Principal Differences Analysis

Interpretable Characterization of Differences between Distributions

Jonas Mueller

jonasmueller@csail.mit.edu

Consider high-dimensional random variables $X, Y \in \mathbb{R}^d$

- X = measurements of various variables under condition 1
- Y = measurements of same variables under condition 2

Consider high-dimensional random variables $X, Y \in \mathbb{R}^d$

- X = measurements of various variables under condition 1
- $\boldsymbol{Y}=$ measurements of same variables under condition 2

Given unpaired samples $x_1, \ldots, x_n \stackrel{iid}{\sim} \mathbb{P}_X$, $y_1, \ldots, y_m \stackrel{iid}{\sim} \mathbb{P}_Y$:

Consider high-dimensional random variables $X, Y \in \mathbb{R}^d$

- X = measurements of various variables under condition 1
- $\boldsymbol{Y}=$ measurements of same variables under condition 2

Given unpaired samples $x_1, \ldots, x_n \stackrel{iid}{\sim} \mathbb{P}_X$, $y_1, \ldots, y_m \stackrel{iid}{\sim} \mathbb{P}_Y$:

(Q1) Is $\mathbb{P}_X = \mathbb{P}_Y$? (Two-sample testing)

Consider high-dimensional random variables $X, Y \in \mathbb{R}^d$

- X = measurements of various variables under condition 1
- Y = measurements of same variables under condition 2

Given unpaired samples $x_1, \ldots, x_n \stackrel{iid}{\sim} \mathbb{P}_X$, $y_1, \ldots, y_m \stackrel{iid}{\sim} \mathbb{P}_Y$:

(Q1) Is $\mathbb{P}_X = \mathbb{P}_Y$? (Two-sample testing)

(Q2) If not, what is minimal feature subset $S \subseteq \{1, \ldots, d\}$ such that marginal distributions $\mathbb{P}_{X_S} \neq \mathbb{P}_{Y_S}$ while $\mathbb{P}_{X_{SC}} \approx \mathbb{P}_{Y_{SC}}$?

Consider high-dimensional random variables $X, Y \in \mathbb{R}^d$

- X = measurements of various variables under condition 1
- Y = measurements of same variables under condition 2

Given unpaired samples $x_1, \ldots, x_n \stackrel{iid}{\sim} \mathbb{P}_X$, $y_1, \ldots, y_m \stackrel{iid}{\sim} \mathbb{P}_Y$:

(Q1) Is $\mathbb{P}_X = \mathbb{P}_Y$? (Two-sample testing)

(Q2) If not, what is minimal feature subset $S \subseteq \{1, \ldots, d\}$ such that marginal distributions $\mathbb{P}_{X_S} \neq \mathbb{P}_{Y_S}$ while $\mathbb{P}_{X_{SC}} \approx \mathbb{P}_{Y_{SC}}$?

(Q3) How much does each feature contribute to the overall difference?

- Understanding differences between populations
 - = fundamental scientific problem

- Understanding differences between populations = fundamental scientific problem
- General differences beyond mean shifts are of interest (e.g. variance/covariance)

- Understanding differences between populations = fundamental scientific problem
- General differences beyond mean shifts are of interest (e.g. variance/covariance)
- Undesirable to restrict the analysis to specific parametric differences

- Understanding differences between populations = fundamental scientific problem
- General differences beyond mean shifts are of interest (e.g. variance/covariance)
- Undesirable to restrict the analysis to specific parametric differences
- Often many variables are measured (high-dimensional data), but only a small subset expected to exhibit differences between populations

- Understanding differences between populations = fundamental scientific problem
- General differences beyond mean shifts are of interest (e.g. variance/covariance)
- Undesirable to restrict the analysis to specific parametric differences
- Often many variables are measured (high-dimensional data), but only a small subset expected to exhibit differences between populations
- Two-sample testing is easy in univariate case: can use any statistical divergence *D* that measures difference between univariate distributions (e.g. Kullback-Leibler, Kolmogorov-Smirnov)

 Marginal per-variable analysis (ignores potentially important interactions between variables)

- Marginal per-variable analysis (ignores potentially important interactions between variables)
- Logistic regression with lasso (Tibshirani, 1996) (requires (log)linear relationships, only models expectation)

Tibshirani R (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B.

- Marginal per-variable analysis (ignores potentially important interactions between variables)
- Logistic regression with lasso (Tibshirani, 1996) (requires (log)linear relationships, only models expectation)
- Sparse linear discriminants analysis (Clemmensen, 2011) (requires multivariate Gaussianity)

Tibshirani R (1996). Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society Series B*. Clemmensen L, Hastie T, Witten D, Ersbo II B (2011). Sparse Discriminant Analysis. *Technometrics*.

- Marginal per-variable analysis (ignores potentially important interactions between variables)
- Logistic regression with lasso (Tibshirani, 1996) (requires (log)linear relationships, only models expectation)
- Sparse linear discriminants analysis (Clemmensen, 2011) (requires multivariate Gaussianity)
- Random projection (Lopes, 2011) Direction-projection-permutation (Wei, 2015) (only suited for specific types of differences)

Tibshirani R (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B.

Clemmensen L, Hastie T, Witten D, Ersbo II B (2011). Sparse Discriminant Analysis. Technometrics.

Lopes M, Jacob L, Wainwright M (2011). A More Powerful Two-Sample Test in High Dimensions using Random Projection. NIPS.

Wei S, Lee C, Wichers L, Marron JS (2015). Direction-Projection-Permutation for High Dimensional Hypothesis Tests. Journal of Computational and Graphical Statistics.

Principal Differences Analysis (PDA)

- $\bullet~$ User chooses statistical divergence D
- Goal: Find (unit-norm) projection β which maximizes $D(\beta^T X, \beta^T Y)$
- Transforms hard high-dimensional statistical problem into simple 1-D measure

Cramer-Wold Device

Theorem (Cramer & Wold, 1936)

Multivariate $X \stackrel{d}{=} Y$ if and only if $\beta^T X \stackrel{d}{=} \beta^T Y$ for all $\beta \in \mathbb{R}^d$

- If $\mathbb{P}_X \neq \mathbb{P}_Y$ and D is *positive definite* divergence, then PDA-projection β^* is guaranteed to ensure $D(\beta^{*T}X, \beta^{*T}Y) > 0$
- PDA can capture any type of difference between populations, using a single linear projection

Cramer H, Wold H (1936). Some Theorems on Distribution Functions. Journal of the London Mathematical Society.

