The Directed Steiner Network problem istractable for a constant
number of terminals

JonFeldmari

MatthiasRuhlt

MIT Laboratoryfor ComputerScience
CambridgeMA 02139,USA

Abstract

We considerthe DIRECTED STEINER NETWORK prob-
lem, also called the POINT-TO-POINT CONNECTION
problem, whee given a directed graph G and p pairs
{(s1,t1),...,(Sp,tp) } of nodesin the graph,onehasto find
thesmallestsubgiaphH of G that containspathsfroms to
t; for all i. Theproblemis NP-had for geneal p, sincethe
DIRECTED STEINER TREE problemis a specialcase Until
now the compleity wasunknownfor constantp > 3.

We prove that the problemis polynomiallysolvableif p
is any constantnumber evenif nodesand edgesin G are
weightedandthegoalis to minimizethetotal weightof the
subgaphH.

In addition, we give an efficient algorithm for the
STRONGLY CONNECTED STEINER SUBGRAPH problem
for any constantp, wheme given a directedgraph and p
nodesn thegraph,onehasto computehesmallesstrongly
connectedubgraphcontainingthe p nodes.

1. Introduction

In this paperwe addres®neof the mostgeneralSteiner
problems,the DIRECTED STEINER NETWORK problem,
alsocalledthe POINT-TO-POINT CONNECTION problem.

DIRECTED STEINER NETWORK (p-DSN): Given a di-
rectedgraphG = (V,E), and p pairsof nodesin the graph
{(s1,11),---,(Sp,tp) }, find the smallestsubgraphH of G
thatcontainspathsfrom s tot; for 1 <i < p.

Accordingto how ‘smallest’ is defined,thereare sev-
eral variationsof this problem. In this paper ‘smallest’
will mean‘minimum numberof nodes’. Other possibili-
tiesare‘minimum numberof edges’or ‘smallestcost’ if G

*E-Mail: j onfel d@heory.lcs. mt.edu
TE-Mail: ruhl @heory. | cs. mit.edu

is a graphwith nodeandedgecosts.We extendour results
to thesevariationsat the endof the paper

The DSN problemoccursnaturallywhendesigningnet-
worksdeliveringgoodsfrom sourcego destinationsywhere
anunderlyingnetwork is presentput its serviceshave to be
paidfor. For example,the graphG could be a setof inter-
netrouters,whereedgesare connectiondetweenrouters.
Supposehata bankneeddo sendsecuredataoverthe net-
work from sourcess to destinationg;. But to transmittheir
datasecurelythe routersusedin the transmissionsiave to
beupgradedwhichis expensve. The banknaturallywants
to minimize the numberof routersto upgrade.

Justlike the original STEINER TREE problem[6], DSN
is NP-completeif the numberof pairs p is part of the in-
put. For constantp, on the otherhand,its compleity was
mostly unknovn sofar. The casep = 1 is just a shortest
pathquery andfor p = 2 the problemwassolvedin 1992
by Li, McCormickandSimchi-Levi [8]. They statethecase
p > 3 asanopenproblem.

Our Contribution In this paper we give a polynomial
time algorithm for ary constantp, and thereforeresohe
this open problem. More precisely the running time is
Oo(mrfP=2 4 n*—llogn), wheren = [V| andm= |E|.

Our algorithm for p-DSN can best be understoodin
termsof a game,wherea player movestokensaroundthe
graph. Initially, p tokensare placedon the startingnodes
$1,...,Sp, Onetokenpernode.Theplayeris thenallowedto
male certaintypesof moveswith thetokens,andhis goalis
to performa seriesof thesemovesto getthetokensto their
respectie destinations, ... ,tp (thetokenfrom s; toty, the
tokenfrom s, to tp, etc).

Every possiblemove hasa costassociatedvith it: the
numberof nodesthatarevisited by the moving tokens.We
definethe movescarefully sothatthe lowestcostmove se-
guencdo getthetokensfromssy,...,sptoty, ...ty will visit
exactly thenodesof the optimalsubgraptH. Thedifficulty
of the constructionis to ensurethat sucha sequencexists
for every optimal H. For p = 2 this is easyto do, since

thetwo involvedpathscanonly shareverticesin avery re-
strictedmanner However for p > 3 the relationshipsbe-
tweenthe pathsbecomesignificantlymore complex. Crit-
ical to our argumentis a structurallemmaanalyzinghow
thesepathsmay overlap.

We find that most of the difficulty of p-DSN is con-
tainedin the specialcasewhent; = 541 for 1 <i < p, and
tp = s1. It is not hardto seethat every optimal solutionH
to this specialcasemustbe a stronglyconnectedubgraph.
This problem is thereforeequialent to the STRONGLY
CONNECTED STEINER SUBGRAPH problem, defined as
follows.

STRONGLY CONNECTED STEINER SUBGRAPH (p-
SCSS): Givena directedgraphG = (V,E), and p vertices
{s1,...,Sp} in V, find the smalleststrongly connected
subgrapiH of G thatcontainssy,...,Sp.

We give an algorithm for p-SCSS that runsin time
O(mr?P=3 4 n2P=2|ogn), for ary constantp, which makes
useof atokengamesimilar to the onementionedabove.

Related Work Thereare mary relatedSteinerproblems
that are well-studied,most of themfor undirectedgraphs.
For amonograplonthesubjectse€g[7].

The only previously known polynomial-timealgorithm
for p-DSN with constanip, exceptfor thetrivial casep=1,
wasthe onegivenby Li, McCormick and Simchi-Levi [8]
for p = 2. The runningtime of their algorithmis O(n®).
NatuandFangin [9] and[10] improvedthis runningtime
firstto O(n*), andthento O(mn+n2logn). In [10] they also
presentainalgorithmfor p = 3, andconjecturghatavariant
for their algorithmworksfor all constantp. In AppendixA
we provide whatwe believe to be a countereampleto the
correctnes®f their algorithmfor p = 3, andthusto their
conjecture.

