgrade Considerations
Always review the release notes before performing an upgrade to learn
about newly available features that you might want to enable and
deprecated features that you should disable.

Perform a Backup
First, save the configuration files on all nodes:

for i in keystone glance nova cinder openstack-dashboard; \
 do mkdir $i-grizzly; \
 done
for i in keystone glance nova cinder openstack-dashboard; \
 do cp -r /etc/$i/* $i-grizzly/; \
 done

Note

You can modify this example script on each node to handle
different services.

http://opsgui.de/NPGvrs
http://opsgui.de/1eLzHFY

OpenStack Ops Guide July 3, 2014

235

Next, back up all databases on the controller:

mysqldump -u root -p --opt --add-drop-database \
 --all-databases > grizzly-db-backup.sql

Manage Repositories

On all nodes, remove the repository for Grizzly packages and add the
repository for Havana packages:

yum erase rdo-release-grizzly
yum install http://repos.fedorapeople.org/repos/openstack/
openstack-havana/ \
 rdo-release-havana-7.noarch.rpm

Warning

Make sure any automatic updates are disabled.

Note

Consider checking for newer versions of the Havana repository.

Update Configuration Files

Update the glance configuration on the controller node for compatibility
with Havana.

Add or modify the following keys in the /etc/glance/glance-
api.conf and /etc/glance/glance-registry.conf files:

openstack-config --set /etc/glance/glance-api.conf
 keystone_authtoken \
 auth_uri http://controller:5000
openstack-config --set /etc/glance/glance-api.conf
 keystone_authtoken \
 auth_host controller
openstack-config --set /etc/glance/glance-api.conf
 keystone_authtoken \
 admin_tenant_name service
openstack-config --set /etc/glance/glance-api.conf
 keystone_authtoken \
 admin_user glance
openstack-config --set /etc/glance/glance-api.conf
 keystone_authtoken \
 admin_password GLANCE_PASS
openstack-config --set /etc/glance/glance-api.conf
 paste_deploy \

http://opsgui.de/1eLBXNB

OpenStack Ops Guide July 3, 2014

236

 flavor keystone

openstack-config --set /etc/glance/glance-registry.conf
 keystone_authtoken \
 auth_uri http://controller:5000
openstack-config --set /etc/glance/glance-registry.conf
 keystone_authtoken \
 auth_host controller
openstack-config --set /etc/glance/glance-registry.conf
 keystone_authtoken \
 admin_tenant_name service
openstack-config --set /etc/glance/glance-registry.conf
 keystone_authtoken \
 admin_user glance
openstack-config --set /etc/glance/glance-registry.conf
 keystone_authtoken \
 admin_password GLANCE_PASS
openstack-config --set /etc/glance/glance-registry.conf
 paste_deploy \
 flavor keystone

If currently present, remove the following key from the [filter:authtoken]
section in the /etc/glance/glance-api-paste.ini and /etc/
glance/glance-registry-paste.ini files:

[filter:authtoken]
flavor = keystone

Update the nova configuration on all nodes for compatibility with Havana.

Add the [database] section and associated key to the /etc/nova/
nova.conf file:

openstack-config --set /etc/nova/nova.conf database \
 connection mysql://nova:NOVA_DBPASS@controller/nova

Remove defunct database configuration from the /etc/nova/
nova.conf file:

openstack-config --del /etc/nova/nova.conf DEFAULT
 sql_connection

Add or modify the following keys in the /etc/nova/nova.conf file:

openstack-config --set /etc/nova/nova.conf keystone_authtoken
 \
 auth_uri http://controller:5000/v2.0
openstack-config --set /etc/nova/nova.conf keystone_authtoken
 \
 auth_host controller

OpenStack Ops Guide July 3, 2014

237

openstack-config --set /etc/nova/nova.conf keystone_authtoken
 \
 admin_tenant_name service
openstack-config --set /etc/nova/nova.conf keystone_authtoken
 \
 admin_user nova
openstack-config --set /etc/nova/nova.conf keystone_authtoken
 \
 admin_password NOVA_PASS

On all compute nodes, increase the DHCP lease time (measured in seconds)
in the /etc/nova/nova.conf file to enable currently active instances to
continue leasing their IP addresses during the upgrade process, as follows:

openstack-config --set /etc/nova/nova.conf DEFAULT \
 dhcp_lease_time 86400

Warning

Setting this value too high might cause more dynamic
environments to run out of available IP addresses. Use an
appropriate value for your environment.

OpenStack Ops Guide July 3, 2014

238

You must restart dnsmasq and the nova networking service to enable the
new DHCP lease time:

pkill -9 dnsmasq
service openstack-nova-network restart

Update the cinder configuration on the controller and storage nodes for
compatibility with Havana.

Add the [database] section and associated key to the /etc/cinder/
cinder.conf file:

openstack-config --set /etc/cinder/cinder.conf database \
 connection mysql://cinder:CINDER_DBPASS@controller/cinder

Remove defunct database configuration from the /etc/cinder/
cinder.conf file:

openstack-config --del /etc/cinder/cinder.conf DEFAULT
 sql_connection

Add or modify the following key in the /etc/cinder/cinder.conf
file:

openstack-config --set /etc/cinder/cinder.conf
 keystone_authtoken \
 auth_uri http://controller:5000

Update the dashboard configuration on the controller node for
compatibility with Havana.

The dashboard installation procedure and configuration file changed
substantially between Grizzly and Havana. Particularly, if you are running
Django 1.5 or later, you must ensure that the /etc/openstack-
dashboard/local_settings file contains a correctly configured
ALLOWED_HOSTS key that contains a list of host names recognized by the
dashboard.

If users access your dashboard by using http://dashboard.example.com,
define ALLOWED_HOSTS, as follows:

ALLOWED_HOSTS=['dashboard.example.com']

If users access your dashboard on the local system, define
ALLOWED_HOSTS, as follows:

ALLOWED_HOSTS=['localhost']

If users access your dashboard by using an IP address in addition to a host
name, define ALLOWED_HOSTS, as follows:

OpenStack Ops Guide July 3, 2014

239

ALLOWED_HOSTS=['dashboard.example.com', '192.168.122.200']

Upgrade Packages on the Controller Node
Upgrade packages on the controller node to Havana:

yum upgrade

Note

Some services might terminate with an error during the
package upgrade process. If this error might cause a problem
with your environment, consider stopping all services before
upgrading them to Havana.

Install the OpenStack SELinux package on the controller node:

yum install openstack-selinux

Note

The package manager appends .rpmnew to the end of newer
versions of existing configuration files. You should consider
adopting conventions associated with the newer configuration
files and merging them with your existing configuration files
after completing the upgrade process.

Stop Services, Update Database Schemas, and
Restart Services on the Controller Node

Stop each service, run the database synchronization command if necessary
to update the associated database schema, and restart each service to
apply the new configuration. Some services require additional commands:

OpenStack Identity # service openstack-keystone stop
keystone-manage token_flush
keystone-manage db_sync
service openstack-keystone start

OpenStack Image Service # service openstack-glance-api stop
service openstack-glance-registry
 stop
glance-manage db_sync
service openstack-glance-api
 start
service openstack-glance-registry
 start

OpenStack Ops Guide July 3, 2014

240

OpenStack Compute # service openstack-nova-api stop
service openstack-nova-scheduler
 stop
service openstack-nova-conductor
 stop
service openstack-nova-cert stop
service openstack-nova-
consoleauth stop
service openstack-nova-novncproxy
 stop
nova-manage db sync
service openstack-nova-api start
service openstack-nova-scheduler
 start
service openstack-nova-conductor
 start
service openstack-nova-cert start
service openstack-nova-
consoleauth start
service openstack-nova-novncproxy
 start

OpenStack Block Storage # service openstack-cinder-api stop
service openstack-cinder-
scheduler stop
cinder-manage db sync
service openstack-cinder-api
 start
service openstack-cinder-
scheduler start

The controller node update is complete. Now you can upgrade the
compute nodes.

Upgrade Packages and Restart Services on the
Compute Nodes

Upgrade packages on the compute nodes to Havana:

yum upgrade

Note

Make sure you have removed the repository for Grizzly
packages and added the repository for Havana packages.

Install the OpenStack SELinux package on the compute nodes:

yum install openstack-selinux

OpenStack Ops Guide July 3, 2014

241

Restart compute services:

service openstack-nova-compute restart
service openstack-nova-network restart
service openstack-nova-metadata-api restart

Upgrade Packages and Restart Services on the
Block Storage Nodes

Upgrade packages on the storage nodes to Havana:

yum upgrade

Note

Make sure you have removed the repository for Grizzly
packages and added the repository for Havana packages.

Install the OpenStack SELinux package on the storage nodes:

yum install openstack-selinux

Restart Block Storage services:

service openstack-cinder-volume restart

How to Perform an Upgrade from Havana
to Icehouse—Ubuntu

For this section, we assume that you are starting with the architecture
provided in the OpenStack Installation Guide and upgrading to the
same architecture for Icehouse. All nodes should run Ubuntu 12.04 LTS
with Linux kernel 3.11 and the latest Havana packages installed and
operational. This section primarily addresses upgrading core OpenStack
services such as Identity (keystone), Image Service (glance), Compute
(nova), Networking (neutron), Block Storage (cinder), and the dashboard.
The Networking upgrade includes conversion from the Open vSwitch
(OVS) plug-in to the Modular Layer 2 (M2) plug-in. This section does not
cover the upgrade process from Ubuntu 12.04 LTS to Ubuntu 14.04 LTS.

Impact on Users
The upgrade process interrupts management of your environment,
including the dashboard. If you properly prepare for this upgrade,

http://docs.openstack.org/havana/install-guide/install/apt/content/

OpenStack Ops Guide July 3, 2014

242

tenant instances continue to operate normally. However, instances might
experience intermittent network interruptions while the Networking
service rebuilds virtual networking infrastructure.

Upgrade Considerations

Always review the Icehouse Release Notes before you upgrade to learn
about newly available features that you might want to enable and
deprecated features that you should disable.

Perform a Backup

Save the configuration files on all nodes:

for i in keystone glance nova cinder neutron openstack-
dashboard; \
 do mkdir $i-havana; \
 done
for i in keystone glance nova cinder neutron openstack-
dashboard; \
 do cp -r /etc/$i/* $i-havana/; \
 done

Note

You can modify this example script on each node to handle
different services.

Back up all databases on the controller:

mysqldump -u root -p --opt --add-drop-database --all-databases
 > havana-db-backup.sql

Note

Although not necessary, you should consider updating your
MySQL server configuration as described in the MySQL
controller setup section of the OpenStack Installation Guide.

Manage Repositories

On all nodes, remove the repository for Havana packages and add the
repository for Icehouse packages:

apt-add-repository -r cloud-archive:havana
apt-add-repository cloud-archive:icehouse

https://wiki.openstack.org/wiki/ReleaseNotes/Icehouse
http://docs.openstack.org/icehouse/install-guide/install/apt/content/basics-database-controller.html
http://docs.openstack.org/icehouse/install-guide/install/apt/content/basics-database-controller.html
http://docs.openstack.org/icehouse/install-guide/install/apt/content/

OpenStack Ops Guide July 3, 2014

243

Warning

Disable any automatic package updates.

Upgrade Notes

• Disable Compute file injection:

Icehouse disables file injection by default per the Icehouse Release
Notes.

If you plan to deploy Icehouse in stages, you must disable file injection
on all compute nodes that remain on Havana.

Edit the /etc/nova/nova-compute.conf file:

[libvirt]
...
libvirt_inject_partition = -2

• Convert from the OVS plug-in to the ML2 plug-in:

You must convert the configuration for your environment contained in
the /etc/neutron/neutron.conf and /etc/neutron/plugins/
openvswitch/ovs_neutron_plugin.ini files from OVS to ML2.
For example, the OpenStack Installation Guide covers ML2 plug-in
configuration using GRE tunnels.

Keep the OVS plug-in packages and configuration files until you verify
the upgrade.

Upgrade the Controller Node

Upgrade packages on the controller node to Icehouse, as follows:

apt-get update
apt-get dist-upgrade

Note

Depending on your specific configuration, performing a
dist-upgrade might restart services supplemental to your
OpenStack environment. For example, if you use Open-iSCSI
for Block Storage volumes and the upgrade includes a new
open-scsi package, the package manager restarts Open-

https://help.ubuntu.com/12.04/serverguide/automatic-updates.html
https://wiki.openstack.org/wiki/ReleaseNotes/Icehouse
https://wiki.openstack.org/wiki/ReleaseNotes/Icehouse
http://docs.openstack.org/icehouse/install-guide/install/apt/content/
http://docs.openstack.org/icehouse/install-guide/install/apt/content/section_neutron-networking-ml2.html
http://docs.openstack.org/icehouse/install-guide/install/apt/content/section_neutron-networking-ml2.html

OpenStack Ops Guide July 3, 2014

244

iSCSI services, which might cause the volumes for your users to
be disconnected.

The package manager prompts you to update various configuration files.
Reject these changes. The package manager appends .dpkg-dist to
the newer versions of existing configuration files. You should consider
adopting conventions associated with the newer configuration files and
merging them with your existing configuration files after completing the
upgrade process. You can find newer versions of existing configuration
files with the following command:

find /etc -name *.dpkg-dist

Upgrade Each Service
The upgrade procedure for each service typically requires that you stop
the service, run the database synchronization command to update the
associated database, and start the service to apply the new configuration.
You need administrator privileges for these procedures. Some services
require additional steps.

• OpenStack Identity:

Update the configuration file for compatibility with Icehouse.

Edit the /etc/keystone/keystone.conf file:

Add the [database] section.

Move the connection key from the [sql] section to the
[database] section.

Stop services, upgrade the database, and start services.

service keystone stop
keystone-manage token_flush
keystone-manage db_sync
service keystone start

• OpenStack Image Service:

Before upgrading the Image Service database, you must convert the
character set for each table to UTF-8.

Use the MySQL client to execute the following commands:

mysql -u root -p
mysql> SET foreign_key_checks = 0;

OpenStack Ops Guide July 3, 2014

245

mysql> ALTER TABLE glance.image_locations CONVERT TO CHARACTER
 SET 'utf8';
mysql> ALTER TABLE glance.image_members CONVERT TO CHARACTER
 SET 'utf8';
mysql> ALTER TABLE glance.image_properties CONVERT TO
 CHARACTER SET 'utf8';
mysql> ALTER TABLE glance.image_tags CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE glance.images CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE glance.migrate_version CONVERT TO CHARACTER
 SET 'utf8';
mysql> SET foreign_key_checks = 1;
mysql> exit

Note

Your environment might contain different or additional
tables that you must also convert to UTF-8 by using similar
commands.

Update the configuration for compatibility with Icehouse.

Edit the /etc/glance/glance-api.conf and /etc/glance/
glance-registry.conf files:

Add the [database] section.

Rename the sql_connection key to connection and move it to the
[database] section.

Edit the /etc/glance/glance-api.conf file:

Add RabbitMQ message broker keys to the [DEFAULT] section.

Replace RABBIT_PASS with the password you chose for the guest
account in RabbitMQ.

[DEFAULT]
...
rpc_backend = rabbit
rabbit_host = controller
rabbit_password = RABBIT_PASS

Stop services, upgrade the database, and start services:

service glance-api stop
service glance-registry stop
glance-manage db_sync

OpenStack Ops Guide July 3, 2014

246

service glance-api start
service glance-registry start

• OpenStack Compute:

Update the configuration for compatibility with Icehouse.

Edit the /etc/nova/nova.conf file:

Change the rpc_backend key from nova.rpc.impl_kombu to
rabbit.

Edit the /etc/nova/api-paste.ini file:

Comment out or remove any keys in the [filter:authtoken]
section beneath the paste.filter_factory =
keystoneclient.middleware.auth_token:filter_factory
statement.

Stop services, upgrade the database, and start services.

service nova-api stop
service nova-scheduler stop
service nova-conductor stop
service nova-cert stop
service nova-consoleauth stop
service nova-novncproxy stop
nova-manage db sync
service nova-api start
service nova-scheduler start
service nova-conductor start
service nova-cert start
service nova-consoleauth start
service nova-novncproxy start

• OpenStack Networking:

Populate the /etc/neutron/plugins/ml2/ml2_conf.ini file
with the equivalent configuration for your environment. Do not edit the
/etc/neutron/neutron.conf file until after the conversion steps.

Stop services, upgrade the database, and perform the conversion from
OVS to ML2.

Replace NEUTRON_DBPASS with the password you chose for the
database.

OpenStack Ops Guide July 3, 2014

247

Warning

We highly recommend that you perform a database
backup prior to executing the following commands as the
conversion script cannot roll back.

service neutron-server stop
neutron-db-manage --config-file /etc/neutron/neutron.conf \
 --config-file /etc/neutron/plugins/openvswitch/
ovs_neutron_plugin.ini stamp havana
neutron-db-manage --config-file /etc/neutron/neutron.conf \
 --config-file /etc/neutron/plugins/ml2/ml2_conf.ini upgrade
 icehouse
python -m neutron.db.migration.migrate_to_ml2 openvswitch \
 mysql://neutron:NEUTRON_DBPASS@controller/neutron

Edit the /etc/neutron/neutron.conf file to use the ML2 plug-in
and enable network change notifications:

Replace SERVICE_TENANT_ID with the service tenant identifier (id) in
the Identity service and NOVA_PASS with the password you chose for
the nova user in the Identity service.

[DEFAULT]
...
core_plugin = ml2
service_plugins = router
...
notify_nova_on_port_status_changes = True
notify_nova_on_port_data_changes = True
nova_url = http://controller:8774/v2
nova_admin_username = nova
nova_admin_tenant_id = SERVICE_TENANT_ID
nova_admin_password = NOVA_PASS
nova_admin_auth_url = http://controller:35357/v2.0

Start Networking services.

service neutron-server start

• OpenStack Block Storage:

Stop services, upgrade the database, and start services.

service cinder-api stop
service cinder-volume stop
service cinder-scheduler stop
cinder-manage db sync

OpenStack Ops Guide July 3, 2014

248

service cinder-api start
service cinder-volume start
service cinder-scheduler start

• Dashboard:

Update the configuration for compatibility with Icehouse.

Edit the /etc/openstack-dashboard/local_settings.py file:

Change the OPENSTACK_KEYSTONE_DEFAULT_ROLE key from
"Member" to "_member_".

Restart Dashboard services.

service apache2 restart

The controller node update is complete. Now you can upgrade the
remaining nodes.

Upgrade the Network Node

Upgrade packages on the network node to Icehouse:

Note

Make sure you have removed the repository for Havana
packages and added the repository for Icehouse packages.

apt-get update
apt-get dist-upgrade

Edit the /etc/neutron/neutron.conf file to use the ML2 plug-in:

[DEFAULT]
core_plugin = ml2
service_plugins = router

Populate the /etc/neutron/plugins/ml2/ml2_conf.ini file with
the equivalent configuration for your environment.

Clean the active OVS configuration:

service neutron-ovs-cleanup restart

Restart Networking services:

service neutron-dhcp-agent restart

OpenStack Ops Guide July 3, 2014

249

service neutron-l3-agent restart
service neutron-metadata-agent restart
service neutron-plugin-openvswitch-agent restart

Upgrade the Compute Nodes

Upgrade packages on the compute nodes to Icehouse:

Note

Make sure you have removed the repository for Havana
packages and added the repository for Icehouse packages.

apt-get update
apt-get dist-upgrade

Edit the /etc/neutron/neutron.conf file to use the ML2 plug-in:

[DEFAULT]
core_plugin = ml2
service_plugins = router

Populate the /etc/neutron/plugins/ml2/ml2_conf.ini file with
the equivalent configuration for your environment.

Clean the active OVS configuration:

service neutron-ovs-cleanup restart

Restart Networking services:

service neutron-plugin-openvswitch-agent restart

Restart Compute services:

service nova-compute restart

Upgrade the Storage Nodes

Upgrade packages on the storage nodes to Icehouse:

Note

Make sure you have removed the repository for Havana
packages and added the repository for Icehouse packages.

apt-get update

OpenStack Ops Guide July 3, 2014

250

apt-get dist-upgrade

Restart Block Storage services.

service cinder-volume restart

How to Perform an Upgrade from Havana
to Icehouse—Red Hat Enterprise Linux
and Derivatives

For this section, we assume that you are starting with the architecture
provided in the OpenStack OpenStack Installation Guide and upgrading
to the same architecture for Icehouse. All nodes should run Red Hat
Enterprise Linux 6.5 or compatible derivatives such as CentOS and Scientific
Linux with the latest Havana packages installed and operational. This
section primarily addresses upgrading core OpenStack services such as
Identity (keystone), Image Service (glance), Compute (nova), Networking
(neutron), Block Storage (cinder), and the dashboard. The Networking
upgrade procedure includes conversion from the Open vSwitch (OVS) plug-
in to the Modular Layer 2 (ML2) plug-in.

Impact on Users

The upgrade process interrupts management of your environment,
including the dashboard. If you properly prepare for this upgrade,
tenant instances continue to operate normally. However, instances might
experience intermittent network interruptions while the Networking
service rebuilds virtual networking infrastructure.

Upgrade Considerations

Always review the release notes before performing an upgrade to learn
about newly available features that you might want to enable and
deprecated features that you should disable.

Perform a Backup

Save the configuration files on all nodes, as shown here:

for i in keystone glance nova cinder neutron openstack-
dashboard; \
 do mkdir $i-havana; \

http://docs.openstack.org/havana/install-guide/install/yum/content/
https://wiki.openstack.org/wiki/ReleaseNotes/Icehouse

OpenStack Ops Guide July 3, 2014

251

 done
for i in keystone glance nova cinder neutron openstack-
dashboard; \
 do cp -r /etc/$i/* $i-havana/; \
 done

Note

You can modify this example script on each node to handle
different services.

Back up all databases on the controller:

mysqldump -u root -p --opt --add-drop-database --all-databases
 > havana-db-backup.sql

Note

You must update your MySQL server configuration and restart
the service as described in the MySQL controller setup section
of the OpenStack Installation Guide.

Manage Repositories

On all nodes, remove the repository for Havana packages and add the
repository for Icehouse packages:

yum erase rdo-release-havana
yum install http://repos.fedorapeople.org/repos/openstack/
openstack-icehouse/ \
 rdo-release-icehouse-3.noarch.rpm

Warning

Disable any automatic package updates.

Note

Consider checking for newer versions of the Icehouse
repository.

Upgrade Notes

• Disable Compute file injection:

Icehouse disables file injection by default per the release notes.

http://docs.openstack.org/icehouse/install-guide/install/yum/content/basics-database-controller.html
http://docs.openstack.org/icehouse/install-guide/install/yum/content/
http://repos.fedorapeople.org/repos/openstack/openstack-icehouse/
http://repos.fedorapeople.org/repos/openstack/openstack-icehouse/
https://wiki.openstack.org/wiki/ReleaseNotes/Icehouse

OpenStack Ops Guide July 3, 2014

252

If you plan to deploy Icehouse in stages, you must disable file injection
on all compute nodes that will remain on Havana.

Edit the /etc/nova/nova-compute.conf file:

[libvirt]
...
libvirt_inject_partition = -2

• Convert from OVS to ML2 plug-in:

You must convert the configuration for your environment contained in
the /etc/neutron/neutron.conf and /etc/neutron/plugins/
openvswitch/ovs_neutron_plugin.ini files from OVS to ML2.
For example, the OpenStack Installation Guide covers ML2 plug-in
configuration using GRE tunnels.

We recommend keeping the OVS plug-in packages and configuration
files until you verify the upgrade.

