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Objectives

Consider high-dimensional random variables X,Y ∈ Rd

X = measurements of various variables under condition 1
Y = measurements of same variables under condition 2

Given unpaired samples x1, . . . , xn
iid∼ PX , y1, . . . , ym

iid∼ PY :

(Q1) Is PX = PY ? (Two-sample testing)

(Q2) If not, what is minimal feature subset S ⊆ {1, . . . , d} such that
marginal distributions PXS 6= PYS while PX

SC
≈ PY

SC
?

(Q3) How much does each feature contribute to the overall difference?
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Motivation

Understanding differences between populations
= fundamental scientific problem

General differences beyond mean shifts are of interest
(e.g. variance/covariance)

Undesirable to restrict the analysis to specific parametric differences

Often many variables are measured (high-dimensional data), but only
a small subset expected to exhibit differences between populations

Two-sample testing is easy in univariate case: can use any statistical
divergence D that measures difference between univariate
distributions (e.g. Kullback-Leibler, Kolmogorov-Smirnov)
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Related Work

1 Marginal per-variable analysis
(ignores potentially important interactions between variables)

2 Logistic regression with lasso (Tibshirani, 1996)
(requires (log)linear relationships, only models expectation)

3 Sparse linear discriminants analysis (Clemmensen, 2011)
(requires multivariate Gaussianity)

4 Random projection (Lopes, 2011)
Direction-projection-permutation (Wei, 2015)
(only suited for specific types of differences)
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Principal Differences Analysis (PDA)

User chooses statistical divergence D

Goal: Find (unit-norm) projection β which maximizes D(βTX,βTY )

Transforms hard high-dimensional statistical problem into
simple 1-D measure
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Cramer-Wold Device

Theorem (Cramer & Wold, 1936)

Multivariate X
d
= Y if and only if βTX

d
= βTY for all β ∈ Rd

If PX 6= PY and D is positive definite divergence, then
PDA-projection β∗ is guaranteed to ensure D(β∗TX,β∗TY ) > 0

PDA can capture any type of difference between populations, using a
single linear projection

Cramer H, Wold H (1936). Some Theorems on Distribution Functions. Journal of the London Mathematical Society.

J. Mueller 6 / 29



Sparse Differences Analysis (SPARDA)

Additional Goal: Select features over which populations differ

Method: Impose sparsity on β and examine features with nonzero
weight in resulting projection-vector

SPARDA

Find projection β̂ that solves: max
β∈B,||β||0≤k

{
D(βT X̂(n), βT Ŷ (m))

}
B := {β ∈ Rd : ||β||2 ≤ 1, β1 ≥ 0} , βT X̂(n) = projected empirical distribution

Cardinality constraint may be relaxed by adding λ||β||1 penalty

In practice: choose λ or k by maximizing projected divergence
between held-out samples
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Choice of divergence D

PDA enables application of rank-based measures (eg. Mann-Whitney)
to high-dimensional data

Support Vector Machine = special case of PDA where D measures
margin between projected distributions

Fisher’s Discriminant Analysis = special case of PDA where D is ratio
of within-vs-between-class variance (Bhattacharyya distance for
Gaussian X,Y with identical covariance)

If D defined over densities (eg. f -divergence), can use kernel density
estimation. For smooth kernel (eg. Gaussian), locally optimal
projection can be found via projected gradient methods.

Our focus is D = Wasserstein distance; natural choice when variables
are measured on common scale (eg. expression of various genes).
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Wasserstein Distance

Definition (Squared Wasserstein Distance)

D(X,Y ) = min
PXY

EPXY ||X − Y ||2

where (X,Y ) ∼ PXY and X ∼ PX , Y ∼ PY

Canonical divergence between distributions on metric space,
successfully used in many applications (eg. shape/image data)

Intuitively: minimal amount of work to transform PX into PY
where work = probability mass moved × distance transported

Natural dissimilarity measure between populations: integrates both
fraction of individuals which are different & magnitude of differences

Statistically & computationally inefficient in high dimensions

Mallows, C (1972). A note on asymptotic joint normality. The Annals of Mathematical Statistics.
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SPARDA with Wasserstein distance

Objective

Find β̂ = argmax
β∈B
||β||0≤k

{
min
M∈M

βTWMβ

}

M := set of n×m matching matrices (entries ≥ 0, row sums = 1
n
, column sums = 1

m
)

WM :=
∑
i,j [Zij ⊗ Zij ]Mij Zij := x(i) − y(j)

Since: D
(
βT X̂(n), βT Ŷ (m)) = min

M∈M

∑
i,j

Mij

(
βTx(i) − βT y(j)

)2
= min
M∈M

βTWMβ

Non-concave max-min optimization

Two-step relax-tighten procedure:
1 Solve convex relaxation (semidefinite program).
2 Run steepest ascent method to greedily improve the current

projection with respect to the original nonconvex objective
(if relaxation is not tight).

Wang Z, Lu H, Liu H (2014). Tighten after Relax: Minimax-Optimal Sparse PCA in Polynomial Time. NIPS.
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Semidefinite Relaxation

Can rewrite SPARDA objective:

max
B

min
M∈M

tr (WMB) subject to B ∈ Br, ||B||0 ≤ k2, rank(B) = 1

where B = β ⊗ β and Br = {B ∈ Rd×d : tr(B) = 1, B � 0}

Relaxation: max
B∈Br

{
min
M∈M

tr (WMB)− λ||B||1
}

While concave, max-min relaxation remains computationally
demanding. Instead, turn to the dual:

max
B∈Br

u∈Rn,v∈Rm

1

m

∑
i,j

min{0, tr([Zij⊗Zij ]B)−ui−vj}+
1

n

n∑
i=1

ui+
1

m

m∑
j=1

vj−λ||B||1

Find optimal B∗ via projected subgradient method, take largest
eigenvalue of B∗ as best projection vector β̂relax

J. Mueller 11 / 29
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Subgradient Algorithm for Semidefinite Relaxation

where the correspondence between (3) and (4) comes from writing B “ �b� (note that any solution
of (3) will have unit norm). When k “ d, i.e., we impose no sparsity constraint as in PDA, we can
relax by simply dropping the rank-constraint. The objective is then a supremum of linear functions
of B and the resulting semidefinite problem is concave over a convex set and may be written as:

max
BPBr

min
MPM

tr pWMBq (5)

where Br is the convex set of positive semidefinite d ˆ d matrices with trace = 1. If B˚ P Rdˆd

denotes the global optimum of this relaxation and rankpB˚q “ 1, then the best projection for PDA
is simply the dominant eigenvector of B˚ and the relaxation is tight. Otherwise, we can truncate B˚
as in [14], treating the dominant eigenvector as an approximate solution to the original problem (3).