There is strong evidence that p-DSN is not fixed-
parametetractable,i.e. thereis no algorithmwith a run-
ning time of O(nK) for someconstank independenof the
parametep. This follows from resultsproved for the ‘W-
hierarchy’definedoy Downey andFellows[3], whereit was
shawvn thatDIRECTED STEINER TREE is W[2]-hard.

The p-DSN problembecomesnuchhardeiif the p paths
betweenthe s andt; are requiredto be edge-disjoint(or
node-disjoint). Under that restriction,the problemis NP-
completealreadyfor p = 2 [4]. More precisely it is NP-
hardevento determinewhetheranyfeasiblesolutionH ex-
ists.

Otherrecentwork hascenteredon the approximability
of p-DSN for generalp. The bestpositive resultobtained
so far is by Charikaret al [1], who achieve an approxi-
mationratio of O(p?3log'/3 p) for ary p. They alsogive
anapproximatioralgorithmfor p-SCSS for generalp that

Figure 1. A samplegraph

achievesanapproximatiorratio of 2i(i — 1) p'/l andrunsin
time O(n'p?). Onthe negative side, DodisandKhanna[2]

provethatp-DSN is Q(2'°¢" *P)-hard.

Overview In section2, we give a simple algorithm that
solves p-SCSS for p = 2, while also defining the token
gamein more detail. We generalizethis approachto ary
constantp andstatethe algorithmsolving p-SCSS in sec-
tion 3. Thecorrectnesproofis givenin sectionst and>5.

Using the algorithmfor p-SCSS, we thenin section6
give the algorithmfor the p-DSN problemand prove its
correctness.We concludethe paperby summarizingour
resultsanddiscussingrossiblefuture researchdirectionsin
section?.

2. A Solution for 2-SCSS

We beagin by solving 2-SCSS, the problemof finding a
minimum strongly connectedsubgraphH of a graphG =
(V,E) thatincludestwo specifiednodess; ands,. Thisis
equivalentto findingthesmallesH thatcontaingpathsfrom
s1 to s andfrom s, to 5. Consideringhis simpleproblem
allows usto introducethe notationand methodologyused
in the following sections. The algorithmdescribecdhereis
similarto theonegivenby NatuandFang[10].

Figure 1 illustratessomeof the difficulties of this prob-
lem. Let s1, S be our terminals. The optimal subgraph
consistf the six nodessy, Xg, X7, Xg, X9, 2. The pathsfrom
s1 to s, andsp to s; sharevertex xg, and sharethe vertex
sequenceay — Xg — Xg. Notethatthe optimalsubgraphn-
cludesneitherthe shortespathfrom s; to s, nor the short-
estpathfrom s, to 5.

2.1. Thetoken game

To computethe optimal subgraphH, we will placetwo
tokens, called f andb, on vertex s;. We then move the
tokensalongedges,f moving forward alongedges,andb
moving backwardsalong edges,until they both reachs,.

Thenthe setof nodesvisitedduringthe sequencef moves
will containpathss; ~ s ands; ~ 1.

To find the smallestsubgrapH containingthosepaths,
we will chagefor the moves. The costof a move will be
the numberof new verticesenteredby the tokensduring
thatmove. Thelowestcostmove sequencéo getthetokens
from s; to s thencorrespond$o the optimalsolution.

The three kinds of moves we allow are given below.
The notation(x,y) refersto the situationwheretoken f is
on vertex x, andtoken b is on vertex y. The expression
“(X1,Y1) 5 (x2,y2)" meanghatit is legal to move token f
from x; to X2, andtokenb from y; to y, (atthe sametime),
andthatthis move hascostc. We wantto find a move se-
quencerom (s1,s1) to (Sp,S) with minimal cost.

(i) Token f moving forward: For every edge(u,v) € E
andall x € V, we allow

(a) themove (u,x) 5 {(v,x), and
(b) themove (u,v) Y (v, V).

(i) Tokenb moving badkward: For every edge(u,v) € E
andall x € V, we allow

(a) themove (x,V) EN (x,u), and
(b) themove (u,v) 5 (u,u).

(iii) Tokensswitching places: For every pair of vertices
a,b €V for whichthereis apathfromatobin G, we
allow the move (a,b) = (b,a), wherec is the length
of the shortestpathfrom ato b in G. By lengthwe
meanthe numberof verticesbesidesa andb on that
path.

Type (i) and(ii) movesallow thetokensf andb to move
forward alonga singleedge,andbackward alongan edge,
respectiely. Usually the costis 1, accountingfor the new
vertex thatthetokenvisits. Only in the casewherea token
reachesa vertex with a token alreadyon it, the costis 0,
sinceno ‘new’ verticesarevisited.

Type (iii) movesallow the two tokensto switch places.
We call this type of move a“flip”, andsaythatthevertices
on the shortestpathfrom a to b areimplicitly traversedby
thetokens.The costc of the move accountdor all of these
vertices.

Let usreturnto the examplein figure 1 to seehow these
movesareused. The lowestcostway to move bothtokens
from g to s, is thefollowing (we usesubscriptdo denote
thetypeof themove).

1

mmﬁmm%mm
2 (x7,X0) = (Xo,X7) = (X0, 2)

(ii) i) (i

1

(x7,%e)

=
—
=

lo

(%2,%2)

—
=

i

=

The weightof this sequencés 5, whichis |[H| — 1. The
differenceby oneis dueto the fact that we never pay for
enterings;.