Upgrade the Controller Node

Upgrade packages on the controller node to Icehouse, as follows:

yum upgrade

Note

The package manager appends .rpmnew to the end of newer
versions of existing configuration files. You should consider
adopting conventions associated with the newer configuration
files and merging them with your existing configuration files
after completing the upgrade process. You can find newer
versions of existing configuration files with the following
command:

find /etc -name *.rpmnew

Upgrade Each Service

The upgrade procedure for each service typically requires that you stop
the service, run the database synchronization command to update the
associated database, and start the service to apply the new configuration.
You need administrator privileges for these procedures. Some services
require additional steps.

http://docs.openstack.org/icehouse/install-guide/install/yum/content/
http://docs.openstack.org/icehouse/install-guide/install/yum/content/section_neutron-networking-ml2.html
http://docs.openstack.org/icehouse/install-guide/install/yum/content/section_neutron-networking-ml2.html

OpenStack Ops Guide July 3, 2014

253

• OpenStack Identity:

Update the configuration file for compatibility with Icehouse.

Edit the /etc/keystone/keystone.conf file:

Add the [database] section.

Move the connection key from the [sql] section to the
[database] section.

Stop services, upgrade the database, and start services.

service openstack-keystone stop
keystone-manage token_flush
keystone-manage db_sync
service openstack-keystone start

• OpenStack Image Service:

Before you upgrade the Image Service database, convert the character
set for each table to UTF-8.

Use the MySQL client to run the following commands:

mysql -u root -p
mysql> SET foreign_key_checks = 0;
mysql> ALTER TABLE glance.image_locations CONVERT TO CHARACTER
 SET 'utf8';
mysql> ALTER TABLE glance.image_members CONVERT TO CHARACTER
 SET 'utf8';
mysql> ALTER TABLE glance.image_properties CONVERT TO
 CHARACTER SET 'utf8';
mysql> ALTER TABLE glance.image_tags CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE glance.images CONVERT TO CHARACTER SET
 'utf8';
mysql> ALTER TABLE glance.migrate_version CONVERT TO CHARACTER
 SET 'utf8';
mysql> SET foreign_key_checks = 1;
mysql> exit

Note

Your environment might contain different or additional
tables that you must convert to UTF-8 by using similar
commands.

Update the configuration for compatibility with Icehouse.

OpenStack Ops Guide July 3, 2014

254

Edit the /etc/glance/glance-api.conf and /etc/glance/
glance-registry.conf files:

Add the [database] section.

Rename the sql_connection key to connection and move it to the
[database] section.

Edit the /etc/glance/glance-api.conf file:

Add Qpid message broker keys to the [DEFAULT] section.

[DEFAULT]
...
rpc_backend = qpid
qpid_hostname = controller

Stop services, upgrade the database, and start services:

service openstack-glance-api stop
service openstack-glance-registry stop
glance-manage db_sync
service openstack-glance-api start
service openstack-glance-registry start

• OpenStack Compute:

Update the configuration for compatibility with Icehouse.

Edit the /etc/nova/nova.conf file:

Change the rpc_backend key from
nova.openstack.common.rpc.impl_qpid to qpid.

Edit the /etc/nova/api-paste.ini file:

Comment out or remove any keys in the [filter:authtoken]
section beneath the paste.filter_factory =
keystoneclient.middleware.auth_token:filter_factory
statement.

Stop services, upgrade the database, and start services.

service openstacknova-api stop
service openstack-nova-scheduler stop
service openstack-nova-conductor stop
service openstack-nova-cert stop
service openstack-nova-consoleauth stop

OpenStack Ops Guide July 3, 2014

255

service openstack-nova-novncproxy stop
nova-manage db sync
service openstack-nova-api start
service openstack-nova-scheduler start
service openstack-nova-conductor start
service openstack-nova-cert start
service openstack-nova-consoleauth start
service openstack-nova-novncproxy start

• OpenStack Networking:

Install the ML2 plug-in package:

yum install openstack-neutron-ml2

Populate the /etc/neutron/plugins/ml2/ml2_conf.ini file
with the equivalent configuration for your environment. Do not edit the
/etc/neutron/neutron.conf file until after the conversion steps.

Change the /etc/neutron/plugin.ini symbolic link to reference /
etc/neutron/plugins/ml2/ml2_conf.ini.

Stop services, upgrade the database, and perform the conversion from
OVS to ML2.

Replace NEUTRON_DBPASS with the password you chose for the
database.

Warning

We highly recommend that you perform a database
backup prior to executing the following commands as the
conversion script cannot roll back.

service neutron-server stop
neutron-db-manage --config-file /etc/neutron/neutron.conf \
 --config-file /etc/neutron/plugins/openvswitch/
ovs_neutron_plugin.ini stamp havana
neutron-db-manage --config-file /etc/neutron/neutron.conf \
 --config-file /etc/neutron/plugins/ml2/ml2_conf.ini upgrade
 icehouse
python -m neutron.db.migration.migrate_to_ml2 openvswitch \
 mysql://neutron:NEUTRON_DBPASS@controller/neutron

Edit the /etc/neutron/neutron.conf file to use the ML2 plug-in
and enable network change notifications:

OpenStack Ops Guide July 3, 2014

256

Replace SERVICE_TENANT_ID with the service tenant identifier (id) in
the Identity service and NOVA_PASS with the password you chose for
the nova user in the Identity service.

[DEFAULT]
...
core_plugin = ml2
service_plugins = router
...
notify_nova_on_port_status_changes = True
notify_nova_on_port_data_changes = True
nova_url = http://controller:8774/v2
nova_admin_username = nova
nova_admin_tenant_id = SERVICE_TENANT_ID
nova_admin_password = NOVA_PASS
nova_admin_auth_url = http://controller:35357/v2.0

Start Networking services.

service neutron-server start

• OpenStack Block Storage:

Stop services, upgrade the database, and start services.

service openstack-cinder-api stop
service openstack-cinder-volume stop
service openstack-cinder-scheduler stop
cinder-manage db sync
service openstack-cinder-api start
service openstack-cinder-volume start
service openstack-cinder-scheduler start

• Dashboard:

Update the configuration for compatibility with Icehouse.

Edit the /etc/openstack-dashboard/local_settings file:

Change the OPENSTACK_KEYSTONE_DEFAULT_ROLE key from
"Member" to "_member_".

Restart Dashboard services.

service httpd restart

The controller node update is complete. Now you can upgrade the
remaining nodes.

OpenStack Ops Guide July 3, 2014

257

Upgrade the Network Node
Upgrade packages on the network node to Icehouse:

Note

Make sure you have removed the repository for Havana
packages and added the repository for Icehouse packages.

yum upgrade

Install the ML2 plug-in package:

yum install openstack-neutron-ml2

Edit the /etc/neutron/neutron.conf file to use the ML2 plug-in:

[DEFAULT]
core_plugin = ml2
service_plugins = router

Populate the /etc/neutron/plugins/ml2/ml2_conf.ini file with
the equivalent configuration for your environment.

Change the /etc/neutron/plugin.ini symbolic link to reference /
etc/neutron/plugins/ml2/ml2_conf.ini.

Clean the active OVS configuration:

service neutron-ovs-cleanup restart

Restart Networking services:

service neutron-dhcp-agent restart
service neutron-l3-agent restart
service neutron-metadata-agent restart
service neutron-openvswitch-agent restart

Upgrade the Compute Nodes
Upgrade packages on the compute nodes to Icehouse:

Note

Make sure you have removed the repository for Havana
packages and added the repository for Icehouse packages.

yum upgrade

Install the ML2 plug-in package:

OpenStack Ops Guide July 3, 2014

258

yum install openstack-neutron-ml2

Edit the /etc/neutron/neutron.conf file to use the ML2 plug-in:

[DEFAULT]
core_plugin = ml2
service_plugins = router

Populate the /etc/neutron/plugins/ml2/ml2_conf.ini file with
the equivalent configuration for your environment.

Change the /etc/neutron/plugin.ini symbolic link to reference /
etc/neutron/plugins/ml2/ml2_conf.ini.

Clean the active OVS configuration:

service neutron-ovs-cleanup restart

Restart Networking services:

service neutron-openvswitch-agent restart

Restart Compute services:

service openstack-nova-compute restart

Upgrade the Storage Nodes
Upgrade packages on the storage nodes to Icehouse:

Note

Make sure you have removed the repository for Havana
packages and added the repository for Icehouse packages.

yum upgrade

Restart Block Storage services.

service openstack-cinder-volume restart

Cleaning Up and Final Configuration File
Updates

On all distributions, you must perform some final tasks to complete the
upgrade process.

Decrease DHCP timeouts by modifying /etc/nova/nova.conf on the
compute nodes back to the original value for your environment.

OpenStack Ops Guide July 3, 2014

259

Update all .ini files to match passwords and pipelines as required for
Havana in your environment.

After a migration, your users see different results from nova image-list
and glance image-list unless you match policies for access to private
images. To do so, edit the /etc/glance/policy.json and /
etc/nova/policy.json files to contain "context_is_admin":
"role:admin", which limits access to private images for projects.

Thoroughly test the environment. Then, let your users know that their
cloud is running normally again.

Rolling Back a Failed Upgrade
Upgrades involve complex operations and can fail. This section provides
guidance for rolling back to a previous release of OpenStack. Although
only tested on Ubuntu, other distributions follow a similar procedure.

In this section, we consider only the most immediate case: you have taken
down production management services in preparation for an upgrade,
completed part of the upgrade process, discovered one or more problems
not encountered during testing, and you must roll back your environment
to the original "known good" state. Make sure that you did not make any
state changes after attempting the upgrade process: no new instances,
networks, storage volumes, and so on.

Within this scope, you must complete these steps to successfully roll back
your environment:

1. Roll back configuration files.

2. Roll back databases.

3. Roll back packages.

The upgrade instructions provided in earlier sections ensure that you have
proper backups of your databases and configuration files. Read through
this section carefully and verify that you have the requisite backups to
restore. Rolling back upgrades is a tricky process because distributions tend
to put much more effort into testing upgrades than downgrades. Broken
downgrades often take significantly more effort to troubleshoot and,
hopefully, resolve than broken upgrades. Only you can weigh the risks of
trying to push a failed upgrade forward versus rolling it back. Generally,
consider rolling back as the very last option.

OpenStack Ops Guide July 3, 2014

260

The following steps described for Ubuntu have worked on at least one
production environment, but they might not work for all environments.

To perform the rollback from Havana to Grizzly

1. Stop all OpenStack services.

2. Copy contents of configuration backup directories /etc/
<service>.grizzly that you created during the upgrade process
back to /etc/<service>:

3. Restore databases from the grizzly-db-backup.sql backup file
that you created with the mysqldump command during the upgrade
process:

mysql -u root -p < grizzly-db-backup.sql

If you created this backup by using the --add-drop-database flag
as instructed, you can proceed to the next step. If you omitted this
flag, MySQL reverts all tables that existed in Grizzly, but does not drop
any tables created during the database migration for Havana. In this
case, you must manually determine which tables to drop, and drop
them to prevent issues with your next upgrade attempt.

4. Downgrade OpenStack packages.

Warning

Downgrading packages is by far the most complicated
step; it is highly dependent on the distribution and the
overall administration of the system.

a. Determine which OpenStack packages are installed on your
system. Use the dpkg --get-selections command. Filter for
OpenStack packages, filter again to omit packages explicitly
marked in the deinstall state, and save the final output to
a file. For example, the following command covers a controller
node with keystone, glance, nova, neutron, and cinder:

dpkg --get-selections | grep -e keystone -e glance -e
 nova -e neutron \
-e cinder | grep -v deinstall | tee openstack-selections
cinder-api install
cinder-common install
cinder-scheduler install
cinder-volume install
glance install

OpenStack Ops Guide July 3, 2014

261

glance-api install
glance-common install
glance-registry install
neutron-common install
neutron-dhcp-agent install
neutron-l3-agent install
neutron-lbaas-agent install
neutron-metadata-agent install
neutron-plugin-openvswitch install
neutron-plugin-openvswitch-agent install
neutron-server install
nova-api install
nova-cert install
nova-common install
nova-conductor install
nova-consoleauth install
nova-novncproxy install
nova-objectstore install
nova-scheduler install
python-cinder install
python-cinderclient install
python-glance install
python-glanceclient install
python-keystone install
python-keystoneclient install
python-neutron install
python-neutronclient install
python-nova install
python-novaclient install

Note

Depending on the type of server, the contents and
order of your package list might vary from this
example.

b. You can determine the package versions available for reversion
by using the apt-cache policy command. If you removed the
Grizzly repositories, you must first reinstall them and run apt-get
update:

apt-cache policy nova-common
nova-common:
 Installed: 1:2013.2-0ubuntu1~cloud0
 Candidate: 1:2013.2-0ubuntu1~cloud0
 Version table:
 *** 1:2013.2-0ubuntu1~cloud0 0
 500 http://ubuntu-cloud.archive.canonical.com/
ubuntu/
 precise-updates/havana/main amd64 Packages

OpenStack Ops Guide July 3, 2014

262

 100 /var/lib/dpkg/status
 1:2013.1.4-0ubuntu1~cloud0 0
 500 http://ubuntu-cloud.archive.canonical.com/
ubuntu/
 precise-updates/grizzly/main amd64 Packages
 2012.1.3+stable-20130423-e52e6912-0ubuntu1.2 0
 500 http://us.archive.ubuntu.com/ubuntu/
 precise-updates/main amd64 Packages
 500 http://security.ubuntu.com/ubuntu/
 precise-security/main amd64 Packages
 2012.1-0ubuntu2 0
 500 http://us.archive.ubuntu.com/ubuntu/
 precise/main amd64 Packages

This tells us the currently installed version of the package, newest
candidate version, and all versions along with the repository that
contains each version. Look for the appropriate Grizzly version
—1:2013.1.4-0ubuntu1~cloud0 in this case. The process of
manually picking through this list of packages is rather tedious
and prone to errors. You should consider using the following
script to help with this process:

for i in `cut -f 1 openstack-selections | sed 's/
neutron/quantum/;'`;
 do echo -n $i ;apt-cache policy $i | grep -B 1 grizzly
 |
 grep -v Packages | awk '{print "="$1}';done | tr '\n'
 ' ' |
 tee openstack-grizzly-versions
cinder-api=1:2013.1.4-0ubuntu1~cloud0
cinder-common=1:2013.1.4-0ubuntu1~cloud0
cinder-scheduler=1:2013.1.4-0ubuntu1~cloud0
cinder-volume=1:2013.1.4-0ubuntu1~cloud0
glance=1:2013.1.4-0ubuntu1~cloud0
glance-api=1:2013.1.4-0ubuntu1~cloud0
glance-common=1:2013.1.4-0ubuntu1~cloud0
glance-registry=1:2013.1.4-0ubuntu1~cloud0
quantum-common=1:2013.1.4-0ubuntu1~cloud0
quantum-dhcp-agent=1:2013.1.4-0ubuntu1~cloud0
quantum-l3-agent=1:2013.1.4-0ubuntu1~cloud0
quantum-lbaas-agent=1:2013.1.4-0ubuntu1~cloud0
quantum-metadata-agent=1:2013.1.4-0ubuntu1~cloud0
quantum-plugin-openvswitch=1:2013.1.4-0ubuntu1~cloud0
quantum-plugin-openvswitch-agent=1:2013.1.
4-0ubuntu1~cloud0
quantum-server=1:2013.1.4-0ubuntu1~cloud0
nova-api=1:2013.1.4-0ubuntu1~cloud0
nova-cert=1:2013.1.4-0ubuntu1~cloud0
nova-common=1:2013.1.4-0ubuntu1~cloud0
nova-conductor=1:2013.1.4-0ubuntu1~cloud0

OpenStack Ops Guide July 3, 2014

263

nova-consoleauth=1:2013.1.4-0ubuntu1~cloud0
nova-novncproxy=1:2013.1.4-0ubuntu1~cloud0
nova-objectstore=1:2013.1.4-0ubuntu1~cloud0
nova-scheduler=1:2013.1.4-0ubuntu1~cloud0
python-cinder=1:2013.1.4-0ubuntu1~cloud0
python-cinderclient=1:1.0.3-0ubuntu1~cloud0
python-glance=1:2013.1.4-0ubuntu1~cloud0
python-glanceclient=1:0.9.0-0ubuntu1.2~cloud0
python-quantum=1:2013.1.4-0ubuntu1~cloud0
python-quantumclient=1:2.2.0-0ubuntu1~cloud0
python-nova=1:2013.1.4-0ubuntu1~cloud0
python-novaclient=1:2.13.0-0ubuntu1~cloud0

Note

If you decide to continue this step manually, don't
forget to change neutron to quantum where
applicable.

c. Use the apt-get install command to install specific versions of
each package by specifying <package-name>=<version>.
The script in the previous step conveniently created a list of
package=version pairs for you:

apt-get install `cat openstack-grizzly-versions`

This step completes the rollback procedure. You should remove
the Havana repository and run apt-get update to prevent
accidental upgrades until you solve whatever issue caused you to
roll back your environment.

OpenStack Ops Guide July 3, 2014

265

Appendix A. Use Cases

Table of Contents
NeCTAR ... 265
MIT CSAIL .. 266
DAIR .. 267
CERN ... 268

This appendix contains a small selection of use cases from the community,
with more technical detail than usual. Further examples can be found on
the OpenStack website.

NeCTAR
Who uses it: researchers from the Australian publicly funded research
sector. Use is across a wide variety of disciplines, with the purpose of
instances ranging from running simple web servers to using hundreds of
cores for high-throughput computing.

Deployment
Using OpenStack Compute cells, the NeCTAR Research Cloud spans eight
sites with approximately 4,000 cores per site.

Each site runs a different configuration, as resource cells in an OpenStack
Compute cells setup. Some sites span multiple data centers, some use
off compute node storage with a shared file system, and some use on
compute node storage with a nonshared file system. Each site deploys the
Image Service with an Object Storage backend. A central Identity Service,
dashboard, and Compute API service are used. A login to the dashboard
triggers a SAML login with Shibboleth, which creates an account in the
Identity Service with an SQL backend.

Compute nodes have 24 to 48 cores, with at least 4 GB of RAM per core
and approximately 40 GB of ephemeral storage per core.

All sites are based on Ubuntu 12.04, with KVM as the hypervisor. The
OpenStack version in use is typically the current stable version, with 5 to
10 percent back-ported code from trunk and modifications. Migration to
Ubuntu 14.04 is planned as part of the Havana to Icehouse upgrade.

http://opsgui.de/1eLAdUw

OpenStack Ops Guide July 3, 2014

266

Resources
• OpenStack.org case study

• NeCTAR-RC GitHub

• NeCTAR website

MIT CSAIL
Who uses it: researchers from the MIT Computer Science and Artificial
Intelligence Lab.

Deployment
The CSAIL cloud is currently 64 physical nodes with a total of 768 physical
cores and 3,456 GB of RAM. Persistent data storage is largely outside the
cloud on NFS, with cloud resources focused on compute resources. There
are more than 130 users in more than 40 projects, typically running 2,000–
2,500 vCPUs in 300 to 400 instances.

We initially deployed on Ubuntu 12.04 with the Essex release of OpenStack
using FlatDHCP multi-host networking.

The software stack is still Ubuntu 12.04 LTS, but now with OpenStack
Havana from the Ubuntu Cloud Archive. KVM is the hypervisor, deployed
using FAI and Puppet for configuration management. The FAI and Puppet
combination is used lab-wide, not only for OpenStack. There is a single
cloud controller node, which also acts as network controller, with the
remainder of the server hardware dedicated to compute nodes.

Host aggregates and instance-type extra specs are used to provide two
different resource allocation ratios. The default resource allocation ratios
we use are 4:1 CPU and 1.5:1 RAM. Compute-intensive workloads use
instance types that require non-oversubscribed hosts where cpu_ratio
and ram_ratio are both set to 1.0. Since we have hyperthreading
enabled on our compute nodes, this provides one vCPU per CPU thread, or
two vCPUs per physical core.

With our upgrade to Grizzly in August 2013, we moved to OpenStack
Networking Service, neutron (quantum at the time). Compute nodes
have two-gigabit network interfaces and a separate management card
for IPMI management. One network interface is used for node-to-node
communications. The other is used as a trunk port for OpenStack managed

http://opsgui.de/NPFCiF
http://opsgui.de/1eLAhnd
http://opsgui.de/NPFEHm
http://opsgui.de/1eLAhUr

OpenStack Ops Guide July 3, 2014

267

VLANs. The controller node uses two bonded 10g network interfaces
for its public IP communications. Big pipes are used here because images
are served over this port, and it is also used to connect to iSCSI storage,
backending the image storage and database. The controller node also has
a gigabit interface that is used in trunk mode for OpenStack managed
VLAN traffic. This port handles traffic to the dhcp-agent and metadata-
proxy.

We approximate the older nova-network multi-host HA setup by using
"provider vlan networks" that connect instances directly to existing publicly
addressable networks and use existing physical routers as their default
gateway. This means that if our network controller goes down, running
instances still have their network available, and no single Linux host
becomes a traffic bottleneck. We are able to do this because we have a
sufficient supply of IPv4 addresses to cover all of our instances and thus
don't need NAT and don't use floating IP addresses. We provide a single
generic public network to all projects and additional existing VLANs on a
project-by-project basis as needed. Individual projects are also allowed to
create their own private GRE based networks.

Resources

• CSAIL homepage

DAIR
Who uses it: DAIR is an integrated virtual environment that leverages the
CANARIE network to develop and test new information communication
technology (ICT) and other digital technologies. It combines such digital
infrastructure as advanced networking and cloud computing and storage
to create an environment for developing and testing innovative ICT
applications, protocols, and services; performing at-scale experimentation
for deployment; and facilitating a faster time to market.

Deployment

DAIR is hosted at two different data centers across Canada: one in Alberta
and the other in Quebec. It consists of a cloud controller at each location,
although, one is designated the "master" controller that is in charge of
central authentication and quotas. This is done through custom scripts and
light modifications to OpenStack. DAIR is currently running Grizzly.

For Object Storage, each region has a swift environment.

http://opsgui.de/NPFFez

OpenStack Ops Guide July 3, 2014

268

A NetApp appliance is used in each region for both block storage and
instance storage. There are future plans to move the instances off the
NetApp appliance and onto a distributed file system such as Ceph or
GlusterFS.

VlanManager is used extensively for network management. All servers
have two bonded 10GbE NICs that are connected to two redundant
switches. DAIR is set up to use single-node networking where the cloud
controller is the gateway for all instances on all compute nodes. Internal
OpenStack traffic (for example, storage traffic) does not go through the
cloud controller.

Resources

• DAIR homepage

CERN
Who uses it: researchers at CERN (European Organization for Nuclear
Research) conducting high-energy physics research.

Deployment

The environment is largely based on Scientific Linux 6, which is Red Hat
compatible. We use KVM as our primary hypervisor, although tests are
ongoing with Hyper-V on Windows Server 2008.

We use the Puppet Labs OpenStack modules to configure Compute,
Image Service, Identity, and dashboard. Puppet is used widely for instance
configuration, and Foreman is used as a GUI for reporting and instance
provisioning.

Users and groups are managed through Active Directory and imported
into the Identity Service using LDAP. CLIs are available for nova and
Euca2ools to do this.

There are three clouds currently running at CERN, totaling about 3,400
compute nodes, with approximately 60,000 cores. The CERN IT cloud aims
to expand to 300,000 cores by 2015.

