Recognizing Variables from their Data via Deep Embeddings of Distributions

Jonas Mueller, Alex Smola

jonasmue@amazon.com

Amazon Web Services

Automating machine learning and analytics

Given a new dataset to model:

Current AutoML:

- Try applying many models and report which one works best
- Expensive, brute-force, suboptimal search for best model
- Has no idea where the data comes from

Human Analyst:

- Understand what variables generated the data
- Recall previously-analyzed datasets generated from similar variables
- Use previous experience to propose promising models for the new data

Ingredients for successful AutoML

Organized repository of different datasets annotated with informative metadata regarding the performance of various models ¹

Ability to recognize which repository datasets (and best models associated with them) are relevant when presented with new data

¹Examples: OpenML, kaggle.com

Overview

Objective: Given new data from unknown variable, identify which previously-seen datasets stem from the same variable

Applications: AutoML, semantic labeling (eg. identifying PII data), automated transforms, schema-matching, dataset search

Approach: Use neural network to embed each dataset as vector, such that similar variables' data have nearby embeddings

- Repository \mathcal{R} containing N datasets $\mathcal{D}_1, \ldots, \mathcal{D}_N$
- Each dataset D_i stems from a single variable v_i and is comprised of IID observations x₁,..., x_{n_i} ∼ P_i
- Some datasets in \mathcal{R} annotated as matched variables $v_i = v_j$
- \bullet Identify which of $\mathcal{D}_1,\ldots,\mathcal{D}_N$ stem from same variable as new $\mathcal{D}_{\boldsymbol{*}}$

Statistical similarity

Many measures of statistical difference can be expressed:

$$d(P_1, P_2) = \left\| \mathbb{E}_{P_1}[h(x)] - \mathbb{E}_{P_2}[h(x)] \right\|$$

with some feature map h (eg. summary statistics, histograms, RKHS)

Let $h: x \to \mathbb{R}^k = \operatorname{neural}$ network used to embed datasets^2

$$d_h(\mathcal{D}_1, \mathcal{D}_2) = ||h(\mathcal{D}_1) - h(\mathcal{D}_2)||_2^2 \text{ with } h(\mathcal{D}_i) = \frac{1}{|\mathcal{D}_i|} \sum_{x \in \mathcal{D}_i} h(x)$$

²Zaheer et al. (2017). *Deep Sets*.

Key issues

• Provided labels (ie. column names) for datasets are often uninformative, or not standardized across groups

 \Rightarrow we use raw data values to gauge variable similarity

- Standard statistical similarity measures fail to:
 - Ignore natural variation between datasets containing measurements of the same type of variable (eg. *temperature* in Celsius vs Fahrenheit)
 - Oistinguish different variables whose data distributions happen to be identical (eg. binary-valued variables: *true/false* or *yes/no*)
 - Facilitate efficient identification of datasets with matched variables (our vector embeddings enable approximate nearest neighbor search)

Modeling variable matches

• $p_{ij} = \exp(-D_{ij}) :=$ probability \mathcal{D}_i and \mathcal{D}_j stem from same variable

•
$$D_{ij} = d_h(\mathcal{D}_i, \mathcal{D}_j) + g(\mathcal{D}_i) + g(\mathcal{D}_j)$$

• $g: x \to \mathbb{R}^+$ = another deep sets neural network to adjust probability

- Networks h, g trained jointly based on cross-entropy between p_{ij} and the match/no-match labels in the repository \mathcal{R}
- g learns to output large values for datasets with common distributions shared by many different variables (eg. binary-valued Bernoulli)

Techniques to improve performance

- Triplet training with anchor samples
- Subsample datasets when calculating stochastic gradients
- Augment training set of variable-matches by splitting single dataset into two matched datasets
- For numeric data: *h* = feedforward network that operates on 32-bit binary representation of values instead of floats
- For text data: *h* = feedforward network that operates on pretrained embedding of individual text fields (eg. fastText, Bert)
- For arbitrary string data: h = LSTM that produces vector embedding

Experiments on OpenML

- Repository of thousands of datasets created by splitting columns of hundreds of data tables taken from OpenML³
- "True" variable matches identified based on column labels (ignoring common/generic column names)
- For query dataset with column-name = age (from survival data table): the top 3 matches are all columns named age, from tables annotated as audiology, diabetes, and breast tumor data
- Dataset with highest probability adjustment value $(\operatorname{argmax}_j g(\mathcal{D}_j))$ is column where 58% of values = true and the rest = false. There are many similar datasets in OpenML with diverse column names.

³http://www.openml.org/

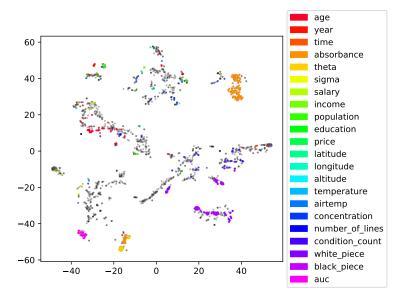


Figure: t-SNE of embeddings for 1K held-out numeric OpenML datasets. Datasets colored based on column name (if amongst topmost frequently-occurring names)

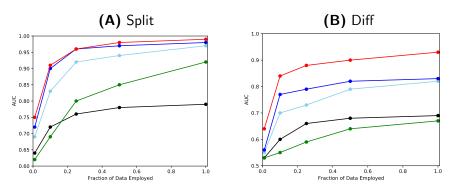


Figure: Match/no-match classification performance of different methods on various-sized subsamples of held-out numeric OpenML datasets:

- Mean+StdDev difference (black)
- Ø Kolmogorov-Smirnov p-value (green)
- Maximum Mean Discrepancy (light blue)
- SCF improved-MMD estimator (blue)
- Ours (red)

Method	k = 1	k = 5	k = 10	Recall
MeanSD	0.4	0.51	0.58	-
KS	0.46	0.59	0.67	-
MMD	0.48	0.62	0.69	-
SCF	0.49	0.65	0.72	-
Ours	0.48	0.66	0.74	-
MeanSD	0.35	0.44	0.53	0.52
KS	0.36	0.46	0.59	0.6
MMD	0.33	0.45	0.52	0.6
SCF	0.33	0.4	0.55	0.62
Ours	0.42	0.61	0.67	0.71

Table: Number of correct matches @k for retrieving datasets from \mathcal{R} in *Split* (unshaded) and *Diff* (shaded) settings (averaged over 100 query datasets)

Recognizing Variables from their Data via Deep Embeddings of Distributions

Objective: Given new data from unknown variable, identify which previously-seen datasets stem from the same variable

Applications: AutoML, semantic labeling (eg. identifying PII data), automated transforms, schema-matching, dataset search

Approach: Use neural network to embed each dataset as vector, such that similar variables' data have nearby embeddings

Contact: jonasmue@amazon.com