2.2. The Algorithm

Letusphrasehepreceedingliscussionn analgorithmic
form. To computeH, we first constructa ‘game-graph’G.
Thenodesof thegraphcorrespondo tokenpositions(x, y),
theedgedo legal movesbetweerpositions.In our casethe
nodesarejustV x V, andtheedgesaretheonesgivenabove
aslegal moves. Clearly, this game-grapttanbe computed
in polynomialtime.

FindingH is doneby computinga lowestcostpathfrom
(s1,51) t0 (S,) in G. ThegraphH thenconsistof all the
verticesfromV thatarementionedalongthat path,includ-
ing the verticesthatareimplied by type (iii) moves.

2.3. Correctness

Theproofthatouralgorithmactuallysolves2-SCSS can
be split into two claims. We just provide the essentialdeas
behindthe proof, and refer the readerto section4 for the
generalcase,or to [9, 10] for an alternatve proof for the
p=2case.

Claim 2.1

If thereis a legal move sequencdrom (s1,s1) to (S,)
with costc, thenthereis a subgrapi of G of size< c+1
thatcontainspathss; ~ s, ands ~ 1.

This is easyto see.If we follow a move sequencdrom
(s1,51) 10 {2, %2), thenf andb traceout pathss; ~ s, and
s ~» S1. Moreoverthetokenstraverseatmostc+ 1 vertices,
sincewe payfor eachvertex (excepts;) thatwe visit.

Claim 2.2

LetH* beanoptimalsubgraplcontainingpathss, ~+ s, and
s, ~ §1. Thenthereexistsa move sequencérom (s;,s1) to
(2, 52) with totalcost|H*| — 1.

This is the more difficult part of the correctnesgproof.
We canprove it by actuallyconstructinga move sequence
(s1,51) ~ (S,), thatvisits every vertex in H* only once.
The key ideahereis thatif we fix two pathss; ~ s, and
s ~» 5 in H*, thenwlog, they shareverticesonly in a
very restrictedmanner They may shareseveraldisjoint se-
guencesof vertices,but thesesequencesccurin reverse
orderonthetwo paths(seefigure 2). Thisis becauséf two
segmentsoccurin the sameorder, they canbe meiged by
makingthe pathsthe samebetweerthetwo segments.

Soto constructhemove sequenceye move bothtokens
usingtype (i) and(ii) movesuntil they reacha sharedsey-
menton the paths.In figure 2, token f will reachvertex x,

N

Figure 2. Pathss; ~ s, ands, ~ s; sharingsequencesf
vertices.Thestraighthorizontalline from s; to s, givesthe
paths; ~» s, theroundsegmentsarepartof s, — s. The
bold linesaresequencesharedby both paths. They occur
in oppositeorderon thetwo paths.

andtokenb —moving backwards—will reachvertexy. Now
we canapplyatype (iii) move to exchangethetwo tokens,
andcounttheverticesin the sharedsegmentonly once.We
canthencontinueto usetype (i) and(ii) movesuntil we hit
thenext sharedsegment,andsoon, until bothtokensreach
.
The tokenmovementdor p > 3 will be muchmorein-

volved, sincethe pathscanshareverticesin morecomplex
ways.

3. Strongly Connected Steiner Subgraphs

In this sectionwe give analgorithmfor p-SCSS, which
is ageneralizatiorof thealgorithmfor 2-SCSS givenin the
previoussection.

Againwe will usetokenmovementdo traceout the so-
lution H. The way the tokensmove is motivated by the
following obsenation. Considerary stronglyconnectedH
containing{ss,...,Sp}. ThisH will containpathsfromeach
81,...,Sp—1 t0 sp, andthesepathscanbe choserto form a
treerootedat sp; we will call thistreetheforward tree The
graphH will alsocontainpathsfrom s, to eachsy, ..., Sp-1,
forming whatwe call the backward tree Moreover, every
H thatis the union of two suchtreesis a feasiblesolution
to our p-SCSS instance.Note that for 2-SCSS thesetwo
treeswerejust singlepaths.

For easeof notation,we setq:= p— 1 for theremainder
of this sectionandthe next section,andletr :=s,, assp
playsthe specialrole of ‘root’ in thetwo trees.

3.1. Token movesfor p-SCSS

To trace out the two trees,we will have q “F-tokens”
moving forward along edgesin the forward tree from
{s1,...,5q} tor, andq “B-tokens”moving backwardalong
edgesfrom {sy,...,5} tor. Givena setof legal moves,
we will againlook for the lowestcostmove sequencehat
moves all tokensto r. This will then correspondo the

Figure 3. Flipping f andb, with tokensF’ andB’ that
needto be“pickedup’ TheblacknodesarethesetM.

smallestsubgraphcontainingpathss ~» r andr ~» 5 for
alli < g, whichis thegraphwe arelooking for.

Sincebothsetsof tokenstraceoutatree,oncetwo tokens
of the samekind reacha vertex, they will travel the same
wayto theroot. In thatcasewewill simply mergetheminto
onetoken. It is thereforeenoughto describethe positions
of thetokensby a pair of sets(F,B), whereF andB arethe
setsof nodescurrentlyoccupiedby the F- andB-tokens.

Again, we have threetypesof legal token moves. Type
(i) movescorrespondo F-tokensmaoving forwardalongan
edge,andtype (ii) movescorrespondo B-tokensmaving
backward alongan edge. We do not chage for enteringa
vertex if anothertokenis alreadyoniit.

For ary setS, let Z(S) bethe setof subsetof Sof size
atmostk.