• Additional Goal: Select features over which populations differ

- Additional Goal: Select features over which populations differ
- Method: Impose sparsity on β and examine features with nonzero weight in resulting projection-vector

- Additional Goal: Select features over which populations differ
- Method: Impose sparsity on β and examine features with nonzero weight in resulting projection-vector

SPARDAFind projection $\hat{\beta}$ that solves: $\max_{\beta \in \mathcal{B}, ||\beta||_0 \le k} \left\{ D(\beta^T \widehat{X}^{(n)}, \beta^T \widehat{Y}^{(m)}) \right\}$ $\mathcal{B} := \{\beta \in \mathbb{R}^d : ||\beta||_2 \le 1, \beta_1 \ge 0\}$, $\beta^T \widehat{X}^{(n)} =$ projected empirical distribution

- Additional Goal: Select features over which populations differ
- Method: Impose sparsity on β and examine features with nonzero weight in resulting projection-vector

SPARDAFind projection $\hat{\beta}$ that solves: $\max_{\beta \in \mathcal{B}, ||\beta||_0 \le k} \left\{ D(\beta^T \widehat{X}^{(n)}, \beta^T \widehat{Y}^{(m)}) \right\}$ $\mathcal{B} := \{\beta \in \mathbb{R}^d : ||\beta||_2 \le 1, \beta_1 \ge 0\}$, $\beta^T \widehat{X}^{(n)} =$ projected empirical distribution

• Cardinality constraint may be relaxed by adding $\lambda ||\beta||_1$ penalty

- Additional Goal: Select features over which populations differ
- Method: Impose sparsity on β and examine features with nonzero weight in resulting projection-vector

SPARDA

Find projection $\widehat{\beta}$ that solves: $\max_{\beta \in \mathcal{B}, ||\beta||_0 \le k} \left\{ D(\beta^T \widehat{X}^{(n)}, \beta^T \widehat{Y}^{(m)}) \right\}$ $\mathcal{B} := \{\beta \in \mathbb{R}^d : ||\beta||_2 \le 1, \beta_1 \ge 0\} \text{ , } \beta^T \widehat{X}^{(n)} = \text{projected empirical distribution}$

- Cardinality constraint may be relaxed by adding $\lambda ||\beta||_1$ penalty
- \bullet In practice: choose λ or k by maximizing projected divergence between held-out samples

 PDA enables application of rank-based measures (eg. Mann-Whitney) to high-dimensional data

- PDA enables application of rank-based measures (eg. Mann-Whitney) to high-dimensional data
- Support Vector Machine = special case of PDA where D measures margin between projected distributions

- PDA enables application of rank-based measures (eg. Mann-Whitney) to high-dimensional data
- Support Vector Machine = special case of PDA where D measures margin between projected distributions
- Fisher's Discriminant Analysis = special case of PDA where D is ratio of within-vs-between-class variance (Bhattacharyya distance for Gaussian X, Y with identical covariance)

- PDA enables application of rank-based measures (eg. Mann-Whitney) to high-dimensional data
- Support Vector Machine = special case of PDA where D measures margin between projected distributions
- Fisher's Discriminant Analysis = special case of PDA where D is ratio of within-vs-between-class variance (Bhattacharyya distance for Gaussian X, Y with identical covariance)
- If *D* defined over densities (eg. *f*-divergence), can use kernel density estimation. For smooth kernel (eg. Gaussian), locally optimal projection can be found via projected gradient methods.

- PDA enables application of rank-based measures (eg. Mann-Whitney) to high-dimensional data
- Support Vector Machine = special case of PDA where D measures margin between projected distributions
- Fisher's Discriminant Analysis = special case of PDA where D is ratio of within-vs-between-class variance (Bhattacharyya distance for Gaussian X, Y with identical covariance)
- If *D* defined over densities (eg. *f*-divergence), can use kernel density estimation. For smooth kernel (eg. Gaussian), locally optimal projection can be found via projected gradient methods.
- Our focus is D = Wasserstein distance; natural choice when variables are measured on common scale (eg. expression of various genes).

Definition (Squared Wasserstein Distance)

$$\mathcal{D}(X,Y) = \min_{\mathbb{P}_{XY}} \mathbb{E}_{\mathbb{P}_{XY}} ||X - Y||^2$$

where $(X,Y) \sim \mathbb{P}_{XY}$ and $X \sim \mathbb{P}_X, Y \sim \mathbb{P}_Y$

Definition (Squared Wasserstein Distance)

$$D(X,Y) = \min_{\mathbb{P}_{XY}} \mathbb{E}_{\mathbb{P}_{XY}} ||X - Y||^2$$

where $(X,Y) \sim \mathbb{P}_{XY}$ and $X \sim \mathbb{P}_X, Y \sim \mathbb{P}_Y$

 Canonical divergence between distributions on metric space, successfully used in many applications (eg. shape/image data)

Definition (Squared Wasserstein Distance)

$$D(X,Y) = \min_{\mathbb{P}_{XY}} \mathbb{E}_{\mathbb{P}_{XY}} ||X - Y||^2$$

where $(X,Y) \sim \mathbb{P}_{XY}$ and $X \sim \mathbb{P}_X, Y \sim \mathbb{P}_X$

- Canonical divergence between distributions on metric space, successfully used in many applications (eg. shape/image data)
- Intuitively: minimal amount of work to transform \mathbb{P}_X into \mathbb{P}_Y where work = probability mass moved \times distance transported

Definition (Squared Wasserstein Distance)

$$D(X,Y) = \min_{\mathbb{P}_{XY}} \mathbb{E}_{\mathbb{P}_{XY}} ||X - Y||^2$$

where $(X,Y) \sim \mathbb{P}_{XY}$ and $X \sim \mathbb{P}_X, Y \sim \mathbb{P}_Y$

- Canonical divergence between distributions on metric space, successfully used in many applications (eg. shape/image data)
- Intuitively: minimal amount of work to transform \mathbb{P}_X into \mathbb{P}_Y where work = probability mass moved \times distance transported
- Natural dissimilarity measure between populations: integrates both fraction of individuals which are different & magnitude of differences

Definition (Squared Wasserstein Distance)

$$D(X,Y) = \min_{\mathbb{P}_{XY}} \mathbb{E}_{\mathbb{P}_{XY}} ||X - Y||^2$$

where $(X,Y) \sim \mathbb{P}_{XY}$ and $X \sim \mathbb{P}_X, Y \sim \mathbb{P}_Y$

- Canonical divergence between distributions on metric space, successfully used in many applications (eg. shape/image data)
- Intuitively: minimal amount of work to transform \mathbb{P}_X into \mathbb{P}_Y where work = probability mass moved \times distance transported
- Natural dissimilarity measure between populations: integrates both fraction of individuals which are different & magnitude of differences
- Statistically & computationally inefficient in high dimensions

SPARDA with Wasserstein distance

Find
$$\widehat{\beta} = \underset{\substack{\beta \in \mathcal{B} \\ ||\beta||_0 \le k}}{\operatorname{argmax}} \left\{ \underset{M \in \mathcal{M}}{\min} \ \beta^T W_M \beta \right\}$$

Ohiective

 $\mathcal{M} := \text{set of } n \times m \text{ matching matrices (entries} \ge 0, \text{ row sums} = \frac{1}{n}, \text{ column sums} = \frac{1}{m})$ $W_M := \sum_{i,j} [Z_{ij} \otimes Z_{ij}] M_{ij} \qquad \qquad Z_{ij} := x^{(i)} - y^{(j)}$

Since:
$$D(\beta^T \widehat{X}^{(n)}, \beta^T \widehat{Y}^{(m)}) = \min_{M \in \mathcal{M}} \sum_{i,j} M_{ij} (\beta^T x^{(i)} - \beta^T y^{(j)})^2 = \min_{M \in \mathcal{M}} \beta^T W_M \beta$$

SPARDA with Wasserstein distance

Find
$$\widehat{\beta} = \underset{\substack{\beta \in \mathcal{B} \\ ||\beta||_0 \le k}}{\operatorname{argmax}} \left\{ \underset{M \in \mathcal{M}}{\min} \ \beta^T W_M \beta \right\}$$