Resources

• “OpenStack in Production: A tale of 3 OpenStack Clouds”

http://opsgui.de/NPFgIP
http://opsgui.de/NPFGiu

OpenStack Ops Guide July 3, 2014

269

• “Review of CERN Data Centre Infrastructure”

• “CERN Cloud Infrastructure User Guide”

http://opsgui.de/1eLAkPR
http://opsgui.de/NPFGPD

OpenStack Ops Guide July 3, 2014

271

Appendix B. Tales From the
Cryp^H^H^H^H Cloud

Table of Contents
Double VLAN ... 271
"The Issue" ... 274
Disappearing Images .. 276
The Valentine's Day Compute Node Massacre 278
Down the Rabbit Hole ... 279
Havana Haunted by the Dead .. 281

Herein lies a selection of tales from OpenStack cloud operators. Read, and
learn from their wisdom.

Double VLAN
I was on-site in Kelowna, British Columbia, Canada setting up a new
OpenStack cloud. The deployment was fully automated: Cobbler deployed
the OS on the bare metal, bootstrapped it, and Puppet took over from
there. I had run the deployment scenario so many times in practice and
took for granted that everything was working.

On my last day in Kelowna, I was in a conference call from my hotel. In
the background, I was fooling around on the new cloud. I launched an
instance and logged in. Everything looked fine. Out of boredom, I ran ps
aux and all of the sudden the instance locked up.

Thinking it was just a one-off issue, I terminated the instance and launched
a new one. By then, the conference call ended and I was off to the data
center.

At the data center, I was finishing up some tasks and remembered the
lock-up. I logged into the new instance and ran ps aux again. It worked.
Phew. I decided to run it one more time. It locked up. WTF.

After reproducing the problem several times, I came to the unfortunate
conclusion that this cloud did indeed have a problem. Even worse, my time
was up in Kelowna and I had to return back to Calgary.

OpenStack Ops Guide July 3, 2014

272

Where do you even begin troubleshooting something like this? An
instance just randomly locks when a command is issued. Is it the image?
Nope — it happens on all images. Is it the compute node? Nope — all
nodes. Is the instance locked up? No! New SSH connections work just fine!

We reached out for help. A networking engineer suggested it was an MTU
issue. Great! MTU! Something to go on! What's MTU and why would it
cause a problem?

MTU is maximum transmission unit. It specifies the maximum number of
bytes that the interface accepts for each packet. If two interfaces have two
different MTUs, bytes might get chopped off and weird things happen --
such as random session lockups.

Note

Not all packets have a size of 1500. Running the ls command
over SSH might only create a single packets less than 1500
bytes. However, running a command with heavy output, such
as ps aux requires several packets of 1500 bytes.

OK, so where is the MTU issue coming from? Why haven't we seen this
in any other deployment? What's new in this situation? Well, new data
center, new uplink, new switches, new model of switches, new servers,
first time using this model of servers… so, basically everything was new.
Wonderful. We toyed around with raising the MTU at various areas: the
switches, the NICs on the compute nodes, the virtual NICs in the instances,
we even had the data center raise the MTU for our uplink interface. Some
changes worked, some didn't. This line of troubleshooting didn't feel right,
though. We shouldn't have to be changing the MTU in these areas.

As a last resort, our network admin (Alvaro) and myself sat down with
four terminal windows, a pencil, and a piece of paper. In one window, we
ran ping. In the second window, we ran tcpdump on the cloud controller.
In the third, tcpdump on the compute node. And the forth had tcpdump
on the instance. For background, this cloud was a multi-node, non-multi-
host setup.

One cloud controller acted as a gateway to all compute nodes.
VlanManager was used for the network config. This means that the
cloud controller and all compute nodes had a different VLAN for each
OpenStack project. We used the -s option of ping to change the packet
size. We watched as sometimes packets would fully return, sometimes
they'd only make it out and never back in, and sometimes the packets
would stop at a random point. We changed tcpdump to start displaying

OpenStack Ops Guide July 3, 2014

273

the hex dump of the packet. We pinged between every combination of
outside, controller, compute, and instance.

Finally, Alvaro noticed something. When a packet from the outside hits the
cloud controller, it should not be configured with a VLAN. We verified this
as true. When the packet went from the cloud controller to the compute
node, it should only have a VLAN if it was destined for an instance. This
was still true. When the ping reply was sent from the instance, it should be
in a VLAN. True. When it came back to the cloud controller and on its way
out to the public internet, it should no longer have a VLAN. False. Uh oh. It
looked as though the VLAN part of the packet was not being removed.

That made no sense.

While bouncing this idea around in our heads, I was randomly typing
commands on the compute node:

$ ip a
…
10: vlan100@vlan20: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500
 qdisc noqueue master br100 state UP
…

"Hey Alvaro, can you run a VLAN on top of a VLAN?"

"If you did, you'd add an extra 4 bytes to the packet…"

Then it all made sense…

$ grep vlan_interface /etc/nova/nova.conf
vlan_interface=vlan20

In nova.conf, vlan_interface specifies what interface OpenStack
should attach all VLANs to. The correct setting should have been:

vlan_interface=bond0

.

As this would be the server's bonded NIC.

vlan20 is the VLAN that the data center gave us for outgoing public
internet access. It's a correct VLAN and is also attached to bond0.

By mistake, I configured OpenStack to attach all tenant VLANs to vlan20
instead of bond0 thereby stacking one VLAN on top of another which
then added an extra 4 bytes to each packet which cause a packet of 1504

OpenStack Ops Guide July 3, 2014

274

bytes to be sent out which would cause problems when it arrived at an
interface that only accepted 1500!

As soon as this setting was fixed, everything worked.

"The Issue"
At the end of August 2012, a post-secondary school in Alberta, Canada
migrated its infrastructure to an OpenStack cloud. As luck would have
it, within the first day or two of it running, one of their servers just
disappeared from the network. Blip. Gone.

After restarting the instance, everything was back up and running. We
reviewed the logs and saw that at some point, network communication
stopped and then everything went idle. We chalked this up to a random
occurrence.

A few nights later, it happened again.

We reviewed both sets of logs. The one thing that stood out the most
was DHCP. At the time, OpenStack, by default, set DHCP leases for one
minute (it's now two minutes). This means that every instance contacts the
cloud controller (DHCP server) to renew its fixed IP. For some reason, this
instance could not renew its IP. We correlated the instance's logs with the
logs on the cloud controller and put together a conversation:

1. Instance tries to renew IP.

2. Cloud controller receives the renewal request and sends a response.

3. Instance "ignores" the response and re-sends the renewal request.

4. Cloud controller receives the second request and sends a new response.

5. Instance begins sending a renewal request to 255.255.255.255 since
it hasn't heard back from the cloud controller.

6. The cloud controller receives the 255.255.255.255 request and sends
a third response.

7. The instance finally gives up.

With this information in hand, we were sure that the problem had to do
with DHCP. We thought that for some reason, the instance wasn't getting
a new IP address and with no IP, it shut itself off from the network.

OpenStack Ops Guide July 3, 2014

275

A quick Google search turned up this: DHCP lease errors in VLAN mode
(https://lists.launchpad.net/openstack/msg11696.html) which further
supported our DHCP theory.

An initial idea was to just increase the lease time. If the instance only
renewed once every week, the chances of this problem happening would
be tremendously smaller than every minute. This didn't solve the problem,
though. It was just covering the problem up.

We decided to have tcpdump run on this instance and see if we could
catch it in action again. Sure enough, we did.

The tcpdump looked very, very weird. In short, it looked as though
network communication stopped before the instance tried to renew its IP.
Since there is so much DHCP chatter from a one minute lease, it's very hard
to confirm it, but even with only milliseconds difference between packets,
if one packet arrives first, it arrived first, and if that packet reported
network issues, then it had to have happened before DHCP.

Additionally, this instance in question was responsible for a very, very large
backup job each night. While "The Issue" (as we were now calling it) didn't
happen exactly when the backup happened, it was close enough (a few
hours) that we couldn't ignore it.

Further days go by and we catch The Issue in action more and more.
We find that dhclient is not running after The Issue happens. Now we're
back to thinking it's a DHCP issue. Running /etc/init.d/networking
restart brings everything back up and running.

Ever have one of those days where all of the sudden you get the Google
results you were looking for? Well, that's what happened here. I was
looking for information on dhclient and why it dies when it can't renew
its lease and all of the sudden I found a bunch of OpenStack and dnsmasq
discussions that were identical to the problem we were seeing!

Problem with Heavy Network IO and Dnsmasq (http://www.gossamer-
threads.com/lists/openstack/operators/18197)

instances losing IP address while running, due to No DHCPOFFER (http://
www.gossamer-threads.com/lists/openstack/dev/14696)

Seriously, Google.

This bug report was the key to everything: KVM images lose connectivity
with bridged network (https://bugs.launchpad.net/ubuntu/+source/
qemu-kvm/+bug/997978)

https://lists.launchpad.net/openstack/msg11696.html
http://www.gossamer-threads.com/lists/openstack/operators/18197
http://www.gossamer-threads.com/lists/openstack/dev/14696
https://bugs.launchpad.net/ubuntu/+source/qemu-kvm/+bug/997978
https://bugs.launchpad.net/ubuntu/+source/qemu-kvm/+bug/997978

OpenStack Ops Guide July 3, 2014

276

It was funny to read the report. It was full of people who had some
strange network problem but didn't quite explain it in the same way.

So it was a qemu/kvm bug.

At the same time of finding the bug report, a co-worker was able to
successfully reproduce The Issue! How? He used iperf to spew a ton
of bandwidth at an instance. Within 30 minutes, the instance just
disappeared from the network.

Armed with a patched qemu and a way to reproduce, we set out to see
if we've finally solved The Issue. After 48 hours straight of hammering the
instance with bandwidth, we were confident. The rest is history. You can
search the bug report for "joe" to find my comments and actual tests.

Disappearing Images
At the end of 2012, Cybera (a nonprofit with a mandate to oversee the
development of cyberinfrastructure in Alberta, Canada) deployed an
updated OpenStack cloud for their DAIR project (http://www.canarie.ca/
en/dair-program/about). A few days into production, a compute node
locks up. Upon rebooting the node, I checked to see what instances were
hosted on that node so I could boot them on behalf of the customer.
Luckily, only one instance.

The nova reboot command wasn't working, so I used virsh, but it
immediately came back with an error saying it was unable to find the
backing disk. In this case, the backing disk is the Glance image that is
copied to /var/lib/nova/instances/_base when the image is used
for the first time. Why couldn't it find it? I checked the directory and sure
enough it was gone.

I reviewed the nova database and saw the instance's entry in the
nova.instances table. The image that the instance was using matched
what virsh was reporting, so no inconsistency there.

I checked Glance and noticed that this image was a snapshot that the user
created. At least that was good news — this user would have been the only
user affected.

Finally, I checked StackTach and reviewed the user's events. They had
created and deleted several snapshots—most likely experimenting.
Although the timestamps didn't match up, my conclusion was that
they launched their instance and then deleted the snapshot and it was

http://www.canarie.ca/en/dair-program/about

OpenStack Ops Guide July 3, 2014

277

somehow removed from /var/lib/nova/instances/_base. None of
that made sense, but it was the best I could come up with.

It turns out the reason that this compute node locked up was a hardware
issue. We removed it from the DAIR cloud and called Dell to have it
serviced. Dell arrived and began working. Somehow or another (or a fat
finger), a different compute node was bumped and rebooted. Great.

When this node fully booted, I ran through the same scenario of seeing
what instances were running so I could turn them back on. There were a
total of four. Three booted and one gave an error. It was the same error
as before: unable to find the backing disk. Seriously, what?

Again, it turns out that the image was a snapshot. The three other
instances that successfully started were standard cloud images. Was it a
problem with snapshots? That didn't make sense.

A note about DAIR's architecture: /var/lib/nova/instances is a
shared NFS mount. This means that all compute nodes have access to
it, which includes the _base directory. Another centralized area is /
var/log/rsyslog on the cloud controller. This directory collects all
OpenStack logs from all compute nodes. I wondered if there were any
entries for the file that virsh is reporting:

dair-ua-c03/nova.log:Dec 19 12:10:59 dair-ua-c03
2012-12-19 12:10:59 INFO nova.virt.libvirt.imagecache
[-] Removing base file:
/var/lib/nova/instances/_base/
7b4783508212f5d242cbf9ff56fb8d33b4ce6166_10

Ah-hah! So OpenStack was deleting it. But why?

A feature was introduced in Essex to periodically check and see if there
were any _base files not in use. If there were, Nova would delete them.
This idea sounds innocent enough and has some good qualities to it.
But how did this feature end up turned on? It was disabled by default in
Essex. As it should be. It was decided to be turned on in Folsom (https://
bugs.launchpad.net/nova/+bug/1029674). I cannot emphasize enough
that:

Actions which delete things should not be enabled by default.

Disk space is cheap these days. Data recovery is not.

Secondly, DAIR's shared /var/lib/nova/instances directory
contributed to the problem. Since all compute nodes have access to this

https://bugs.launchpad.net/nova/+bug/1029674

OpenStack Ops Guide July 3, 2014

278

directory, all compute nodes periodically review the _base directory. If
there is only one instance using an image, and the node that the instance
is on is down for a few minutes, it won't be able to mark the image as still
in use. Therefore, the image seems like it's not in use and is deleted. When
the compute node comes back online, the instance hosted on that node is
unable to start.

The Valentine's Day Compute Node
Massacre

Although the title of this story is much more dramatic than the actual
event, I don't think, or hope, that I'll have the opportunity to use
"Valentine's Day Massacre" again in a title.

This past Valentine's Day, I received an alert that a compute node was no
longer available in the cloud — meaning,

$nova-manage service list

showed this particular node with a status of XXX.

I logged into the cloud controller and was able to both ping and SSH into
the problematic compute node which seemed very odd. Usually if I receive
this type of alert, the compute node has totally locked up and would be
inaccessible.

After a few minutes of troubleshooting, I saw the following details:

• A user recently tried launching a CentOS instance on that node

• This user was the only user on the node (new node)

• The load shot up to 8 right before I received the alert

• The bonded 10gb network device (bond0) was in a DOWN state

• The 1gb NIC was still alive and active

I looked at the status of both NICs in the bonded pair and saw that neither
was able to communicate with the switch port. Seeing as how each NIC in
the bond is connected to a separate switch, I thought that the chance of a
switch port dying on each switch at the same time was quite improbable.
I concluded that the 10gb dual port NIC had died and needed replaced. I
created a ticket for the hardware support department at the data center
where the node was hosted. I felt lucky that this was a new node and no
one else was hosted on it yet.

OpenStack Ops Guide July 3, 2014

279

An hour later I received the same alert, but for another compute node.
Crap. OK, now there's definitely a problem going on. Just like the original
node, I was able to log in by SSH. The bond0 NIC was DOWN but the 1gb
NIC was active.

And the best part: the same user had just tried creating a CentOS instance.
What?

I was totally confused at this point, so I texted our network admin to see
if he was available to help. He logged in to both switches and immediately
saw the problem: the switches detected spanning tree packets coming
from the two compute nodes and immediately shut the ports down to
prevent spanning tree loops:

Feb 15 01:40:18 SW-1 Stp: %SPANTREE-4-BLOCK_BPDUGUARD: Received
 BPDU packet on Port-Channel35 with BPDU guard enabled.
 Disabling interface. (source mac fa:16:3e:24:e7:22)
Feb 15 01:40:18 SW-1 Ebra: %ETH-4-ERRDISABLE: bpduguard error
 detected on Port-Channel35.
Feb 15 01:40:18 SW-1 Mlag: %MLAG-4-INTF_INACTIVE_LOCAL: Local
 interface Port-Channel35 is link down. MLAG 35 is inactive.
Feb 15 01:40:18 SW-1 Ebra: %LINEPROTO-5-UPDOWN: Line protocol on
 Interface Port-Channel35 (Server35), changed state to down
Feb 15 01:40:19 SW-1 Stp: %SPANTREE-6-INTERFACE_DEL: Interface
 Port-Channel35 has been removed from instance MST0
Feb 15 01:40:19 SW-1 Ebra: %LINEPROTO-5-UPDOWN: Line protocol on
 Interface Ethernet35 (Server35), changed state to down

He re-enabled the switch ports and the two compute nodes immediately
came back to life.

Unfortunately, this story has an open ending... we're still looking into why
the CentOS image was sending out spanning tree packets. Further, we're
researching a proper way on how to mitigate this from happening. It's
a bigger issue than one might think. While it's extremely important for
switches to prevent spanning tree loops, it's very problematic to have an
entire compute node be cut from the network when this happens. If a
compute node is hosting 100 instances and one of them sends a spanning
tree packet, that instance has effectively DDOS'd the other 99 instances.

This is an ongoing and hot topic in networking circles — especially with the
raise of virtualization and virtual switches.

Down the Rabbit Hole
Users being able to retrieve console logs from running instances is a boon
for support — many times they can figure out what's going on inside their

OpenStack Ops Guide July 3, 2014

280

instance and fix what's going on without bothering you. Unfortunately,
sometimes overzealous logging of failures can cause problems of its own.

A report came in: VMs were launching slowly, or not at all. Cue the
standard checks — nothing on the nagios, but there was a spike in network
towards the current master of our RabbitMQ cluster. Investigation started,
but soon the other parts of the queue cluster were leaking memory like
a sieve. Then the alert came in — the master rabbit server went down.
Connections failed over to the slave.

At that time, our control services were hosted by another team and we
didn't have much debugging information to determine what was going
on with the master, and couldn't reboot it. That team noted that it failed
without alert, but managed to reboot it. After an hour, the cluster had
returned to its normal state and we went home for the day.

Continuing the diagnosis the next morning was kick started by another
identical failure. We quickly got the message queue running again, and
tried to work out why Rabbit was suffering from so much network traffic.
Enabling debug logging on nova-api quickly brought understanding. A
tail -f /var/log/nova/nova-api.log was scrolling by faster than we'd ever
seen before. CTRL+C on that and we could plainly see the contents of a
system log spewing failures over and over again - a system log from one of
our users' instances.

After finding the instance ID we headed over to /var/lib/nova/
instances to find the console.log:

adm@cc12:/var/lib/nova/instances/instance-00000e05# wc -l
 console.log
92890453 console.log
adm@cc12:/var/lib/nova/instances/instance-00000e05# ls -sh
 console.log
5.5G console.log

Sure enough, the user had been periodically refreshing the console log
page on the dashboard and the 5G file was traversing the rabbit cluster to
get to the dashboard.

We called them and asked them to stop for a while, and they were happy
to abandon the horribly broken VM. After that, we started monitoring the
size of console logs.

To this day, the issue (https://bugs.launchpad.net/nova/+bug/832507)
doesn't have a permanent resolution, but we look forward to the
discussion at the next summit.

https://bugs.launchpad.net/nova/+bug/832507

OpenStack Ops Guide July 3, 2014

281

Havana Haunted by the Dead
Felix Lee of Academia Sinica Grid Computing Centre in Taiwan contributed
this story.

I just upgraded OpenStack from Grizzly to Havana 2013.2-2 using the RDO
repository and everything was running pretty well -- except the EC2 API.

I noticed that the API would suffer from a heavy load and respond slowly
to particular EC2 requests such as RunInstances.

Output from /var/log/nova/nova-api.log on Havana:

2014-01-10 09:11:45.072 129745 INFO nova.ec2.wsgi.server
[req-84d16d16-3808-426b-b7af-3b90a11b83b0
0c6e7dba03c24c6a9bce299747499e8a
 7052bd6714e7460caeb16242e68124f9]
117.103.103.29 "GET
/services/Cloud?AWSAccessKeyId=[something]&Action=
RunInstances&ClientToken=[something]&ImageId=ami-00000001&
InstanceInitiatedShutdownBehavior=terminate...
HTTP/1.1" status: 200 len: 1109 time: 138.5970151

This request took over two minutes to process, but executed quickly on
another co-existing Grizzly deployment using the same hardware and
system configuration.

Output from /var/log/nova/nova-api.log on Grizzly:

2014-01-08 11:15:15.704 INFO nova.ec2.wsgi.server
[req-ccac9790-3357-4aa8-84bd-cdaab1aa394e
ebbd729575cb404081a45c9ada0849b7
 8175953c209044358ab5e0ec19d52c37]
117.103.103.29 "GET
/services/Cloud?AWSAccessKeyId=[something]&Action=
RunInstances&ClientToken=[something]&ImageId=ami-00000007&
InstanceInitiatedShutdownBehavior=terminate...
HTTP/1.1" status: 200 len: 931 time: 3.9426181

While monitoring system resources, I noticed a significant increase in
memory consumption while the EC2 API processed this request. I thought
it wasn't handling memory properly -- possibly not releasing memory. If the
API received several of these requests, memory consumption quickly grew
until the system ran out of RAM and began using swap. Each node has
48 GB of RAM and the "nova-api" process would consume all of it within
minutes. Once this happened, the entire system would become unusably
slow until I restarted the nova-api service.

OpenStack Ops Guide July 3, 2014

282

So, I found myself wondering what changed in the EC2 API on Havana
that might cause this to happen. Was it a bug or a normal behavior that I
now need to work around?

After digging into the Nova code, I noticed two areas in api/ec2/
cloud.py potentially impacting my system:

 instances = self.compute_api.get_all(context,
 search_opts=
search_opts,
 sort_dir='asc')

 sys_metas = self.compute_api.get_all_system_metadata(
 context, search_filts=[{'key':
 ['EC2_client_token']},
 {'value': [client_token]}])

Since my database contained many records -- over 1 million metadata
records and over 300,000 instance records in "deleted" or "errored" states --
each search took ages. I decided to clean up the database by first archiving
a copy for backup and then performing some deletions using the MySQL
client. For example, I ran the following SQL command to remove rows of
instances deleted for over a year:

mysql> delete from nova.instances where deleted=1 and
 terminated_at < (NOW() - INTERVAL 1 YEAR);

Performance increased greatly after deleting the old records and my new
deployment continues to behave well.

OpenStack Ops Guide July 3, 2014

283

Appendix C. Working with
Roadmaps

Table of Contents
Information Available to You ... 284
Influencing the Roadmap ... 285
Aspects to Watch ... 286
Replacement of Open vSwitch Plug-in with Modular Layer 2 288
Compute V3 API .. 288
OpenStack on OpenStack (TripleO) .. 288
Data Processing (Sahara) .. 288
Bare-Metal Deployment (Ironic) ... 288
Database as a Service (Trove) ... 289
Messaging as a Service (Marconi) ... 289
Scheduler Improvements .. 289

The good news: OpenStack has unprecedented transparency when it
comes to providing information about what's coming up. The bad news:
each release moves very quickly. The purpose of this appendix is to
highlight some of the useful pages to track, and take an educated guess at
what is coming up in the Icehouse release and perhaps further afield.

OpenStack follows a six month release cycle, typically releasing in April/
May and October/November each year. At the start of each cycle, the
community gathers in a single location for a design summit. At the
summit, the features for the coming releases are discussed, prioritized, and
planned. Figure C.1, “Release cycle diagram” [284] shows an example
release cycle, with dates showing milestone releases, code freeze, and
string freeze dates, along with an example of when the summit occurs.
Milestones are interim releases within the cycle that are available as
packages for download and testing. Code freeze is putting a stop to
adding new features to the release. String freeze is putting a stop to
changing any strings within the source code.

OpenStack Ops Guide July 3, 2014

284

Figure C.1. Release cycle diagram

Information Available to You
There are several good sources of information available that you can use
to track your OpenStack development desires.