(i) Singlemovesfor F-tokens: For every edge(u,v) € E,
andall tokensetsF € Z,_1(V \ {u}), B € #(V), the
following is alegal move:

(Fu{u},B) S (FU{v},B)

wherethe costc of themoveis 1if v¢ FUB, and0
otherwise.

(i) Singlemovesfor B-tokens: For every edge(u,V) € E,
andall tokensetsF € %4(V), B € P4-1(V \ {v}), the
following is alegal move:

(F,BU{v}) S (F,BU{u})

wherethe costc of themoveis 1if u¢g FUB, and0
otherwise.

Type (iii) movesallow tokensto passeachother, similar
to the type (iii) movesin the previous section,exceptthat
thistimethe“flip” is morecomple (seefigure 3). We have
two ‘outer’ tokens, f andb, trying to passeachother Be-
tweenf andb thereareotherF-tokensmoving forwardand
trying to passh, andB-tokensmoving backwardandtrying
to passf. Thesetokens,sitting on nodesetsF’ andB’, are
‘pickedup’ duringtheflip.

(iii) Flipping: For everypairof verticesf, b, vertex setsF,
B, F' C F, B' C B, suchthat:

¢ thereis apathin G from f ~~ b goingthroughall
verticesin F'UB'

o FeP1(V\{f,b})
e Be qu_l(V\{f,b})

thefollowing is a legal tokenmove:

(FU{f},BU{b}) ™ ((F\F)U{b},(B\B)U{f})

whereM is thesetof verticesonashortespathfrom f
to b in G goingthroughall verticesin F' UB’, besides
f,b andtheverticesin F' UB'.

3.2. Thealgorithm for p-SCSS

We cannow statethe algorithmfor p-SCSS:

1. Constructa game-graptG = (V,E) from G = (V,E).
SetV := 24(V) x Z4(V), the possiblepositionsof the
token sets,and E := all legal token moves defined

above.
2. Find a shortest path P in G from
({st;---, g} {81+, 51 O ({r}, {r}).

3. LetH betheunionof {sy,...,sq,r'} andall nodesgiven
by P (includingthosein setsM for type (iii) moves).

The difficult part of constructingthe game-grapré is
computingthe costsfor thetype (iii) movesthatflip f and
b. We do notrequirethattheshortespathfrom f to b going
throughall verticesin F' UB' be simple. Sincethe num-
berof tokensin F' UB' is boundedby 2(q— 1), whichis a
constantwe cancomputethis pathin polynomialtime by
simply trying all possiblesequencesf thenodesin F' UB/,
andcomputingshortespathsalongthe sequencel-or more
detailson therunningtime, seeappendixB.

3.3. Example

As an example we look at how the algorithm works
on the graphin figure 1, where now our terminals are
S1,%,53,%4,S. The optimal solution is the node set
{s1,%2,88,%4,%5,X1,%2,X3,X4,X5}. The following is a se-
guenceof lowestcostmovesfor this graph:

({s1,%2,%3,54},{S1,%2, 3, 4 })

(—|1)><{518283X3} {s1,%2,%3,%})

3 (o523 %6), {s1.92,1) 2 ({52}, (o))
3 (Dxsh{e) = (e}, {m}) b (P D)
> ({ss}, {x6}) > ({ss}, {ss})-

—
=
—

i)

The total costof the movesis 6, andthereforeequalto
[H|— g = 10— 4 = 6, asexpected. The solutionis made
up of the terminals{si, %, %, %, S5}, the nodes{xs, x4, x5}
mentionedn thesequencef moves,andthenodes{xi, x2}
in thesetM for thefirst type (i) move.

4. Correctness of the p-SCSS algorithm

The correctnesgroof for our p-SCSS algorithmcanbe
split into the sametwo partswe usedfor 2-SCSS.

Lemma4.1

Suppose there is a move sequence from
({s1,.--,5},{s1,..-,5q}) to ({r},{r}) with total cost
c. Thenthereexists a solutionH to this p-SCSS instance
of size< ¢+ . Moreover, giventhe move sequenceit is
easyto constructsuchanH.

Proof: This follows directly from the definition of the
moves. The costof any move sequencés an upperbound
on the number of vertices traversed by that sequence.
Giventhe constructve natureof the moves, it is alsoeasy
to actuallyfind H. B

Together with the following, much more involved
lemma,the correctnessf thealgorithmis proved.

Lemmad4.2
SupposeH* = (V*,E*) is ary minimum cardinality fea-
sible solution. Then there is a move sequencefrom

({st;---,59},{s1,---,5q}) to({r},{r}) with weightequalto
IH*[—q.

Proof: To prove this lemma,we will effectively construct
sucha move sequencewhereall intermediatgpositionsof
thetokenswill bein H*.

Whenmoving the F- and B-tokensfrom {s;, ..., s} to
r, we ‘pay’ eachtime we reacha new vertex. In orderto
achiese total cost|H*| — g we mustmake surethatwe pay
only oncefor eachvertex. To ensurethis, we enforceone
rule: afteratoken movesoff a vertex, no othertoken will
ever move to that vertex again. We say that a vertex be-
comesdead’ onceatokenmovesfrom it, sothattokensare
only allowedto moveto verticesthatare‘alive’. This also
malkessurethat our move sequencevill be finite, sinceno
tokencanreturnto avertex it hasalreadyvisited. Note that
the notion of deadand alive verticesis only usedfor the
analysisthealgorithmitself never explicitly keepstrack of
them.

We will constructour move sequenceén a greedyfash-
ion. Thatis, we will move tokenstowardsr using type
(i) and(ii) moves,until eachtoken sits on a vertex thatis
neededy someothertokento gettor. In this casewe can-
not applyany moretype (i) or (i) moves— doingsowould

leave anothertoken strandedasit is not allowed to move
ontothethendeadvertex.

