Sequence to Better Sequence: Continuous Revision of Combinatorial Structures

Jonas Mueller, David Gifford, Tommi Jaakkola

MIT Computer Science & Artificial Intelligence Laboratory

jonasmueller@csail.mit.edu

Discrete sequence data is commonplace (eg. text, proteins/genes)
 sequence x = (s₁,..., s_T) ∈ X where each symbol s_t ∈ S (discrete vocabulary)

- Discrete sequence data is commonplace (eg. text, proteins/genes) sequence $x = (s_1, \ldots, s_T) \in \mathcal{X}$ where each symbol $s_t \in \mathcal{S}$ (discrete vocabulary)
- Tiny fraction of X represents sequences likely to naturally occur (ie. those which appear *realistic*)

- Discrete sequence data is commonplace (eg. text, proteins/genes)
 sequence x = (s₁,..., s_T) ∈ X where each symbol s_t ∈ S (discrete vocabulary)
- Tiny fraction of X represents sequences likely to naturally occur (ie. those which appear *realistic*)
- Each sequence x is associated with outcome $y \in \mathbb{R}$

- Discrete sequence data is commonplace (eg. text, proteins/genes)
 sequence x = (s₁,..., s_T) ∈ X where each symbol s_t ∈ S (discrete vocabulary)
- Tiny fraction of X represents sequences likely to naturally occur (ie. those which appear *realistic*)
- Each sequence x is associated with outcome $y \in \mathbb{R}$

Problem Setup

Problem Setup

- Dataset $\mathcal{D}_n = \{(x_i, y_i)\}_{i=1}^n \stackrel{iid}{\sim} p_{XY}$ of sequence-outcome pairs
- p_X = generative model of the *natural* sequences (unknown)

Problem Setup

- Dataset $\mathcal{D}_n = \{(x_i, y_i)\}_{i=1}^n \stackrel{iid}{\sim} p_{XY}$ of sequence-outcome pairs
- p_X = generative model of the *natural* sequences (unknown)
- **Goal:** Given new sequence $x_0 \sim p_X$ (with unknown outcome), quickly identify a revision x^* with superior expected outcome

$$x^* = \underset{x \in \mathcal{C}_{x_0}}{\operatorname{argmax}} \mathbb{E}[Y \mid X = x]$$

 $\mathcal{C}_{x_0} \subset \mathcal{X} = \mathsf{feasible} \mathsf{ set of natural sequences}$

• Produces natural sequences

• Produces natural sequences

 $p_X(x^*)$ not too small

• Produces natural sequences

 $p_X(x^*)$ not too small

• Preserves intrinsic similarity

• Produces natural sequences

 $p_X(x^*)$ not too small

• Preserves intrinsic similarity

 x^* and x_0 share similar underlying latent characteristics

• Produces natural sequences

 $p_X(x^\ast)$ not too small

• Preserves intrinsic similarity

 x^* and x_0 share similar underlying latent characteristics

Improves outcomes

• Produces natural sequences

$$p_X(x^*)$$
 not too small

• Preserves intrinsic similarity

 x^* and x_0 share similar underlying latent characteristics

Improves outcomes

$$\mathbb{E}[Y \mid X = x^*] > \mathbb{E}[Y \mid X = x_0]$$

• Produces natural sequences

$$p_X(x^*)$$
 not too small

• Preserves intrinsic similarity

 x^* and x_0 share similar underlying latent characteristics

Improves outcomes

$$\mathbb{E}[Y \mid X = x^*] > \mathbb{E}[Y \mid X = x_0]$$

• Computationally efficient

• Produces natural sequences

$$p_X(x^\ast)$$
 not too small

• Preserves intrinsic similarity

 x^* and x_0 share similar underlying latent characteristics

Improves outcomes

$$\mathbb{E}[Y \mid X = x^*] > \mathbb{E}[Y \mid X = x_0]$$

• Computationally efficient

Simple gradient optimization instead of discrete search

• Do not require improved versions of a particular sequence (as in seq2seq/imitation learning)

- Do not require improved versions of a particular sequence (as in seq2seq/imitation learning)
- Do not require any outcomes outside of given dataset (as in bandits/reinforcement learning)