Release notes are maintained on the OpenStack wiki, and also shown here:

Series Status Releases Date

Juno Under development 2014.1 Apr 17, 2014

Icehouse Current stable release,
security-supported

2014.1 Apr 17, 2014

2013.2 Apr 4, 2013Havana Security-supported

2013.2.1 Dec 16, 2013

2013.1 Apr 4, 2013

2013.1.1 May 9, 2013

2013.1.2 Jun 6, 2013

2013.1.3 Aug 8, 2013

Grizzly EOL

2013.1.4 Oct 17, 2013

2012.2 Sep 27, 2012

2012.2.1 Nov 29, 2012

2012.2.2 Dec 13, 2012

2012.2.3 Jan 31, 2013

Folsom Community-supported

2012.2.4 Apr 11, 2013

2012.1 Apr 5, 2012Essex Community-supported

2012.1.1 Jun 22, 2012

http://opsgui.de/NPFhMW
http://opsgui.de/1eLzG51
http://opsgui.de/1eLzG51
http://opsgui.de/NPFhMW
http://opsgui.de/1eLzHFY
http://opsgui.de/NPFjEI
http://opsgui.de/1eLzK4A
http://opsgui.de/NPFlw8
http://opsgui.de/1eLzMtp
http://opsgui.de/NPFks3
http://opsgui.de/1eLzNgP
http://opsgui.de/NPFmjO
http://opsgui.de/1eLzOBB
http://opsgui.de/NPFobr
http://opsgui.de/1eLzPpd
http://opsgui.de/NPFos2
http://opsgui.de/1eLzSRP
http://opsgui.de/NPFqjB

OpenStack Ops Guide July 3, 2014

285

Series Status Releases Date

2012.1.2 Aug 10, 2012

2012.1.3 Oct 12, 2012

2011.3 Sep 22, 2011Diablo Deprecated

2011.3.1 Jan 19, 2012

Cactus Deprecated 2011.2 Apr 15, 2011

Bexar Deprecated 2011.1 Feb 3, 2011

Austin Deprecated 2010.1 Oct 21, 2010

Here are some other resources:

• A breakdown of current features under development, with their target
milestone

• A list of all features, including those not yet under development

• Rough-draft design discussions ("etherpads") from the last design
summit

• List of individual code changes under review

Influencing the Roadmap
OpenStack truly welcomes your ideas (and contributions) and highly values
feedback from real-world users of the software. By learning a little about
the process that drives feature development, you can participate and
perhaps get the additions you desire.

Feature requests typically start their life in Etherpad, a collaborative
editing tool, which is used to take coordinating notes at a design summit
session specific to the feature. This then leads to the creation of a
blueprint on the Launchpad site for the particular project, which is used
to describe the feature more formally. Blueprints are then approved by
project team members, and development can begin.

Therefore, the fastest way to get your feature request up for consideration
is to create an Etherpad with your ideas and propose a session to the
design summit. If the design summit has already passed, you may also
create a blueprint directly. Read this blog post about how to work with
blueprints the perspective of Victoria Martínez, a developer intern.

The roadmap for the next release as it is developed can be seen at
Releases.

http://opsgui.de/1eLzUsX
http://opsgui.de/NPFqQs
http://opsgui.de/1eLzVwW
http://opsgui.de/NPFsYy
http://opsgui.de/1eLzYsI
http://opsgui.de/NPFtvH
http://opsgui.de/1eLA1Vm
http://opsgui.de/NPFvnh
http://opsgui.de/NPFvnh
http://opsgui.de/1eLA2IT
http://opsgui.de/NPFwaQ
http://opsgui.de/NPFwaQ
http://opsgui.de/1eLA43u
http://opsgui.de/NPFy2x
http://opsgui.de/NPFy2x
http://opsgui.de/1eLA7wg

OpenStack Ops Guide July 3, 2014

286

To determine the potential features going in to future releases, or to
look at features implemented previously, take a look at the existing
blueprints such as OpenStack Compute (nova) Blueprints, OpenStack
Identity (keystone) Blueprints, and release notes.

Aside from the direct-to-blueprint pathway, there is another very well-
regarded mechanism to influence the development roadmap: the user
survey. Found at http://openstack.org/user-survey, it allows you to
provide details of your deployments and needs, anonymously by default.
Each cycle, the user committee analyzes the results and produces a report,
including providing specific information to the technical committee and
technical leads of the projects.

Aspects to Watch
You want to keep an eye on the areas improving within OpenStack. The
best way to "watch" roadmaps for each project is to look at the blueprints
that are being approved for work on milestone releases. You can also
learn from PTL webinars that follow the OpenStack summits twice a year.

Driver Quality Improvements

A major quality push has occurred across drivers and plug-ins in Block
Storage, Compute, and Networking. Particularly, developers of Compute
and Networking drivers that require proprietary or hardware products
are now required to provide an automated external testing system for use
during the development process.

Easier Upgrades

One of the most requested features since OpenStack began (for
components other than Object Storage, which tends to "just work"): easier
upgrades. From Grizzly onward (and significantly improved in Havana),
internal messaging communication is versioned, meaning services can
theoretically drop back to backward-compatible behavior. This allows you
to run later versions of some components, while keeping older versions of
others.

In addition, a lot of focus has been placed on database migrations. These
are now better managed, including the use of the Turbo Hipster tool,
which tests database migration performance on copies of real-world user
databases.

http://opsgui.de/NPFxf5
http://opsgui.de/1eLA8An
http://opsgui.de/1eLA8An
http://openstack.org/user-survey

OpenStack Ops Guide July 3, 2014

287

These changes have facilitated the first proper OpenStack upgrade guide,
found in Chapter 18, “Upgrades” [223], and will continue to improve in
Icehouse.

Deprecation of Nova Network

With the introduction of the full software-defined networking stack
provided by OpenStack Networking (neutron) in the Folsom release,
development effort on the initial networking code that remains part
of the Compute component has gradually lessened. While many still
use nova-network in production, there has been a long-term plan to
remove the code in favor of the more flexible and full-featured OpenStack
Networking.

An attempt was made to deprecate nova-network during the Havana
release, which was aborted due to the lack of equivalent functionality
(such as the FlatDHCP multi-host high-availability mode mentioned in this
guide), lack of a migration path between versions, insufficient testing,
and simplicity when used for the more straightforward use cases nova-
network traditionally supported. Though significant effort has been
made to address these concerns, nova-network will not be deprecated
in the Icehouse release. In addition, the Program Technical Lead of the
Compute project has indicated that, to a limited degree, patches to nova-
network will now again begin to be accepted.

This leaves you with an important point of decision when designing your
cloud. OpenStack Networking is robust enough to use with a small number
of limitations (IPv6 support, performance issues in some scenarios) and
provides many more features than nova-network. However, if you
do not have the more complex use cases that can benefit from fuller
software-defined networking capabilities, or are uncomfortable with the
new concepts introduced, nova-network may continue to be a viable
option for the next 12 to 18 months.

Similarly, if you have an existing cloud and are looking to upgrade from
nova-network to OpenStack Networking, you should have the option
to delay the upgrade for this period of time. However, each release of
OpenStack brings significant new innovation, and regardless of your use of
networking methodology, it is likely best to begin planning for an upgrade
within a reasonable timeframe of each release.

As mentioned, there's currently no way to cleanly migrate from nova-
network to neutron. We recommend that you keep a migration in mind
and what that process might involve for when a proper migration path

OpenStack Ops Guide July 3, 2014

288

is released. If you must upgrade, please be aware that both service and
instance downtime is likely unavoidable.

Replacement of Open vSwitch Plug-in
with Modular Layer 2

The Modular Layer 2 plug-in is a framework allowing OpenStack
Networking to simultaneously utilize the variety of layer-2 networking
technologies found in complex real-world data centers. It currently works
with the existing Open vSwitch, Linux Bridge, and Hyper-V L2 agents and is
intended to replace and deprecate the monolithic plug-ins associated with
those L2 agents.

Compute V3 API
The third version of the Compute API was broadly discussed and worked
on during the Havana and Icehouse release cycles. Current discussions
indicate that the V2 API will remain for many releases, but this is a great
time to evaluate the Compute API and provide comments while it is being
defined. Of particular note is the decision that the V3 API will not support
XML messages—being JSON only. This was based on the poor testing of
existing XML responses in the V2 API and the lack of effort to continue to
develop and maintain an entire second response type. Feedback on this
and any such change is welcome by responding to the user survey.

OpenStack on OpenStack (TripleO)
This project continues to improve and you may consider using it for
greenfield deployments.

Data Processing (Sahara)
A much-requested answer to big data problems, a dedicated team has
been making solid progress on a Hadoop-as-a-Service project.

Bare-Metal Deployment (Ironic)
Though bare-metal deployment has been widely lauded, and development
continues, the project to replace the Compute bare-metal driver will not
graduate in Icehouse. A particular blueprint to follow is Migration Path

http://opsgui.de/1eLAaba
http://opsgui.de/NPFBex

OpenStack Ops Guide July 3, 2014

289

from Nova's BM Driver, which tracks the ability to move to the new project
from an existing bare-metal deployment.

Database as a Service (Trove)
The OpenStack community has had a database-as-a-service tool in
development for some time, and we will finally see the first integrated
release of it in Icehouse. Initially, it will only support MySQL, with further
options available in Juno onward, but it should be able to deploy database
servers out of the box in a highly available way from this release.

Messaging as a Service (Marconi)
A service to provide queues of messages and notifications has entered
“incubation,” meaning if the upcoming development cycles are successful,
it will be released in Juno.

Scheduler Improvements
Both Compute and Block Storage rely on schedulers to determine where
to place virtual machines or volumes. In Havana, the Compute scheduler
underwent significant improvement, while in Icehouse the scheduler in
Block Storage is slated for a boost. Further down the track, an effort
started this cycle that aims to create a holistic scheduler covering both will
come to fruition.

Block Storage Improvements
The team discussed many areas of work at the Icehouse summit, including
volume migration support, Ceph integration, and access control for
volumes.

Toward a Python SDK
Though many successfully use the various python-*client code as an
effective SDK for interacting with OpenStack, consistency between the
projects and documentation availability waxes and wanes. To combat
this, an effort to improve the experience has started. Cross-project
development efforts in OpenStack have a checkered history, such as the
unified client project having several false starts. However, the early signs
for the SDK project are promising, and we expect to see results during the
Juno cycle.

http://opsgui.de/NPFBex
http://opsgui.de/1eLAaYU
http://opsgui.de/NPFBLH
http://opsgui.de/NPFBLH

OpenStack Ops Guide July 3, 2014

291

Appendix D. Resources

Table of Contents
OpenStack ... 291
Cloud (General) ... 291
Python ... 291
Networking .. 291
Systems Administration .. 292
Virtualization ... 292
Configuration Management ... 292

OpenStack
• Installation Guide for Debian 7.0

• Installation Guide for openSUSE and SUSE Linux Enterprise Server

• Installation Guide for Red Hat Enterprise Linux, CentOS, and Fedora

• Installation Guide for Ubuntu 12.04/14.04 (LTS) Server

• OpenStack Cloud Administrator Guide

• OpenStack Cloud Computing Cookbook (Packt Publishing)

Cloud (General)
• “The NIST Definition of Cloud Computing”

Python
• Dive Into Python (Apress)

Networking
• TCP/IP Illustrated, Volume 1: The Protocols, 2/E (Pearson)

• The TCP/IP Guide (No Starch Press)

http://docs.openstack.org/icehouse/install-guide/install/apt-debian/content/
http://docs.openstack.org/icehouse/install-guide/install/zypper/content/
http://docs.openstack.org/icehouse/install-guide/install/yum/content/
http://docs.openstack.org/icehouse/install-guide/install/apt/content/
http://opsgui.de/1eLBL0N
http://opsgui.de/NPGwvz
http://opsgui.de/1eLBLOv
http://opsgui.de/NPGxQd
http://opsgui.de/1eLBNWl
http://opsgui.de/NPGzYr

OpenStack Ops Guide July 3, 2014

292

• “A tcpdump Tutorial and Primer”

Systems Administration
• UNIX and Linux Systems Administration Handbook (Prentice Hall)

Virtualization
• The Book of Xen (No Starch Press)

Configuration Management
• Puppet Labs Documentation

• Pro Puppet (Apress)

http://opsgui.de/1eLBOJS
http://opsgui.de/NPGyDR
http://opsgui.de/1eLBQSb
http://opsgui.de/NPGzrj
http://opsgui.de/1eLBRFD

OpenStack Ops Guide July 3, 2014

293

Glossary
Use this glossary to get definitions of OpenStack-related words and phrases.

To add to this glossary, fork the openstack/openstack-manuals repository and
update the source files through the OpenStack contribution process.

A
absolute limit

Impassable limits for guest VMs. Settings include total RAM size, maximum
number of vCPUs, and maximum disk size.

access control list
A list of permissions attached to an object. An ACL specifies which users or
system processes have access to objects. It also defines which operations can be
performed on specified objects. Each entry in a typical ACL specifies a subject and
an operation. For instance, the ACL entry (Alice, delete) for a file gives
Alice permission to delete the file.

access key
Alternative term for an Amazon EC2 access key. See EC2 access key.

account
The Object Storage context of an account. Do not confuse with a user
account from an authentication service, such as Active Directory, /etc/passwd,
OpenLDAP, OpenStack Identity Service, and so on.

account auditor
Checks for missing replicas and incorrect or corrupted objects in a specified
Object Storage account by running queries against the backend SQLite database.

account database
A SQLite database that contains Object Storage accounts and related metadata
and that the accounts server accesses.

account reaper
An Object Storage worker that scans for and deletes account databases and that
the account server has marked for deletion.

account server
Lists containers in Object Storage and stores container information in the account
database.

https://github.com/openstack/openstack-manuals

OpenStack Ops Guide July 3, 2014

294

account service
An Object Storage component that provides account services such as list, create,
modify, and audit. Do not confuse with OpenStack Identity Service, OpenLDAP,
or similar user-account services.

accounting
The Compute service provides accounting information through the event
notification and system usage data facilities.

ACL
See access control list.

active/active configuration
In a high-availability setup with an active/active configuration, several systems
share the load together and if one fails, the load is distributed to the remaining
systems.

Active Directory
Authentication and identity service by Microsoft, based on LDAP. Supported in
OpenStack.

active/passive configuration
In a high-availability setup with an active/passive configuration, systems are set
up to bring additional resources online to replace those that have failed.

address pool
A group of fixed and/or floating IP addresses that are assigned to a project and
can be used by or assigned to the VM instances in a project.

admin API
A subset of API calls that are accessible to authorized administrators and are
generally not accessible to end users or the public Internet. They can exist as a
separate service (keystone) or can be a subset of another API (nova).

admin server
In the context of the Identity Service, the worker process that provides access to
the admin API.

Advanced Message Queuing Protocol (AMQP)
The open standard messaging protocol used by OpenStack components for intra-
service communications, provided by RabbitMQ, Qpid, or ZeroMQ.

Advanced RISC Machine (ARM)
Lower power consumption CPU often found in mobile and embedded devices.
Supported by OpenStack.

OpenStack Ops Guide July 3, 2014

295

alert
The Compute service can send alerts through its notification system, which
includes a facility to create custom notification drivers. Alerts can be sent to and
displayed on the horizon dashboard.

allocate
The process of taking a floating IP address from the address pool so it can be
associated with a fixed IP on a guest VM instance.

Amazon Kernel Image (AKI)
Both a VM container format and disk format. Supported by Image Service.

Amazon Machine Image (AMI)
Both a VM container format and disk format. Supported by Image Service.

Amazon Ramdisk Image (ARI)
Both a VM container format and disk format. Supported by Image Service.

Anvil
A project that ports the shell script-based project named DevStack to Python.

Apache
The Apache Software Foundation supports the Apache community of open-
source software projects. These projects provide software products for the public
good.

Apache License 2.0
All OpenStack core projects are provided under the terms of the Apache License
2.0 license.

Apache Web Server
The most common web server software currently used on the Internet.

API
Application programming interface.

API endpoint
The daemon, worker, or service that a client communicates with to access an API.
API endpoints can provide any number of services, such as authentication, sales
data, performance metrics, Compute VM commands, census data, and so on.

API extension
Custom modules that extend some OpenStack core APIs.

API extension plug-in
Alternative term for a Networking plug-in or Networking API extension.

OpenStack Ops Guide July 3, 2014

296

API key
Alternative term for an API token.

API server
Any node running a daemon or worker that provides an API endpoint.

API token
Passed to API requests and used by OpenStack to verify that the client is
authorized to run the requested operation.

API version
In OpenStack, the API version for a project is part of the URL. For example,
example.com/nova/v1/foobar.

applet
A Java program that can be embedded into a web page.

Application Programming Interface (API)
A collection of specifications used to access a service, application, or program.
Includes service calls, required parameters for each call, and the expected return
values.

application server
A piece of software that makes available another piece of software over a
network.

Application Service Provider (ASP)
Companies that rent specialized applications that help businesses and
organizations provide additional services with less cost.

arptables
Tool used for maintaining Address Resolution Protocol packet filter rules in the
Linux kernel firewall modules. Used along with iptables, ebtables, and ip6tables
in Compute to provide firewall services for VMs.

associate
The process associating a Compute floating IP address with a fixed IP address.

Asynchronous JavaScript and XML (AJAX)
A group of interrelated web development techniques used on the client-side to
create asynchronous web applications. Used extensively in horizon.

ATA over Ethernet (AoE)
A disk storage protocol tunneled within Ethernet.

OpenStack Ops Guide July 3, 2014

297

attach
The process of connecting a VIF or vNIC to a L2 network in Networking. In the
context of Compute, this process connects a storage volume to an instance.

attachment (network)
Association of an interface ID to a logical port. Plugs an interface into a port.

auditing
Provided in Compute through the system usage data facility.

auditor
A worker process that verifies the integrity of Object Storage objects, containers,
and accounts. Auditors is the collective term for the Object Storage account
auditor, container auditor, and object auditor.

Austin
The code name for the initial release of OpenStack. The first design summit took
place in Austin, Texas, US.

auth node
Alternative term for an Object Storage authorization node.

authentication
The process that confirms that the user, process, or client is really who they say
they are through private key, secret token, password, fingerprint, or similar
method.

authentication token
A string of text provided to the client after authentication. Must be provided by
the user or process in subsequent requests to the API endpoint.

AuthN
The Identity Service component that provides authentication services.

authorization
The act of verifying that a user, process, or client is authorized to perform an
action.

authorization node
An Object Storage node that provides authorization services.

AuthZ
The Identity Service component that provides high-level authorization services.

Auto ACK
Configuration setting within RabbitMQ that enables or disables message
acknowledgment. Enabled by default.

OpenStack Ops Guide July 3, 2014

298

auto declare
A Compute RabbitMQ setting that determines whether a message exchange is
automatically created when the program starts.

availability zone
An Amazon EC2 concept of an isolated area that is used for fault tolerance. Do
not confuse with an OpenStack Compute zone or cell.

AWS
Amazon Web Services.

B
backend

Interactions and processes that are obfuscated from the user, such as Compute
volume mount, data transmission to an iSCSI target by a daemon, or Object
Storage object integrity checks.

backend catalog
The storage method used by the Identity Service catalog service to store and
retrieve information about API endpoints that are available to the client.
Examples include a SQL database, LDAP database, or KVS backend.

backend store
The persistent data store used to save and retrieve information for a service, such
as lists of Object Storage objects, current state of guest VMs, lists of usernames,
and so on. Also, the method that the Image Service uses to get and store VM
images. Options include Object Storage, local file system, S3, and HTTP.

bandwidth
The amount of available data used by communication resources, such as the
Internet. Represents the amount of data that is used to download things or the
amount of data available to download.

bare
An Image Service container format that indicates that no container exists for the
VM image.

base image
An OpenStack-provided image.

Bexar
A grouped release of projects related to OpenStack that came out in February of
2011. It included only Compute (nova) and Object Storage (swift).

OpenStack Ops Guide July 3, 2014

299

Bexar is the code name for the second release of OpenStack. The design summit
took place in San Antonio, Texas, US, which is the county seat for Bexar county.

binary
Information that consists solely of ones and zeroes, which is the language of
computers.

bit
A bit is a single digit number that is in base of 2 (either a zero or one). Bandwidth
usage is measured in bits per second.

bits per second (BPS)
The universal measurement of how quickly data is transferred from place to
place.

block device
A device that moves data in the form of blocks. These device nodes interface the
devices, such as hard disks, CD-ROM drives, flash drives, and other addressable
regions of memory.

block migration
A method of VM live migration used by KVM to evacuate instances from one
host to another with very little downtime during a user-initiated switchover. Does
not require shared storage. Supported by Compute.

Block Storage
The OpenStack core project that enables management of volumes, volume
snapshots, and volume types. The project name of Block Storage is cinder.

Block Storage API
An API on a separate endpoint for attaching, detaching, and creating block
storage for compute VMs.

BMC
Baseboard Management Controller. The intelligence in the IPMI architecture,
which is a specialized micro-controller that is embedded on the motherboard
of a computer and acts as a server. Manages the interface between system
management software and platform hardware.

bootable disk image
A type of VM image that exists as a single, bootable file.

Bootstrap Protocol (BOOTP)
A network protocol used by a network client to obtain an IP address from a
configuration server. Provided in Compute through the dnsmasq daemon when
using either the FlatDHCP manager or VLAN manager network manager.

OpenStack Ops Guide July 3, 2014

300

browser
Any client software that enables a computer or device to access the Internet.

builder file
Contains configuration information that Object Storage uses to reconfigure a
ring or to re-create it from scratch after a serious failure.

button class
A group of related button types within horizon. Buttons to start, stop, and
suspend VMs are in one class. Buttons to associate and disassociate floating IP
addresses are in another class, and so on.

byte
Set of bits that make up a single character; there are usually 8 bits to a byte.

C
CA

Certificate Authority or Certification Authority. In cryptography, an entity that
issues digital certificates. The digital certificate certifies the ownership of a public
key by the named subject of the certificate. This enables others (relying parties)
to rely upon signatures or assertions made by the private key that corresponds
to the certified public key. In this model of trust relationships, a CA is a trusted
third party for both the subject (owner) of the certificate and the party relying
upon the certificate. CAs are characteristic of many public key infrastructure (PKI)
schemes.

cache pruner
A program that keeps the Image Service VM image cache at or below its
configured maximum size.

Cactus
An OpenStack grouped release of projects that came out in the spring of 2011. It
included Compute (nova), Object Storage (swift), and the Image Service (glance).

Cactus is a city in Texas, US and is the code name for the third release of
OpenStack. When OpenStack releases went from three to six months long, the
code name of the release changed to match a geography nearest the previous
summit.

CADF
Cloud Auditing Data Federation (CADF) is a specification for audit event data.
CADF is supported by OpenStack Identity.

OpenStack Ops Guide July 3, 2014

301

CALL
One of the RPC primitives used by the OpenStack message queue software. Sends
a message and waits for a response.

capability
Defines resources for a cell, including CPU, storage, and networking. Can apply to
the specific services within a cell or a whole cell.

capacity cache
A Compute backend database table that contains the current workload, amount
of free RAM, and number of VMs running on each host. Used to determine on
which VM a host starts.

capacity updater
A notification driver that monitors VM instances and updates the capacity cache
as needed.

CAST
One of the RPC primitives used by the OpenStack message queue software. Sends
a message and does not wait for a response.

catalog
A list of API endpoints that are available to a user after authentication with the
Identity Service.

catalog service
An Identity Service that lists API endpoints that are available to a user after
authentication with the Identity Service.

ceilometer
The project name for the Telemetry service, which is an integrated project that
provides metering and measuring facilities for OpenStack.

cell
Provides logical partitioning of Compute resources in a child and parent
relationship. Requests are passed from parent cells to child cells if the parent
cannot provide the requested resource.

cell forwarding
A Compute option that enables parent cells to pass resource requests to child
cells if the parent cannot provide the requested resource.

cell manager
The Compute component that contains a list of the current capabilities of each
host within the cell and routes requests as appropriate.

OpenStack Ops Guide July 3, 2014

302

CentOS
A Linux distribution that is compatible with OpenStack.

Ceph
Massively scalable distributed storage system that consists of an object store,
block store, and POSIX-compatible distributed file system. Compatible with
OpenStack.