To obtain a relaxation for the sparse version where k † d (SPARDA), we follow [14] closely. Be-
cause B “ �b� implies ||B||0 § k2, we can thus get an equivalent cardinality constrained problem
by incorporating this nonconvex constraint into (4). Since trpBq “ 1 and ||B||F “ ||�||22 “ 1, a
convex relaxation of the squared `0 constraint is given by ||B||1 § k. By selecting � as the optimal
Lagrange multiplier for this `1 constraint, we can obtain an equivalent penalized reformulation pa-
rameterized by � rather than k [14]. The sparse semidefinite relaxation is thus the following concave
problem

max
BPBr

 
min

MPM
tr pWMBq ´ �||B||1

(
(6)

While the relaxation bears strong resemblance to DSPCA relaxation for sparse PCA, the inner max-
imization over matchings prevents direct application of general semidefinite programming solvers.
Let MpBq denote the matching that minimizes tr pWMBq for a given B. Standard projected sub-
gradient ascent could be applied to solve (6), where at the tth iterate the (matrix-valued) subgradient
would be given by WMpBptqq. However, this approach requires us to maintain large n ˆ m matrices.
Instead, we resort to the dual (cf. [22, 23])

min
MPM

tr pWMBq “ 1

m
max
u,v
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j“1

mint0, trprZij b Zijs Bq ´ ui ´ vju ` 1

n

nÿ

i“1
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that enables us to alternatingly maximize (6) over B P Br, u P Rn, and v P Rm without requiring
matching matrices nor their cumbersome row/column constraints. While u and v can be solved in
closed form for each fixed B (via sorting), we describe a simple sub-gradient approach that works
better in practice.

RELAX Algorithm: Solves the dualized semidefinite relaxation of SPARDA. Returns the largest
eigenvector of the solution to (2) as the desired projection direction for SPARDA.

Input: d-dimensional data xp1q, . . . , xpnq and yp1q, . . . , ypmq (with n • m)
Parameters: � • 0 controls the amount of regularization, � ° 0 is the step-size used for B
updates, ⌘ ° 0 is the step-size used for updates of dual variables u and v, T is the maximum number
of iterations without improvement in cost after which algorithm terminates.

1: Initialize �p0q –
” ?

d
d , . . . ,

?
d

d

ı
, Bp0q – �p0q b �p0q P Br, up0q – 0nˆ1, vp0q – 0mˆ1

2: While the number of iterations since last improvement in objective function is less than T :
3: Bu – r1{n, . . . , 1{ns P Rn, Bv – r1{m, . . . , 1{ms P Rm, BB – 0dˆd

4: For i, j P t1, . . . , nu ˆ t1, . . . , mu:

5: Zij – xpiq ´ ypjq

6: If trprZij b ZijsBptqq ´ u
ptq
i ´ v

ptq
j † 0 :

7: Bui – Bui ´ 1{m , Bvj – Bvj ´ 1{m , BB – BB ` Zij b Zij {m
8: End For
9: upt`1q – uptq ` ⌘ ¨ Bu and vpt`1q – vptq ` ⌘ ¨ Bv

10: Bpt`1q – Projection
´
Bptq ` �

||BB||F ¨ BB ; �, �{||BB||F
¯

Output: p�relax P Rd defined as the largest eigenvector (based on corresponding eigenvalue’s magni-
tude) of the matrix Bpt˚q which attained the best objective value over all iterations.

4

Projection Algorithm: Projects matrix onto positive semidefinite cone of unit-trace matrices Br

(the feasible set in our relaxation). Step 4 applies soft-thresholding proximal operator for sparsity.

Input: B P Rdˆd

Parameters: � • 0 controls the amount of regularization, � “ �{||BB||F • 0 is the actual step-size
used in the B-update.
1: Q⇤QT – eigendecomposition of B

2: w˚ – arg min
 ||w ´ diagp⇤q||22 : w P r0, 1sd, ||w||1 “ 1

(
(Quadratic program)

3: rB – Q ¨ diagtw1̊ , . . . , w˚
d u ¨ QT

4: If � ° 0: For r, s P t1, . . . , du2 : rBr,s – signp rBr,sq ¨ maxt0, | rBr,s| ´ ��u
Output: rB P Br

The RELAX algorithm (boxed) is a projected subgradient method with supergradients computed in
Steps 3 - 8. For scaling to large samples, one may alternatively employ incremental supergradient di-
rections [24] where Step 4 would be replaced by drawing random pi, jq pairs. After each subgradient
step, projection back into the feasible set Br is done via a quadratic program involving the current
solution’s eigenvalues. In SPARDA, sparsity is encouraged via the soft-thresholding proximal map
corresponding to the `1 penalty. The overall form of our iterations matches subgradient-proximal
updates (4.14)-(4.15) in [24]. By the convergence analysis in §4.2 of [24], the RELAX algorithm (as
well as its incremental variant) is guaranteed to approach the optimal solution of the dual which also
solves (6), provided we employ sufficiently large T and small step-sizes. In practice, fast and accu-
rate convergence is attained by: (a) renormalizing the B-subgradient (Step 10) to ensure balanced
updates of the unit-norm constrained B, (b) using diminishing learning rates which are initially set
larger for the unconstrained dual variables (or even taking multiple subgradient steps in the dual
variables per each update of B).

4.2 Tightening after relaxation

It is unreasonable to expect that our semidefinite relaxation is always tight. Therefore, we can
sometimes further refine the projection p�relax obtained by the RELAX algorithm by using it as
a starting point in the original non-convex optimization. We introduce a sparsity constrained
tightening procedure for applying projected gradient ascent for the original nonconvex objective
Jp�q “ minMPM �T WM� where � is now forced to lie in BXSk and Sk :“ t� P Rd : ||�||0 § ku.
The sparsity level k is fixed based on the relaxed solution (k “ ||p�relax||0). After initializing
�p0q “ p�relax P Rd, the tightening procedure iterates steps in the gradient direction of J followed
by straightforward projections into the unit half-ball B and the set Sk (accomplished by greedily
truncating all entries of � to zero besides the largest k in magnitude).