- Do not require improved versions of a particular sequence (as in seq2seq/imitation learning)
- Do not require any outcomes outside of given dataset (as in bandits/reinforcement learning)
- Combinatorial optimization commonly performed via search heuristics like genetic programming (evaluates minor changes in isolation)

- Do not require improved versions of a particular sequence (as in seq2seq/imitation learning)
- Do not require any outcomes outside of given dataset (as in bandits/reinforcement learning)
- Combinatorial optimization commonly performed via search heuristics like genetic programming (evaluates minor changes in isolation)
- Gradient-optimization of inputs w.r.t. neural network predictions (mostly for conditional generation in the continuous image domain)

- Do not require improved versions of a particular sequence (as in seq2seq/imitation learning)
- Do not require any outcomes outside of given dataset (as in bandits/reinforcement learning)
- Combinatorial optimization commonly performed via search heuristics like genetic programming (evaluates minor changes in isolation)
- Gradient-optimization of inputs w.r.t. neural network predictions (mostly for conditional generation in the continuous image domain)
- Gomez-Bombarelli et al.¹ also utilize autoencoder representations to propose novel chemical structures via Bayesian optimization

¹ Gomez-Bombarelli, Duvenaud, Hernandez-Lobato, Aguilera-Iparraguirre, Hirzel, Adams, and Aspuru-Guzik. Automatic chemical design using a data-driven continuous representation of molecules. *arXiv*, 2016

Probabilistic Generative Model

Probabilistic Generative Model

• Continuous latent factors $Z\in \mathbb{R}^d$ produce sequence X + outcome Y Prior: $p_Z=N(0,\mathbf{I})$

Probabilistic Generative Model

- Continuous latent factors $Z\in \mathbb{R}^d$ produce sequence X + outcome Y Prior: $p_Z=N(0,\mathbf{I})$
- Approximate inference maps F, E, D parameterized via three neural networks $\mathcal{F}, \mathcal{E}, \mathcal{D}$

Revision Framework

• Generative model for sequences: $z \sim p_Z$, $x \sim \underline{p_D(x \mid z)}$

parameterized by RNN \mathcal{D}

• Generative model for sequences: $z \sim p_Z$, $x \sim \underline{p_D(x \mid z)}$

parameterized by RNN $\ensuremath{\mathcal{D}}$

• Variational posterior approximation:

$$p(z \mid x) \propto \frac{p_D(x|z)}{p_Z(z)} \approx \underbrace{N(\mu_{z|x}, \mathsf{diag}(\sigma_{z|x}^2))}_{\mathbf{v}}$$

 $q_E(z \mid x)$ parameterized by RNN ${\mathcal E}$

• Generative model for sequences: $z \sim p_Z$, $x \sim \underbrace{p_D(x \mid z)}$

parameterized by RNN $\ensuremath{\mathcal{D}}$

• Variational posterior approximation: $p(z \mid x) \propto \frac{p_D(x|z)}{p_Z(z)} \approx \underbrace{N(\mu_{z|x}, \operatorname{diag}(\sigma_{z|x}^2))}_{q_E(z \mid x) \text{ parameterized by RNN } \mathcal{E}}$

• Learn parameters of \mathcal{E}, \mathcal{D} using stochastic variational inference:

$$\log p_X(x) \ge - \left[\mathcal{L}_{\mathsf{rec}}(x) + \mathcal{L}_{\mathsf{pri}}(x) \right]$$
$$\mathcal{L}_{\mathsf{rec}}(x) = -\mathbb{E}_{q_E(z|x)} \left[\log p_D(x \mid z) \right]$$
$$\mathcal{L}_{\mathsf{pri}}(x) = \mathsf{KL}(q_E(z \mid x)|| p_Z)$$

• $\mathcal{E}, \mathcal{D} = \text{standard language models with Gated Recurrent Unit}^2$

 $^{^{2}}$ Cho, van Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, and Bengio. Learning phrase representations using RNN encoder-decoder for statistical machine translation. *EMNLP*, 2014

- $\mathcal{E}, \mathcal{D} = \text{standard language models with Gated Recurrent Unit}^2$
- \mathcal{E} uses final hidden-state h_T to approximate posterior for $z \mid x$:

$$\begin{split} \mu_{z|x} &= W_{\mu}h_T + b_{\mu} \\ \sigma_{z|x} &= 1 \wedge \exp(-|W_{\sigma}v + b_{\sigma}|), \ v = \mathsf{ReLU}(W_vh_T + b_v) \end{split}$$

