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Automating machine learning and analytics

Given a new dataset to model:

Current AutoML:

Try applying many models and report which one works best

Expensive, brute-force, suboptimal search for best model

Has no idea where the data comes from

Human Analyst:

Understand what variables generated the data

Recall previously-analyzed datasets generated from similar variables

Use previous experience to propose promising models for the new data

J. Mueller Introduction



Ingredients for successful AutoML

1 Organized repository of different datasets annotated with informative
metadata regarding the performance of various models 1

2 Ability to recognize which repository datasets (and best models
associated with them) are relevant when presented with new data

1Examples: OpenML, kaggle.com
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Overview

Objective: Given new data from unknown variable, identify which
previously-seen datasets stem from the same variable

Applications: AutoML, semantic labeling (eg. identifying PII data),
automated transforms, schema-matching, dataset search

Approach: Use neural network to embed each dataset as vector,
such that similar variables’ data have nearby embeddings
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Setup

Repository R containing N datasets D1, . . . ,DN

Each dataset Di stems from a single variable vi
and is comprised of IID observations x1, . . . , xni „ Pi

Some datasets in R annotated as matched variables vi “ vj

Identify which of D1, . . . ,DN stem from same variable as new D˚
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Statistical similarity

Many measures of statistical difference can be expressed:

dpP1, P2q “
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with some feature map h (eg. summary statistics, histograms, RKHS)

Let h : xÑ Rk = neural network used to embed datasets2

dhpD1,D2q “ ||hpD1q ´ hpD2q||
2
2 with hpDiq “
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xPDi
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2Zaheer et al. (2017). Deep Sets.
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Key issues

Provided labels (ie. column names) for datasets are often
uninformative, or not standardized across groups

ñ we use raw data values to gauge variable similarity

Standard statistical similarity measures fail to:

1 Ignore natural variation between datasets containing measurements of
the same type of variable (eg. temperature in Celsius vs Fahrenheit)

2 Distinguish different variables whose data distributions happen to be
identical (eg. binary-valued variables: true/false or yes/no)

3 Facilitate efficient identification of datasets with matched variables
(our vector embeddings enable approximate nearest neighbor search)
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Modeling variable matches

pij “ expp´Dijq := probability Di and Dj stem from same variable

Dij “ dhpDi,Djq ` gpDiq ` gpDjq

g : xÑ R` = another deep sets neural network to adjust probability

Networks h, g trained jointly based on cross-entropy between pij and
the match/no-match labels in the repository R

g learns to output large values for datasets with common distributions
shared by many different variables (eg. binary-valued Bernoulli)
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Techniques to improve performance

Triplet training with anchor samples

Subsample datasets when calculating stochastic gradients

Augment training set of variable-matches by splitting single dataset
into two matched datasets

For numeric data: h = feedforward network that operates on 32-bit
binary representation of values instead of floats

For text data: h = feedforward network that operates on pretrained
embedding of individual text fields (eg. fastText, Bert)

For arbitrary string data: h = LSTM that produces vector embedding
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Experiments on OpenML

Repository of thousands of datasets created by splitting columns of
hundreds of data tables taken from OpenML3

“True” variable matches identified based on column labels
(ignoring common/generic column names)

For query dataset with column-name = age (from survival data
table): the top 3 matches are all columns named age, from tables
annotated as audiology, diabetes, and breast tumor data

Dataset with highest probability adjustment value (argmaxj gpDjq) is
column where 58% of values = true and the rest = false. There
are many similar datasets in OpenML with diverse column names.

3http://www.openml.org/
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Figure: t-SNE of embeddings for 1K held-out numeric OpenML datasets. Datasets
colored based on column name (if amongst topmost frequently-occurring names)
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(A) Split (B) Diff
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Figure: Match/no-match classification performance of different methods on
various-sized subsamples of held-out numeric OpenML datasets:

1 Mean+StdDev difference (black)

2 Kolmogorov-Smirnov p-value (green)

3 Maximum Mean Discrepancy (light blue)

4 SCF improved-MMD estimator (blue)

5 Ours (red)
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Method k “ 1 k “ 5 k “ 10 Recall

MeanSD 0.4 0.51 0.58 -
KS 0.46 0.59 0.67 -
MMD 0.48 0.62 0.69 -
SCF 0.49 0.65 0.72 -
Ours 0.48 0.66 0.74 -

MeanSD 0.35 0.44 0.53 0.52
KS 0.36 0.46 0.59 0.6
MMD 0.33 0.45 0.52 0.6
SCF 0.33 0.4 0.55 0.62
Ours 0.42 0.61 0.67 0.71

Table: Number of correct matches @k for retrieving datasets from R in Split
(unshaded) and Diff (shaded) settings (averaged over 100 query datasets)
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Recognizing Variables from their Data
via Deep Embeddings of Distributions

Objective: Given new data from unknown variable, identify which
previously-seen datasets stem from the same variable

Applications: AutoML, semantic labeling (eg. identifying PII data),
automated transforms, schema-matching, dataset search

Approach: Use neural network to embed each dataset as vector,
such that similar variables’ data have nearby embeddings

Contact: jonasmue@amazon.com
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