Ohiective

 $\begin{aligned} \mathcal{M} &:= \text{set of } n \times m \text{ matching matrices (entries} \geq 0, \text{ row sums} = \frac{1}{n}, \text{ column sums} = \frac{1}{m}) \\ W_M &:= \sum_{i,j} [Z_{ij} \otimes Z_{ij}] M_{ij} \qquad \qquad Z_{ij} := x^{(i)} - y^{(j)} \end{aligned}$

Since: $D(\beta^T \widehat{X}^{(n)}, \beta^T \widehat{Y}^{(m)}) = \min_{M \in \mathcal{M}} \sum_{i,j} M_{ij} (\beta^T x^{(i)} - \beta^T y^{(j)})^2 = \min_{M \in \mathcal{M}} \beta^T W_M \beta$

Non-concave max-min optimization

SPARDA with Wasserstein distance

Find
$$\widehat{\beta} = \underset{\substack{\beta \in \mathcal{B} \\ ||\beta||_0 \le k}}{\operatorname{argmax}} \left\{ \underset{M \in \mathcal{M}}{\min} \ \beta^T W_M \beta \right\}$$

Ohiective

$$\begin{split} \mathcal{M} &:= \text{set of } n \times m \text{ matching matrices (entries} \geq 0, \text{ row sums} = \frac{1}{n}, \text{ column sums} = \frac{1}{m}) \\ W_M &:= \sum_{i,j} [Z_{ij} \otimes Z_{ij}] M_{ij} \qquad \qquad Z_{ij} := x^{(i)} - y^{(j)} \end{split}$$

Since:
$$D(\beta^T \widehat{X}^{(n)}, \beta^T \widehat{Y}^{(m)}) = \min_{M \in \mathcal{M}} \sum_{i,j} M_{ij} (\beta^T x^{(i)} - \beta^T y^{(j)})^2 = \min_{M \in \mathcal{M}} \beta^T W_M \beta$$

• Non-concave max-min optimization

Two-step relax-tighten procedure:

- Solve convex relaxation (semidefinite program).
- Q Run steepest ascent method to greedily improve the current projection with respect to the original nonconvex objective (if relaxation is not tight).

Wang Z, Lu H, Liu H (2014). Tighten after Relax: Minimax-Optimal Sparse PCA in Polynomial Time. NIPS.
• Can rewrite SPARDA objective:

 $\max_{B} \min_{M \in \mathcal{M}} \operatorname{tr}(W_{M}B) \text{ subject to } B \in \mathcal{B}_{r}, ||B||_{0} \leq k^{2}, \operatorname{rank}(B) = 1$

where $B = \beta \otimes \beta$ and $\mathcal{B}_r = \{B \in \mathbb{R}^{d \times d} : tr(B) = 1, B \succeq 0\}$

• Can rewrite SPARDA objective:

 $\max_{B} \min_{M \in \mathcal{M}} \operatorname{tr}(W_{M}B) \text{ subject to } B \in \mathcal{B}_{r}, ||B||_{0} \leq k^{2}, \operatorname{rank}(B) = 1$

where $B = \beta \otimes \beta$ and $\mathcal{B}_r = \{B \in \mathbb{R}^{d \times d} : tr(B) = 1, B \succeq 0\}$

• Relaxation: $\max_{B \in \mathcal{B}_r} \left\{ \min_{M \in \mathcal{M}} \operatorname{tr} (W_M B) - \lambda ||B||_1 \right\}$

• Can rewrite SPARDA objective:

 $\max_{B} \min_{M \in \mathcal{M}} \operatorname{tr}(W_{M}B) \text{ subject to } B \in \mathcal{B}_{r}, ||B||_{0} \leq k^{2}, \operatorname{rank}(B) = 1$

where $B = \beta \otimes \beta$ and $\mathcal{B}_r = \{B \in \mathbb{R}^{d \times d} : tr(B) = 1, B \succeq 0\}$

- Relaxation: $\max_{B \in \mathcal{B}_r} \left\{ \min_{M \in \mathcal{M}} \operatorname{tr} (W_M B) \lambda ||B||_1 \right\}$
- While concave, max-min relaxation remains computationally demanding. Instead, turn to the dual:

$$\max_{\substack{B \in \mathcal{B}_r \\ u \in \mathbb{R}^n, v \in \mathbb{R}^m}} \frac{1}{m} \sum_{i,j} \min\{0, \mathsf{tr}([Z_{ij} \otimes Z_{ij}]B) - u_i - v_j\} + \frac{1}{n} \sum_{i=1}^n u_i + \frac{1}{m} \sum_{j=1}^m v_j - \lambda ||B||_1$$

• Can rewrite SPARDA objective:

 $\max_{B} \min_{M \in \mathcal{M}} \operatorname{tr}(W_{M}B) \text{ subject to } B \in \mathcal{B}_{r}, ||B||_{0} \leq k^{2}, \operatorname{rank}(B) = 1$

where $B = \beta \otimes \beta$ and $\mathcal{B}_r = \{B \in \mathbb{R}^{d \times d} : tr(B) = 1, B \succeq 0\}$

- Relaxation: $\max_{B \in \mathcal{B}_r} \left\{ \min_{M \in \mathcal{M}} \operatorname{tr} (W_M B) \lambda ||B||_1 \right\}$
- While concave, max-min relaxation remains computationally demanding. Instead, turn to the dual:

$$\max_{\substack{B \in \mathcal{B}_r \\ u \in \mathbb{R}^n, v \in \mathbb{R}^m}} \frac{1}{m} \sum_{i,j} \min\{0, \mathsf{tr}([Z_{ij} \otimes Z_{ij}]B) - u_i - v_j\} + \frac{1}{n} \sum_{i=1}^n u_i + \frac{1}{m} \sum_{j=1}^m v_j - \lambda ||B||_1$$

• Find optimal B^* via projected subgradient method, take largest eigenvalue of B^* as best projection vector $\widehat{\beta}_{\rm relax}$

RELAX Algorithm: Solves the dualized semidefinite relaxation of SPARDA. Returns the largest eigenvector of the solution to (2) as the desired projection direction for SPARDA.

Input: d-dimensional data $x^{(1)}, \ldots, x^{(n)}$ and $y^{(1)}, \ldots, y^{(m)}$ (with $n \ge m$) Parameters: $\lambda \ge 0$ controls the amount of regularization, $\gamma > 0$ is the step-size used for B updates, n > 0 is the step-size used for updates of dual variables u and v. T is the maximum number of iterations without improvement in cost after which algorithm terminates. 1: Initialize $\beta^{(0)} \leftarrow \left[\frac{\sqrt{d}}{\sqrt{d}}, \dots, \frac{\sqrt{d}}{d}\right], B^{(0)} \leftarrow \beta^{(0)} \otimes \beta^{(0)} \in \mathcal{B}_r, u^{(0)} \leftarrow \mathbf{0}_{n \times 1}, v^{(0)} \leftarrow \mathbf{0}_{m \times 1}$ 2: While the number of iterations since last improvement in objective function is less than T: 3: $\partial u \leftarrow [1/n, \dots, 1/n] \in \mathbb{R}^n, \ \partial v \leftarrow [1/m, \dots, 1/m] \in \mathbb{R}^m, \ \partial B \leftarrow \mathbf{0}_{d\times d}$ 4: For $i, j \in \{1, ..., n\} \times \{1, ..., m\}$; 5. $Z_{ii} \leftarrow x^{(i)} - y^{(j)}$ If $tr([Z_{ij} \otimes Z_{ij}]B^{(t)}) - u^{(t)} - v^{(t)} < 0$; 6: 7: $\partial u_i \leftarrow \partial u_i - 1/m$, $\partial v_i \leftarrow \partial v_i - 1/m$, $\partial B \leftarrow \partial B + Z_{ii} \otimes Z_{ii}/m$ 8: End For $u^{(t+1)} \leftarrow u^{(t)} + n \cdot \partial u$ and $v^{(t+1)} \leftarrow v^{(t)} + n \cdot \partial v$ Q+ $B^{(t+1)} \leftarrow \operatorname{Projection}\left(B^{(t)} + \frac{\gamma}{0.5B_{1-\epsilon}} \cdot \partial B; \lambda, \gamma/||\partial B||_F\right)$ 10 Output: $\hat{\beta}_{relay} \in \mathbb{R}^d$ defined as the largest eigenvector (based on corresponding eigenvalue's magnitude) of the matrix $B^{(t^*)}$ which attained the best objective value over all iterations.