 $^{^{2}}$ Cho, van Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, and Bengio. Learning phrase representations using RNN encoder-decoder for statistical machine translation. *EMNLP*, 2014

- $\mathcal{E}, \mathcal{D} = \text{standard language models with Gated Recurrent Unit}^2$
- \mathcal{E} uses final hidden-state h_T to approximate posterior for $z \mid x$:

$$\begin{split} \mu_{z|x} &= W_{\mu}h_T + b_{\mu} \\ \sigma_{z|x} &= 1 \wedge \exp(-|W_{\sigma}v + b_{\sigma}|), \ v = \mathsf{ReLU}(W_vh_T + b_v) \end{split}$$

• We define:

 $E(x) = \underset{z \in \mathbb{R}^d}{\operatorname{argmax}} q_E(z \mid x)$ (MAP Z-estimate under encoder)

 $^{^{2}}$ Cho, van Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, and Bengio. Learning phrase representations using RNN encoder-decoder for statistical machine translation. *EMNLP*, 2014

- $\mathcal{E}, \mathcal{D} = \text{standard language models with Gated Recurrent Unit}^2$
- \mathcal{E} uses final hidden-state h_T to approximate posterior for $z \mid x$:

$$\begin{split} \mu_{z|x} &= W_{\mu}h_T + b_{\mu} \\ \sigma_{z|x} &= 1 \wedge \exp(-|W_{\sigma}v + b_{\sigma}|), \ v = \mathsf{ReLU}(W_vh_T + b_v) \end{split}$$

• We define:

$$E(x) = \underset{z \in \mathbb{R}^d}{\operatorname{argmax}} q_E(z \mid x)$$
 (MAP Z-estimate under encoder)
= $\mu_{z|x}$

 $^{^{2}}$ Cho, van Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, and Bengio. Learning phrase representations using RNN encoder-decoder for statistical machine translation. *EMNLP*, 2014

- $\mathcal{E}, \mathcal{D} = \text{standard language models with Gated Recurrent Unit}^2$
- \mathcal{E} uses final hidden-state h_T to approximate posterior for $z \mid x$:

$$\begin{split} \mu_{z|x} &= W_{\mu}h_T + b_{\mu} \\ \sigma_{z|x} &= 1 \wedge \exp(-|W_{\sigma}v + b_{\sigma}|), \ v = \mathsf{ReLU}(W_vh_T + b_v) \end{split}$$

We define:

$$\begin{split} E(x) &= \operatorname*{argmax}_{z \in \mathbb{R}^d} q_E(z \mid x) & (\mathsf{MAP} \ Z\text{-estimate under encoder}) \\ &= \mu_{z \mid x} & \\ D(z) &= \operatorname*{argmax}_{x \in \mathcal{X}} p_D(x \mid z) & (\mathsf{MAP} \ X\text{-estimate under decoder}) \end{split}$$

 $^{^{2}}$ Cho, van Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, and Bengio. Learning phrase representations using RNN encoder-decoder for statistical machine translation. *EMNLP*, 2014

- $\mathcal{E}, \mathcal{D} = \text{standard language models with Gated Recurrent Unit}^2$
- \mathcal{E} uses final hidden-state h_T to approximate posterior for $z \mid x$:

$$\begin{split} \mu_{z|x} &= W_{\mu}h_T + b_{\mu} \\ \sigma_{z|x} &= 1 \wedge \exp(-|W_{\sigma}v + b_{\sigma}|), \ v = \mathsf{ReLU}(W_vh_T + b_v) \end{split}$$

We define:

$$\begin{split} E(x) &= \operatorname*{argmax}_{z \in \mathbb{R}^d} \ q_E(z \mid x) & (\mathsf{MAP} \ Z\text{-estimate under encoder}) \\ &= \mu_{z \mid x} \end{split}$$

 $D(z) = \underset{x \in \mathcal{X}}{\operatorname{argmax}} p_D(x \mid z)$ (MAP *X*-estimate under decoder)

Greedily approximated via beam-search

²Cho, van Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, and Bengio. Learning phrase representations using RNN encoder-decoder for statistical machine translation. *EMNLP*, 2014