Let Mp�q again denote the matching matrix chosen in response to �. J fails to be differentiable at
the r� where Mpr�q is not unique. This occurs, e.g., if two samples have identical projections under
r�. While this situation becomes increasingly likely as n, m Ñ 8, J interestingly becomes smoother
overall (assuming the distributions admit density functions). For all other �: Mp�1q “ Mp�q where
�1 lies in a small neighborhood around � and J admits a well-defined gradient 2WMp�q�. In prac-
tice, we find that the tightening always approaches a local optimum of J with a diminishing step-
size. We note that, for a given projection, we can efficiently calculate gradients without recourse to
matrices Mp�q or WMp�q by sorting �ptqT

xp1q, . . . ,�ptqT
xpnq and �ptqT

yp1q, . . . ,�ptqT
ypmq. The

gradient is directly derivable from expression (3) where the nonzero Mij are determined by appropri-
ately matching empirical quantiles (represented by sorted indices) since the univariate Wasserstein
distance is simply the L2 distance between quantile functions [20]. Additional computation can be
saved by employing insertion sort which runs in nearly linear time for almost sorted points (in iter-
ation t ´ 1, the points have been sorted along the �pt´1q direction and their sorting in direction �ptq
is likely similar under small step-size). Thus the tightening procedure is much more efficient than
the RELAX algorithm (respective runtimes are Opdn log nq vs. Opd3n2q per iteration).

5

Guaranteed to converge to global optimum (Bertsekas, 2011)

To scale to large datasets, can employ incremental subgradients by
drawing random (i, j) pairs

Use different learning rates for B, u, and v (eg. Adagrad).
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where the correspondence between (3) and (4) comes from writing B “ �b� (note that any solution
of (3) will have unit norm). When k “ d, i.e., we impose no sparsity constraint as in PDA, we can
relax by simply dropping the rank-constraint. The objective is then a supremum of linear functions
of B and the resulting semidefinite problem is concave over a convex set and may be written as:

max
BPBr

min
MPM

tr pWMBq (5)

where Br is the convex set of positive semidefinite d ˆ d matrices with trace = 1. If B˚ P Rdˆd

denotes the global optimum of this relaxation and rankpB˚q “ 1, then the best projection for PDA
is simply the dominant eigenvector of B˚ and the relaxation is tight. Otherwise, we can truncate B˚
as in [14], treating the dominant eigenvector as an approximate solution to the original problem (3).

To obtain a relaxation for the sparse version where k † d (SPARDA), we follow [14] closely. Be-
cause B “ �b� implies ||B||0 § k2, we can thus get an equivalent cardinality constrained problem
by incorporating this nonconvex constraint into (4). Since trpBq “ 1 and ||B||F “ ||�||22 “ 1, a
convex relaxation of the squared `0 constraint is given by ||B||1 § k. By selecting � as the optimal
Lagrange multiplier for this `1 constraint, we can obtain an equivalent penalized reformulation pa-
rameterized by � rather than k [14]. The sparse semidefinite relaxation is thus the following concave
problem

max
BPBr
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MPM
tr pWMBq ´ �||B||1

(
(6)

While the relaxation bears strong resemblance to DSPCA relaxation for sparse PCA, the inner max-
imization over matchings prevents direct application of general semidefinite programming solvers.
Let MpBq denote the matching that minimizes tr pWMBq for a given B. Standard projected sub-
gradient ascent could be applied to solve (6), where at the tth iterate the (matrix-valued) subgradient
would be given by WMpBptqq. However, this approach requires us to maintain large n ˆ m matrices.
Instead, we resort to the dual (cf. [22, 23])
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that enables us to alternatingly maximize (6) over B P Br, u P Rn, and v P Rm without requiring
matching matrices nor their cumbersome row/column constraints. While u and v can be solved in
closed form for each fixed B (via sorting), we describe a simple sub-gradient approach that works
better in practice.

RELAX Algorithm: Solves the dualized semidefinite relaxation of SPARDA. Returns the largest
eigenvector of the solution to (2) as the desired projection direction for SPARDA.

Input: d-dimensional data xp1q, . . . , xpnq and yp1q, . . . , ypmq (with n • m)
Parameters: � • 0 controls the amount of regularization, � ° 0 is the step-size used for B
updates, ⌘ ° 0 is the step-size used for updates of dual variables u and v, T is the maximum number
of iterations without improvement in cost after which algorithm terminates.

1: Initialize �p0q –
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, Bp0q – �p0q b �p0q P Br, up0q – 0nˆ1, vp0q – 0mˆ1

2: While the number of iterations since last improvement in objective function is less than T :
3: Bu – r1{n, . . . , 1{ns P Rn, Bv – r1{m, . . . , 1{ms P Rm, BB – 0dˆd

4: For i, j P t1, . . . , nu ˆ t1, . . . , mu:

5: Zij – xpiq ´ ypjq

6: If trprZij b ZijsBptqq ´ u
ptq
i ´ v

ptq
j † 0 :

7: Bui – Bui ´ 1{m , Bvj – Bvj ´ 1{m , BB – BB ` Zij b Zij {m
8: End For
9: upt`1q – uptq ` ⌘ ¨ Bu and vpt`1q – vptq ` ⌘ ¨ Bv

10: Bpt`1q – Projection
´
Bptq ` �

||BB||F ¨ BB ; �, �{||BB||F
¯

Output: p�relax P Rd defined as the largest eigenvector (based on corresponding eigenvalue’s magni-
tude) of the matrix Bpt˚q which attained the best objective value over all iterations.

4

Projection Algorithm: Projects matrix onto positive semidefinite cone of unit-trace matrices Br

(the feasible set in our relaxation). Step 4 applies soft-thresholding proximal operator for sparsity.

Input: B P Rdˆd

Parameters: � • 0 controls the amount of regularization, � “ �{||BB||F • 0 is the actual step-size
used in the B-update.
1: Q⇤QT – eigendecomposition of B

2: w˚ – arg min
 ||w ´ diagp⇤q||22 : w P r0, 1sd, ||w||1 “ 1

(
(Quadratic program)

3: rB – Q ¨ diagtw1̊ , . . . , w˚
d u ¨ QT

4: If � ° 0: For r, s P t1, . . . , du2 : rBr,s – signp rBr,sq ¨ maxt0, | rBr,s| ´ ��u
Output: rB P Br

The RELAX algorithm (boxed) is a projected subgradient method with supergradients computed in
Steps 3 - 8. For scaling to large samples, one may alternatively employ incremental supergradient di-
rections [24] where Step 4 would be replaced by drawing random pi, jq pairs. After each subgradient
step, projection back into the feasible set Br is done via a quadratic program involving the current
solution’s eigenvalues. In SPARDA, sparsity is encouraged via the soft-thresholding proximal map
corresponding to the `1 penalty. The overall form of our iterations matches subgradient-proximal
updates (4.14)-(4.15) in [24]. By the convergence analysis in §4.2 of [24], the RELAX algorithm (as
well as its incremental variant) is guaranteed to approach the optimal solution of the dual which also
solves (6), provided we employ sufficiently large T and small step-sizes. In practice, fast and accu-
rate convergence is attained by: (a) renormalizing the B-subgradient (Step 10) to ensure balanced
updates of the unit-norm constrained B, (b) using diminishing learning rates which are initially set
larger for the unconstrained dual variables (or even taking multiple subgradient steps in the dual
variables per each update of B).