Projection Algorithm: Projects matrix onto positive semidefinite cone of unit-trace matrices B_r (the feasible set in our relaxation). Step 4 applies soft-thresholding proximal operator for sparsity.

$$\begin{split} & \text{Input: } B \in \mathbb{R}^{d \times d} \\ & \text{Parameters } \lambda \geqslant 0 \text{ controls the amount of regularization, } \delta = \gamma / ||^2 B ||_F \geqslant 0 \text{ is the actual step-size} \\ & \text{used in the } B \text{-update.} \\ & \text{is } QAC^T \leftarrow \text{digendecomposition of } B \\ & 2: w^* \leftarrow \arg\min \{||w - \text{diag}(\Lambda)||_2^2 : w \in [0,1]^d, ||w||_1 = 1\} \\ & \text{(Quadratic program)} \\ & 3: \tilde{B} - Q \cdot \text{diag}(w_1^*, \ldots, w_g^*) \cdot Q^T \\ & 4: \text{ If } \lambda > 0: \text{ For } r, s \in \{1, \ldots, d\}^2 : \quad \tilde{B}_{r,s} \leftarrow \text{sign}(\tilde{B}_{r,s}) \cdot \max\{0, |\tilde{B}_{r,s}| - \delta \lambda\} \\ & \text{Output: } \tilde{B} \in K_{\tau} \end{split}$$

RELAX Algorithm: Solves the dualized semidefinite relaxation of SPARDA. Returns the largest eigenvector of the solution to (2) as the desired projection direction for SPARDA.

Input: d-dimensional data $x^{(1)}, \ldots, x^{(n)}$ and $y^{(1)}, \ldots, y^{(m)}$ (with $n \ge m$) Parameters: $\lambda \ge 0$ controls the amount of regularization, $\gamma > 0$ is the step-size used for B updates, n > 0 is the step-size used for updates of dual variables u and v. T is the maximum number of iterations without improvement in cost after which algorithm terminates. 1: Initialize $\beta^{(0)} \leftarrow \left[\frac{\sqrt{d}}{d}, \dots, \frac{\sqrt{d}}{d}\right], B^{(0)} \leftarrow \beta^{(0)} \otimes \beta^{(0)} \in \mathcal{B}_r, u^{(0)} \leftarrow \mathbf{0}_{n \times 1}, v^{(0)} \leftarrow \mathbf{0}_{m \times 1}$ 2: While the number of iterations since last improvement in objective function is less than T: 3: $\partial u \leftarrow [1/n, \dots, 1/n] \in \mathbb{R}^n, \ \partial v \leftarrow [1/m, \dots, 1/m] \in \mathbb{R}^m, \ \partial B \leftarrow \mathbf{0}_{d\times d}$ 4: For $i, j \in \{1, ..., n\} \times \{1, ..., m\}$; 5. $Z_{ii} \leftarrow x^{(i)} - y^{(j)}$ If $tr([Z_{ij} \otimes Z_{ij}]B^{(t)}) - u^{(t)} - v^{(t)} < 0$; 6 7. $\partial u_i \leftarrow \partial u_i - 1/m$, $\partial v_i \leftarrow \partial v_i - 1/m$, $\partial B \leftarrow \partial B + Z_{ii} \otimes Z_{ii}/m$ 8: End For $u^{(t+1)} \leftarrow u^{(t)} + n \cdot \partial u$ and $v^{(t+1)} \leftarrow v^{(t)} + n \cdot \partial v$ Q+ $B^{(t+1)} \leftarrow \operatorname{Projection}\left(B^{(t)} + \frac{\gamma}{0.5B_{1-\epsilon}} \cdot \partial B; \lambda, \gamma/||\partial B||_F\right)$ 10 Output: $\hat{\beta}_{relay} \in \mathbb{R}^d$ defined as the largest eigenvector (based on corresponding eigenvalue's magnitude) of the matrix $B^{(t^*)}$ which attained the best objective value over all iterations.

Projection Algorithm: Projects matrix onto positive semidefinite cone of unit-trace matrices B_r (the feasible set in our relaxation). Step 4 applies soft-thresholding proximal operator for sparsity.

$$\begin{split} & \text{Input: } B \in \mathbb{R}^{d \times d} \\ & \text{Parameters: } \lambda \geq 0 \text{ controls the amount of regularization, } \delta = \gamma / ||\vec{e}B||_F \geqslant 0 \text{ is the actual step-size} \\ & \text{used in the } B-\text{spdate.} \\ & \text{I: } QAQ^T \leftarrow \text{digendecomposition of } B \\ & 2: w^* \leftarrow \arg\min\left\{||w - \dim_2(\lambda)||_2^2: w \in [0,1]^d, ||w||_1 = 1\right\} \qquad (\text{Quadratic program}) \\ & 3: \vec{B} - Q - \dim_2(w_1^*, \dots, w_d^*) \cdot Q^T \\ & \text{d: } I\lambda > 0: \text{ For } r, s \in \{1, \dots, d\}^2: \quad \vec{B}_{r,s} \leftarrow \text{sign}(\vec{B}_{r,s}) \cdot \max\{0, |\vec{B}_{r,s}| - \delta\lambda\} \\ & \text{Output: } \vec{B} \in \mathcal{B}, \end{split}$$

• Guaranteed to converge to global optimum (Bertsekas, 2011)

Bertsekas DP (2011). Incremental gradient, subgradient, and proximal methods for convex optimization: A survey. *Optimization for Machine Learning.*

RELAX Algorithm: Solves the dualized semidefinite relaxation of SPARDA. Returns the largest eigenvector of the solution to (2) as the desired projection direction for SPARDA.