CephFS
The POSIX-compliant file system provided by Ceph.

certificate authority
A simple certificate authority provided by Compute for cloudpipe VPNs and VM
image decryption.

Challenge-Handshake Authentication Protocol (CHAP)
An iSCSI authentication method supported by Compute.

chance scheduler
A scheduling method used by Compute that randomly chooses an available host
from the pool.

changes since
A Compute API parameter that downloads changes to the requested item
since your last request, instead of downloading a new, fresh set of data and
comparing it against the old data.

Chef
An operating system configuration management tool supporting OpenStack
deployments.

child cell
If a requested resource such as CPU time, disk storage, or memory is not available
in the parent cell, the request is forwarded to its associated child cells. If the child
cell can fulfill the request, it does. Otherwise, it attempts to pass the request to
any of its children.

cinder
A core OpenStack project that provides block storage services for VMs.

CirrOS
A minimal Linux distribution designed for use as a test image on clouds such as
OpenStack.

Cisco neutron plug-in
A Networking plug-in for Cisco devices and technologies, including UCS and
Nexus.

OpenStack Ops Guide July 3, 2014

303

cloud architect
A person who plans, designs, and oversees the creation of clouds.

cloud computing
A model that enables access to a shared pool of configurable computing
resources, such as networks, servers, storage, applications, and services, that can
be rapidly provisioned and released with minimal management effort or service
provider interaction.

cloud controller
Collection of Compute components that represent the global state of the cloud;
talks to services, such as Identity Service authentication, Object Storage, and
node/storage workers through a queue.

cloud controller node
A node that runs network, volume, API, scheduler, and image services. Each
service may be broken out into separate nodes for scalability or availability.

Cloud Data Management Interface (CDMI)
SINA standard that defines a RESTful API for managing objects in the cloud,
currently unsupported in OpenStack.

Cloud Infrastructure Management Interface (CIMI)
An in-progress specification for cloud management. Currently unsupported in
OpenStack.

cloud-init
A package commonly installed in VM images that performs initialization of an
instance after boot using information that it retrieves from the metadata service,
such as the SSH public key and user data.

cloudadmin
One of the default roles in the Compute RBAC system. Grants complete system
access.

cloudpipe
A compute service that creates VPNs on a per-project basis.

cloudpipe image
A pre-made VM image that serves as a cloudpipe server. Essentially, OpenVPN
running on Linux.

CMDB
Configuration Management Database.

command filter
Lists allowed commands within the Compute rootwrap facility.

OpenStack Ops Guide July 3, 2014

304

community project
A project that is not officially endorsed by the OpenStack Foundation. If the
project is successful enough, it might be elevated to an incubated project and
then to a core project, or it might be merged with the main code trunk.

compression
Reducing the size of files by special encoding, the file can be decompressed again
to its original content. OpenStack supports compression at the Linux file system
level but does not support compression for things such as Object Storage objects
or Image Service VM images.

Compute
The OpenStack core project that provides compute services. The project name of
Compute service is nova.

Compute API
The nova-api daemon provides access to nova services. Can communicate with
other APIs, such as the Amazon EC2 API.

compute controller
The Compute component that chooses suitable hosts on which to start VM
instances.

compute host
Physical host dedicated to running compute nodes.

compute node
A node that runs the nova-compute daemon that manages VM instances that
provide a wide range of services, such as web applications and analytics.

Compute service
Name for the Compute component that manages VMs.

compute worker
The Compute component that runs on each compute node and manages the VM
instance life cycle, including run, reboot, terminate, attach/detach volumes, and
so on. Provided by the nova-compute daemon.

concatenated object
A set of segment objects that Object Storage combines and sends to the client.

conductor
In Compute, conductor is the process that proxies database requests from the
compute process. Using conductor improves security because compute nodes do
not need direct access to the database.

OpenStack Ops Guide July 3, 2014

305

consistency window
The amount of time it takes for a new Object Storage object to become
accessible to all clients.

console log
Contains the output from a Linux VM console in Compute.

container
Organizes and stores objects in Object Storage. Similar to the concept of a Linux
directory but cannot be nested. Alternative term for an Image Service container
format.

container auditor
Checks for missing replicas or incorrect objects in specified Object Storage
containers through queries to the SQLite backend database.

container database
A SQLite database that stores Object Storage containers and container
metadata. The container server accesses this database.

container format
A wrapper used by the Image Service that contains a VM image and its
associated metadata, such as machine state, OS disk size, and so on.

container server
An Object Storage server that manages containers.

container service
The Object Storage component that provides container services, such as create,
delete, list, and so on.

controller node
Alternative term for a cloud controller node.

core API
Depending on context, the core API is either the OpenStack API or the main API
of a specific core project, such as Compute, Networking, Image Service, and so
on.

core project
An official OpenStack project. Currently consists of Compute (nova), Object
Storage (swift), Image Service (glance), Identity (keystone), Dashboard (horizon),
Networking (neutron), and Block Storage (cinder). The Telemetry module
(ceilometer) and Orchestration module (heat) are integrated projects as of the
Havana release. In the Icehouse release, the Database module (trove) gains
integrated project status.

OpenStack Ops Guide July 3, 2014

306

cost
Under the Compute distributed scheduler, this is calculated by looking at
the capabilities of each host relative to the flavor of the VM instance being
requested.

credentials
Data that is only known to or accessible by a user and used to verify that
the user is who he says he is. Credentials are presented to the server during
authentication. Examples include a password, secret key, digital certificate, and
fingerprint.

Crowbar
An open source community project by Dell that aims to provide all necessary
services to quickly deploy clouds.

current workload
An element of the Compute capacity cache that is calculated based on the
number of build, snapshot, migrate, and resize operations currently in progress
on a given host.

customer
Alternative term for tenant.

customization module
A user-created Python module that is loaded by horizon to change the look and
feel of the dashboard.

D
daemon

A process that runs in the background and waits for requests. May or may not
listen on a TCP or UDP port. Do not confuse with a worker.

DAC
Discretionary access control. Governs the ability of subjects to access objects,
while enabling users to make policy decisions and assign security attributes. The
traditional UNIX system of users, groups, and read-write-execute permissions is
an example of DAC.

dashboard
The web-based management interface for OpenStack. An alternative name for
horizon.

data encryption
Both Image Service and Compute support encrypted virtual machine (VM)
images (but not instances). In-transit data encryption is supported in OpenStack

OpenStack Ops Guide July 3, 2014

307

using technologies such as HTTPS, SSL, TLS, and SSH. Object Storage does not
support object encryption at the application level but may support storage that
uses disk encryption.

database ID
A unique ID given to each replica of an Object Storage database.

database replicator
An Object Storage component that copies changes in the account, container, and
object databases to other nodes.

Database Service
An integrated project that provide scalable and reliable Cloud Database-as-a-
Service functionality for both relational and non-relational database engines. The
project name of Database Service is trove.

deallocate
The process of removing the association between a floating IP address and a
fixed IP address. Once this association is removed, the floating IP returns to the
address pool.

Debian
A Linux distribution that is compatible with OpenStack.

deduplication
The process of finding duplicate data at the disk block, file, and/or object level to
minimize storage use—currently unsupported within OpenStack.

default panel
The default panel that is displayed when a user accesses the horizon dashboard.

default tenant
New users are assigned to this tenant if no tenant is specified when a user is
created.

default token
An Identity Service token that is not associated with a specific tenant and is
exchanged for a scoped token.

delayed delete
An option within Image Service so that an image is deleted after a predefined
number of seconds instead of immediately.

delivery mode
Setting for the Compute RabbitMQ message delivery mode; can be set to either
transient or persistent.

OpenStack Ops Guide July 3, 2014

308

deprecated auth
An option within Compute that enables administrators to create and manage
users through the nova-manage command as opposed to using the Identity
Service.

developer
One of the default roles in the Compute RBAC system and the default role
assigned to a new user.

device ID
Maps Object Storage partitions to physical storage devices.

device weight
Distributes partitions proportionately across Object Storage devices based on the
storage capacity of each device.

DevStack
Community project that uses shell scripts to quickly build complete OpenStack
development environments.

DHCP
Dynamic Host Configuration Protocol. A network protocol that configures
devices that are connected to a network so that they can communicate on that
network by using the Internet Protocol (IP). The protocol is implemented in a
client-server model where DHCP clients request configuration data, such as an
IP address, a default route, and one or more DNS server addresses from a DHCP
server.

DHCP agent
OpenStack Networking agent that provides DHCP services for virtual networks.

Diablo
A grouped release of projects related to OpenStack that came out in the fall
of 2011, the fourth release of OpenStack. It included Compute (nova 2011.3),
Object Storage (swift 1.4.3), and the Image Service (glance).

Diablo is the code name for the fourth release of OpenStack. The design summit
took place in in the Bay Area near Santa Clara, California, US and Diablo is a
nearby city.

direct consumer
An element of the Compute RabbitMQ that comes to life when a RPC call is
executed. It connects to a direct exchange through a unique exclusive queue,
sends the message, and terminates.

OpenStack Ops Guide July 3, 2014

309

direct exchange
A routing table that is created within the Compute RabbitMQ during RPC calls;
one is created for each RPC call that is invoked.

direct publisher
Element of RabbitMQ that provides a response to an incoming MQ message.

disassociate
The process of removing the association between a floating IP address and fixed
IP and thus returning the floating IP address to the address pool.

disk encryption
The ability to encrypt data at the file system, disk partition, or whole-disk level.
Supported within Compute VMs.

disk format
The underlying format that a disk image for a VM is stored as within the Image
Service backend store. For example, AMI, ISO, QCOW2, VMDK, and so on.

dispersion
In Object Storage, tools to test and ensure dispersion of objects and containers to
ensure fault tolerance.

Django
A web framework used extensively in horizon.

DNS
Domain Name Server. A hierarchical and distributed naming system for
computers, services, and resources connected to the Internet or a private
network. Associates a human-friendly names to IP addresses.

DNS record
A record that specifies information about a particular domain and belongs to the
domain.

dnsmasq
Daemon that provides DNS, DHCP, BOOTP, and TFTP services, used by the
Compute VLAN manager and FlatDHCP manager.

domain
Separates a website from other sites. Often, the domain name has two or more
parts that are separated by dots. For example, yahoo.com, usa.gov, harvard.edu,
or mail.yahoo.com.

A domain is an entity or container of all DNS-related information containing one
or more records.

OpenStack Ops Guide July 3, 2014

310

Domain Name Service (DNS)
In Compute, the support that enables associating DNS entries with floating IP
addresses, nodes, or cells so that hostnames are consistent across reboots.

Domain Name System (DNS)
A system by which Internet domain name-to-address and address-to-name
resolutions are determined.

DNS helps navigate the Internet by translating the IP address into an address
that is easier to remember For example, translating 111.111.111.1 into
www.yahoo.com.

All domains and their components, such as mail servers, utilize DNS to resolve
to the appropriate locations. DNS servers are usually set up in a master-slave
relationship such that failure of the master invokes the slave. DNS servers might
also be clustered or replicated such that changes made to one DNS server are
automatically propagated to other active servers.

download
The transfer of data, usually in the form of files, from one computer to another.

DRTM
Dynamic root of trust measurement.

durable exchange
The Compute RabbitMQ message exchange that remains active when the server
restarts.

durable queue
A Compute RabbitMQ message queue that remains active when the server
restarts.

Dynamic Host Configuration Protocol (DHCP)
A method to automatically configure networking for a host at boot time.
Provided by both Networking and Compute.

Dynamic HyperText Markup Language (DHTML)
Pages that use HTML, JavaScript, and Cascading Style Sheets to enable users to
interact with a web page or show simple animation.

E
EBS boot volume

An Amazon EBS storage volume that contains a bootable VM image, currently
unsupported in OpenStack.

OpenStack Ops Guide July 3, 2014

311

ebtables
Used in Compute along with arptables, iptables, and ip6tables to create firewalls
and to ensure isolation of network communications.

EC2
The Amazon commercial compute product, similar to Compute.

EC2 access key
Used along with an EC2 secret key to access the Compute EC2 API.

EC2 API
OpenStack supports accessing the Amazon EC2 API through Compute.

EC2 Compatibility API
A Compute component that enables OpenStack to communicate with Amazon
EC2.

EC2 secret key
Used along with an EC2 access key when communicating with the Compute EC2
API; used to digitally sign each request.

Elastic Block Storage (EBS)
The Amazon commercial block storage product.

encryption
OpenStack supports encryption technologies such as HTTPS, SSH, SSL, TLS, digital
certificates, and data encryption.

endpoint
See API endpoint.

endpoint registry
Alternative term for an Identity Service catalog.

endpoint template
A list of URL and port number endpoints that indicate where a service, such as
Object Storage, Compute, Identity, and so on, can be accessed.

entity
Any piece of hardware or software that wants to connect to the network services
provided by Networking, the network connectivity service. An entity can make
use of Networking by implementing a VIF.

ephemeral image
A VM image that does not save changes made to its volumes and reverts them to
their original state after the instance is terminated.

OpenStack Ops Guide July 3, 2014

312

ephemeral volume
Volume that does not save the changes made to it and reverts to its original state
when the current user relinquishes control.

Essex
A grouped release of projects related to OpenStack that came out in April
2012, the fifth release of OpenStack. It included Compute (nova 2012.1), Object
Storage (swift 1.4.8), Image (glance), Identity (keystone), and Dashboard
(horizon).

Essex is the code name for the fifth release of OpenStack. The design summit
took place in Boston, Massachusetts, US and Essex is a nearby city.

ESX
An OpenStack-supported hypervisor.

ESXi
An OpenStack-supported hypervisor.

ebtables
Filtering tool for a Linux bridging firewall, enabling filtering of network traffic
passing through a Linux bridge. Used to restrict communications between
hosts and/or nodes in OpenStack Compute along with iptables, arptables, and
ip6tables.

ETag
MD5 hash of an object within Object Storage, used to ensure data integrity.

euca2ools
A collection of command-line tools for administering VMs; most are compatible
with OpenStack.

Eucalyptus Kernel Image (EKI)
Used along with an ERI to create an EMI.

Eucalyptus Machine Image (EMI)
VM image container format supported by Image Service.

Eucalyptus Ramdisk Image (ERI)
Used along with an EKI to create an EMI.

evacuate
The process of migrating one or all virtual machine (VM) instances from one
host to another, compatible with both shared storage live migration and block
migration.

OpenStack Ops Guide July 3, 2014

313

exchange
Alternative term for a RabbitMQ message exchange.

exchange type
A routing algorithm in the Compute RabbitMQ.

exclusive queue
Connected to by a direct consumer in RabbitMQ—Compute, the message can be
consumed only by the current connection.

extended attributes (xattrs)
File system option that enables storage of additional information beyond owner,
group, permissions, modification time, and so on. The underlying Object Storage
file system must support extended attributes.

extension
Alternative term for an API extension or plug-in. In the context of Identity
Service, this is a call that is specific to the implementation, such as adding support
for OpenID.

external network
A network segment typically used for instance Internet access.

extra specs
Specifies additional requirements when Compute determines where to start a
new instance. Examples include a minimum amount of network bandwidth or a
GPU.

F
FakeLDAP

An easy method to create a local LDAP directory for testing Identity Service and
Compute. Requires Redis.

fan-out exchange
Within RabbitMQ and Compute, it is the messaging interface that is used by the
scheduler service to receive capability messages from the compute, volume, and
network nodes.

Fedora
A Linux distribution compatible with OpenStack.

Fibre Channel
Storage protocol similar in concept to TCP/IP; encapsulates SCSI commands and
data.

OpenStack Ops Guide July 3, 2014

314

Fibre Channel over Ethernet (FCoE)
The fibre channel protocol tunneled within Ethernet.

fill-first scheduler
The Compute scheduling method that attempts to fill a host with VMs rather
than starting new VMs on a variety of hosts.

filter
The step in the Compute scheduling process when hosts that cannot run VMs are
eliminated and not chosen.

firewall
Used to restrict communications between hosts and/or nodes, implemented in
Compute using iptables, arptables, ip6tables, and etables.

Firewall-as-a-Service (FWaaS)
A Networking extension that provides perimeter firewall functionality.

fixed IP address
An IP address that is associated with the same instance each time that instance
boots, is generally not accessible to end users or the public Internet, and is used
for management of the instance.

Flat Manager
The Compute component that gives IP addresses to authorized nodes and
assumes DHCP, DNS, and routing configuration and services are provided by
something else.

flat mode injection
A Compute networking method where the OS network configuration
information is injected into the VM image before the instance starts.

flat network
The Network Controller provides virtual networks to enable compute servers
to interact with each other and with the public network. All machines must
have a public and private network interface. A flat network is a private network
interface, which is controlled by the flat_interface option with flat
managers.

FlatDHCP Manager
The Compute component that provides dnsmasq (DHCP, DNS, BOOTP, TFTP) and
radvd (routing) services.

flavor
Alternative term for a VM instance type.

OpenStack Ops Guide July 3, 2014

315

flavor ID
UUID for each Compute or Image Service VM flavor or instance type.

floating IP address
An IP address that a project can associate with a VM so that the instance has
the same public IP address each time that it boots. You create a pool of floating
IP addresses and assign them to instances as they are launched to maintain a
consistent IP address for maintaining DNS assignment.

Folsom
A grouped release of projects related to OpenStack that came out in the fall of
2012, the sixth release of OpenStack. It includes Compute (nova), Object Storage
(swift), Identity (keystone), Networking (neutron), Image Service (glance), and
Volumes or Block Storage (cinder).

Folsom is the code name for the sixth release of OpenStack. The design summit
took place in San Francisco, California, US and Folsom is a nearby city.

FormPost
Object Storage middleware that uploads (posts) an image through a form on a
web page.

front end
The point where a user interacts with a service; can be an API endpoint, the
horizon dashboard, or a command-line tool.

G
gateway

An IP address, typically assigned to a router, that passes network traffic between
different networks.

Generic Receive Offload (GRO)
Feature of certain network interface drivers that combines many smaller received
packets into a large packet before delivery to the kernel IP stack.

Generic Routing Encapsulation (GRE)
Protocol that encapsulates a wide variety of network layer protocols inside virtual
point-to-point links.

glance
A core project that provides the OpenStack Image Service.

OpenStack Ops Guide July 3, 2014

316

glance API server
Processes client requests for VMs, updates Image Service metadata on the
registry server, and communicates with the store adapter to upload VM images
from the backend store.

glance registry
Alternative term for the Image Service image registry.

global endpoint template
The Identity Service endpoint template that contains services available to all
tenants.

GlusterFS
A file system designed to aggregate NAS hosts, compatible with OpenStack.

golden image
A method of operating system installation where a finalized disk image is created
and then used by all nodes without modification.

Graphic Interchange Format (GIF)
A type of image file that is commonly used for animated images on web pages.

Graphics Processing Unit (GPU)
Choosing a host based on the existence of a GPU is currently unsupported in
OpenStack.

Green Threads
The cooperative threading model used by Python; reduces race conditions and
only context switches when specific library calls are made. Each OpenStack service
is its own thread.

Grizzly
The code name for the seventh release of OpenStack. The design summit took
place in San Diego, California, US and Grizzly is an element of the state flag of
California.

guest OS
An operating system instance running under the control of a hypervisor.

H
Hadoop

Apache Hadoop is an open source software framework that supports data-
intensive distributed applications.

OpenStack Ops Guide July 3, 2014

317

handover
An object state in Object Storage where a new replica of the object is
automatically created due to a drive failure.

hard reboot
A type of reboot where a physical or virtual power button is pressed as opposed
to a graceful, proper shutdown of the operating system.

Havana
The code name for the eighth release of OpenStack. The design summit took
place in Portland, Oregon, US and Havana is an unincorporated community in
Oregon.

heat
An integrated project that aims to orchestrate multiple cloud applications for
OpenStack.

Heat Orchestration Template (HOT)
Heat input in the format native to OpenStack.

health monitor
Determines whether back-end members of a VIP pool can process a request. A
pool can have several health monitors associated with it. When a pool has several
monitors associated with it, all monitors check each member of the pool. All
monitors must declare a member to be healthy for it to stay active.

horizon
OpenStack project that provides a dashboard, which is a web interface.

horizon plug-in
A plug-in for the OpenStack dashboard (horizon).

host
A physical computer, not a VM instance (node).

host aggregate
A method to further subdivide availability zones into hypervisor pools, a
collection of common hosts.

Host Bus Adapter (HBA)
Device plugged into a PCI slot, such as a fibre channel or network card.

HTTP
Hypertext Transfer Protocol. HTTP is an application protocol for distributed,
collaborative, hypermedia information systems. It is the foundation of data
communication for the World Wide Web. Hypertext is structured text that uses

OpenStack Ops Guide July 3, 2014

318

logical links (hyperlinks) between nodes containing text. HTTP is the protocol to
exchange or transfer hypertext.

HTTPS
Hypertext Transfer Protocol Secure (HTTPS) is a communications protocol
for secure communication over a computer network, with especially wide
deployment on the Internet. Technically, it is not a protocol in and of itself;
rather, it is the result of simply layering the Hypertext Transfer Protocol (HTTP)
on top of the SSL/TLS protocol, thus adding the security capabilities of SSL/TLS to
standard HTTP communications.

Hyper-V
One of the hypervisors supported by OpenStack.

hyperlink
Any kind of text that contains a link to some other site, commonly found in
documents where clicking on a word or words opens up a different website.

Hypertext Transfer Protocol (HTTP)
The protocol that tells browsers where to go to find information.

Hypertext Transfer Protocol Secure (HTTPS)
Encrypted HTTP communications using SSL or TLS; most OpenStack API endpoints
and many inter-component communications support HTTPS communication.

hypervisor
Software that arbitrates and controls VM access to the actual underlying
hardware.

hypervisor pool
A collection of hypervisors grouped together through host aggregates.

I
IaaS

Infrastructure-as-a-Service. IaaS is a provisioning model in which an organization
outsources physical components of a data center, such as storage, hardware,
servers, and networking components. A service provider owns the equipment
and is responsible for housing, operating and maintaining it. The client typically
pays on a per-use basis. IaaS is a model for providing cloud services.

Icehouse
The code name for the ninth release of OpenStack. The design summit took place
in Hong Kong and Ice House is a street in that city.

OpenStack Ops Guide July 3, 2014

319

ICMP
Internet Control Message Protocol, used by network devices for control
messages. For example, ping uses ICMP to test connectivity.

ID number
Unique numeric ID associated with each user in Identity Service, conceptually
similar to a Linux or LDAP UID.

Identity API
Alternative term for the Identity Service API.

Identity backend
The source used by Identity Service to retrieve user information; an OpenLDAP
server, for example.

Identity Service
The OpenStack core project that provides a central directory of users mapped to
the OpenStack services they can access. It also registers endpoints for OpenStack
services. It acts as a common authentication system. The project name of the
Identity Service is keystone.

Identity Service API
The API used to access the OpenStack Identity Service provided through
keystone.

IDS
Intrusion Detection System.

image
A collection of files for a specific operating system (OS) that you use to create or
rebuild a server. OpenStack provides pre-built images. You can also create custom
images, or snapshots, from servers that you have launched. Custom images can
be used for data backups or as "gold" images for additional servers.

Image API
The Image Service API endpoint for management of VM images.

image cache
Used by Image Service to obtain images on the local host rather than re-
downloading them from the image server each time one is requested.

image ID
Combination of a URI and UUID used to access Image Service VM images through
the image API.

image membership
A list of tenants that can access a given VM image within Image Service.

OpenStack Ops Guide July 3, 2014

320

image owner
The tenant who owns an Image Service virtual machine image.

image registry
A list of VM images that are available through Image Service.

Image Service
An OpenStack core project that provides discovery, registration, and delivery
services for disk and server images. The project name of the Image Service is
glance.