4.2 Tightening after relaxation

It is unreasonable to expect that our semidefinite relaxation is always tight. Therefore, we can
sometimes further refine the projection p�relax obtained by the RELAX algorithm by using it as
a starting point in the original non-convex optimization. We introduce a sparsity constrained
tightening procedure for applying projected gradient ascent for the original nonconvex objective
Jp�q “ minMPM �T WM� where � is now forced to lie in BXSk and Sk :“ t� P Rd : ||�||0 § ku.
The sparsity level k is fixed based on the relaxed solution (k “ ||p�relax||0). After initializing
�p0q “ p�relax P Rd, the tightening procedure iterates steps in the gradient direction of J followed
by straightforward projections into the unit half-ball B and the set Sk (accomplished by greedily
truncating all entries of � to zero besides the largest k in magnitude).

Let Mp�q again denote the matching matrix chosen in response to �. J fails to be differentiable at
the r� where Mpr�q is not unique. This occurs, e.g., if two samples have identical projections under
r�. While this situation becomes increasingly likely as n, m Ñ 8, J interestingly becomes smoother
overall (assuming the distributions admit density functions). For all other �: Mp�1q “ Mp�q where
�1 lies in a small neighborhood around � and J admits a well-defined gradient 2WMp�q�. In prac-
tice, we find that the tightening always approaches a local optimum of J with a diminishing step-
size. We note that, for a given projection, we can efficiently calculate gradients without recourse to
matrices Mp�q or WMp�q by sorting �ptqT

xp1q, . . . ,�ptqT
xpnq and �ptqT

yp1q, . . . ,�ptqT
ypmq. The

gradient is directly derivable from expression (3) where the nonzero Mij are determined by appropri-
ately matching empirical quantiles (represented by sorted indices) since the univariate Wasserstein
distance is simply the L2 distance between quantile functions [20]. Additional computation can be
saved by employing insertion sort which runs in nearly linear time for almost sorted points (in iter-
ation t ´ 1, the points have been sorted along the �pt´1q direction and their sorting in direction �ptq
is likely similar under small step-size). Thus the tightening procedure is much more efficient than
the RELAX algorithm (respective runtimes are Opdn log nq vs. Opd3n2q per iteration).

5

Guaranteed to converge to global optimum (Bertsekas, 2011)

To scale to large datasets, can employ incremental subgradients by
drawing random (i, j) pairs

Use different learning rates for B, u, and v (eg. Adagrad).

Bertsekas DP (2011). Incremental gradient, subgradient, and proximal methods for convex optimization: A survey.
Optimization for Machine Learning.
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where the correspondence between (3) and (4) comes from writing B “ �b� (note that any solution
of (3) will have unit norm). When k “ d, i.e., we impose no sparsity constraint as in PDA, we can
relax by simply dropping the rank-constraint. The objective is then a supremum of linear functions
of B and the resulting semidefinite problem is concave over a convex set and may be written as:

max
BPBr

min
MPM

tr pWMBq (5)

where Br is the convex set of positive semidefinite d ˆ d matrices with trace = 1. If B˚ P Rdˆd

denotes the global optimum of this relaxation and rankpB˚q “ 1, then the best projection for PDA
is simply the dominant eigenvector of B˚ and the relaxation is tight. Otherwise, we can truncate B˚
as in [14], treating the dominant eigenvector as an approximate solution to the original problem (3).

To obtain a relaxation for the sparse version where k † d (SPARDA), we follow [14] closely. Be-
cause B “ �b� implies ||B||0 § k2, we can thus get an equivalent cardinality constrained problem
by incorporating this nonconvex constraint into (4). Since trpBq “ 1 and ||B||F “ ||�||22 “ 1, a
convex relaxation of the squared `0 constraint is given by ||B||1 § k. By selecting � as the optimal
Lagrange multiplier for this `1 constraint, we can obtain an equivalent penalized reformulation pa-
rameterized by � rather than k [14]. The sparse semidefinite relaxation is thus the following concave
problem

max
BPBr

 
min

MPM
tr pWMBq ´ �||B||1

(
(6)

While the relaxation bears strong resemblance to DSPCA relaxation for sparse PCA, the inner max-
imization over matchings prevents direct application of general semidefinite programming solvers.
Let MpBq denote the matching that minimizes tr pWMBq for a given B. Standard projected sub-
gradient ascent could be applied to solve (6), where at the tth iterate the (matrix-valued) subgradient
would be given by WMpBptqq. However, this approach requires us to maintain large n ˆ m matrices.
Instead, we resort to the dual (cf. [22, 23])

min
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tr pWMBq “ 1
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that enables us to alternatingly maximize (6) over B P Br, u P Rn, and v P Rm without requiring
matching matrices nor their cumbersome row/column constraints. While u and v can be solved in
closed form for each fixed B (via sorting), we describe a simple sub-gradient approach that works
better in practice.

RELAX Algorithm: Solves the dualized semidefinite relaxation of SPARDA. Returns the largest
eigenvector of the solution to (2) as the desired projection direction for SPARDA.

Input: d-dimensional data xp1q, . . . , xpnq and yp1q, . . . , ypmq (with n • m)
Parameters: � • 0 controls the amount of regularization, � ° 0 is the step-size used for B
updates, ⌘ ° 0 is the step-size used for updates of dual variables u and v, T is the maximum number
of iterations without improvement in cost after which algorithm terminates.
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, Bp0q – �p0q b �p0q P Br, up0q – 0nˆ1, vp0q – 0mˆ1

2: While the number of iterations since last improvement in objective function is less than T :
3: Bu – r1{n, . . . , 1{ns P Rn, Bv – r1{m, . . . , 1{ms P Rm, BB – 0dˆd

4: For i, j P t1, . . . , nu ˆ t1, . . . , mu:

5: Zij – xpiq ´ ypjq

6: If trprZij b ZijsBptqq ´ u
ptq
i ´ v

ptq
j † 0 :

7: Bui – Bui ´ 1{m , Bvj – Bvj ´ 1{m , BB – BB ` Zij b Zij {m
8: End For
9: upt`1q – uptq ` ⌘ ¨ Bu and vpt`1q – vptq ` ⌘ ¨ Bv

10: Bpt`1q – Projection
´
Bptq ` �

||BB||F ¨ BB ; �, �{||BB||F
¯

Output: p�relax P Rd defined as the largest eigenvector (based on corresponding eigenvalue’s magni-
tude) of the matrix Bpt˚q which attained the best objective value over all iterations.