Input: d-dimensional data $x^{(1)}, \ldots, x^{(n)}$ and $y^{(1)}, \ldots, y^{(m)}$ (with $n \ge m$) Parameters: $\lambda \ge 0$ controls the amount of regularization, $\gamma > 0$ is the step-size used for B updates, n > 0 is the step-size used for updates of dual variables u and v. T is the maximum number of iterations without improvement in cost after which algorithm terminates. 1: Initialize $\beta^{(0)} \leftarrow \left[\frac{\sqrt{d}}{\sqrt{d}}, \dots, \frac{\sqrt{d}}{d}\right], B^{(0)} \leftarrow \beta^{(0)} \otimes \beta^{(0)} \in \mathcal{B}_r, u^{(0)} \leftarrow \mathbf{0}_{n \times 1}, v^{(0)} \leftarrow \mathbf{0}_{m \times 1}$ 2: While the number of iterations since last improvement in objective function is less than T: 3: $\partial u \leftarrow [1/n, \dots, 1/n] \in \mathbb{R}^n, \ \partial v \leftarrow [1/m, \dots, 1/m] \in \mathbb{R}^m, \ \partial B \leftarrow \mathbf{0}_{d\times d}$ 4: For $i, j \in \{1, ..., n\} \times \{1, ..., m\}$; 5. $Z_{ii} \leftarrow x^{(i)} - y^{(j)}$ If $tr([Z_{ij} \otimes Z_{ij}]B^{(t)}) - u^{(t)} - v^{(t)} < 0$; 6 7. $\partial u_i \leftarrow \partial u_i - 1/m$, $\partial v_i \leftarrow \partial v_i - 1/m$, $\partial B \leftarrow \partial B + Z_{ii} \otimes Z_{ii}/m$ 8: End For $u^{(t+1)} \leftarrow u^{(t)} + n \cdot \partial u$ and $v^{(t+1)} \leftarrow v^{(t)} + n \cdot \partial v$ Q+ $B^{(t+1)} \leftarrow \operatorname{Projection}\left(B^{(t)} + \frac{\gamma}{0.5B_{1-\epsilon}} \cdot \partial B; \lambda, \gamma/||\partial B||_F\right)$ 10 Output: $\hat{\beta}_{relay} \in \mathbb{R}^d$ defined as the largest eigenvector (based on corresponding eigenvalue's magnitude) of the matrix $B^{(t^*)}$ which attained the best objective value over all iterations.

Projection Algorithm: Projects matrix onto positive semidefinite cone of unit-trace matrices B_r (the feasible set in our relaxation). Step 4 applies soft-thresholding proximal operator for sparsity.

$$\begin{split} & \text{Input:} B \in \mathbb{R}^{d,d} \\ & \text{Parameters} \ \lambda \geqslant 0 \text{ controls the amount of regularization, } \delta = \gamma/||\delta B||_F \geqslant 0 \text{ is the actual step-size} \\ & \text{used in the B-update.} \\ & 1: \ QAQ^T - \text{digendecomposition of B} \\ & 2: \ w^* \leftarrow \arg\min\{||w - \dim_2(A)||_2^2: w \in [0,1]^d, ||w||_1 = 1\} \\ & \text{(Quadratic program)} \\ & 3: \ \tilde{B} \leftarrow Q - \dim_2(w_1^*, \ldots, w_g^*) \cdot Q^T \\ & \leq 11 \ \lambda \ge 0: \ \operatorname{corr}_r s \in \{1, \ldots, d\}^2: \quad \tilde{B}_{r,s} \leftarrow \operatorname{sign}(\tilde{B}_{r,s}) \cdot \max\{0, |\tilde{B}_{r,s}| - \delta \} \\ & \text{Output: } \ \tilde{B} \in \mathcal{B}_r \end{split}$$

- Guaranteed to converge to global optimum (Bertsekas, 2011)
- To scale to large datasets, can employ incremental subgradients by drawing random (i, j) pairs

Bertsekas DP (2011). Incremental gradient, subgradient, and proximal methods for convex optimization: A survey. *Optimization for Machine Learning*.

RELAX Algorithm: Solves the dualized semidefinite relaxation of SPARDA. Returns the largest eigenvector of the solution to (2) as the desired projection direction for SPARDA.

Input: d-dimensional data $x^{(1)}, \ldots, x^{(n)}$ and $y^{(1)}, \ldots, y^{(m)}$ (with $n \ge m$) Parameters: $\lambda \ge 0$ controls the amount of regularization, $\gamma > 0$ is the step-size used for B updates, n > 0 is the step-size used for updates of dual variables u and v. T is the maximum number of iterations without improvement in cost after which algorithm terminates. 1: Initialize $\beta^{(0)} \leftarrow \left[\frac{\sqrt{d}}{\sqrt{d}}, \dots, \frac{\sqrt{d}}{d}\right], B^{(0)} \leftarrow \beta^{(0)} \otimes \beta^{(0)} \in \mathcal{B}_r, u^{(0)} \leftarrow \mathbf{0}_{n \times 1}, v^{(0)} \leftarrow \mathbf{0}_{m \times 1}$ 2: While the number of iterations since last improvement in objective function is less than T: 3: $\partial u \leftarrow [1/n, \dots, 1/n] \in \mathbb{R}^n, \ \partial v \leftarrow [1/m, \dots, 1/m] \in \mathbb{R}^m, \ \partial B \leftarrow \mathbf{0}_{d\times d}$ 4: For $i, j \in \{1, ..., n\} \times \{1, ..., m\}$; 5. $Z_{ii} \leftarrow x^{(i)} - y^{(j)}$ If $tr([Z_{ij} \otimes Z_{ij}]B^{(t)}) - u^{(t)} - v^{(t)} < 0$; 6: 7: $\partial u_i \leftarrow \partial u_i - 1/m$, $\partial v_i \leftarrow \partial v_i - 1/m$, $\partial B \leftarrow \partial B + Z_{ii} \otimes Z_{ii}/m$ 8: End For $u^{(t+1)} \leftarrow u^{(t)} + n \cdot \partial u$ and $v^{(t+1)} \leftarrow v^{(t)} + n \cdot \partial v$ Q+ $B^{(t+1)} \leftarrow \operatorname{Projection}\left(B^{(t)} + \frac{\gamma}{0.5B_{1-\epsilon}} \cdot \partial B; \lambda, \gamma/||\partial B||_F\right)$ 10 Output: $\hat{\beta}_{relay} \in \mathbb{R}^d$ defined as the largest eigenvector (based on corresponding eigenvalue's magnitude) of the matrix $B^{(t^*)}$ which attained the best objective value over all iterations.

Projection Algorithm: Projects matrix onto positive semidefinite cone of unit-trace matrices B_r (the feasible set in our relaxation). Step 4 applies soft-thresholding proximal operator for sparsity.

$$\begin{split} & \text{Input:} B \in \mathbb{R}^{d,d} \\ & \text{Parameters} \ \lambda \geqslant 0 \text{ controls the amount of regularization, } \delta = \gamma/||\delta B||_F \geqslant 0 \text{ is the actual step-size} \\ & \text{used in the B-update.} \\ & 1: \ QAQ^T - \text{digendecomposition of B} \\ & 2: \ w^* \leftarrow \arg\min\{||w - \dim_2(A)||_2^2: w \in [0,1]^d, ||w||_1 = 1\} \\ & \text{(Quadratic program)} \\ & 3: \ \tilde{B} \leftarrow Q - \dim_2(w_1^*, \ldots, w_g^*) \cdot Q^T \\ & \leq 11 \ \lambda \ge 0: \ \operatorname{corr}_r s \in \{1, \ldots, d\}^2: \quad \tilde{B}_{r,s} \leftarrow \operatorname{sign}(\tilde{B}_{r,s}) \cdot \max\{0, |\tilde{B}_{r,s}| - \delta \} \\ & \text{Output: } \ \tilde{B} \in \mathcal{B}_r \end{split}$$

- Guaranteed to converge to global optimum (Bertsekas, 2011)
- To scale to large datasets, can employ incremental subgradients by drawing random (i, j) pairs
- Use different learning rates for B, u, and v (eg. Adagrad).