Image Service API
Alternative name for the glance image API.

image status
The current status of a VM image in Image Service, not to be confused with the
status of a running instance.

image store
The backend store used by Image Service to store VM images, options include
Object Storage, local file system, S3, or HTTP.

image UUID
UUID used by Image Service to uniquely identify each VM image.

incubated project
A community project may be elevated to this status and is then promoted to a
core project.

ingress filtering
The process of filtering incoming network traffic. Supported by Compute.

INI
The OpenStack configuration files use an INI format to describe options and their
values. It consists of sections and key value pairs.

injection
The process of putting a file into a virtual machine image before the instance is
started.

instance
A running VM, or a VM in a known state such as suspended, that can be used like
a hardware server.

instance ID
Alternative term for instance UUID.

OpenStack Ops Guide July 3, 2014

321

instance state
The current state of a guest VM image.

instance tunnels network
A network segment used for instance traffic tunnels between compute nodes
and the network node.

instance type
Describes the parameters of the various virtual machine images that are available
to users; includes parameters such as CPU, storage, and memory. Alternative
term for flavor.

instance type ID
Alternative term for a flavor ID.

instance UUID
Unique ID assigned to each guest VM instance.

interface
A physical or virtual device that provides connectivity to another device or
medium.

interface ID
Unique ID for a Networking VIF or vNIC in the form of a UUID.

Internet Service Provider (ISP)
Any business that provides Internet access to individuals or businesses.

ironic
OpenStack project that provisions bare metal, as opposed to virtual, machines.

IP address
Number that is unique to every computer system on the Internet. Two versions of
the Internet Protocol (IP) are in use for addresses: IPv4 and IPv6.

IP Address Management (IPAM)
The process of automating IP address allocation, deallocation, and management.
Currently provided by Compute, melange, and Networking.

IPL
Initial Program Loader.

IPMI
Intelligent Platform Management Interface. IPMI is a standardized computer
system interface used by system administrators for out-of-band management
of computer systems and monitoring of their operation. In layman's terms, it is
a way to manage a computer using a direct network connection, whether it is

OpenStack Ops Guide July 3, 2014

322

turned on or not; connecting to the hardware rather than an operating system
or login shell.

ip6tables
Tool used to set up, maintain, and inspect the tables of IPv6 packet filter rules in
the Linux kernel. In OpenStack Compute, ip6tables is used along with arptables,
ebtables, and iptables to create firewalls for both nodes and VMs.

iptables
Used along with arptables and ebtables, iptables create firewalls in Compute.
iptables are the tables provided by the Linux kernel firewall (implemented as
different Netfilter modules) and the chains and rules it stores. Different kernel
modules and programs are currently used for different protocols: iptables applies
to IPv4, ip6tables to IPv6, arptables to ARP, and ebtables to Ethernet frames.
Requires root privilege to manipulate.

iSCSI
The SCSI disk protocol tunneled within Ethernet, supported by Compute, Object
Storage, and Image Service.

ISO9960
One of the VM image disk formats supported by Image Service.

itsec
A default role in the Compute RBAC system that can quarantine an instance in
any project.

J
Java

A programming language that is used to create systems that involve more than
one computer by way of a network.

JavaScript
A scripting language that is used to build web pages.

JavaScript Object Notation (JSON)
One of the supported response formats in OpenStack.

Jenkins
Tool used to run jobs automatically for OpenStack development.

Juno
The code name for the tenth release of OpenStack. The design summit took
place in Atlanta, Georgia, US and Juno is an unincorporated community in
Georgia.

OpenStack Ops Guide July 3, 2014

323

K
kernel-based VM (KVM)

An OpenStack-supported hypervisor.

keystone
The project that provides OpenStack Identity services.

Kickstart
A tool to automate system configuration and installation on Red Hat, Fedora,
and CentOS-based Linux distributions.

L
large object

An object within Object Storage that is larger than 5 GB.

Launchpad
The collaboration site for OpenStack.

Layer-2 network
Term used for OSI network architecture for the data link layer.

Layer-3 (L3) agent
OpenStack Networking agent that provides layer-3 (routing) services for virtual
networks.

libvirt
Virtualization API library used by OpenStack to interact with many of its
supported hypervisors.

Linux bridge
Software that enables multiple VMs to share a single physical NIC within
Compute.

Linux Bridge neutron plug-in
Enables a Linux bridge to understand a Networking port, interface attachment,
and other abstractions.

Linux containers (LXC)
An OpenStack-supported hypervisor.

live migration
The ability within Compute to move running virtual machine instances from one
host to another with only a small service interruption during switchover.

OpenStack Ops Guide July 3, 2014

324

load balancer
A load balancer is a logical device that belongs to a cloud account. It is used to
distribute workloads between multiple backend systems or services, based on the
criteria defined as part of its configuration.

load balancing
The process of spreading client requests between two or more nodes to improve
performance and availability.

Load-Balancing-as-a-Service (LBaaS)
Enables Networking to distribute incoming requests evenly between designated
instances.

Logical Volume Manager (LVM)
Provides a method of allocating space on mass-storage devices that is more
flexible than conventional partitioning schemes.

M
management API

Alternative term for an admin API.

management network
A network segment used for administration, not accessible to the public Internet.

manager
Logical groupings of related code, such as the Block Storage volume manager or
network manager.

manifest
Used to track segments of a large object within Object Storage.

manifest object
A special Object Storage object that contains the manifest for a large object.

marconi
OpenStack project that provides a queue service to applications.

melange
Project name for OpenStack Network Information Service. To be merged with
Networking.

membership
The association between an Image Service VM image and a tenant. Enables
images to be shared with specified tenants.

OpenStack Ops Guide July 3, 2014

325

membership list
A list of tenants that can access a given VM image within Image Service.

memcached
A distributed memory object caching system that is used by Object Storage for
caching.

memory overcommit
The ability to start new VM instances based on the actual memory usage of a
host, as opposed to basing the decision on the amount of RAM each running
instance thinks it has available. Also known as RAM overcommit.

message broker
The software package used to provide AMQP messaging capabilities within
Compute. Default package is RabbitMQ.

message bus
The main virtual communication line used by all AMQP messages for inter-cloud
communications within Compute.

message queue
Passes requests from clients to the appropriate workers and returns the output
to the client after the job completes.

Metadata agent
OpenStack Networking agent that provides metadata services for instances.

Meta-Data Server (MDS)
Stores CephFS metadata.

migration
The process of moving a VM instance from one host to another.

multi-host
High-availability mode for legacy (nova) networking. Each compute node handles
NAT and DHCP and acts as a gateway for all of the VMs on it. A networking
failure on one compute node doesn't affect VMs on other compute nodes.

multinic
Facility in Compute that allows each virtual machine instance to have more than
one VIF connected to it.

Modular Layer 2 (ML2) neutron plug-in
Can concurrently use multiple layer-2 networking technologies, such as 802.1Q
and VXLAN, in Networking.

OpenStack Ops Guide July 3, 2014

326

Monitor (LBaaS)
LBaaS feature that provides availability monitoring using the ping command,
TCP, and HTTP/HTTPS GET.

Monitor (Mon)
A Ceph component that communicates with external clients, checks data state
and consistency, and performs quorum functions.

multi-factor authentication
Authentication method that uses two or more credentials, such as a password
and a private key. Currently not supported in Identity Service.

MultiNic
Facility in Compute that enables a virtual machine instance to have more than
one VIF connected to it.

N
Nebula

Released as open source by NASA in 2010 and is the basis for Compute.

netadmin
One of the default roles in the Compute RBAC system. Enables the user to
allocate publicly accessible IP addresses to instances and change firewall rules.

NetApp volume driver
Enables Compute to communicate with NetApp storage devices through the
NetApp OnCommand Provisioning Manager.

network
A virtual network that provides connectivity between entities. For example,
a collection of virtual ports that share network connectivity. In Networking
terminology, a network is always a layer-2 network.

Network Address Translation (NAT)
The process of modifying IP address information while in transit. Supported by
Compute and Networking.

network controller
A Compute daemon that orchestrates the network configuration of nodes,
including IP addresses, VLANs, and bridging. Also manages routing for both
public and private networks.

Network File System (NFS)
A method for making file systems available over the network. Supported by
OpenStack.

OpenStack Ops Guide July 3, 2014

327

network ID
Unique ID assigned to each network segment within Networking. Same as
network UUID.

network manager
The Compute component that manages various network components, such as
firewall rules, IP address allocation, and so on.

network node
Any compute node that runs the network worker daemon.

network segment
Represents a virtual, isolated OSI layer-2 subnet in Networking.

Network Time Protocol (NTP)
A method of keeping a clock for a host or node correct through communications
with a trusted, accurate time source.

network UUID
Unique ID for a Networking network segment.

network worker
The nova-network worker daemon; provides services such as giving an IP
address to a booting nova instance.

Networking
A core OpenStack project that provides a network connectivity abstraction layer
to OpenStack Compute. The project name of Networking is neutron.

Networking API
API used to access OpenStack Networking. Provides an extensible architecture to
enable custom plug-in creation.

neutron
A core OpenStack project that provides a network connectivity abstraction layer
to OpenStack Compute.

neutron API
An alternative name for Networking API.

neutron manager
Enables Compute and Networking integration, which enables Networking to
perform network management for guest VMs.

neutron plug-in
Interface within Networking that enables organizations to create custom plug-ins
for advanced features, such as QoS, ACLs, or IDS.

OpenStack Ops Guide July 3, 2014

328

Nexenta volume driver
Provides support for NexentaStor devices in Compute.

No ACK
Disables server-side message acknowledgment in the Compute RabbitMQ.
Increases performance but decreases reliability.

node
A VM instance that runs on a host.

non-durable exchange
Message exchange that is cleared when the service restarts. Its data is not written
to persistent storage.

non-durable queue
Message queue that is cleared when the service restarts. Its data is not written to
persistent storage.

non-persistent volume
Alternative term for an ephemeral volume.

nova
OpenStack project that provides compute services.

Nova API
Alternative term for the Compute API.

nova-network
A Compute component that manages IP address allocation, firewalls, and other
network-related tasks. This is the legacy networking option and an alternative to
Networking.

O
object

A BLOB of data held by Object Storage; can be in any format.

object auditor
Opens all objects for an object server and verifies the MD5 hash, size, and
metadata for each object.

object expiration
A configurable option within Object Storage to automatically delete objects after
a specified amount of time has passed or a certain date is reached.

object hash
Uniquely ID for an Object Storage object.

OpenStack Ops Guide July 3, 2014

329

object path hash
Used by Object Storage to determine the location of an object in the ring. Maps
objects to partitions.

object replicator
An Object Storage component that copies an object to remote partitions for
fault tolerance.

object server
An Object Storage component that is responsible for managing objects.

Object Storage
The OpenStack core project that provides eventually consistent and redundant
storage and retrieval of fixed digital content. The project name of OpenStack
Object Storage is swift.

Object Storage API
API used to access OpenStack Object Storage.

Object Storage Device (OSD)
The Ceph storage daemon.

object versioning
Allows a user to set a flag on an Object Storage container so that all objects
within the container are versioned.

Oldie
Term for an Object Storage process that runs for a long time. Can indicate a hung
process.

Open Cloud Computing Interface (OCCI)
A standardized interface for managing compute, data, and network resources,
currently unsupported in OpenStack.

Open Virtualization Format (OVF)
Standard for packaging VM images. Supported in OpenStack.

Open vSwitch neutron plug-in
Provides support for Open vSwitch in Networking.

OpenLDAP
An open source LDAP server. Supported by both Compute and Identity Service.

OpenStack
OpenStack is a cloud operating system that controls large pools of compute,
storage, and networking resources throughout a data center, all managed

OpenStack Ops Guide July 3, 2014

330

through a dashboard that gives administrators control while empowering their
users to provision resources through a web interface. OpenStack is an open
source project licensed under the Apache License 2.0.

OpenStack code name
Each OpenStack release has a code name. Code names ascend in alphabetical
order: Austin, Bexar, Cactus, Diablo, Essex, Folsom, Grizzly, Havana, Icehouse,
and Juno. Code names are cities or counties near where the corresponding
OpenStack design summit took place. An exception, called the Waldon
exception, is granted to elements of the state flag that sound especially cool.
Code names are chosen by popular vote.

openSUSE
A Linux distribution that is compatible with OpenStack.

operator
The person responsible for planning and maintaining an OpenStack installation.

Orchestration
An integrated project that orchestrates multiple cloud applications for
OpenStack. The project name of Orchestration is heat.

orphan
In the context of Object Storage, this is a process that is not terminated after an
upgrade, restart, or reload of the service.

P
parent cell

If a requested resource, such as CPU time, disk storage, or memory, is not
available in the parent cell, the request is forwarded to associated child cells.

partition
A unit of storage within Object Storage used to store objects. It exists on top of
devices and is replicated for fault tolerance.

partition index
Contains the locations of all Object Storage partitions within the ring.

partition shift value
Used by Object Storage to determine which partition data should reside on.

pause
A VM state where no changes occur (no changes in memory, network
communications stop, etc); the VM is frozen but not shut down.

OpenStack Ops Guide July 3, 2014

331

PCI passthrough
Gives guest VMs exclusive access to a PCI device. Currently supported in
OpenStack Havana and later releases.

persistent message
A message that is stored both in memory and on disk. The message is not lost
after a failure or restart.

persistent volume
Changes to these types of disk volumes are saved.

personality file
A file used to customize a Compute instance. It can be used to inject SSH keys or
a specific network configuration.

Platform-as-a-Service (PaaS)
Provides to the consumer the ability to deploy applications through a
programming language or tools supported by the cloud platform provider.
An example of Platform-as-a-Service is an Eclipse/Java programming platform
provided with no downloads required.

plug-in
Software component providing the actual implementation for Networking APIs,
or for Compute APIs, depending on the context.

policy service
Component of Identity Service that provides a rule-management interface and a
rule-based authorization engine.

pool
A logical set of devices, such as web servers, that you group together to receive
and process traffic. The load balancing function chooses which member of the
pool handles the new requests or connections received on the VIP address. Each
VIP has one pool.

pool member
An application that runs on the back-end server in a load-balancing system.

port
A virtual network port within Networking; VIFs / vNICs are connected to a port.

port UUID
Unique ID for a Networking port.

preseed
A tool to automate system configuration and installation on Debian-based Linux
distributions.

OpenStack Ops Guide July 3, 2014

332

private image
An Image Service VM image that is only available to specified tenants.

private IP address
An IP address used for management and administration, not available to the
public Internet.

private network
The Network Controller provides virtual networks to enable compute servers to
interact with each other and with the public network. All machines must have
a public and private network interface. A private network interface can be a
flat or VLAN network interface. A flat network interface is controlled by the
flat_interface with flat managers. A VLAN network interface is controlled by the
vlan_interface option with VLAN managers.

project
A logical grouping of users within Compute; defines quotas and access to VM
images.

project ID
User-defined alphanumeric string in Compute; the name of a project.

project VPN
Alternative term for a cloudpipe.

promiscuous mode
Causes the network interface to pass all traffic it receives to the host rather than
passing only the frames addressed to it.

protected property
Generally, extra properties on an Image Service image to which only cloud
administrators have access. Limits which user roles can perform CRUD operations
on that property. The cloud administrator can configure any image property as
protected.

provider
An administrator who has access to all hosts and instances.

proxy node
A node that provides the Object Storage proxy service.

proxy server
Users of Object Storage interact with the service through the proxy server, which
in turn looks up the location of the requested data within the ring and returns
the results to the user.

OpenStack Ops Guide July 3, 2014

333

public API
An API endpoint used for both service-to-service communication and end-user
interactions.

public image
An Image Service VM image that is available to all tenants.

public IP address
An IP address that is accessible to end-users.

public key authentication
Authentication method that uses keys rather than passwords.

public network
The Network Controller provides virtual networks to enable compute servers to
interact with each other and with the public network. All machines must have a
public and private network interface. The public network interface is controlled
by the public_interface option.

Puppet
An operating system configuration-management tool supported by OpenStack.

Python
Programming language used extensively in OpenStack.

Q
QEMU Copy On Write 2 (QCOW2)

One of the VM image disk formats supported by Image Service.

Qpid
Message queue software supported by OpenStack; an alternative to RabbitMQ.

quarantine
If Object Storage finds objects, containers, or accounts that are corrupt, they are
placed in this state, are not replicated, cannot be read by clients, and a correct
copy is re-replicated.

Quick EMUlator (QEMU)
QEMU is a generic and open source machine emulator and virtualizer.

One of the hypervisors supported by OpenStack, generally used for development
purposes.

OpenStack Ops Guide July 3, 2014

334

quota
In Compute and Block Storage, the ability to set resource limits on a per-project
basis.

R
RabbitMQ

The default message queue software used by OpenStack.

Rackspace Cloud Files
Released as open source by Rackspace in 2010; the basis for Object Storage.

RADOS Block Device (RBD)
Ceph component that enables a Linux block device to be striped over multiple
distributed data stores.

radvd
The router advertisement daemon, used by the Compute VLAN manager and
FlatDHCP manager to provide routing services for VM instances.

RAM filter
The Compute setting that enables or disables RAM overcommitment.

RAM overcommit
The ability to start new VM instances based on the actual memory usage of a
host, as opposed to basing the decision on the amount of RAM each running
instance thinks it has available. Also known as memory overcommit.

rate limit
Configurable option within Object Storage to limit database writes on a per-
account and/or per-container basis.

raw
One of the VM image disk formats supported by Image Service; an unstructured
disk image.

rebalance
The process of distributing Object Storage partitions across all drives in the ring;
used during initial ring creation and after ring reconfiguration.

reboot
Either a soft or hard reboot of a server. With a soft reboot, the operating system
is signaled to restart, which enables a graceful shutdown of all processes. A hard
reboot is the equivalent of power cycling the server. The virtualization platform
should ensure that the reboot action has completed successfully, even in cases in
which the underlying domain/VM is paused or halted/stopped.

OpenStack Ops Guide July 3, 2014

335

rebuild
Removes all data on the server and replaces it with the specified image. Server ID
and IP addresses remain the same.

Recon
An Object Storage component that collects metrics.

record
Belongs to a particular domain and is used to specify information about the
domain. There are several types of DNS records. Each record type contains
particular information used to describe the purpose of that record. Examples
include mail exchange (MX) records, which specify the mail server for a particular
domain; and name server (NS) records, which specify the authoritative name
servers for a domain.

record ID
A number within a database that is incremented each time a change is made.
Used by Object Storage when replicating.

Red Hat Enterprise Linux (RHEL)
A Linux distribution that is compatible with OpenStack.

reference architecture
A recommended architecture for an OpenStack cloud.

region
A discrete OpenStack environment with dedicated API endpoints that typically
shares only the Identity Service (keystone) with other regions.

registry
Alternative term for the Image Service registry.

registry server
An Image Service that provides VM image metadata information to clients.

Reliable, Autonomic Distributed Object Store (RADOS)
A collection of components that provides object storage within Ceph. Similar to
OpenStack Object Storage.

Remote Procedure Call (RPC)
The method used by the Compute RabbitMQ for intra-service communications.

replica
Provides data redundancy and fault tolerance by creating copies of Object
Storage objects, accounts, and containers so that they are not lost when the
underlying storage fails.

OpenStack Ops Guide July 3, 2014

336

replica count
The number of replicas of the data in an Object Storage ring.

replication
The process of copying data to a separate physical device for fault tolerance and
performance.

replicator
The Object Storage backend process that creates and manages object replicas.

request ID
Unique ID assigned to each request sent to Compute.

rescue image
A special type of VM image that is booted when an instance is placed into rescue
mode. Allows an administrator to mount the file systems for an instance to
correct the problem.

resize
Converts an existing server to a different flavor, which scales the server up or
down. The original server is saved to enable rollback if a problem occurs. All
resizes must be tested and explicitly confirmed, at which time the original server
is removed.

RESTful
A kind of web service API that uses REST, or Representational State Transfer.
REST is the style of architecture for hypermedia systems that is used for the World
Wide Web.

ring
An entity that maps Object Storage data to partitions. A separate ring exists for
each service, such as account, object, and container.

ring builder
Builds and manages rings within Object Storage, assigns partitions to devices, and
pushes the configuration to other storage nodes.

Role Based Access Control (RBAC)
Provides a predefined list of actions that the user can perform, such as start or
stop VMs, reset passwords, and so on. Supported in both Identity Service and
Compute and can be configured using the horizon dashboard.

role
A personality that a user assumes to perform a specific set of operations. A role
includes a set of rights and privileges. A user assuming that role inherits those
rights and privileges.

OpenStack Ops Guide July 3, 2014

337

role ID
Alphanumeric ID assigned to each Identity Service role.

rootwrap
A feature of Compute that allows the unprivileged "nova" user to run a specified
list of commands as the Linux root user.

round-robin scheduler
Type of Compute scheduler that evenly distributes instances among available
hosts.

router
A physical or virtual network device that passes network traffic between
different networks.

routing key
The Compute direct exchanges, fanout exchanges, and topic exchanges use this
key to determine how to process a message; processing varies depending on
exchange type.

RPC driver
Modular system that allows the underlying message queue software of Compute
to be changed. For example, from RabbitMQ to ZeroMQ or Qpid.

rsync
Used by Object Storage to push object replicas.

RXTX cap
Absolute limit on the amount of network traffic a Compute VM instance can
send and receive.

RXTX quota
Soft limit on the amount of network traffic a Compute VM instance can send and
receive.

Ryu neutron plug-in
Enables the Ryu network operating system to function as a Networking
OpenFlow controller.

S
S3

Object storage service by Amazon; similar in function to Object Storage, it can act
as a backend store for Image Service VM images.

OpenStack Ops Guide July 3, 2014

338

sahara
OpenStack project that provides a scalable data-processing stack and associated
management interfaces.

scheduler manager
A Compute component that determines where VM instances should start. Uses
modular design to support a variety of scheduler types.

scoped token
An Identity Service API access token that is associated with a specific tenant.

scrubber
Checks for and deletes unused VMs; the component of Image Service that
implements delayed delete.

secret key
String of text known only by the user; used along with an access key to make
requests to the Compute API.

secure shell (SSH)
Open source tool used to access remote hosts through an encrypted
communications channel, SSH key injection is supported by Compute.

security group
A set of network traffic filtering rules that are applied to a Compute instance.

segmented object
An Object Storage large object that has been broken up into pieces. The re-
assembled object is called a concatenated object.

server
Computer that provides explicit services to the client software running on that
system, often managing a variety of computer operations.

A server is a VM instance in the Compute system. Flavor and image are requisite
elements when creating a server.

server image
Alternative term for a VM image.

server UUID
Unique ID assigned to each guest VM instance.

service
An OpenStack service, such as Compute, Object Storage, or Image Service.
Provides one or more endpoints through which users can access resources and
perform operations.

OpenStack Ops Guide July 3, 2014

339

service catalog
Alternative term for the Identity Service catalog.

service ID
Unique ID assigned to each service that is available in the Identity Service catalog.

service registration
An Identity Service feature that enables services, such as Compute, to
automatically register with the catalog.

service tenant
Special tenant that contains all services that are listed in the catalog.

service token
An administrator-defined token used by Compute to communicate securely with
the Identity Service.

session backend
The method of storage used by horizon to track client sessions, such as local
memory, cookies, a database, or memcached.

session persistence
A feature of the load-balancing service. It attempts to force subsequent
connections to a service to be redirected to the same node as long as it is online.

session storage
A horizon component that stores and tracks client session information.
Implemented through the Django sessions framework.

shared IP address
An IP address that can be assigned to a VM instance within the shared IP group.
Public IP addresses can be shared across multiple servers for use in various high-
availability scenarios. When an IP address is shared to another server, the cloud
network restrictions are modified to enable each server to listen to and respond
on that IP address. You can optionally specify that the target server network
configuration be modified. Shared IP addresses can be used with many standard
heartbeat facilities, such as keepalive, that monitor for failure and manage IP
failover.

shared IP group
A collection of servers that can share IPs with other members of the group. Any
server in a group can share one or more public IPs with any other server in the
group. With the exception of the first server in a shared IP group, servers must be
launched into shared IP groups. A server may be a member of only one shared IP
group.