In thiscasewe needo useatype(iii) movetoresolhethe
deadlock. Shaving thatthis is always possibleis the core
of the correctnesgroof, the‘flip lemma’showvn in section
5. To statethis lemmaandseehow it implies the correct-
nessof thealgorithm,we have to introducesomeadditional
notation.

We saythata tokent requiresa vertex ve V* if all le-
gal pathsfor t to getto r passthroughv. By ‘legal paths’
we meanpathsthat are within H*, go in the appropriate
directionfor thetokent, anddo notincludeary deadver-
tices. We will sometimespeakof tokensrequiringtokens;
in this casewe meanthatthefirst tokenrequiresthe vertex
onwhichthesecondokenis sitting. Note thatthe require-
mentrelationamongtokensmoving in the samedirection
is transitive, i.e. if f1 requiresf,, and f; requiresx, then f1
alsorequiresx.

Let the‘ Fp-tokens’bethe F-tokensthatarenot required
by ary otherF-token. Similarly, let the ‘ Bp-tokens’ be the
B-tokensthatarenotrequiredby ary otherB-token.

Lemma4.3 (The Flip Lemma)
Supposeverytokenis requiredby someothertoken. Then
thereis anFy-token f andaBg-tokenb suchthat

e f requiresh, andno otherFo-tokenrequires,
e b requiresf, andno otherBy-tokenrequiresf. O

Wewill provethislemmain thenext section.Let usnow
seehow it concludeghe proof of Lemma4.2.

Let f andb bechoseraccordingo the Flip Lemma.Fix
ary pathP from f to b thatusesonly live vertices. For all
verticesx on the pathP, every pathx ~» r mustincludeb,
otherwisef couldmoveto x, andthento r, withoutvisiting
b.

SupposesomeF-token f’ # f requiresavertex on P, and
thereforeby transitvity alsorequiresb. Thetoken f’ can-
not be an Fy-token, sincethe Flip Lemmatells usthat f is
the only Fy-tokenthatrequiresb. Note thatdueto transi-
tivity, every F-tokenis either an Fg-token, or requiredby
somekp-token, so f' mustbe requiredby someF, token
f”. By transitwvity, f” requiresb, andso f” = f, by theFlip
Lemma.Thetoken f' mustthereforebeon P. In summary
all F-tokensareeitheron P, or do notrequireary vertex on
P. By symmetrythe sameappliesto B-tokens.

Let F' bethe setof F-tokensthatareon the pathP, and
B’ be the setof B-tokenson P. We canapply a type (iii)
move that switchesf andb, andpicksup F’ andB’ along
theway. All verticeson P becomedead,but no tokenis
stranded.

This provesthatwe canalwayscontinuetheconstruction
of our move sequenceintil all tokensreachr. B

5. TheFlip Lemma

Proof of Lemma 4.3 (The Flip Lemma): Let Greq =
(Vreq, Ereq) be a new directedgraph,whosenodesare the
Fo andBo-tokens. The edgesn E;¢q correspondo require-
ments: Greq hasan edgex — y iff the tokenx requiresthe
tokeny.

By assumption(every token is requiredby someother
token) and by definition (an Fy-token is not required by
ary F-token), we know that every Fp-tokenis requiredby
atleastoneB-token. We know thateitherthat B-tokenis a
Bo-token, or thereis anotherBy-token thatrequiresthat B-
token. Therefore by transitwity, every Fp-tokenis required
by at leastone Bp-token. By symmetry every Bp-tokenis
requiredby atleastone Fo-token. Thus,every nodein Gyeq
hasatleastoneincomingedge.Greq is alsobipartite,since
notwo Fo-tokens(andno two By-tokens)requireeachother

We canview Greq asa dag (directedagyclic graph)of
strongly connecteccomponentsandsortthe strongly con-
nectedcomponentsopologically Let C bethefirst compo-
nentin that ordering. This meansthat no token outsideof
C requiresary tokenin C. FurthermoreC cannotconsist
of only onenode,sincethenthat token would be required
by no othertoken, in contradictionto our assumptiorthat
every tokenis requiredby at leastonetoken. If C contains
exactly two nodes thesetokensrequireeachother, but are
requiredby no othertokens,andthelemmais proven.

In thefollowing we prove thatC cannotconsistof more
thantwo nodes.

Claim 5.1
No stronglyconnectedcomponen€ of Greq hasmorethan
2 nodes.

Proof: The proof restson the obsenation that Greq satis-
fiesakind of transitvity property Supposdor threenodes
f1, f2,b1 (f1 # f2) in Greq We have edgesf, — by and
b1 — f2in Greq. Thenthefollowing holds: all nodesb that
have anedgeb — f; alsohave anedgeb — f5.

Thisis nothardto see.By definitionof Fy, thereis alegal
pathin H* from f; to r avoiding f,, andsince f; requires
b1, thereis a pathP; from f1 to by avoiding f, (seefigure

Figure 4. Proving transitity in Greq. Thesolid linesare
pathsin H* correspondingo edgesf; — by andb; — foin
Greq, thedashedine to theedgeb — f;.

Figure 5. Componentsvith morethan2 elementsareim-
possible

4). Now assumehatb — fy isin Greq. If b — f2 is notin
therequiremengraph,thenthereis alsoalegal pathP, in
H* fromr to f1 avoiding f2, sinceb requiresf;. Combining
P, andPy, we obtaina pathfrom r to b; thatdoesnot visit
f> in contradictionto by — > beingin Gyeg.

A symmetricargumentholdsby exchangingf’s andb’s,
i.e. for ary triple f1,by,by, if thereareedgesh; — f; and
f1 — b2 in Greq, thenfor every Fo-token f, if thereis an
edgef — b, thentheremustalsobeanedgef — by.