Bertsekas DP (2011). Incremental gradient, subgradient, and proximal methods for convex optimization: A survey. *Optimization for Machine Learning.*

• Projected subgradient method to greedily improve original nonconvex objective $J(\beta) = \min_{M \in \mathcal{M}} \beta^T W_M \beta$ s.t. $\beta \in \mathcal{B}, ||\beta||_0 \le k$

- Projected subgradient method to greedily improve original nonconvex objective $J(\beta) = \min_{M \in \mathcal{M}} \beta^T W_M \beta$ s.t. $\beta \in \mathcal{B}, ||\beta||_0 \le k$
- Sparsity level $k := ||\widehat{\beta}_{\text{relax}}||_0$

• Projected subgradient method to greedily improve original nonconvex objective $J(\beta) = \min_{M \in \mathcal{M}} \beta^T W_M \beta$ s.t. $\beta \in \mathcal{B}, ||\beta||_0 \le k$

• Sparsity level
$$k:=||\widehat{eta}_{\mathsf{relax}}||_0$$

 For any β: matching-minimization (and subgradients of J) computed by sorting scalars β^Tx⁽¹⁾,...,β^Tx⁽ⁿ⁾, β^Ty⁽¹⁾,...,β^Ty^(m) (matching matrices not needed)

Fact

In 1-D, Wasserstein distance $= L_2$ norm between quantile functions.

$$D(X,Y) = \int_0^1 \left[F_Y^{-1}(p) - F_X^{-1}(p) \right]^2 \mathrm{d}p$$

• Projected subgradient method to greedily improve original nonconvex objective $J(\beta) = \min_{M \in \mathcal{M}} \beta^T W_M \beta$ s.t. $\beta \in \mathcal{B}, ||\beta||_0 \le k$

• Sparsity level
$$k:=||\widehat{eta}_{\mathsf{relax}}||_0$$

 For any β: matching-minimization (and subgradients of J) computed by sorting scalars β^Tx⁽¹⁾,...,β^Tx⁽ⁿ⁾, β^Ty⁽¹⁾,...,β^Ty^(m) (matching matrices not needed)

Fact

In 1-D, Wasserstein distance $= L_2$ norm between quantile functions.

$$D(X,Y) = \int_0^1 \left[F_Y^{-1}(p) - F_X^{-1}(p) \right]^2 \mathrm{d}p$$

• Time-complexity (per iteration): Tightening procedure = $O(dn \log n)$, RELAX algorithm = $O(d^3n^2)$

Some cases where relaxation is tight

The projected Wasserstein distance between X and Y in some direction is nearly as large as overall Wasserstein distance in ℝ^d.
 Ex: if ||E[X] - E[Y]||₂ ≫ max{||Cov(X)||_F, ||Cov(Y)||_F}

Some cases where relaxation is tight

- The projected Wasserstein distance between X and Y in some direction is nearly as large as overall Wasserstein distance in ℝ^d.
 Ex: if ||E[X] E[Y]||₂ ≫ max{||Cov(X)||_F, ||Cov(Y)||_F}
- 2 $X \sim N(\mu_X, \Sigma_X)$ and $Y \sim N(\mu_Y, \Sigma_Y)$ with $\mu_X \neq \mu_Y$ and $\Sigma_X \approx \Sigma_Y$

Some cases where relaxation is tight

- The projected Wasserstein distance between X and Y in some direction is nearly as large as overall Wasserstein distance in ℝ^d.
 Ex: if ||E[X] E[Y]||₂ ≫ max{||Cov(X)||_F, ||Cov(Y)||_F}
- 2 $X \sim N(\mu_X, \Sigma_X)$ and $Y \sim N(\mu_Y, \Sigma_Y)$ with $\mu_X \neq \mu_Y$ and $\Sigma_X \approx \Sigma_Y$
- $X \sim N(\mu_X, \Sigma_X) \text{ and } Y \sim N(\mu_Y, \Sigma_Y) \text{ where } \mu_X \approx \mu_Y \text{ and} \\ \underset{B \in \mathcal{B}_r}{\operatorname{argmax}} ||(B^{1/2} \Sigma_X B^{1/2})^{1/2} (B^{1/2} \Sigma_Y B^{1/2})^{1/2}||_F^2 \text{ is nearly rank } 1.$

Ex: $\Sigma_Y \approx V \cdot \Sigma_X$ (where V is a diagonal matrix)

Figure: PDA objective for two 3-dimensional Gaussian distributions. Green = solution found by tightening procedure. Red = solution found by RELAX algorithm.

Simplifying assumptions: (A1) n = m (A2) X, Y admit continuous density functions (A3) X, Y compactly supported with nonzero density in Euclidean ball of radius R(A4) $\hat{\beta} = \arg \max_{\beta \in \mathcal{B}} D(\beta^T \hat{X}^{(n)}, \beta^T \hat{Y}^{(n)})$

Simplifying assumptions: (A1) n = m (A2) X, Y admit continuous density functions (A3) X, Y compactly supported with nonzero density in Euclidean ball of radius R(A4) $\hat{\beta} = \arg \max_{\beta \in \mathcal{B}} D(\beta^T \hat{X}^{(n)}, \beta^T \hat{Y}^{(n)})$

Theorem 1

If there exists direction $\beta^* \in \mathcal{B}$ such that $D(\beta^{*T}X, \beta^{*T}Y) \ge \Delta$, then:

$$D(\widehat{\beta}^T \widehat{X}^{(n)}, \widehat{\beta}^T \widehat{Y}^{(n)}) > \Delta - \epsilon \quad \text{with probability } \geq 1 - 4 \exp\left(-\frac{n\epsilon^2}{16R^4}\right)$$

Simplifying assumptions: (A1) n = m (A2) X, Y admit continuous density functions (A3) X, Y compactly supported with nonzero density in Euclidean ball of radius R(A4) $\hat{\beta} = \arg \max_{\beta \in \mathcal{B}} D(\beta^T \hat{X}^{(n)}, \beta^T \hat{Y}^{(n)})$

Theorem 1

If there exists direction $\beta^* \in \mathcal{B}$ such that $D(\beta^{*T}X, \beta^{*T}Y) \ge \Delta$, then:

$$D(\widehat{\beta}^T \widehat{X}^{(n)}, \widehat{\beta}^T \widehat{Y}^{(n)}) > \Delta - \epsilon \quad \text{ with probability } \geq 1 - 4 \exp\left(-\frac{n\epsilon^2}{16R^4}\right)$$

Theorem 2

If X and Y are identically distributed in \mathbb{R}^d , then: $D(\hat{\beta}^T \hat{X}^{(n)}, \hat{\beta}^T \hat{Y}^{(n)}) < \epsilon$ with probability $\geq 1 - C_1 \left(1 + \frac{R^2}{\epsilon}\right)^d \exp\left(-\frac{C_2}{R^4}n\epsilon^2\right)$

Extra assumptions: (A4) Y sub-Gaussian, (A5) $\mathbb{E}[X] = \mathbb{E}[Y] = 0$, (A6) $Var[X_{\ell}] = 1$

Jirak M (2011). On the maximum of covariance estimators. Journal of Multivariate Analysis.