Compositional Prediction of Outcomes

• Outcome map:
$$F(z) = \mathbb{E}[Y \mid Z = z]$$

parameterized by feedforward net $\ensuremath{\mathcal{F}}$
Compositional Prediction of Outcomes

• Outcome map:
$$F(z) = \mathbb{E}[Y \mid Z = z]$$

parameterized by feedforward net $\ensuremath{\mathcal{F}}$

• Taylor approximation: $F(E(x)) \approx \mathbb{E}[Y \mid X = x]$

Compositional Prediction of Outcomes

• Outcome map:
$$F(z) = \mathbb{E}[Y \mid Z = z]$$

parameterized by feedforward net $\ensuremath{\mathcal{F}}$

- Taylor approximation: $F(E(x)) \approx \mathbb{E}[Y \mid X = x]$
- Jointly train $\mathcal E$ and $\mathcal F$ with the loss:

$$\mathcal{L}_{\mathsf{mse}}(x,y) = [y - F(E(x))]^2$$

Bad Example: Suppose for $x \in \mathcal{X}$: $E(x) = z = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \in \mathbb{R}^d$

$$\hat{y} = F(z) = F(z_1)$$
 and $\hat{x} = D(z) = D(z_2)$

Bad Example: Suppose for $x \in \mathcal{X}$: $E(x) = z = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \in \mathbb{R}^d$

$$\hat{y} = F(z) = F(z_1)$$
 and $\hat{x} = D(z) = D(z_2)$

• Avoid by bottlenecking latent dimensionality d

Bad Example: Suppose for $x \in \mathcal{X}$: $E(x) = z = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \in \mathbb{R}^d$ $\hat{y} = F(z) = F(z_1)$ and $\hat{x} = D(z) = D(z_2)$

- Avoid by bottlenecking latent dimensionality d
- Add invariance loss to training objective:

$$\mathcal{L}_{inv} = \mathbb{E}_{z \sim p_Z} \begin{bmatrix} F(z) - F(E(D(z))) \end{bmatrix}^2 \\ \uparrow \\ constant \\ consta$$

Bad Example: Suppose for $x \in \mathcal{X}$: $E(x) = z = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \in \mathbb{R}^d$ $\hat{y} = F(z) = F(z_1)$ and $\hat{x} = D(z) = D(z_2)$

- Avoid by bottlenecking latent dimensionality d
- Add invariance loss to training objective:

$$\mathcal{L}_{inv} = \mathbb{E}_{z \sim p_Z} \begin{bmatrix} F(z) - F(E(D(z))) \end{bmatrix}^2 \\ \uparrow \\ constant \\ consta$$

• $\mathcal{L}_{inv} \rightarrow 0$ ensures outcome-predictions remain invariant to encoding-decoding variation

Jointly Learning Generative Model and Inference Maps

• Neural net parameters of F, q_E, p_D learned jointly

Jointly Learning Generative Model and Inference Maps

- Neural net parameters of F, q_E, p_D learned jointly
- Use stochastic gradient descent to minimize loss $\mathcal L$ over given data:

$$\mathcal{L}(x,y) = \mathcal{L}_{\text{rec}} + \lambda_{\text{pri}}\mathcal{L}_{\text{pri}} + \frac{\lambda_{\text{mse}}}{\sigma_Y^2}\mathcal{L}_{\text{mse}} + \frac{\lambda_{\text{inv}}}{\sigma_Y^2}\mathcal{L}_{\text{inv}}$$

$$\mathcal{L}_{\text{rec}}(x) = -\mathbb{E}_{q_E(z|x)} [\log p_D(x|z)] \qquad \qquad \mathcal{L}_{\text{pri}}(x) = \text{KL}(q_E(z|x)||p_Z)$$

$$\mathcal{L}_{\text{mse}}(x,y) = [y - F(E(x))]^2 \qquad \qquad \mathcal{L}_{\text{inv}} = \mathbb{E}_{z \sim p_Z} [F(z) - F(E(D(z)))]^2$$

$$\sigma_Y^2 = (\text{empirical) variance of outcomes}$$

Jointly Learning Generative Model and Inference Maps

- Neural net parameters of F, q_E, p_D learned jointly
- Use stochastic gradient descent to minimize loss $\mathcal L$ over given data:

$$\mathcal{L}(x,y) = \mathcal{L}_{\text{rec}} + \lambda_{\text{pri}}\mathcal{L}_{\text{pri}} + \frac{\lambda_{\text{mse}}}{\sigma_Y^2}\mathcal{L}_{\text{mse}} + \frac{\lambda_{\text{inv}}}{\sigma_Y^2}\mathcal{L}_{\text{inv}}$$

$$\mathcal{L}_{\text{rec}}(x) = -\mathbb{E}_{q_E(z|x)} [\log p_D(x|z)] \qquad \qquad \mathcal{L}_{\text{pri}}(x) = \text{KL}(q_E(z|x)||p_Z)$$

$$\mathcal{L}_{\text{mse}}(x,y) = [y - F(E(x))]^2 \qquad \qquad \mathcal{L}_{\text{inv}} = \mathbb{E}_{z \sim p_Z} [F(z) - F(E(D(z)))]^2$$

$$\sigma_Y^2 = (\text{empirical}) \text{ variance of outcomes}$$

• Start training with $\lambda_{pri} = \lambda_{inv} = 0$, slowly increase λ_{pri} and then λ_{inv}

Proposing Revisions

REVISE Algorithm

Input: sequence $x_0 \in \mathcal{X}$, constant $\alpha \in (0, |2\pi\Sigma_{z|x_0}|^{-\frac{1}{2}})$ **Output:** revised sequence $x^* \in \mathcal{X}$

1) Use \mathcal{E} to compute $q_E(z \mid x_0), \ E(x_0) = \mathbb{E}_{q_E}[z \mid x_0]$

- 2) Define $C_{x_0} = \{ z \in \mathbb{R}^d : q_E(z \mid x_0) \ge \alpha \}$ (ellipsoid)
- 3) Find $z^* \approx \underset{z \in C_{x_0}}{\operatorname{argmax}} F(z)$ (gradient ascent w/ log-barrier penalty)
- 4) Return $x^* = D(z^*) \approx \underset{x \in \mathcal{X}}{\operatorname{argmax}} p_D(x \mid z^*)$ (greedy beam search)

Proposing Revisions

Revise Algorithm

Input: sequence $x_0 \in \mathcal{X}$, constant $\alpha \in (0, |2\pi\Sigma_{z|x_0}|^{-\frac{1}{2}})$ **Output:** revised sequence $x^* \in \mathcal{X}$

1) Use \mathcal{E} to compute $q_E(z \mid x_0), \ E(x_0) = \mathbb{E}_{q_E}[z \mid x_0]$

- 2) Define $C_{x_0} = \{ z \in \mathbb{R}^d : q_E(z \mid x_0) \ge \alpha \}$ (ellipsoid)
- 3) Find $z^* \approx \underset{z \in C_{x_0}}{\operatorname{argmax}} F(z)$ (gradient ascent w/ log-barrier penalty)
- 4) Return $x^* = D(z^*) \approx \underset{x \in \mathcal{X}}{\operatorname{argmax}} p_D(x \mid z^*)$ (greedy beam search)

• We also propose alternative adaptive decoding biased toward x_0

- If neural net approximations are exact, proposed revisions will satisfy:
 - x^* associated with an expected outcome-increase

- If neural net approximations are exact, proposed revisions will satisfy:
 - x^* associated with an expected outcome-increase
 - if x_0 appears natural (nontrivial likelihood under p_X), so does x^*

- If neural net approximations are exact, proposed revisions will satisfy:
 - x^* associated with an expected outcome-increase
 - if x_0 appears natural (nontrivial likelihood under p_X), so does x^*
 - x^* and x_0 likely share similar latent characteristics Z

- If neural net approximations are exact, proposed revisions will satisfy:
 - x^* associated with an expected outcome-increase
 - if x_0 appears natural (nontrivial likelihood under p_X), so does x^*
 - x^* and x_0 likely share similar latent characteristics Z
- We quantify proposed revisions' quality vs: accuracy in neural net approximations & marginal likelihood of x_0

Theorem

With probability $\geq 1 - \delta$ (over $x_0 \sim p_X$):

$$p_X(x^*) \ge \frac{\alpha\gamma}{\eta} \cdot p_X(x_0)$$

Assuming with probability $\ge 1 - \delta$ (over $x \sim p_X$):