OpenStack Ops Guide July 3, 2014

340

shared storage
Block storage that is simultaneously accessible by multiple clients, for example,
NFS.

Sheepdog
Distributed block storage system for QEMU, supported by OpenStack.

Simple Cloud Identity Management (SCIM)
Specification for managing identity in the cloud, currently unsupported by
OpenStack.

Single-root I/O Virtualization (SR-IOV)
A specification that, when implemented by a physical PCIe device, enables it to
appear as multiple separate PCIe devices. This enables multiple virtualized guests
to share direct access to the physical device, offering improved performance over
an equivalent virtual device. Currently supported in OpenStack Havana and later
releases.

SmokeStack
Runs automated tests against the core OpenStack API; written in Rails.

snapshot
A point-in-time copy of an OpenStack storage volume or image. Use storage
volume snapshots to back up volumes. Use image snapshots to back up data, or
as "gold" images for additional servers.

soft reboot
A controlled reboot where a VM instance is properly restarted through operating
system commands.

SolidFire Volume Driver
The Block Storage driver for the SolidFire iSCSI storage appliance.

SPICE
The Simple Protocol for Independent Computing Environments (SPICE) provides
remote desktop access to guest virtual machines. It is an alternative to VNC.
SPICE is supported by OpenStack.

spread-first scheduler
The Compute VM scheduling algorithm that attempts to start a new VM on the
host with the least amount of load.

SQL-Alchemy
An open source SQL toolkit for Python, used in OpenStack.

OpenStack Ops Guide July 3, 2014

341

SQLite
A lightweight SQL database, used as the default persistent storage method in
many OpenStack services.

stack
A set of OpenStack resources created and managed by the Orchestration service
according to a given template (either an AWS CloudFormation template or a
Heat Orchestration Template (HOT)).

StackTach
Community project that captures Compute AMQP communications; useful for
debugging.

static IP address
Alternative term for a fixed IP address.

StaticWeb
WSGI middleware component of Object Storage that serves container data as a
static web page.

storage backend
The method that a service uses for persistent storage, such as iSCSI, NFS, or local
disk.

storage node
An Object Storage node that provides container services, account services, and
object services; controls the account databases, container databases, and object
storage.

storage manager
A XenAPI component that provides a pluggable interface to support a wide
variety of persistent storage backends.

storage manager backend
A persistent storage method supported by XenAPI, such as iSCSI or NFS.

storage services
Collective name for the Object Storage object services, container services, and
account services.

strategy
Specifies the authentication source used by Image Service or Identity Service.

subdomain
A domain within a parent domain. Subdomains cannot be registered.
Subdomains enable you to delegate domains. Subdomains can themselves have

OpenStack Ops Guide July 3, 2014

342

subdomains, so third-level, fourth-level, fifth-level, and deeper levels of nesting
are possible.

subnet
Logical subdivision of an IP network.

SUSE Linux Enterprise Server (SLES)
A Linux distribution that is compatible with OpenStack.

suspend
Alternative term for a paused VM instance.

swap
Disk-based virtual memory used by operating systems to provide more memory
than is actually available on the system.

swawth
An authentication and authorization service for Object Storage, implemented
through WSGI middleware; uses Object Storage itself as the persistent backing
store.

swift
An OpenStack core project that provides object storage services.

swift All in One (SAIO)
Creates a full Object Storage development environment within a single VM.

swift middleware
Collective term for Object Storage components that provide additional
functionality.

swift proxy server
Acts as the gatekeeper to Object Storage and is responsible for authenticating
the user.

swift storage node
A node that runs Object Storage account, container, and object services.

sync point
Point in time since the last container and accounts database sync among nodes
within Object Storage.

sysadmin
One of the default roles in the Compute RBAC system. Enables a user to add
other users to a project, interact with VM images that are associated with the
project, and start and stop VM instances.

OpenStack Ops Guide July 3, 2014

343

system usage
A Compute component that, along with the notification system, collects metrics
and usage information. This information can be used for billing.

T
Telemetry

An integrated project that provides metering and measuring facilities for
OpenStack. The project name of Telemetry is ceilometer.

TempAuth
An authentication facility within Object Storage that enables Object Storage itself
to perform authentication and authorization. Frequently used in testing and
development.

Tempest
Automated software test suite designed to run against the trunk of the
OpenStack core project.

TempURL
An Object Storage middleware component that enables creation of URLs for
temporary object access.

tenant
A group of users; used to isolate access to Compute resources. An alternative
term for a project.

Tenant API
An API that is accessible to tenants.

tenant endpoint
An Identity Service API endpoint that is associated with one or more tenants.

tenant ID
Unique ID assigned to each tenant within the Identity Service. The project IDs
map to the tenant IDs.

token
An alpha-numeric string of text used to access OpenStack APIs and resources.

token services
An Identity Service component that manages and validates tokens after a user or
tenant has been authenticated.

OpenStack Ops Guide July 3, 2014

344

tombstone
Used to mark Object Storage objects that have been deleted; ensures that the
object is not updated on another node after it has been deleted.

topic publisher
A process that is created when a RPC call is executed; used to push the message
to the topic exchange.

Torpedo
Community project used to run automated tests against the OpenStack API.

transaction ID
Unique ID assigned to each Object Storage request; used for debugging and
tracing.

transient
Alternative term for non-durable.

transient exchange
Alternative term for a non-durable exchange.

transient message
A message that is stored in memory and is lost after the server is restarted.

transient queue
Alternative term for a non-durable queue.

trove
OpenStack project that provides database services to applications.

U
Ubuntu

A Debian-based Linux distribution.

unscoped token
Alternative term for an Identity Service default token.

updater
Collective term for a group of Object Storage components that processes queued
and failed updates for containers and objects.

user
In Identity Service, each user is associated with one or more tenants, and in
Compute can be associated with roles, projects, or both.

OpenStack Ops Guide July 3, 2014

345

user data
A blob of data that can be specified by the user when launching an instance. This
data can be accessed by the instance through the metadata service or config
drive. Commonly used for passing a shell script that is executed by the instance
on boot.

User Mode Linux (UML)
An OpenStack-supported hypervisor.

V
VIF UUID

Unique ID assigned to each Networking VIF.

VIP
The primary load balancing configuration object. Specifies the virtual IP address
and port where client traffic is received. Also defines other details such as the
load balancing method to be used, protocol, and so on. This entity is sometimes
known in load-balancing products as a virtual server, vserver, or listener.

Virtual Central Processing Unit (vCPU)
Subdivides physical CPUs. Instances can then use those divisions.

Virtual Disk Image (VDI)
One of the VM image disk formats supported by Image Service.

Virtual Hard Disk (VHD)
One of the VM image disk formats supported by Image Service.

virtual IP
An Internet Protocol (IP) address configured on the load balancer for use by
clients connecting to a service that is load balanced. Incoming connections are
distributed to backend nodes based on the configuration of the load balancer.

virtual machine (VM)
An operating system instance that runs on top of a hypervisor. Multiple VMs can
run at the same time on the same physical host.

virtual network
An L2 network segment within Networking.

virtual networking
A generic term for virtualization of network functions such as switching, routing,
load balancing, and security using a combination of VMs and overlays on physical
network infrastructure.

OpenStack Ops Guide July 3, 2014

346

Virtual Network Computing (VNC)
Open source GUI and CLI tools used for remote console access to VMs. Supported
by Compute.

Virtual Network InterFace (VIF)
An interface that is plugged into a port in a Networking network. Typically a
virtual network interface belonging to a VM.

virtual port
Attachment point where a virtual interface connects to a virtual network.

virtual private network (VPN)
Provided by Compute in the form of cloudpipes, specialized instances that are
used to create VPNs on a per-project basis.

virtual server
Alternative term for a VM or guest.

virtual switch (vSwitch)
Software that runs on a host or node and provides the features and functions of
a hardware-based network switch.

virtual VLAN
Alternative term for a virtual network.

VirtualBox
An OpenStack-supported hypervisor.

VLAN manager
A Compute component that provides dnsmasq and radvd and sets up forwarding
to and from cloudpipe instances.

VLAN network
The Network Controller provides virtual networks to enable compute servers to
interact with each other and with the public network. All machines must have
a public and private network interface. A VLAN network is a private network
interface, which is controlled by the vlan_interface option with VLAN
managers.

VM disk (VMDK)
One of the VM image disk formats supported by Image Service.

VM image
Alternative term for an image.

OpenStack Ops Guide July 3, 2014

347

VM Remote Control (VMRC)
Method to access VM instance consoles using a web browser. Supported by
Compute.

VMware API
Supports interaction with VMware products in Compute.

VMware NSX Neutron plug-in
Provides support for VMware NSX in Neutron.

VNC proxy
A Compute component that provides users access to the consoles of their VM
instances through VNC or VMRC.

volume
Disk-based data storage generally represented as an iSCSI target with a file
system that supports extended attributes; can be persistent or ephemeral.

Volume API
Alternative name for the Block Storage API.

volume controller
A Block Storage component that oversees and coordinates storage volume
actions.

volume driver
Alternative term for a volume plug-in.

volume ID
Unique ID applied to each storage volume under the Block Storage control.

volume manager
A Block Storage component that creates, attaches, and detaches persistent
storage volumes.

volume node
A Block Storage node that runs the cinder-volume daemon.

volume plug-in
Provides support for new and specialized types of backend storage for the Block
Storage volume manager.

volume worker
A cinder component that interacts with backend storage to manage the creation
and deletion of volumes and the creation of compute volumes, provided by the
cinder-volume daemon.

OpenStack Ops Guide July 3, 2014

348

vSphere
An OpenStack-supported hypervisor.

W
weighing

A Compute process that determines the suitability of the VM instances for a job
for a particular host. For example, not enough RAM on the host, too many CPUs
on the host, and so on.

weight
Used by Object Storage devices to determine which storage devices are suitable
for the job. Devices are weighted by size.

weighted cost
The sum of each cost used when deciding where to start a new VM instance in
Compute.

worker
A daemon that listens to a queue and carries out tasks in response to messages.
For example, the cinder-volume worker manages volume creation and
deletion on storage arrays.

X
Xen API

The Xen administrative API, which is supported by Compute.

Xen Cloud Platform (XCP)
An OpenStack-supported hypervisor.

Xen Storage Manager Volume Driver
A Block Storage volume plug-in that enables communication with the Xen
Storage Manager API.

XenServer
An OpenStack-supported hypervisor.

Z
ZeroMQ

Message queue software supported by OpenStack. An alternative to RabbitMQ.
Also spelled 0MQ.

OpenStack Ops Guide July 3, 2014

349

Zuul
Tool used in OpenStack development to ensure correctly ordered testing of
changes in parallel.

OpenStack Ops Guide July 3, 2014

351

Index
Symbols
*-manage command-line tools, 80
/var/lib/nova/instances directory, 140
0mq, 35

A
absolute limit,
access control list (ACL), 138,
access key, 82,
account auditor,
account database,
account quotas, 98
account reaper,
account server, 60, 71,
account service,
accounting,
accounts, 65, 105,
ACL (see access control list)
Active Directory, 33,
active/active configuration,
active/passive configuration,
address pool, 125,
admin API, 107,
admin server,
advanced configuration (see
configuration options)
Advanced Message Queuing Protocol
(AMQP), 6, 32, 52,
Advanced RISC Machine (ARM),
alerts

definition of,
intelligent, 185

(see also logging/monitoring)
resource, 182

allocate, definition of,
Amazon Kernel Image (AKI),
Amazon Machine Image (AMI),
Amazon Ramdisk Image (ARI),
AMD Virtualization, 41
Anvil,

Apache, 38,
Apache License 2.0,
Apache Web Server,
API (application programming interface)

API calls, inspecting, 82
API endpoint, 81,
API extension,
API extension plug-in,
API key,
API server, 36,
API token,
API version,
design considerations, 36
public APIs,

applet,
application server,
Application Service Provider (ASP),
arptables,
associate, definition of,
Asynchronous JavaScript and XML
(AJAX),
ATA over Ethernet (AoE),
attach, definition of,
attachment (network),
auditing,
auditor,
Austin,
auth node,
authentication, 32, 38, 81,
authentication tokens, 83,
AuthN,
authorization, 38, 105,
authorization node,
AuthZ,
Auto ACK,
auto declare,
automated configuration, 28
availability zone, 54,
AWS (Amazon Web Services),

B
backend interactions

catalog,

OpenStack Ops Guide July 3, 2014

352

definition of,
store, 63,

backup/recovery
considerations, 189
databases, 190
file systems, 190
items included, 189
recovering backups, 192

bandwidth
capping, 113
definition of,
design considerations for, 39
hardware specifications and, 51
obtaining maximum performance, 16
private vs. public network
recommendations, 61
recognizing DDOS attacks, 108

bare, definition of,
base image, 113, 127,
Bexar,
binary

binary objects, 59
binary results in trending, 187
definition of,

bits per second (BPS),
bits, definition of,
block device, 62, 126,
block migration, 47,
block storage, 4, 61, 118, 125
Block Storage, 100, 191,
Block Storage API,
BMC (Baseboard Management
Controller),
bootable disk image,
Bootstrap Protocol (BOOTP),
browsers, definition of,
bugs, reporting, 212
builder files, 192,
burn-in testing, 57
button classes,
bytes, definition of,

C
CA (Certificate/Certification Authority),

cache pruners,
Cactus,
CALL,
capability

definition of,
scaling and, 57

capacity cache,
capacity planning, 57
capacity updater,
CAST (RPC primitive),
catalog, 83,
catalog service,
ceilometer, 183,
cells

cell forwarding,
cell managers,
child cells,
cloud segregation, 53
definition of,
parent cells,

CentOS, 4,
Ceph, 65,
CephFS,
CERN (European Organization for
Nuclear Research), 268
certificate authority (Compute),
Challenge-Handshake Authentication
Protocol (CHAP),
chance scheduler,
changes since,
Chef, 25, 77,
child cells,
cinder, 80,
CirrOS,
Cisco neutron plug-in,
cloud architect,
cloud computing

cloud controller nodes,
cloud controllers,
cloud overview, 84

OpenStack Ops Guide July 3, 2014

353

definition of,
minimizing costs of, 25
vs. traditional deployments, 69

cloud controller nodes
adding, 51
command-line tools and, 81

cloud controllers
concept of, 31
duties of, 8
enabling RabbitMQ, 177
file system backups and, 190
hardware sizing considerations, 33
log information, 173
network traffic and, 39
new compute nodes and, 144
planned maintenance of, 133
process monitoring and, 180
rebooting, 134
scalability and, 51, 224
services managed by, 31
total failure of, 134

Cloud Data Management Interface
(CDMI),
Cloud Infrastructure Management
Interface (CIMI),
cloud-init,
cloudadmin,
cloudpipe

cloudpipe image,
definition of,

CMDB (Configuration Management
Database),
command filters,
Command-line interface (CLI), 1, 148
command-line tools

administrative, 80
compute node diagnostics, 86
getting credentials, 81
inspecting API calls, 82
installing, 80
Python Package Index (PyPI), 79
servers and services, 84

community projects,

compression,
Compute

Compute API,
compute controller,
compute host,
Compute Service, 94
Compute service,
compute worker,
definition of,
simplest architecture for, 4

compute nodes
adding, 51, 144
backup/recovery of, 190
CPU choice, 41
definition of,
diagnosing, 86
failures, 140
file system choice, 47
hypervisor choice, 42
instance storage solutions, 43
live migration, 46
logging, 48
maintenance, 135
networking, 48
overcommitting, 47

concatenated objects,
conductors, 35,
config drive, 89, 120,
configuration management, 144
configuration options

geographical storage considerations,
222
high availability, 51, 221
IPv6 support, 221
periodic task frequency, 222
periodic task implementation, 220
security, 221
wide availability of, 219

consistency window,
console logs,
containers

container auditors,
container databases,

OpenStack Ops Guide July 3, 2014

354

container format,
container servers, 71,
container service,
definition of,
quota setting, 98
storage decisions and, 60

controller nodes (see under cloud
computing)
cooperative threading, 220
core API,
core project,
cores, 41
cost,
CPUs (central processing units)

choosing, 41
enabling hyperthreading on, 42
overcommitting, 47

credentials, 38, 81,
Crowbar,
CSAIL (Computer Science and Artificial
Intelligence Lab), 266
cURL, 83
current workload,
customers (see tenants)
customization

custom log statements, 176
dashboard, 210
development environment creation
for, 195
Object Storage, 198
OpenStack Compute (nova) Scheduler,
205
paths available, 195

customization module,

D
DAC (discretionary access control), 112,

daemons
basics of, 1
definition of,
running on CLI, 148

DAIR, 267

dashboard, 4, 33, 38, 79, 210,
data

data encryption,
inspecting/recovering failed instances,
137
preventing loss of, 189

Database Service,
databases

backup/recovery of, 190
database ID,
database replicators,
design considerations, 34
Image Service, 111
instance information in, 130
maintenance/debugging, 145
nova-network troubleshooting, 163

deallocate, definition of,
Debian,
debugging (see logging/monitoring;
maintenance/debugging)
deduplication,
default panels,
default tenants,
default tokens,
delayed delete,
delivery mode,
deployment (see provisioning/
deployment)
deprecated auth,
design considerations

API support, 36
authentication/authorization, 38
cloud controller services, 31
conductor services, 35
dashboard, 38
database choice, 34
extensions, 36
hardware considerations, 33
images, 37
message queues, 35
network design, 69
networks, 39
scheduling, 37

OpenStack Ops Guide July 3, 2014

355

separation of services, 34
developer,
development environments, creating,
195
device ID,
device weight,
DevStack

customizing dashboard, 210
customizing Object Storage (swift),
198
customizing OpenStack Compute
(nova) scheduler, 205
definition of,
development environment creation,
195

DHCP (Dynamic Host Configuration
Protocol)

basics of,
debugging, 164

DHCP agent,
DHTML (Dynamic HyperText Markup
Language),
Diablo,
direct consumers,
direct exchanges,
direct publishers,
disassociate,
disk encryption,
disk format,
disk partitioning, 26
dispersion,
Django, 210,
DNS (Domain Name Server, Service or
System)

debugging, 168
definitions of,
DNS aliases, 36
DNS records,
DNS service choices, 74

dnsmasq,
Docker, 42
domain, definition of,
download, definition of,

drivers
differences between, 219
RPC drivers,

DRTM (dynamic root of trust
measurement),
durable exchange,
durable queue,

E
EBS boot volume,
ebtables, ,
EC2

EC2 access key,
EC2 API,
EC2 compatibility API,
EC2 secret key,

Elastic Block Storage (EBS),
encryption, definition of,
endpoints

API endpoint, 52, 81,
endpoint registry,
endpoint templates,
global endpoint template,
tenant endpoint,

entity, definition of,
ephemeral images,
ephemeral volume,
Essex,
ESX hypervisor, 42,
ESXi hypervisor, 42,
ETag,
euca2ools,
Eucalyptus Kernel Image (EKI),
Eucalyptus Machine Image (EMI),
Eucalyptus Ramdisk Image (ERI),
evacuation, definition of,
example architectures (see legacy
networking; OpenStack networking)
exchange,
exchange types,
exclusive queues,
extended attributes (xattrs),
extensions

OpenStack Ops Guide July 3, 2014

356

definition of,
design considerations, 36

external network, definition of,
extra specs, definition of,

F
FakeLDAP,
fan-out exchange,
Fedora,
Fibre Channel,
Fibre Channel over Ethernet (FCoE),

file injection, 124
file systems

backup/recovery of, 190
choice of, 47
nonshared, 46
shared, 45

fill-first scheduler,
filtering

definition of,
ingress filtering,

Firewall-as-a-Service (FWaaS),
firewalls,
fixed IP addresses, 70,
Flat Manager,
flat mode injection,
flat network,
FlatDHCP Manager,
flavor, 49, 112,
flavor ID,
floating IP address, 4, 163,
Folsom,
FormPost,
front end, definition of,
Fully Automatic Installation (FAI), 27
functional testing, 204

G
gateway,
Generic Receive Offload (GRO),
Generic Routing Encapsulation (GRE),

glance
glance API server, 37,
glance registry, 37,
python-glanceclient, 80

global endpoint template,
GlusterFS, 66,
golden image,
Graphic Interchange Format (GIF),
Graphics Processing Unit (GPU),
Green Threads,
Grizzly, 3,
guest OS,

H
Hadoop,
handover,
hard drives, replacing, 142
hard reboot,
hardware

design considerations, 33
maintenance/debugging, 144
scalability planning, 56
virtual hardware, 49

Havana, 3,
health monitor,
heat,
Heat Orchestration Template (HOT),

help, resources for, 211
high availability, 51, 221
horizon plug-ins,
host aggregate, 54,
Host Bus Adapter (HBA),
hosts, definition of,
HTTP (Hypertext Transfer Protocol)

basics of,
HTTPS (Hypertext Transfer Protocol
Secure),
Hyper-V, 42,
hyperlink,
hyperthreading, 41
hypervisors

choosing, 42

OpenStack Ops Guide July 3, 2014

357

compute node diagnosis and, 86
definition of,
differences between, 219
hypervisor pools,
KVM, 6
running multiple, 43

I
IaaS (Infrastructure-as-a-Service)

basics of,
Icehouse

Compute bare-metal deployment, 289
Compute V3 API, 288
database-as-a-service tool, 289
definition of,
image quotas, 94
IPv6 support, 221
migration to Ubuntu, 265
nova network deprecation, 287
scheduler improvements, 289
upcoming release of, 283
upgrades in, 287

ID number,
Identity Service

authentication decisions, 38
backup/recovery, 191
basics of,
displaying services and endpoints with,
85
Identity backend,
Identity Service API, 91,
image ID,
plug-in support, 38

IDS (Intrusion Detection System),
Image Service

backup/recovery of, 191
database queries, 111
database tables, 111
design considerations, 37
image cache,
image membership,
image owner,
image registry,

Image Service API,
image status,
image store,
image UUID,
public images,
quota setting, 94

images
adding, 109
CLI options for, 111
definition of,
deleting, 111
sharing between projects, 110

incubated projects,
ingress filtering,
INI,
injection,
instance tunnels network,
instances

boot failures, 120
database information, 130
definition of,
instance ID,
instance state,
instance type,
instance type ID,
instance UUID,
instance-specific data, 121
list of running, 88
maintenance/debugging, 136
starting, 120
storage solutions, 43
tracing instance requests, 176

Intel Virtualization Technology, 41
intelligent alerting, 185
interface,
interface ID,
interface states, checking, 151
Internet Control Message Protocol
(ICMP),
Internet Service Provider (ISP),
ip a command, 151
IP Address Management (IPAM),
IP addresses

OpenStack Ops Guide July 3, 2014

358

address planning, 70
definition of,
fixed, 70,
floating, 4, 125, 163,
private,
public,
public addressing options, 70
sections of, 70
shared,
static, 70,

ip6tables,
IPL (Initial Program Loader),
IPMI (Intelligent Platform Management
Interface),
iptables, 162,
IPv6, enabling support for, 221
ironic,
iSCSI protocol,
ISO9960 format,
itsec,

J
Java,
JavaScript,
JavaScript Object Notation (JSON),

Jenkins,
Juno,

K
kernel-based VM (KVM) hypervisor, 6,
42,
Keyring Support, 83
keystone, 80,
Kickstart,