4

Projection Algorithm: Projects matrix onto positive semidefinite cone of unit-trace matrices Br

(the feasible set in our relaxation). Step 4 applies soft-thresholding proximal operator for sparsity.

Input: B P Rdˆd

Parameters: � • 0 controls the amount of regularization, � “ �{||BB||F • 0 is the actual step-size
used in the B-update.
1: Q⇤QT – eigendecomposition of B

2: w˚ – arg min
 ||w ´ diagp⇤q||22 : w P r0, 1sd, ||w||1 “ 1

(
(Quadratic program)

3: rB – Q ¨ diagtw1̊ , . . . , w˚
d u ¨ QT

4: If � ° 0: For r, s P t1, . . . , du2 : rBr,s – signp rBr,sq ¨ maxt0, | rBr,s| ´ ��u
Output: rB P Br

The RELAX algorithm (boxed) is a projected subgradient method with supergradients computed in
Steps 3 - 8. For scaling to large samples, one may alternatively employ incremental supergradient di-
rections [24] where Step 4 would be replaced by drawing random pi, jq pairs. After each subgradient
step, projection back into the feasible set Br is done via a quadratic program involving the current
solution’s eigenvalues. In SPARDA, sparsity is encouraged via the soft-thresholding proximal map
corresponding to the `1 penalty. The overall form of our iterations matches subgradient-proximal
updates (4.14)-(4.15) in [24]. By the convergence analysis in §4.2 of [24], the RELAX algorithm (as
well as its incremental variant) is guaranteed to approach the optimal solution of the dual which also
solves (6), provided we employ sufficiently large T and small step-sizes. In practice, fast and accu-
rate convergence is attained by: (a) renormalizing the B-subgradient (Step 10) to ensure balanced
updates of the unit-norm constrained B, (b) using diminishing learning rates which are initially set
larger for the unconstrained dual variables (or even taking multiple subgradient steps in the dual
variables per each update of B).

4.2 Tightening after relaxation

It is unreasonable to expect that our semidefinite relaxation is always tight. Therefore, we can
sometimes further refine the projection p�relax obtained by the RELAX algorithm by using it as
a starting point in the original non-convex optimization. We introduce a sparsity constrained
tightening procedure for applying projected gradient ascent for the original nonconvex objective
Jp�q “ minMPM �T WM� where � is now forced to lie in BXSk and Sk :“ t� P Rd : ||�||0 § ku.
The sparsity level k is fixed based on the relaxed solution (k “ ||p�relax||0). After initializing
�p0q “ p�relax P Rd, the tightening procedure iterates steps in the gradient direction of J followed
by straightforward projections into the unit half-ball B and the set Sk (accomplished by greedily
truncating all entries of � to zero besides the largest k in magnitude).

Let Mp�q again denote the matching matrix chosen in response to �. J fails to be differentiable at
the r� where Mpr�q is not unique. This occurs, e.g., if two samples have identical projections under
r�. While this situation becomes increasingly likely as n, m Ñ 8, J interestingly becomes smoother
overall (assuming the distributions admit density functions). For all other �: Mp�1q “ Mp�q where
�1 lies in a small neighborhood around � and J admits a well-defined gradient 2WMp�q�. In prac-
tice, we find that the tightening always approaches a local optimum of J with a diminishing step-
size. We note that, for a given projection, we can efficiently calculate gradients without recourse to
matrices Mp�q or WMp�q by sorting �ptqT

xp1q, . . . ,�ptqT
xpnq and �ptqT

yp1q, . . . ,�ptqT
ypmq. The

gradient is directly derivable from expression (3) where the nonzero Mij are determined by appropri-
ately matching empirical quantiles (represented by sorted indices) since the univariate Wasserstein
distance is simply the L2 distance between quantile functions [20]. Additional computation can be
saved by employing insertion sort which runs in nearly linear time for almost sorted points (in iter-
ation t ´ 1, the points have been sorted along the �pt´1q direction and their sorting in direction �ptq
is likely similar under small step-size). Thus the tightening procedure is much more efficient than
the RELAX algorithm (respective runtimes are Opdn log nq vs. Opd3n2q per iteration).

5

Guaranteed to converge to global optimum (Bertsekas, 2011)

To scale to large datasets, can employ incremental subgradients by
drawing random (i, j) pairs

Use different learning rates for B, u, and v (eg. Adagrad).

Bertsekas DP (2011). Incremental gradient, subgradient, and proximal methods for convex optimization: A survey.
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where the correspondence between (3) and (4) comes from writing B “ �b� (note that any solution
of (3) will have unit norm). When k “ d, i.e., we impose no sparsity constraint as in PDA, we can
relax by simply dropping the rank-constraint. The objective is then a supremum of linear functions
of B and the resulting semidefinite problem is concave over a convex set and may be written as:

max
BPBr

min
MPM

tr pWMBq (5)

where Br is the convex set of positive semidefinite d ˆ d matrices with trace = 1. If B˚ P Rdˆd

denotes the global optimum of this relaxation and rankpB˚q “ 1, then the best projection for PDA
is simply the dominant eigenvector of B˚ and the relaxation is tight. Otherwise, we can truncate B˚
as in [14], treating the dominant eigenvector as an approximate solution to the original problem (3).

To obtain a relaxation for the sparse version where k † d (SPARDA), we follow [14] closely. Be-
cause B “ �b� implies ||B||0 § k2, we can thus get an equivalent cardinality constrained problem
by incorporating this nonconvex constraint into (4). Since trpBq “ 1 and ||B||F “ ||�||22 “ 1, a
convex relaxation of the squared `0 constraint is given by ||B||1 § k. By selecting � as the optimal
Lagrange multiplier for this `1 constraint, we can obtain an equivalent penalized reformulation pa-
rameterized by � rather than k [14]. The sparse semidefinite relaxation is thus the following concave
problem

max
BPBr

 
min

MPM
tr pWMBq ´ �||B||1

(
(6)

While the relaxation bears strong resemblance to DSPCA relaxation for sparse PCA, the inner max-
imization over matchings prevents direct application of general semidefinite programming solvers.
Let MpBq denote the matching that minimizes tr pWMBq for a given B. Standard projected sub-
gradient ascent could be applied to solve (6), where at the tth iterate the (matrix-valued) subgradient
would be given by WMpBptqq. However, this approach requires us to maintain large n ˆ m matrices.
Instead, we resort to the dual (cf. [22, 23])
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that enables us to alternatingly maximize (6) over B P Br, u P Rn, and v P Rm without requiring
matching matrices nor their cumbersome row/column constraints. While u and v can be solved in
closed form for each fixed B (via sorting), we describe a simple sub-gradient approach that works
better in practice.