We now prove the claim by contradiction. Assumethat
astronglyconnectedomponenC in Gyeq hasatleastthree
elementsfy,..., fx,by,...,b, (k,£ > 1). For everypair fi, b;
thereis a pathfrom f; to bj in Greq. Applying our transi-
tivity obsenationalongthe pathwe concludethatthe edge
fi = b; mustactuallybein Greq. By symmetry Gyeq also
containgheedges; — fj for all i, j.

Sincek+ ¢ > 3, oneof kand/ mustbeatleast2. Assume
k > 2 (thecasef > 2 is handledin thesamemanner).Then
thetokenb; requiresall f;i’s. Thereforethereis alegal path
in H* fromr to by thatvisitsall f;’s(solid linesin figure5).
Withoutlossof generalityassumehat f; is thefirst nodeon
that path,sothatthereis a pathP; fromr to f; thatavoids
fo.

Sincethe token on node f; requiresbs, but f; doesnot
require fo, theremustalsobe a path P, from f; to by that
avoids f, (dashedinesin figure5). CombiningP; andP;,
we obtainalegal pathin H* from r to by thatavoids f5, in
contradictiorto theassumptiorthatb; requiresall f;’s.

This contradictionrshavsthatC cannothave morethan2
elementsll

6. The Directed Steiner Network problem
6.1. The Algorithm

In this sectionwe shav how to apply the algorithmde-
velopedin the previous sectionsto solve the DIRECTED

STEINER NETWORK problem(p-DSN), for ary constant

p.
We usethesamegeneramodelof atokengame put now

Figure 6. A solutionto p-DSN is adagof stronglycon-
nectedcomponents

we have tokensmoving from eachsources to its destina-
tion t;. This time, we have no backwardsmoving tokens,
and also tokensdo not memge when they reachthe same
node. We describethe positionsof the tokensby a p-tuple
(fq, f2,..., fp). We have two kinds of movesfor thetokens.
The first kind of move allows a singletokento move one
stepalonganedge.

(i) For each edge (u,v) we include the moves
(—u—) S (—v—), meaning that one to-
ken movesfrom u to v, andall othersremainwhere
they are.Thecostc of themoveis 0 if v alreadyhasa
tokenonit, and1 otherwise.

We also allow a group of tokensto move through a
strongly connectedcomponentall at once. To seewhy
this is useful,considerthe optimal solutionto p-DSN and
contractevery strongly connecteccomponeninto a single
node;theresultinggraphis a dag(seefigure 6). Eachcon-
tractedcomponenthas at most p tokens entering,and at
most p tokensexiting. We cancomputethe bestway for
somegroupof k tokens(k < p) to movefrom ary k specific
entrancepointsto ary k specificexit pointsin a strongly
connectedomponenby solvinganinstanceof 2k-SCSS.

(i) For all k < p, and for every set of k node-
pairs {(f1,x1),(f2,%2),-..,(fk, %)}, for which there
is a strongly connectedsubgraphof G containing
{f1, f2,..., fk, X1, X2,..., X}, we allow themove

(—f—fp—— . — f—)
S (—x—Xo— . —X—).

The cost ¢ of this move is the size of the smallest
stronglyconnecteccomponentontainingthe vertices
{f1, f2,..., fk,X1,X2, ..., X} mMinusthe size of the set
{f1,..., fk}. We canusethethe algorithmdeveloped
in section3 to computethis cost.

Similar in structureto our algorithmfor p-SCSS in sec-
tion 3, the algorithmfor p-DSN consistsof the following
steps.

1. Computethe game-graphg, wherethe verticesin G
are p-tuplesof verticesin theinputgraphG, andedges
areincludedfor eachlegaltokenmaove.

2. Find the minimum-weight path P in G from
(s1,.--,5p) tO (t1,...,tp).

3. Outputthe subgraphH of G inducedby P, i.e. the
subgraptcontaining

o all verticesof G explicitly ‘mentioned’ by ver-
ticesin P, and

o for all type (i) movesusedin P, all thevertices
makingup the smalleststronglyconnectedcom-
ponentcontainingthe f;’s andx;’s usedto define
thatmove.

6.2. Correctness

As for the previous algorithms, it is easyto seethat
for ary move sequencdrom (sy,...,Sp) to (t1,...,tp) Of
costc, thereis a feasiblesolutionH of size at mostc+
|{St,...,Sp}|. It is alsoeasyto find thisH, giventhe move
sequence.The following lemmathenimplies the correct-
nessof thealgorithm.

Lemma6.1

Let H* be a minimum size subgraphof G that contains
pathss ~ t; for alli € {1,...,p}. Thenthereis alegal se-
quenceof tokenmovesfrom (sy, ...,Sp) to (t1,...,tp) with

cost|H*| — |{st,...,Sp}|-

Proof: We againdo a constructve proof. We startwith to-
kensfy,..., fpatsy,...,sp, andmove themto their respec-
tive destinationgy, . . ., tp.

Regard eachstrongly connecteccomponentn H* asa
singlenode,andtopologicallysortthis dagof stronglycon-
nectedcomponents.Let Cy,...,Cy, be the resultingorder
of stronglyconnecteccomponentsWe now considereach
componenin order andmove eachtokenin thecomponent
eitherto its destination(if its destinationis in the compo-
nent),or to somecomponengfterit in the ordering. After
doingso,all nodesin thecomponengaredead.Thisensures
thatwe payonly oncefor every node.

Foreachcomponen€; containingsomek tokens(k < p),
we performthefollowing moves. We execute(a) and(b) if
Ci consistof morethanonenode,andonly (b) if C; consists
of asinglenode.