Extra assumptions: (A4) Y sub-Gaussian, (A5) $\mathbb{E}[X] = \mathbb{E}[Y] = 0$, (A6) $Var[X_{\ell}] = 1$

Let $T_a(X,Y) = |\Pr(|X_1| \le a, \dots, |X_d| \le a) - \Pr(|Y_1| \le a, \dots, |Y_d| \le a)|$ (measures difference between $X, Y \in \mathbb{R}^d$, parameterized by $a \ge 0$)

Jirak M (2011). On the maximum of covariance estimators. Journal of Multivariate Analysis.

Extra assumptions: (A4) Y sub-Gaussian, (A5) $\mathbb{E}[X] = \mathbb{E}[Y] = 0$, (A6) $\mathsf{Var}[X_{\ell}] = 1$

Let $T_a(X,Y) = |\Pr(|X_1| \le a, \dots, |X_d| \le a) - \Pr(|Y_1| \le a, \dots, |Y_d| \le a)|$ (measures difference between $X, Y \in \mathbb{R}^d$, parameterized by $a \ge 0$)

Define $h(g(\Delta)) := \min\{\Delta_1, \Delta_2\}$

$$\Delta_1 = (a+d)^d (g(\Delta)+d) + \exp(-a^2/2) + \psi \exp\left(-1/(\sqrt{2}\psi)\right)$$
$$\Delta_2 = \left(g(\Delta) + \exp(-a^2/2)\right) \cdot d$$

$$\begin{split} \psi &= ||\mathsf{Cov}(X)||_1, \ g(\Delta) = \Delta^4 \cdot (1+\Phi)^{-4}, \text{ and } \Phi = \sup_{\alpha \in \mathcal{B}} \left\{ \sup_y |f_{\alpha^T Y}(y)| \right\} \\ \text{with } f_{\alpha^T Y}(y) \text{ defined as the density of the projection of } Y \text{ in the } \alpha \text{ direction.} \end{split}$$

Jirak M (2011). On the maximum of covariance estimators. Journal of Multivariate Analysis.

Extra assumptions: (A4) Y sub-Gaussian, (A5) $\mathbb{E}[X] = \mathbb{E}[Y] = 0$, (A6) $\mathsf{Var}[X_\ell] = 1$

Let $T_a(X,Y) = |\Pr(|X_1| \le a, \dots, |X_d| \le a) - \Pr(|Y_1| \le a, \dots, |Y_d| \le a)|$ (measures difference between $X, Y \in \mathbb{R}^d$, parameterized by $a \ge 0$)

Define $h(g(\Delta)) := \min\{\Delta_1, \Delta_2\}$

$$\Delta_1 = (a+d)^d (g(\Delta)+d) + \exp(-a^2/2) + \psi \exp\left(-1/(\sqrt{2}\psi)\right)$$
$$\Delta_2 = \left(g(\Delta) + \exp(-a^2/2)\right) \cdot d$$

$$\begin{split} \psi &= ||\mathsf{Cov}(X)||_1, \ g(\Delta) = \Delta^4 \cdot (1+\Phi)^{-4}, \text{ and } \Phi = \sup_{\alpha \in \mathcal{B}} \left\{ \sup_y |f_{\alpha^T Y}(y)| \right\} \\ \text{with } f_{\alpha^T Y}(y) \text{ defined as the density of the projection of } Y \text{ in the } \alpha \text{ direction.} \end{split}$$

Theorem 3

If $\exists a \ge 0 \text{ s.t. } T_a(X,Y) > h(g(\Delta)), \text{ then:} \quad D(\widehat{\beta}^T \widehat{X}^{(n)}, \widehat{\beta}^T \widehat{Y}^{(n)}) > C\Delta - \epsilon$ with probability $\ge 1 - C_1 \exp\left(-\frac{C_2}{R^4}n\epsilon^2\right)$

Jirak M (2011). On the maximum of covariance estimators. Journal of Multivariate Analysis.

J. Mueller

Define C as in Theorem 3 and $\widehat{\beta}^{(k)} := \underset{\beta \in \mathcal{B}, ||\beta||_0 \le k}{\operatorname{argmax}} \{ D(\beta^T \widehat{X}^{(n)}, \beta^T \widehat{Y}^{(n)}) \}$

Theorem 4 (Sparsistency)

Suppose there exists feature subset $S \subset \{1, \ldots, d\}$ s.t. |S| = k, $T(X_S, Y_S) \ge h\left(g\left(\epsilon(d+1)/C\right)\right)$, and remaining marginal distributions X_{S^C} , Y_{S^C} are identical. Then: $\hat{\beta}_i^{(k)} \ne 0$, $\hat{\beta}_j^{(k)} = 0 \quad \forall i \in S, j \in S^C$ with probability $\ge 1 - C_1 \left(1 + \frac{R^2}{\epsilon}\right)^{d-k} \exp\left(-\frac{C_2}{R^4}n\epsilon^2\right)$

Feature Selection

- Two-class MADELON dataset from NIPS 2003 feature selection challenge
- n = m = 1000, d = 500
- 20 features with differences between groups
- 480 noise features with no difference
- Only differences present are in interactions between features (resembles parity problem)

Guyon I, Gunn S, Nikravesh M, Zadeh LA (2006). Feature Extraction: Foundations and Applications. NIPS 2003 Feature Selection Challenge

Feature Selection: Results

Figure: How well SPARDA (red), top sparse principal component (black), sparse linear discriminants analysis (green), and logistic lasso (blue) identify the 20 relevant features over different regularization settings.

* = SPARDA result with λ chosen via cross-validation (46 features selected with 17 relevant). Many λ -settings return 14 relevant features with no false positives.

* = best result (ARD kernel SVM) in the NIPS challenge (8 of the 20 relevant features selected).

Two-sample Testing

- Generated 20 datasets of varying dimensionality, only first 3 features in each dataset differ
- Centered multivariate Gaussian with covariances \sim Wishart (n = m = 1000)

Two-sample Testing

- Generated 20 datasets of varying dimensionality, only first 3 features in each dataset differ
- Centered multivariate Gaussian with covariances \sim Wishart (n = m = 1000)
- For PDA/SPARDA, test statistic = $D(\widehat{\beta}^T \widehat{X}^{(n)}, \widehat{\beta}^T \widehat{Y}^{(m)})$

Two-sample Testing

- Generated 20 datasets of varying dimensionality, only first 3 features in each dataset differ
- Centered multivariate Gaussian with covariances \sim Wishart (n = m = 1000)
- For PDA/SPARDA, test statistic = $D(\widehat{\beta}^T \widehat{X}^{(n)}, \widehat{\beta}^T \widehat{Y}^{(m)})$
- Evaluate significance of all test statistics via permutation testing (exact Type I error control)

Two-sample Testing: Results

Figure: (10-repetition averaged) *p*-values produced by SPARDA (red), PDA (purple), overall Wasserstein distance in \mathbb{R}^d (black), Maximum Mean Discrepancy¹ (green), and DiProPerm² (blue).

¹Gretton A, Borgwardt KM, Rasch MJ, Scholkopf B, Smola A (2012). A Kernel Two-Sample Test. Journal of Machine Learning Research.