RELAX Algorithm: Solves the dualized semidefinite relaxation of SPARDA. Returns the largest
eigenvector of the solution to (2) as the desired projection direction for SPARDA.

Input: d-dimensional data xp1q, . . . , xpnq and yp1q, . . . , ypmq (with n • m)
Parameters: � • 0 controls the amount of regularization, � ° 0 is the step-size used for B
updates, ⌘ ° 0 is the step-size used for updates of dual variables u and v, T is the maximum number
of iterations without improvement in cost after which algorithm terminates.

1: Initialize �p0q –
” ?

d
d , . . . ,

?
d

d

ı
, Bp0q – �p0q b �p0q P Br, up0q – 0nˆ1, vp0q – 0mˆ1

2: While the number of iterations since last improvement in objective function is less than T :
3: Bu – r1{n, . . . , 1{ns P Rn, Bv – r1{m, . . . , 1{ms P Rm, BB – 0dˆd

4: For i, j P t1, . . . , nu ˆ t1, . . . , mu:

5: Zij – xpiq ´ ypjq

6: If trprZij b ZijsBptqq ´ u
ptq
i ´ v

ptq
j † 0 :

7: Bui – Bui ´ 1{m , Bvj – Bvj ´ 1{m , BB – BB ` Zij b Zij {m
8: End For
9: upt`1q – uptq ` ⌘ ¨ Bu and vpt`1q – vptq ` ⌘ ¨ Bv

10: Bpt`1q – Projection
´
Bptq ` �

||BB||F ¨ BB ; �, �{||BB||F
¯

Output: p�relax P Rd defined as the largest eigenvector (based on corresponding eigenvalue’s magni-
tude) of the matrix Bpt˚q which attained the best objective value over all iterations.

4

Projection Algorithm: Projects matrix onto positive semidefinite cone of unit-trace matrices Br

(the feasible set in our relaxation). Step 4 applies soft-thresholding proximal operator for sparsity.

Input: B P Rdˆd

Parameters: � • 0 controls the amount of regularization, � “ �{||BB||F • 0 is the actual step-size
used in the B-update.
1: Q⇤QT – eigendecomposition of B

2: w˚ – arg min
 ||w ´ diagp⇤q||22 : w P r0, 1sd, ||w||1 “ 1

(
(Quadratic program)

3: rB – Q ¨ diagtw1̊ , . . . , w˚
d u ¨ QT

4: If � ° 0: For r, s P t1, . . . , du2 : rBr,s – signp rBr,sq ¨ maxt0, | rBr,s| ´ ��u
Output: rB P Br

The RELAX algorithm (boxed) is a projected subgradient method with supergradients computed in
Steps 3 - 8. For scaling to large samples, one may alternatively employ incremental supergradient di-
rections [24] where Step 4 would be replaced by drawing random pi, jq pairs. After each subgradient
step, projection back into the feasible set Br is done via a quadratic program involving the current
solution’s eigenvalues. In SPARDA, sparsity is encouraged via the soft-thresholding proximal map
corresponding to the `1 penalty. The overall form of our iterations matches subgradient-proximal
updates (4.14)-(4.15) in [24]. By the convergence analysis in §4.2 of [24], the RELAX algorithm (as
well as its incremental variant) is guaranteed to approach the optimal solution of the dual which also
solves (6), provided we employ sufficiently large T and small step-sizes. In practice, fast and accu-
rate convergence is attained by: (a) renormalizing the B-subgradient (Step 10) to ensure balanced
updates of the unit-norm constrained B, (b) using diminishing learning rates which are initially set
larger for the unconstrained dual variables (or even taking multiple subgradient steps in the dual
variables per each update of B).

4.2 Tightening after relaxation

It is unreasonable to expect that our semidefinite relaxation is always tight. Therefore, we can
sometimes further refine the projection p�relax obtained by the RELAX algorithm by using it as
a starting point in the original non-convex optimization. We introduce a sparsity constrained
tightening procedure for applying projected gradient ascent for the original nonconvex objective
Jp�q “ minMPM �T WM� where � is now forced to lie in BXSk and Sk :“ t� P Rd : ||�||0 § ku.
The sparsity level k is fixed based on the relaxed solution (k “ ||p�relax||0). After initializing
�p0q “ p�relax P Rd, the tightening procedure iterates steps in the gradient direction of J followed
by straightforward projections into the unit half-ball B and the set Sk (accomplished by greedily
truncating all entries of � to zero besides the largest k in magnitude).

Let Mp�q again denote the matching matrix chosen in response to �. J fails to be differentiable at
the r� where Mpr�q is not unique. This occurs, e.g., if two samples have identical projections under
r�. While this situation becomes increasingly likely as n, m Ñ 8, J interestingly becomes smoother
overall (assuming the distributions admit density functions). For all other �: Mp�1q “ Mp�q where
�1 lies in a small neighborhood around � and J admits a well-defined gradient 2WMp�q�. In prac-
tice, we find that the tightening always approaches a local optimum of J with a diminishing step-
size. We note that, for a given projection, we can efficiently calculate gradients without recourse to
matrices Mp�q or WMp�q by sorting �ptqT

xp1q, . . . ,�ptqT
xpnq and �ptqT

yp1q, . . . ,�ptqT
ypmq. The

gradient is directly derivable from expression (3) where the nonzero Mij are determined by appropri-
ately matching empirical quantiles (represented by sorted indices) since the univariate Wasserstein
distance is simply the L2 distance between quantile functions [20]. Additional computation can be
saved by employing insertion sort which runs in nearly linear time for almost sorted points (in iter-
ation t ´ 1, the points have been sorted along the �pt´1q direction and their sorting in direction �ptq
is likely similar under small step-size). Thus the tightening procedure is much more efficient than
the RELAX algorithm (respective runtimes are Opdn log nq vs. Opd3n2q per iteration).

5

Guaranteed to converge to global optimum (Bertsekas, 2011)

To scale to large datasets, can employ incremental subgradients by
drawing random (i, j) pairs

Use different learning rates for B, u, and v (eg. Adagrad).