(A1)
$$p(z \mid x) \ge \gamma \cdot q_E(z \mid x)$$
 if $q_E(z \mid x) \ge \alpha$
(A2) $p(z^* \mid x^*) \le \eta$ where $x^* = \text{REVISE}(x)$

Theorem

With probability $\geq 1 - \delta$ (over $x_0 \sim p_X$):

$$p_X(x^*) \ge \frac{\alpha\gamma}{\eta} \cdot p_X(x_0)$$

Assuming with probability $\ge 1 - \delta$ (over $x \sim p_X$):

(A1)
$$p(z \mid x) \ge \gamma \cdot q_E(z \mid x)$$
 if $q_E(z \mid x) \ge \alpha$

(A2)
$$p(z^* \mid x^*) \leq \eta$$
 where $x^* = \text{REVISE}(x)$

• Replacing (A2) with Lipschitz condition on $p_D(x \mid z) \implies$ similar result

Theorem

With probability $\geq 1 - \delta - \kappa$ (over $x_0 \sim p_X$):

$$\Delta_{z^*} - \epsilon \leqslant F(z^*) - F(E(x_0)) \leqslant \Delta_{z^*} + \epsilon$$

where
$$\Delta_{z^*} = \mathbb{E}[Y \mid X = x^*] - \mathbb{E}[Y \mid X = x_0]$$
, $\epsilon = \epsilon_{inv} + 2\epsilon_{mse}$

Assuming: (A3) $p_X(x^*) \ge \kappa$ with probability $\ge 1 - \delta$ (over $x_0 \sim p_X$) (A4) $|F(E(x)) - \mathbb{E}[Y|X = x]| \le \epsilon_{mse}$ with probability $\ge 1 - \kappa$ (over $x \sim p_X$) (A5) $|F(z) - F(E(D(z)))| \le \epsilon_{inv}$ with probability $\ge 1 - \delta$ (over $z \sim p_Z$)

Theorem

With probability $\geq 1 - \delta - \kappa$ (over $x_0 \sim p_X$):

$$\Delta_{z^*} - \epsilon \leqslant F(z^*) - F(E(x_0)) \leqslant \Delta_{z^*} + \epsilon$$

where
$$\Delta_{z^*} = \mathbb{E}[Y \mid X = x^*] - \mathbb{E}[Y \mid X = x_0]$$
, $\epsilon = \epsilon_{inv} + 2\epsilon_{mse}$

Assuming: (A3) $p_X(x^*) \ge \kappa$ with probability $\ge 1 - \delta$ (over $x_0 \sim p_X$) (A4) $|F(E(x)) - \mathbb{E}[Y|X = x]| \le \epsilon_{mse}$ with probability $\ge 1 - \kappa$ (over $x \sim p_X$) (A5) $|F(z) - F(E(D(z)))| \le \epsilon_{inv}$ with probability $\ge 1 - \delta$ (over $z \sim p_Z$)

• Previous theorem implies (A3)

• Data = 1M+ short sentences from BeerAdvocate reviews

- Data = 1M+ short sentences from BeerAdvocate reviews
- $y \in [0,1]$: VADER sentiment compound score of each sentence³

 $^{^{3}\}mbox{Hutto}$ & Gilbert. Vader: A parsimonious rule-based model for sentiment analysis of social media text. ICWSM, 2014

- Data = 1M+ short sentences from BeerAdvocate reviews
- $y \in [0,1]$: VADER sentiment compound score of each sentence³
- Apply methods to revise set of 1000 held-out sentences

³Hutto & Gilbert. Vader: A parsimonious rule-based model for sentiment analysis of social media text. *ICWSM*, 2014

Model	$\Delta_Y(x^*)$	$\Delta_L(x^*)$	$d(x^*, x_0)$
$\log \alpha = -10000$	0.52 ±0.77	-8.8 ±6.5	2.6 ±3.3
$\log \alpha = -1$	$0.31 \ \pm 0.50$	- 7.6 ±5.8	1.7 ± 2.6
$\lambda_{inv} = \lambda_{pri} = 0$	$0.22 \ \pm 1.03$	-10.2 ± 7.0	$3.3 \ \pm 3.4$
SEARCH	$0.19 \ \pm 0.56$	-7.7 ±4.2	$3.0\ \pm 1.2$