(a) We applyatype (ii) move. For eachtoken f, in C; we
defineanodex, in C; to which it moves. For tokensf,
whosedestinatiort, is in Cj, we setx, to thatdestina-
tion. For all othertokensf, we chooseary legal pathto
its destinatiort, andlet x, be thelastnodeof that path
thatis in C;. Usingatype (ii) move we simultaneously
move all thetokensf, to theirrespectie x;.

(b) We applyatype (i) move for eachtoken f, in C; thatis
notyetatits destinatiort;. WWe move alongoneedgeof
apathto t, into anew componencC;. &

6.3. Weights and edges

The algorithmsprovided for p-DSN and p-SCSS can
easilybe modifiedto handleweightednodes;just make the
costof a move the total weight of the unoccupiednodes
enteredduringthe move insteadof just their number

It is alsoeasyto minimize the total edgeweightin H.
To do this, we make every vertex in G have weight0, and
replaceevery edgee by a new vertex having the weight of
e. We connectthis new vertex to the two verticesincident
toe. Naturally, it is alsopossibleto combinevertex weights
andedgeweights.

7. Conclusion

We have developeda polynomial time algorithm that
computeghesmallessubgraplcontainingpathsbetweerp
pairsof nodesin adirectedgraph.lt is aninterestinggues-
tion whetherthetoolsdevelopedto obtainthis resultcanbe
usedto constructimproved approximationalgorithmsfor
arbitrary p, or for the closelyrelatedDIRECTED STEINER
TREE problem. Another openquestionis whetherthese
techniquesanbe usedto obtainnew resultsfor othernet-
work designproblems.

Acknowledgments

We would like to thank David Karger for helpful sug-
gestions,and AndrasFrankfor askingaboutthe 2-SCSS
problem,which startedour researchon this topic. We also
thank Marshall Bern, Yevgeniy Dodis, JohnDunaganand
Matt Levine for their comments.

References

[1] M. Charikar C. Chekuri, T. Cheung,Z. Dai, A. Goel,
S.Guha,andM. Li. Approximationalgorithmsfor directed
Steinerproblems. Proceedingf the Ninth Annual ACM-
SIAM Symposiunon Discrete Algorithms (SODA), pages
192-200,1998.

[2] Y. DodisandS.Khanna.Designingnetworkswith bounded
pairwise distance. Proceedingsof the 31st Annual ACM
Symposiunon Theory of Computing(STOC), pages750—
759,1999.

[3] R.G.Downey andM. R.Fellows. Fixed-parameteractabil-
ity andcompletenesk Basicresults SIAMJournalonCom-
puting 24(4):873-9211995.

[4] S.FortuneJ.Hopcroft,andJ.Wyllie. Thedirectedsubgraph
homeomorphisnproblem. Theoetical ComputerScience
10(2):111-1211980.

[5] M. L. FredmarandR. E. Tarjan. Fibonacciheapsandtheir
usesin improved network optimizationalgorithms.Journal
of the ACM, 34(3):596-6151987.

[6] M. R.Garegy andD. S.JohnsonComputes and Intractabil-
ity: A Guideto the Theoryof NP-CompletenessFreeman,
1979.

[7] F.K.Hwang,D. S.RichardsandP. Winter. TheSteinerTree
Problem Number53 in Annalsof DiscreteMathematics.
Elsevier SciencePublishersB. V., Amsterdam1992.

[8] C.-L.Li, S.T. McCormick,andD. Simchi-Levi. Thepoint-
to-pointdelivery andconnectiorproblems:complity and
algorithms. Discrete AppliedMathematics36(3):267—292,
1992.

[9] M. NatuandS.-C.Fang. On the point-to-pointconnection
problem. Information ProcessingLetters, 53(6):333-336,
1995.

[10] M. Natu and S.-C. Fang. The point-to-point connection
problem- analysisandalgorithms. Discrete AppliedMath-
ematics 78:207-2261997.

A. Natu and Fang'salgorithm for 3-DSN

In [10] Natu and Fang proposean algorithmfor the 3-
DSN problem,provide a correctnesproof, andconjecture
thatan extensionof their algorithmsolves p-DSN for p >
3. In this sectionwe will briefly discussheirapproachand
give a countergampleon which their algorithmapparently
doesnotwork correctly

Their algorithm operateson edge-weightedyraphsand
minimizesthe total weightof edgesin H. To computethe
optimalH, they usea ‘divide-and-conquempproactbased
on dynamicprogramming.Centralto the designof the al-
gorithmis their ‘Optimal DecompositioriTheorem’(p. 220
in [10]). It stateghatoptimalsolutionscanbe brokendown
into independenpartsin thefollowing manner

Theorem A.1 (Optimal Decomposition Theorem)
SupposeH is the optimal subgraphfor a 3-DSN instance
{(s1,t1), (S2,t2), (S3,t3) }. Thenthereis apartitionof H into
edge-disjointsubgraphH = H' UH", and three vertices
ai,ap,ag in H suchthat:

e H', H" containatleastoneedge
e Foralli=1,2,3 either
o H' containsapaths ~ a; andH" containsapath
a ~ tj, or
o H' containsapatha; ~ tj andH” containsapath
S ~ a. O

Thetheoremasstateddoesnot hold for the graphgiven
in figure 7. Notethatthe optimalH mustcontainall edges
of thegraph.Supposehatwe split this graphinto two non-
emptyedgedisjoint subgraph$i’ andH”. Thentheremust

Figure 7. Counter&leto the OptimalDecomposition
Theorem

bea pair of consecutie edgeghatarenotin the samesub-
graph.