Bertsekas DP (2011). Incremental gradient, subgradient, and proximal methods for convex optimization: A survey.
Optimization for Machine Learning.
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Tightening Step

Projected subgradient method to greedily improve original nonconvex
objective J(β) = min

M∈M
βTWMβ s.t. β ∈ B, ||β||0 ≤ k

Sparsity level k := ||β̂relax||0
For any β: matching-minimization (and subgradients of J) computed
by sorting scalars βTx(1), . . . , βTx(n), βT y(1), . . . , βT y(m)

(matching matrices not needed)

Fact

In 1-D, Wasserstein distance = L2 norm between quantile functions.

D(X,Y ) =

∫ 1

0

[
F−1Y (p)− F−1X (p)

]2
dp

Time-complexity (per iteration):
Tightening procedure = O(dn log n) , RELAX algorithm = O(d3n2)
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Some cases where relaxation is tight

1 The projected Wasserstein distance between X and Y in some
direction is nearly as large as overall Wasserstein distance in Rd.

Ex: if ||E[X]− E[Y ]||2 � max{||Cov(X)||F , ||Cov(Y )||F }

2 X ∼ N(µX ,ΣX) and Y ∼ N(µY ,ΣY ) with µX 6= µY and ΣX ≈ ΣY

3 X ∼ N(µX ,ΣX) and Y ∼ N(µY ,ΣY ) where µX ≈ µY and
argmax
B∈Br

||(B1/2ΣXB
1/2)1/2 − (B1/2ΣYB

1/2)1/2||2F is nearly rank 1.

Ex: ΣY ≈ V · ΣX (where V is a diagonal matrix)
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Figure: PDA objective for two 3-dimensional Gaussian distributions.
Green = solution found by tightening procedure.
Red = solution found by RELAX algorithm.
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Statistical Properties

Simplifying assumptions: (A1) n = m (A2) X,Y admit continuous density functions
(A3) X,Y compactly supported with nonzero density in Euclidean ball of radius R

(A4) β̂ = arg max
β∈B

D(βT X̂(n), βT Ŷ (n))

Theorem 1

If there exists direction β∗ ∈ B such that D(β∗TX,β∗TY ) ≥ ∆, then:

D(β̂T X̂(n), β̂T Ŷ (n)) > ∆− ε with probability ≥ 1− 4 exp

(
− nε2

16R4

)

Theorem 2

If X and Y are identically distributed in Rd, then:
D(β̂T X̂(n), β̂T Ŷ (n)) < ε

with probability ≥ 1− C1

(
1 +

R2

ε

)d
exp

(
−C2

R4
nε2
)
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with probability ≥ 1− C1

(
1 +

R2

ε

)d
exp

(
−C2

R4
nε2
)

J. Mueller 16 / 29



Statistical Properties

Simplifying assumptions: (A1) n = m (A2) X,Y admit continuous density functions
(A3) X,Y compactly supported with nonzero density in Euclidean ball of radius R

(A4) β̂ = arg max
β∈B

D(βT X̂(n), βT Ŷ (n))
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Statistical Properties
Extra assumptions: (A4) Y sub-Gaussian, (A5) E[X] = E[Y ] = 0, (A6) Var[X`] = 1

Jirak M (2011). On the maximum of covariance estimators. Journal of Multivariate Analysis.
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Statistical Properties
Extra assumptions: (A4) Y sub-Gaussian, (A5) E[X] = E[Y ] = 0, (A6) Var[X`] = 1

Let Ta(X,Y ) = |Pr(|X1| ≤ a, . . . , |Xd| ≤ a)− Pr(|Y1| ≤ a, . . . , |Yd| ≤ a)|
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Let Ta(X,Y ) = |Pr(|X1| ≤ a, . . . , |Xd| ≤ a)− Pr(|Y1| ≤ a, . . . , |Yd| ≤ a)|
(measures difference between X,Y ∈ Rd, parameterized by a ≥ 0)

Define h (g(∆)) := min{∆1,∆2}

∆1 = (a+ d)d(g(∆) + d) + exp(−a2/2) + ψ exp
(
−1/(

√
2ψ)
)

∆2 =
(
g(∆) + exp(−a2/2)

)
· d

ψ = ||Cov(X)||1, g(∆) = ∆4 · (1 + Φ)−4, and Φ = supα∈B
{

supy |fαT Y (y)|
}

with fαT Y (y) defined as the density of the projection of Y in the α direction.
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(
−1/(

√
2ψ)
)

∆2 =
(
g(∆) + exp(−a2/2)

)
· d

ψ = ||Cov(X)||1, g(∆) = ∆4 · (1 + Φ)−4, and Φ = supα∈B
{

supy |fαT Y (y)|
}

with fαT Y (y) defined as the density of the projection of Y in the α direction.

Theorem 3

If ∃ a ≥ 0 s.t. Ta(X,Y ) > h (g(∆)), then: D(β̂T X̂(n), β̂T Ŷ (n)) > C∆− ε
with probability ≥ 1− C1 exp

(
−C2
R4 nε

2
)

Jirak M (2011). On the maximum of covariance estimators. Journal of Multivariate Analysis.
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Statistical Properties

Define C as in Theorem 3 and β̂(k) := argmax
β∈B,||β||0≤k

{D(βT X̂(n), βT Ŷ (n))}

Theorem 4 (Sparsistency)

Suppose there exists feature subset S ⊂ {1, . . . , d} s.t. |S| = k,
T (XS , YS) ≥ h (g (ε(d+ 1)/C)), and remaining marginal distributions

XSC , YSC are identical. Then: β̂
(k)
i 6= 0, β̂

(k)
j = 0 ∀ i ∈ S, j ∈ SC

with probability ≥ 1− C1

(
1 +

R2

ε

)d−k
exp

(
−C2

R4
nε2
)
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Feature Selection

Two-class MADELON dataset from NIPS 2003 feature selection
challenge

n = m = 1000, d = 500

20 features with differences between groups

480 noise features with no difference

Only differences present are in interactions between features
(resembles parity problem)

Guyon I, Gunn S, Nikravesh M, Zadeh LA (2006). Feature Extraction: Foundations and Applications. NIPS 2003 Feature
Selection Challenge

J. Mueller 19 / 29



Feature Selection: Results
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Figure: How well SPARDA (red), top sparse principal component (black), sparse linear
discriminants analysis (green), and logistic lasso (blue) identify the 20 relevant features
over different regularization settings.

∗ = SPARDA result with λ chosen via cross-validation (46 features selected with 17
relevant). Many λ-settings return 14 relevant features with no false positives.