 $\Delta_Y(x^*) =$ outcome improvement from revision (rescaled by std-dev of outcomes) $\Delta_L(x^*) = \hat{p}(x^*) - \hat{p}(x_0)$ $d(x^*, x_0) =$ Levenshtein (edit) distance

Model	Sentence	$\Delta_Y(x^*)$	$\Delta_L(x^*)$
x_0	this smells pretty bad.	-	-
$\log \alpha = -10000$	smells pretty delightful!	+2.8	-0.5
$\log \alpha = -1$	i liked this smells pretty.	+2.5	-2.8
$\lambda_{inv} = \lambda_{pri} = 0$	pretty this smells bad!	-0.2	-3.1
Search	wow this smells pretty bad.	+1.9	-4.6
x_0	i like to support san diego beers.	-	-
$\log \alpha = -10000$	i love to support craft beers!	+0.5	+1.6
$\log \alpha = -1$	i like to support craft beers!	+0.1	+2.6
$\lambda_{inv} = \lambda_{pri} = 0$	i like to support you know.	0	+3.7
Search	i like to super support san diego.	+0.7	-2.9
x_0	i'm not sure how old the bottle is.	-	-
$\log \alpha = -10000$	i definitely enjoy how old is the bottle is.	+3.0	-3.6
$\log \alpha = -1$	i'm sure not sure how old the bottle is.	+2.5	-6.8
$\lambda_{inv} = \lambda_{pri} = 0$	i'm sure better is the highlights when cheers.	+3.3	-9.2
SEARCH	i 'm not sure how the bottle is love.	+2.3	-3.3

 \bullet Dataset of ${\sim}100K$ short sentences

- Dataset of $\sim 100 \text{K}$ short sentences
- Each is either from Shakespeare with label y = 0.9 or a more contemporary source (from NLTK) with label y = 0.1

- Dataset of $\sim 100 \text{K}$ short sentences
- Each is either from Shakespeare with label y = 0.9 or a more contemporary source (from NLTK) with label y = 0.1
- Given new sentence, revise so that author is increasingly expected to be Shakespeare rather than contemporary source

# Steps	Decoded Sentence
x_0	where are you, henry??
100	where are you, henry??
1000	where are you, royal??
5000	where art thou now?
10000	which cannot come, you of thee?
x^*	where art thou, keeper??
x_0	somewhere, somebody is bound to love us.
100	somewhere, somebody is bound to love us.
1000	courage, honey, somebody is bound to love us!
5000	courage man; 'tis love that is lost to us.
10000	thou, within courage to brush and such us brush.
x^*	courage man; somebody is bound to love us.
x_0	you are both the same size.
100	you are both the same.
1000	you are both wretched.
5000	you are both the king.
10000	you are both these are very.
x^*	you are both wretched men.

• Improves outcomes

Improves outcomes

- Improves outcomes
- Produces natural sequences

- Improves outcomes
- Produces natural sequences

- Improves outcomes
- Produces natural sequences
- Preserves intrinsic similarity

- Improves outcomes
- Produces natural sequences
- Preserves intrinsic similarity

- 1
- X

Х

- Improves outcomes
- Produces natural sequences
- Preserves intrinsic similarity
- Computationally efficient

- Improves outcomes
- Produces natural sequences
- Preserves intrinsic similarity
- Computationally efficient

- ✓ ×
- ✓
Desiderata for our revision procedure

- Improves outcomes
 Produces natural sequences
- Preserves intrinsic similarity
- Computationally efficient

Ideas to improve method:

• Harness semantic similarity data to shape latent geometry⁴

X

⁴ Mueller & Thyagarajan. Siamese Recurrent Architectures for Learning Sentence Similarity. AAAI, 2016

Desiderata for our revision procedure

- Improves outcomes
 Produces natural sequences
- Preserves intrinsic similarity
- Computationally efficient

Ideas to improve method:

- Harness semantic similarity data to shape latent geometry⁴
- Better generative model/prior⁵ + variational inference strategy⁶

Х

⁴Mueller & Thyagarajan. Siamese Recurrent Architectures for Learning Sentence Similarity. AAAI, 2016

⁵Yang et al. Improved Variational Autoencoders for Text Modeling using Dilated Convolutions. *ICML*, 2017

⁶Chen et al. Variational Lossy Autoencoder. *ICLR*, 2017