L
large object,
Launchpad,
Layer-2 network,
Layer-3 (L3) agent,
legacy networking (nova)

benefits of multi-host networking, 7

component overview, 4
detailed description, 7
features supported by, 4
optional extensions, 9
rationale for choice of, 5
vs. OpenStack Network Service
(neutron), 7

libvirt,
Linux Bridge

neutron plug-in for,
troubleshooting, 151

Linux containers (LXC), 42,
live migration, 4, 46, 62,
live snapshots, 128
load balancing,
Load-Balancing-as-a-Service (LBaaS),

logging/monitoring
adding custom log statements, 176
ceilometer project, 183
central log management, 178
compute nodes and, 48
intelligent alerting, 185
log location, 173
logging levels, 174
OpenStack-specific resources, 183
process monitoring, 181
RabbitMQ web management
interface, 177
reading log messages, 174
resource alerting, 182
StackTack tool, 180
tailing logs, 147
tracing instance requests, 176
trending, 186

Logical Volume Manager (LVM),
LVM (Logical Volume Manager), 67

M
mailing lists, 211
maintenance/debugging, 133-150

(see also troubleshooting)
/var/lib/nova/instances, 140

OpenStack Ops Guide July 3, 2014

359

cloud controller planned maintenance,
133
cloud controller total failure, 134
complete failures, 143
compute node planned maintenance,
135
compute node reboot, 136
compute node total failures, 140
configuration management, 144
databases, 145
determining component affected, 147
hardware, 144
instances, 136
rebooting following, 134
reporting bugs, 212
schedule of tasks, 146
storage node reboot, 141
storage node shut down, 141
swift disk replacement, 142
uninstalling, 150
volumes, 139

management API (see admin API)
management network, 69,
manager,
manifests

definition of,
manifest objects,

marconi,
melange,
membership,
membership lists,
memcached,
memory overcommit,
message brokers,
message bus,
message queue, 35,
messages

design considerations, 35
non-durable exchanges,
non-durable queues,
persistent messages,
transient messages,

Meta-Data Server (MDS),

metadata
instance metadata, 121
OpenStack Image Service and, 37

Metadata agent,
metering/telemetry, 183
migration, 4, 46, 62,
MIT CSAIL (Computer Science and
Artificial Intelligence Lab), 266
Modular Layer 2 (ML2) neutron plug-in,

modules, types of, 1
Monitor (LBaaS),
Monitor (Mon),
monitoring

intelligent alerting, 185
metering and telemetry, 183
OpenStack-specific resources, 183
process monitoring, 181
resource alerting, 182
trending, 186

(see also logging/monitoring)
multi-factor authentication,
multi-host,
multi-host networking, 7, 36, 74
MultiNic, 73,
multithreading, 41

N
Nagios, 181
namespaces, troubleshooting, 171
Nebula,
NeCTAR Research Cloud, 265
netadmin,
NetApp volume driver,
network design

first steps, 69
IP address planning, 70
management network, 69
network topology

deployment options, 72
multi- vs. single-host networking, 74
multi-NIC provisioning, 73
VLAN with OpenStack VMs, 73

OpenStack Ops Guide July 3, 2014

360

public addressing options, 70
services for networking, 74

network namespaces, troubleshooting,
171
network troubleshooting (see
troubleshooting)
Networking API,
networks

configuration management, 144
configuration of, 28
definition of,
deployment options, 72
design considerations, 39
inspection of, 87
multi-host, 7, 74
Network Address Translation (NAT),

network controllers,
Network File System (NFS),
network IDs,
network managers, 72,
network nodes,
network segments,
Network Time Protocol (NTP), 74,

network UUID,
network workers,
private networks,
public,
virtual,
VLAN, 73,

neutron
Networking API,
neutron manager,
neutron plug-in,
python-neutronclient, 80

Nexenta volume driver,
NICs (network interface cards), 69
No ACK,
nodes

adding, 144
definition of,
proxy nodes,

storage nodes, 141,
swift storage nodes,

non-durable exchanges,
non-durable queue,
non-persistent volume (see ephemeral
volume)
nova

Compute API,
deprecation of, 287
nova-network,
python-novaclient, 80

O
Object Storage

adding nodes, 145
backup/recovery of, 192
customization of, 198
geographical considerations, 222
Object Storage API, 59,
Object Storage Device (OSD),
quota setting, 98
simplest architecture for, 4

objects
concatenated objects,
definition of,
manifest objects,
object auditors,
object expiration,
object hash,
object path hash,
object replicators,
object servers, 71,
object storage, 4
object versioning,
persistent storage of, 59
segmented objects,
storage decisions and, 60

Oldie,
Open Cloud Computing Interface (OCCI),

Open Virtualization Format (OVF),
Open vSwitch

neutron plug-in for,

OpenStack Ops Guide July 3, 2014

361

troubleshooting, 170
OpenLDAP,
OpenStack

basics of,
code name,
documentation, 211
module types in, 1

OpenStack community
additional information, 217
contributing to, 216
customization and, 195
getting help from, 211
joining, 216
reporting bugs, 212
security information, 216
use cases

CERN, 268
DAIR, 267
MIT CSAIL, 266
NeCTAR, 265

working with roadmaps
aspects to watch, 286-289
influencing, 285
information available, 284
release cycle, 283

OpenStack Networking (neutron)
component overview, 10
detailed description of, 12
rationale for choice of, 10
third-party component configuration,
20
troubleshooting, 151

openSUSE,
operator,
Orchestration,
orphans,
overcommitting, 47

P
parent cells,
partitions

definition of,
disk partitioning, 26

partition index,
partition index value,

passwords, 82
Paste framework, 198
path failures, 160
pause,
PCI passthrough,
periodic tasks, 220
persistent messages,
persistent storage, 59
persistent volume,
personality file,
ping packets, 152
pip utility, 79
Platform-as-a-Service (PaaS),
plug-ins, definition of,
policy service,
pool,
pool member,
ports

definition of,
port UUID,
virtual,

preseed, definition of,
private image,
private IP address,
private networks,
process monitoring, 181
Project Members tab, 104
projects

definition of, 91,
obtaining list of current, 88
project ID,
project VPN,
sharing images between, 110

promiscuous mode,
protected property,
provider,
provisioning/deployment

automated configuration, 28
automated deployment, 25
deployment scenarios, 34
network deployment options, 72

OpenStack Ops Guide July 3, 2014

362

remote management, 29
tips for, 30

proxy nodes,
proxy servers,
public API,
public image,
public IP address,
public key authentication,
public network,
Puppet, 25, 77,
Python, 198, 210,
Python Package Index (PyPI), 79

Q
QEMU Copy On Write 2 (QCOW2),

Qpid, 35,
quarantine,
queues

exclusive queues,
transient queues,

Quick EMUlator (QEMU), 42,
quotas, 93-102,

R
RabbitMQ, 35, 177,
Rackspace Cloud Files,
RADOS Block Device (RBD),
radvd,
RAID (redundant array of independent
disks), 26
RAM filter,
RAM overcommit, 47,
rate limits,
raw format,
RDO (Red Hat Distributed OpenStack), 4,
10
rebalancing,
reboot

cloud controller or storage proxy, 134
compute node, 136
hard vs. soft, ,

rebuilding,

Recon,
records

basics of,
record IDs,

recovery, 192
(see also backup/recovery)

Red Hat Enterprise Linux (RHEL),
reference architecture,
region, 53,
registry (see under Image Service)
registry servers,
Reliable, Autonomic Distributed Object
Store (RADOS),
Remote Procedure Call (RPC),
replication

definition of,
replica count,
replicators,

request IDs,
rescue images,
resizing,
resources

generic vs. OpenStack-specific, 183
resource alerting, 182

RESTful web services,
rings

definition of,
ring builders, 192,

Role Based Access Control (RBAC),
roles

definition of,
role ID,

rollbacks
preparing for, 225
process for, 259

rootwrap,
round-robin scheduler,
router,
routing keys,
RPC drivers,
rsync,
rsyslog, 178
RXTX cap/quota,

OpenStack Ops Guide July 3, 2014

363

Ryu neutron plug-in,

S
S3 storage service,
sahara,
scaling

adding cloud controller nodes, 51
availability zones, 54
burn-in testing, 57
capacity planning, 57
cells and regions, 53
cloud segregation, 52
file system choice, 46
hardware procurement, 56
host aggregate, 54
metrics for, 49
Object Storage and, 60
vertical vs. horizontal, 49

scheduler manager,
schedulers

customization of, 205
design considerations, 37
round-robin,
spread-first,

scoped tokens,
script modules, 1
scrubbers,
secret keys,
secure shell (SSH),
security groups, 114, 124,
security issues

configuration options, 221
failed instance data inspection, 137
middleware example, 199
passwords, 82
reporting/fixing vulnerabilities, 216
scheduler example, 205

segmented objects,
segregation methods, 52
separation of services, 34
server image,
servers

application servers,

avoiding volatility in, 56
definition of,
obtaining overview of, 84
proxy servers,
registry servers,
server UUID,
virtual,

service catalog,
service ID,
service registration,
service restoration, 143
service tenant,
service token,
services

definition of,
obtaining overview of, 84
separation of, 34

sessions
session backend,
session persistence,
session storage,

shared IP address,
shared IP groups,
shared storage, 45,
Sheepdog,
Simple Cloud Identity Management
(SCIM),
single-host networking, 74
Single-root I/O Virtualization (SR-IOV),

SmokeStack,
snapshot, 127,
soft reboot,
SolidFire Volume Driver,
SPICE (Simple Protocol for Independent
Computing Environments),
spread-first scheduler,
SQL-Alchemy,
SQLite,
stack,
Stackforge, 29
StackTach, 180,
static IP addresses, 70,

OpenStack Ops Guide July 3, 2014

364

StaticWeb,
storage

block storage, 4, 61, 118, 125, 191
choosing backends, 63
commodity storage, 64
ephemeral, 59
file system choice, 47
file-level, 62
geographical considerations, 222
instance storage solutions, 43
live migration, 46
object storage, 4, 59
overview of concepts, 62
storage driver support, 64
storage manager,
storage manager backend,
storage proxy maintenance, 134
storage services,
storage workers, 32
swift storage nodes,

storage backend, 63,
storage node, 141,
strategy,
subdomains,
subnet,
SUSE Linux Enterprise Server (SLES),

suspend, definition of,
swap, definition of,
swawth,
swift

Object Storage API, 59,
python-swiftclient, 80
swift middleware, 198,
swift proxy server,
swift storage nodes,

swift All in One (SAIO),
sync point,
sysadmin,
system usage,
systems administration (see user
management)

T
tailing logs, 148
tcpdump, 160
Telemetry,
telemetry/metering, 183
TempAuth,
Tempest,
TempURL,
tenant

definition of, 91
Tenant API,
tenant endpoint,
tenant ID,

testing
burn-in testing, 57
functional testing, 204

token services,
tokens,
tombstone,
topic publisher,
Torpedo,
transaction IDs,
transient exchanges (see non-durable
exchanges)
transient messages,
transient queues,
trending

monitoring cloud performance with,
186
report examples, 187
vs. alerts, 187

troubleshooting
burn-in testing, 57
checking interface states, 151
detecting path failures, 160
DNS issues, 36, 168
getting help, 211
iptables, 162
network namespaces, 171
nova-network database, 163
nova-network DHCP, 164
nova-network traffic, 152
Open vSwitch, 170

OpenStack Ops Guide July 3, 2014

365

OpenStack traffic, 153-160
trove,

U
Ubuntu, 4,
uninstall operation, 150
unscoped token,
updaters,
upgrading

controlling cost of, 223
final steps, 258
Grizzly to Havana (Red Hat), 234-241
Grizzly to Havana (Ubuntu), 227-234
pre-upgrade testing, 223
preparation for, 225
process overview, 225
rolling back failures, 259

use cases
CERN, 268
DAIR, 267
MIT CSAIL, 266
NeCTAR, 265

user data, 124,
user management

adding projects, 91
associating users with projects, 104
creating new users, 102
handling disruptive users, 108
listing users, 88
quotas, 93
terminology for, 91

User Mode Linux (UML),
user training

block storage, 118, 125
flavors, 112
floating IPs, 125
images, 109
instances, 119, 130
security groups, 114, 124
snapshots, 127

users, definition of,

V
VIF UUID,
VIP,
Virtual Central Processing Unit (vCPU),

Virtual Disk Image (VDI),
Virtual Hard Disk (VHD),
virtual IP,
virtual machine (VM), 49,
virtual network,
Virtual Network Computing (VNC),

Virtual Network InterFace (VIF),
virtual networking,
virtual port,
virtual private network (VPN),
virtual servers,
virtual switch (vSwitch),
virtual VLAN,
VirtualBox,
virtualization technology, 41
VLAN manager,
VLAN network, 73,
VM disk (VMDK),
VM image,
VM Remote Control (VMRC),
VMware API, 42,
VNC proxy,
volume

maintenance/debugging, 139
Volume API,
volume controller,
volume driver,
volume ID,
volume manager,
volume node,
volume plug-in,

volume storage, 61
volume workers,
vSphere,
vulnerability tracking/management, 216

OpenStack Ops Guide July 3, 2014

366

W
weighing,
weight, 57,
weighted cost,
workers, 32,
working environment

command-line tools, 79
dashboard, 79
network inspection, 87
running instances, 88
users and projects, 88

X
Xen API

Xen Cloud Platform (XCP),
Xen Storage Manager Volume Driver,

XenServer hypervisor, 42,

Z
ZeroMQ,
ZFS, 67
Zuul,

	OpenStack Operations Guide
	Table of Contents
	Preface
	Introduction to OpenStack
	Getting Started with OpenStack
	Using OpenStack
	Plug and Play OpenStack
	Roll Your Own OpenStack

	Who This Book Is For
	Further Reading

	How This Book Is Organized
	Why and How We Wrote This Book
	How to Contribute to This Book
	Conventions Used in This Book

	Part I. Architecture
	1. Example Architectures
	Example Architecture—Legacy Networking (nova)
	Overview
	Components
	Rationale
	Why not use the OpenStack Network Service (neutron)?
	Why use multi-host networking?

	Detailed Description
	Optional Extensions

	Example Architecture—OpenStack Networking
	Overview
	Components
	Rationale

	Detailed Description
	Node types
	Networking layout
	OpenStack internal network
	Public Network
	VM traffic network

	Node connectivity
	Initial deployment
	Connectivity for maximum performance

	Node diagrams

	Example Component Configuration

	Parting Thoughts on Architectures

	2. Provisioning and Deployment
	Automated Deployment
	Disk Partitioning and RAID
	Network Configuration

	Automated Configuration
	Remote Management
	Parting Thoughts for Provisioning and Deploying OpenStack
	Conclusion

	3. Designing for Cloud Controllers and Cloud Management
	Hardware Considerations
	Separation of Services
	Database
	Message Queue
	Conductor Services
	Application Programming Interface (API)
	Extensions
	Scheduling
	Images
	Dashboard
	Authentication and Authorization
	Network Considerations

	4. Compute Nodes
	Choosing a CPU
	Choosing a Hypervisor
	Instance Storage Solutions
	Off Compute Node Storage—Shared File System
	On Compute Node Storage—Shared File System
	On Compute Node Storage—Nonshared File System
	Issues with Live Migration
	Choice of File System

	Overcommitting
	Logging
	Networking
	Conclusion

	5. Scaling
	The Starting Point
	Adding Cloud Controller Nodes
	Segregating Your Cloud
	Cells and Regions
	Availability Zones and Host Aggregates
	Availability zone
	Host aggregates zone

	Scalable Hardware
	Hardware Procurement
	Capacity Planning
	Burn-in Testing

	6. Storage Decisions
	Ephemeral Storage
	Persistent Storage
	Object Storage
	Block Storage

	OpenStack Storage Concepts
	Choosing Storage Backends
	Commodity Storage Backend Technologies

	Conclusion

	7. Network Design
	Management Network
	Public Addressing Options
	IP Address Planning
	Network Topology
	VLAN Configuration Within OpenStack VMs
	Multi-NIC Provisioning
	Multi-Host and Single-Host Networking

	Services for Networking
	NTP
	DNS

	Conclusion

	Part II. Operations
	8. Lay of the Land
	Using the OpenStack Dashboard for Administration
	Command-Line Tools
	Installing the Tools
	Administrative Command-Line Tools
	Getting Credentials
	Inspecting API Calls
	Using cURL for further inspection

	Servers and Services
	Diagnose Your Compute Nodes

	Network Inspection
	Users and Projects
	Running Instances
	Summary

	9. Managing Projects and Users
	Projects or Tenants?
	Managing Projects
	Adding Projects

	Quotas
	Set Image Quotas
	Set Compute Service Quotas
	View and update compute quotas for a tenant (project)

	Set Object Storage Quotas
	Set Block Storage Quotas
	View and update Block Storage quotas for a tenant (project)

	User Management
	Creating New Users
	Associating Users with Projects
	Customizing Authorization
	Users Who Disrupt Other Users

	Summary

	10. User-Facing Operations
	Images
	Adding Images
	Sharing Images Between Projects
	Deleting Images
	Other CLI Options
	The Image Service and the Database
	Example Image Service Database Queries

	Flavors
	Private Flavors

	Security Groups
	General Security Groups Configuration
	End-User Configuration of Security Groups

	Block Storage
	Block Storage Creation Failures

	Instances
	Starting Instances
	Instance Boot Failures
	Using Instance-Specific Data
	Instance metadata
	Instance user data
	File injection

	Associating Security Groups
	Floating IPs
	Attaching Block Storage
	Taking Snapshots
	Live Snapshots

	Instances in the Database
	Good Luck!

	11. Maintenance, Failures, and Debugging
	Cloud Controller and Storage Proxy Failures and Maintenance
	Planned Maintenance
	Rebooting a Cloud Controller or Storage Proxy
	After a Cloud Controller or Storage Proxy Reboots
	Total Cloud Controller Failure

	Compute Node Failures and Maintenance
	Planned Maintenance
	After a Compute Node Reboots
	Instances
	Inspecting and Recovering Data from Failed Instances
	Volumes
	Total Compute Node Failure
	/var/lib/nova/instances

	Storage Node Failures and Maintenance
	Rebooting a Storage Node
	Shutting Down a Storage Node
	Replacing a Swift Disk

	Handling a Complete Failure
	Configuration Management
	Working with Hardware
	Adding a Compute Node
	Adding an Object Storage Node
	Replacing Components

	Databases
	Database Connectivity
	Performance and Optimizing

	HDWMY
	Hourly
	Daily
	Weekly
	Monthly
	Quarterly
	Semiannually

	Determining Which Component Is Broken
	Tailing Logs
	Running Daemons on the CLI

	Uninstalling

	12. Network Troubleshooting
	Using "ip a" to Check Interface States
	Visualizing nova-network Traffic in the Cloud
	Visualizing OpenStack Networking Service Traffic in the Cloud
	Finding a Failure in the Path
	tcpdump
	iptables
	Network Configuration in the Database for nova-network
	Manually Deassociating a Floating IP

	Debugging DHCP Issues with nova-network
	Debugging DNS Issues
	Troubleshooting Open vSwitch
	Dealing with Network Namespaces
	Summary

	13. Logging and Monitoring
	Where Are the Logs?
	Reading the Logs
	Tracing Instance Requests
	Adding Custom Logging Statements
	RabbitMQ Web Management Interface or rabbitmqctl
	Centrally Managing Logs
	rsyslog Client Configuration
	rsyslog Server Configuration

	StackTach
	Monitoring
	Process Monitoring
	Resource Alerting
	Metering and Telemetry with Ceilometer
	OpenStack-Specific Resources
	Intelligent Alerting
	Trending

	Summary

	14. Backup and Recovery
	What to Back Up
	Database Backups
	File System Backups
	Compute
	Image Catalog and Delivery
	Identity
	Block Storage
	Object Storage

	Recovering Backups
	Summary

	15. Customization
	Create an OpenStack Development Environment
	Customizing Object Storage (Swift) Middleware
	Customizing the OpenStack Compute (nova) Scheduler
	Customizing the Dashboard (Horizon)
	Conclusion

	16. Upstream OpenStack
	Getting Help
	Reporting Bugs
	Confirming and Prioritizing
	Bug Fixing
	After the Change Is Accepted

	Join the OpenStack Community
	How to Contribute to the Documentation
	Security Information
	Finding Additional Information

	17. Advanced Configuration
	Differences Between Various Drivers
	Implementing Periodic Tasks
	Specific Configuration Topics
	Security Configuration for Compute, Networking, and Storage
	High Availability
	Enabling IPv6 Support
	Periodic Task Frequency for Compute
	Geographical Considerations for Object Storage

	18. Upgrades
	Pre-Upgrade Testing Environment
	Preparing for a Rollback
	Upgrades
	How to Perform an Upgrade from Grizzly to Havana—Ubuntu
	Impact on Users
	Upgrade Considerations
	Perform a Backup
	Manage Repositories
	Update Configuration Files
	Upgrade Packages on the Controller Node
	Stop Services, Update Database Schemas, and Restart Services on the Controller Node
	Upgrade Packages and Restart Services on the Compute Nodes
	Upgrade Packages and Restart Services on the Block Storage Nodes

	How to Perform an Upgrade from Grizzly to Havana—Red Hat Enterprise Linux and Derivatives
	Impact on Users
	Upgrade Considerations
	Perform a Backup
	Manage Repositories
	Update Configuration Files
	Upgrade Packages on the Controller Node
	Stop Services, Update Database Schemas, and Restart Services on the Controller Node
	Upgrade Packages and Restart Services on the Compute Nodes
	Upgrade Packages and Restart Services on the Block Storage Nodes

	How to Perform an Upgrade from Havana to Icehouse—Ubuntu
	Impact on Users
	Upgrade Considerations
	Perform a Backup
	Manage Repositories
	Upgrade Notes
	Upgrade the Controller Node
	Upgrade Each Service
	Upgrade the Network Node
	Upgrade the Compute Nodes
	Upgrade the Storage Nodes

	How to Perform an Upgrade from Havana to Icehouse—Red Hat Enterprise Linux and Derivatives
	Impact on Users
	Upgrade Considerations
	Perform a Backup
	Manage Repositories
	Upgrade Notes
	Upgrade the Controller Node
	Upgrade Each Service
	Upgrade the Network Node
	Upgrade the Compute Nodes
	Upgrade the Storage Nodes

	Cleaning Up and Final Configuration File Updates
	Rolling Back a Failed Upgrade

	Appendix A. Use Cases
	NeCTAR
	Deployment
	Resources

	MIT CSAIL
	Deployment
	Resources

	DAIR
	Deployment
	Resources

	CERN
	Deployment
	Resources

	Appendix B. Tales From the Cryp^H^H^H^H Cloud
	Double VLAN
	"The Issue"
	Disappearing Images
	The Valentine's Day Compute Node Massacre
	Down the Rabbit Hole
	Havana Haunted by the Dead

	Appendix C. Working with Roadmaps
	Information Available to You
	Influencing the Roadmap
	Aspects to Watch
	Driver Quality Improvements
	Easier Upgrades
	Deprecation of Nova Network

	Replacement of Open vSwitch Plug-in with Modular Layer 2
	Compute V3 API
	OpenStack on OpenStack (TripleO)
	Data Processing (Sahara)
	Bare-Metal Deployment (Ironic)
	Database as a Service (Trove)
	Messaging as a Service (Marconi)
	Scheduler Improvements
	Block Storage Improvements
	Toward a Python SDK

	Appendix D. Resources
	OpenStack
	Cloud (General)
	Python
	Networking
	Systems Administration
	Virtualization
	Configuration Management

	Glossary
	Index