Assumethat, e.g, 51 — t2 andty — s, arein different
subgraphsSinceoneof the subgraph#asto containa path
s3 ~» ag, andthe othera pathag ~ t3, we musthave az =
to, and{sz — t1,t1 = s1,51 — t2} areall in the samesub-
graph. But thenthe other subgraphcontainsnone of the
edgedncidentto s or t;, andthereforecancontainneither
a paths; ~» a; nor a patha; ~ t1, andthusthe theorem
fails. For all otherpairsof consecutie edgesn the graph,
essentiallythe sameargumentapplies.

B. Runtime analysis

In this section,we provide the runningtime analysisfor
our algorithmssolving p-SCSS (from section3) and p-
DSN (from section6).

Theaimof thissectionis mainlyto giveanideaasto how
the running time is distributed over the different parts of
the algorithms(game-grapltonstructionand shortestpath
computation).

It was not our goal to produceoptimal algorithms,but
ratherto keepthemsimpleto explain.

B.1. The p-SCSS algorithm

The algorithm consistsof two main parts: the gen-
eration of the game-graphG from the input G =
(V,E), and the computation of a shortest path from

{({s1,-- 59} {s1;-- g o ({r}, {r}) In G.

Let usfirst computethesizeof G. In thefollowingnand
marealwaysthenumberof verticesandedgesrespectiely,
of theinputgraphG. B

Thenumberof verticesin thegame-grapl@ is

2
ol (3()) -

The numberof type (i) edgescanbe computedasfollows.
If wefix anedge(u,v) € E, thenthereare|P_1(V \ {u})|

choicedor F, and|24(V)| choicedor B, sothetotalnumber
of type (i) edgess

M- |Bq-2(V \ {u})]-[o(V)| = O(m-n®=- 1) = O(mrPe-)

By symmetrythe numberof type (ii) edgeds thesame.

For the type (iii) edges,we can also obtain an up-
per boundon their numberby multiplying the numberof
choicesfor f andb (O(n) each),F andB (O(n%1) each),
andF’ andB’ (0(29-1) eachafterchoosingF andB). This
yieldsaboundof O(n?9).

The numberof edgesin G thereforeis not muchlarger
thanthe numberof nodes.Thus,edgesshouldbe storedas
lists for eachvertex, andnotin anadjaceng matrix.

Computingthe edgeweightstakesconstantime for type
() and (ii) edges,but is slightly more expensve for type
(i) edgeslt canbedonewith reasonablefficiency by first
running an all-pairs shortestpathsalgorithm on the input
graphG; this takestime at most O(n’logn+ mn). Com-
puting a shortestpath from a node f to a nodeb visiting
nodesin F' UB’ cannow be donein time O((2q— 2)!) by
goingthroughall possiblesequencef which the vertices
in F"UB' could appearon the path. Soaslong as p (and
thereforeq) is constantthis timeis constant.

To summarize,we spenda constantamountof time
to computeeachof the edgesin the graph, which leads
to a total time of O(n?9 + mr?9-1) for the game-graph
construction- subsuminghetime for the all-pairsshortest
pathcomputation.

Thesecondartof thealgorithmis to computeashortest
pathqueryin the game-gamé = (V, E). Using Fibonacci
heaps[5] this can be donein time O(|E| + |V|log|V|),
whichis

0(n® + mrf%~1 4 n¥logn) = O(mr*P~3 4+ n?P~2logn).
Sincecomputingtheshortespathtakesmoretime thatcon-

structingthe graph this alsois the total runningtime of the
algorithm.

10

B.2. The p-DSN algorithm

For this algorithm,the game-graphg consistsof O(nP)
nodes,andcanhave up to O(n??) edges. This meansthat
the final shortestpath computationwill take time at most
O(n?P). It turnsout thatfor this algorithm,thetime to con-
structthe game-graptactually overshadws this shortest-
pathcomputation.

The mosttime-consumingpart of the game-grapltcon-
structionis to determinethe weightsof thetype (ii) edges.
Obviously, it would be very inefficient to call our k-SCSS
algorithmfor every type (ii) edgein the game-graphFor-
tunately a simple obsenation makes it possibleto avoid
that. First, notethatthe game-grapltG constructedor an
instanceof k-SCSS doesnot dependon the sourceandter-
minal verticess, tj, but only on theunderlyinggraphG and
thenumberk. Let uscall this game-graplGy. It is alsotrue
that Gy is a sub-graphof Gy if k < 2p. Moreover, there

areno edgesdrom this sub-grapfék to ary otherverticesin
G2p.

Solving a k-SCSS instancerequirescomputinga short-
estpathin Gy, or, equivalently, in Gp, to anodeof theform
({r},{r}). This suggestghe following stratgy: We can
solve all theseproblemsat the sametime by runningn sin-
gle destinationshortestpath algorithms,onefor eachdes-
tination {{r},{r}) (r € V). Theweightsof type (ii) edges
canthenbe computedin constanttime by looking up the
appropriateshortespathlength.

The running time for all n single destinationshortest
pathqueriess O(mrfP=2 4+ n*P~Llogn), which thereforeis
thetotal runningtime of the algorithm.

As anaside thereis a simplerway to solve 2-DSN than
usingour algorithm: Givena graphG andtwo node-pairs
(s1,t1), (2,t2), addtwo nodess, t andedges — s1, t1 — t,
t — s, t, — sto the graphandsolve 2-SCSS for the two
terminalss, t. It is not hardto seethatthe solutionfor this
problemis alsoanoptimalsolutionfor the original 2-DSN
problem (if we omit s andt). This leadsto an improved
runningtime of O(mn+ n?logn), which is the sameasthe
runningtime obtainedoy NatuandFang[9].