∗ = best result (ARD kernel SVM) in the NIPS challenge (8 of the 20 relevant features
selected).
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Two-sample Testing

Generated 20 datasets of varying dimensionality, only first 3 features
in each dataset differ

Centered multivariate Gaussian with covariances ∼ Wishart
(n = m = 1000)

For PDA/SPARDA, test statistic = D(β̂T X̂(n), β̂T Ŷ (m))

Evaluate significance of all test statistics via permutation testing
(exact Type I error control)
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Two-sample Testing: Results
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Figure: (10-repetition averaged) p-values produced by SPARDA (red), PDA (purple),
overall Wasserstein distance in Rd (black), Maximum Mean Discrepancy1 (green), and
DiProPerm2 (blue).

1Gretton A, Borgwardt KM, Rasch MJ, Scholkopf B, Smola A (2012). A Kernel Two-Sample Test.
Journal of Machine Learning Research.

2Wei S, Lee C, Wichers L, Marron JS (2015). Direction-Projection-Permutation for High Dimensional Hypothesis Tests.
Journal of Computational and Graphical Statistics.
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Cellular gene expression in cortex vs. hippocampus

From juvenile mice: 1,691 cells sampled from somatosensory cortex,
1,314 hippocampus cells (Zeisel, 2015)

Expression of 10,305 genes measured within individual cells via
single-cell RNA-seq (on comparable log-FPKM scale)

Standard method to identify differentially expressed genes: assume
expression distribution follows parametric family, assess statistical
significance of marginal-mean-shifts (eg. Limma)

Brain regions contain vast diversity of cell subtypes
(mean differences unsatisfactory, there is no “average” cell)

Single-cell RNA-seq data is highly noisy and does not follow nice
parametric distribution

Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, et al. (2015). Cell types in the mouse cortex
and hippocampus revealed by single-cell RNA-seq. Science.
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Single-cell RNA-seq differential expression analysis

GENE WEIGHT DESCRIPTION

Cck 0.0593 Primary distinguishing gene between distinct interneuron classes
identified in the cortex and hippocampus

Neurod6 0.0583 General regulator of nervous system development whose induced mutation
displays different effects in neocortex vs. the hippocampal region

Stmn3 0.0573 Up-expressed in hippocampus of patients with depressive disorders
Plp1 0.0570 An oligodendrocyte- and myelin-related gene which exhibits cortical

differential expression in schizophrenia
Crym 0.0550 Plays a role in neuronal specification
Spink8 0.0536 Serine protease inhibitor specific to hippocampal pyramidal cells
Gap43 0.0511 Encodes plasticity protein important for axonal regeneration

and neural growth

Cryab 0.0500 Stress induction leads to reduced expression in the mouse hippocampus
Mal 0.0494 Regulates dendritic morphology and is expressed at lower levels

in cortex than in hippocampus
Tspan13 0.0488 Membrane protein which mediates signal transduction events in

cell development, activation, growth and motility

Table: Genes with the greatest weight in the projection β̂ produced by SPARDA

Crym, Spink8, Neurod6 are also among the top 10 genes identified by
LIMMA

J. Mueller 24 / 29



Snca

Presynaptic signaling and membrane trafficking gene whose defects
are implicated in both Parkinson and Alzheimer’s disease

Ranks 11th highest in SPARDA analysis, but only 349 by LIMMA
differential expression analysis
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Marginally-normalized differential expression analysis

Data from both populations is marginally centered at zero with unit
variance (per-gene basis)

Only major remaining differences are changes in gene-gene
relationships between cortex and hippocampus

GENE WEIGHT DESCRIPTION

Thy1 0.1245 Plays a role in cell-cell & cell-ligand interactions during synaptogenesis
and other processes in the brain

Vsnl1 0.1245 Modulates intracellular signaling pathways of the central nervous system
Stmn3 0.1222 Stathmins form important protein complex with tubulins

Stmn2 0.1188 Note: Tubulins Tubb3 and Tubb2 are ranked 20th and 25th by weight in β̂
Tmem59 0.1176 Fundamental regulator of neural cell differentiation. Knock out in the

hippocampus results in drastic expression changes of many other genes
Basp1 0.1171 Transcriptional cofactor which can divert the differentiation of cells to

a neuronal-like morphology
Snhg1 0.1166 Unclassified non-coding RNA gene
Mllt11 0.1145 Promoter of neurodifferentiation and axonal/dendritic maintenance
Uchl1 0.1137 Loss of function leads to profound degeneration of motor neurons
Cck 0.1131 Targets pyramidal neurons and enables neocortical plasticity allowing

for example the auditory cortex to detect light stimuli

Table: Genes with the greatest weight in β̂ produced by SPARDA analysis of marginally
normalized data
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PCA → PDA

Consider setting with paired samples (x(i), y(i))

β̂PCA := largest principal component of (uncentered) differences
x(i) − y(i)

β̂PDA := direction which maximizes projected Wasserstein difference
between empirical distribution of X − Y and delta distribution at 0.

Fact

β̂PCA ≡ β̂PDA

J. Mueller 27 / 29



PCA → PDA

Consider setting with paired samples (x(i), y(i))

β̂PCA := largest principal component of (uncentered) differences
x(i) − y(i)

β̂PDA := direction which maximizes projected Wasserstein difference
between empirical distribution of X − Y and delta distribution at 0.

Fact

β̂PCA ≡ β̂PDA

J. Mueller 27 / 29



PCA → PDA

Consider setting with paired samples (x(i), y(i))

β̂PCA := largest principal component of (uncentered) differences
x(i) − y(i)

β̂PDA := direction which maximizes projected Wasserstein difference
between empirical distribution of X − Y and delta distribution at 0.

Fact

β̂PCA ≡ β̂PDA

J. Mueller 27 / 29



PCA → PDA

Consider setting with paired samples (x(i), y(i))

β̂PCA := largest principal component of (uncentered) differences
x(i) − y(i)

β̂PDA := direction which maximizes projected Wasserstein difference
between empirical distribution of X − Y and delta distribution at 0.

Fact

β̂PCA ≡ β̂PDA

J. Mueller 27 / 29



Future Work

Develop structural assumptions to leverage underlying sparsity in
differences and improve exponential bounds on convergence in
high-dimensional settings (eg. spiked covariance, restricted isometry).

Confidence intervals for projection weights β̂` (beyond bootstrap)

Employ multiple successive projections (eg. maximum-entropy)

Adapt approach to non-pairwise comparison of multiple populations
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Thanks!

Questions?

Paper: Mueller J, Jaakkola T. Principal Differences Analysis:
Interpretable Characterization of Differences between Distributions.
NIPS 2015.

Code: http://www.mit.edu/~jonasm/
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