²Wei S, Lee C, Wichers L, Marron JS (2015). Direction-Projection-Permutation for High Dimensional Hypothesis Tests. Journal of Computational and Graphical Statistics. Cellular gene expression in cortex vs. hippocampus

- From juvenile mice: 1,691 cells sampled from somatosensory cortex, 1,314 hippocampus cells (Zeisel, 2015)
- Expression of 10,305 genes measured within individual cells via single-cell RNA-seq (on comparable log-FPKM scale)

Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, et al. (2015). Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. *Science*. Cellular gene expression in cortex vs. hippocampus

- From juvenile mice: 1,691 cells sampled from somatosensory cortex, 1,314 hippocampus cells (Zeisel, 2015)
- Expression of 10,305 genes measured within individual cells via single-cell RNA-seq (on comparable log-FPKM scale)
- Standard method to identify differentially expressed genes: assume expression distribution follows parametric family, assess statistical significance of marginal-mean-shifts (eg. Limma)

Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, et al. (2015). Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. *Science*.

Ritchie M, Phipson B, Wu D, Hu Y, Law CW, et al. (2015). Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research.

Cellular gene expression in cortex vs. hippocampus

- From juvenile mice: 1,691 cells sampled from somatosensory cortex, 1,314 hippocampus cells (Zeisel, 2015)
- Expression of 10,305 genes measured within individual cells via single-cell RNA-seq (on comparable log-FPKM scale)
- Standard method to identify differentially expressed genes: assume expression distribution follows parametric family, assess statistical significance of marginal-mean-shifts (eg. Limma)
- Brain regions contain vast diversity of cell subtypes (mean differences unsatisfactory, there is no "average" cell)
- Single-cell RNA-seq data is highly noisy and does not follow nice parametric distribution
- Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, et al. (2015). Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. *Science*.
- Ritchie M, Phipson B, Wu D, Hu Y, Law CW, et al. (2015). Limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Research*.

Single-cell RNA-seq differential expression analysis

GENE	WEIGHT	DESCRIPTION
Cck	0.0593	Primary distinguishing gene between distinct interneuron classes identified in the cortex and hippocampus
Neurod6	0.0583	General regulator of nervous system development whose induced mutation displays different effects in neocortex vs. the hippocampal region
Stmn3	0.0573	Up-expressed in hippocampus of patients with depressive disorders
Plp1	0.0570	An oligodendrocyte- and myelin-related gene which exhibits cortical differential expression in schizophrenia
Crym	0.0550	Plays a role in neuronal specification
Spink8	0.0536	Serine protease inhibitor specific to hippocampal pyramidal cells
Gap43	0.0511	Encodes plasticity protein important for axonal regeneration and neural growth
Cryab	0.0500	Stress induction leads to reduced expression in the mouse hippocampus
Mal	0.0494	Regulates dendritic morphology and is expressed at lower levels in cortex than in hippocampus
Tspan13	0.0488	Membrane protein which mediates signal transduction events in cell development, activation, growth and motility

Table: Genes with the greatest weight in the projection $\widehat{\beta}$ produced by SPARDA

• *Crym, Spink8, Neurod6* are also among the top 10 genes identified by LIMMA

Snca

- Presynaptic signaling and membrane trafficking gene whose defects are implicated in both Parkinson and Alzheimer's disease
- Ranks 11th highest in SPARDA analysis, but only 349 by LIMMA differential expression analysis

Marginally-normalized differential expression analysis

- Data from both populations is marginally centered at zero with unit variance (per-gene basis)
- Only major remaining differences are changes in gene-gene relationships between cortex and hippocampus

GENE	WEIGHT	DESCRIPTION
Thy1	0.1245	Plays a role in cell-cell & cell-ligand interactions during synaptogenesis and other processes in the brain
Vsnl1 Stmn3	0.1245 0.1222	Modulates intracellular signaling pathways of the central nervous system Stathmins form important protein complex with tubulins
Stmn2 Tmem59	0.1188 0.1176	Note: Tubulins Tubb3 and Tubb2 are ranked 20^{th} and 25^{th} by weight in $\hat{\beta}$ Fundamental regulator of neural cell differentiation. Knock out in the hippocampus results in drastic expression changes of many other genes
Basp1	0.1171	Transcriptional cofactor which can divert the differentiation of cells to a neuronal-like morphology
Snhg1	0.1166	Unclassified non-coding RNA gene
Mllt11	0.1145	Promoter of neurodifferentiation and axonal/dendritic maintenance
Uchl1	0.1137	Loss of function leads to profound degeneration of motor neurons
Cck	0.1131	Targets pyramidal neurons and enables neocortical plasticity allowing for example the auditory cortex to detect light stimuli

Table: Genes with the greatest weight in $\widehat{\beta}$ produced by SPARDA analysis of marginally normalized data
$\mathsf{PCA}\to\mathsf{PDA}$

 \bullet Consider setting with paired samples $(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)})$

$\mathsf{PCA}\to\mathsf{PDA}$

- \bullet Consider setting with paired samples $(x^{(i)},y^{(i)})$
- $\widehat{\beta}_{\rm PCA}:=$ largest principal component of (uncentered) differences $x^{(i)}-y^{(i)}$

$\mathsf{PCA} \to \mathsf{PDA}$

- Consider setting with *paired* samples $(x^{(i)}, y^{(i)})$
- $\widehat{\beta}_{\rm PCA}:=$ largest principal component of (uncentered) differences $x^{(i)}-y^{(i)}$
- $\hat{\beta}_{PDA} :=$ direction which maximizes projected Wasserstein difference between empirical distribution of X Y and delta distribution at 0.

$\mathsf{PCA} \to \mathsf{PDA}$

- Consider setting with *paired* samples $(x^{(i)}, y^{(i)})$
- $\widehat{\beta}_{\rm PCA}:=$ largest principal component of (uncentered) differences $x^{(i)}-y^{(i)}$
- β_{PDA} := direction which maximizes projected Wasserstein difference between empirical distribution of X – Y and delta distribution at 0.

• Develop structural assumptions to leverage underlying sparsity in differences and improve exponential bounds on convergence in high-dimensional settings (eg. spiked covariance, restricted isometry).

- Develop structural assumptions to leverage underlying sparsity in differences and improve exponential bounds on convergence in high-dimensional settings (eg. spiked covariance, restricted isometry).
- Confidence intervals for projection weights \widehat{eta}_ℓ (beyond bootstrap)

- Develop structural assumptions to leverage underlying sparsity in differences and improve exponential bounds on convergence in high-dimensional settings (eg. spiked covariance, restricted isometry).
- Confidence intervals for projection weights \widehat{eta}_ℓ (beyond bootstrap)
- Employ multiple successive projections (eg. maximum-entropy)

- Develop structural assumptions to leverage underlying sparsity in differences and improve exponential bounds on convergence in high-dimensional settings (eg. spiked covariance, restricted isometry).
- Confidence intervals for projection weights $\widehat{\beta}_{\ell}$ (beyond bootstrap)
- Employ multiple successive projections (eg. maximum-entropy)
- Adapt approach to non-pairwise comparison of multiple populations

Thanks! Questions?

- Paper: Mueller J, Jaakkola T. Principal Differences Analysis: Interpretable Characterization of Differences between Distributions. *NIPS* 2015.
- Code: http://www.mit.edu/~jonasm/

J. Mueller