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Decoding via Linear Programming

� New algorithm for decoding any turbo-like code
[Feldman, Karger, FOCS 2002].

� Uses linear programming (LP) relaxation.

� Precise characterization of noise patterns that cause
decoding error for BSC, AWGN: “noisy promenades.”
- Reminiscent of work on “stopping sets” in the BEC

[Di, Proietti, Richardson, Telatar, Urbanke, ’02;
Richardson, Urbanke, Allerton’02].

� For rate-1/2 Repeat-Accumulate (RA) codes:
-

� � � � � �,
�	� 
 �
�� � � ��� � �

.

� ML certificate property:
- Outputs ML information word, or “error.”
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Our Contributions

� Iterative subgradient decoding for any turbo-like code:
- Uses trellis passes, message-passing.
-

�

step size guaranteeing convergence to same
solution as LP decoder.

� Same noise pattern error conditions, WER
bounds.

� ML certificate property.

Relation to Tree-Reweighted Max-Product (TRMP):
- Iterative algorithm for finding optimal configurations

on factor graphs [Wainwright, Jaakkola, Willsky,
Allerton’02], Session V.B, Friday, 10am.

- Turbo-like codes: simple message-passing decoder.
- If constituent codes agree on a code word, it is the

ML code word.
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Outline

1. Turbo Codes, RA codes.

2. LP-based decoding of turbo-like codes.

3. Lagrangian dual form of LP:

� Subgradient decoding,

� TRMP decoding.

4. Noisy Promenades.
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Classic Turbo Codes
[Berrou, Glavieux, Thitimajshima, 1993]

Interleaver

Information word

codewordConvolutional Codes

PSfrag replacements

�

�

�

�

� � � �

� ��
�

� ��
�

� �
�

� � �

� ��
�

� � � � � �

�

� “Turbo-like” codes: Parallel, serial concatenated
convolutional codes.
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Repeat-Accumulate Codes
[Divsalar, Jin, McEliece, 1998]
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Decoding
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PSfrag replacements
Received word

� Costs on nodes: local
log-likelihood ratio
(LLR).

� Viterbi algorithm:
finds max-cost path.

� Max-cost path does
not necessarily corre-
spond to code word.
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Max-Likelihood Agreeable Path
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PSfrag replacements

Received word

�

�
�

� Path

�

is Agreeable if,
for all info bits �� :

“1-edge” at

�

and

�
�

, or

“0-edge” at

�

and

�
�

� How do we find ML
agreeable path?
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Turbo Code Linear Program

� Variable

��� for all paths

�

,

� � � � � �

. Cost � � =
� � �

� �.

For rate-1/2 RA codes (RALP):

� �	

�

� � ��� ��
 �


�

�
� � �

� ����

�
� � � �
�

�
� �
�

� � � �� �
�
� �

� � � � �� �
�
�

� � � � �

: set of paths that “switch” at segment

�

.

� �
� � � �
�

�
� �

: two copies of �� .

� Natural generalization for any turbo-like code.
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Using RALP to Decode

� Solving RALP finds maximum-likelihood agreeable
distribution

� �

on paths.

� Strict “relaxation” of ML decoding problem.

� All the mass on one path: “integral solution.”

If integral:
- for some .

- for all .
- is the ML agreeable path.

If not, is an agreeable convex combination of paths.
- Output “error.”
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Solving RALP

� Use generic LP solver.
- Ellipsoid algorithm: provably poly-time, but

impractical.
- Simplex algorithm: useful in practice, but not in real

time.

Solve using subgradient algorithm:
- Operates on Lagrangian dual form of the LP.
- Takes the form of a standard message passing

decoder
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Lagrangian Dual

� Lagrange multipliers

�
� for each info bit �� .

� For a path

�

, cost under

�

:

� � �
�

� � � � � �
��

�
�

�
�

� � �

“agreeability”

�
� �

�
�

�	�

� � � 
 � � � � � � � � � � � �
� �

� � 
 � � 
�� � � ��� 
 
 � ��

� � � 
 � � � � � � � � � � � �
� �

Cost on 1-edges at segment .

Cost on 1-edges at segment .

Natural generalization to any parallel concatenated
convolutional code.
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Lagrangian Dual, continued...

� Dual function

� � � � � � �	
�

� � � �
�

� � �

.

� Let

� � � � � � �� 
 � �	

�

� � � �
�

� � �

.

Let . By LP duality, =

Find using sequence of “message-passing” updates:

Subgradient computed w/ Viterbi algorithm.

Appropriate step size assures convergence to .

May take a long time to converge to LP optimum.
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� �
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� � � �
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� � � �
�
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�
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� � � � � � � �
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Tree-Reweighted Max-Product

� General MAP estimation algorithm [Wainwright,
Jaakkola, Willsky, Allerton ’02].

� On turbo-like codes: simple message passing decoder.

� Same “cost adjustments”

�

as subgradient decoding.

� Messages computed using log-likelihood ratio (LLR):

� � � �

� � � �
�

� � � ��� � � � � ��� �
� � � � � � � � �� � � �

� If sign(

� � � � �� �
� �

) = sign(
� � � � �� � �

), for all

�
� � � �
�

�
� �

:

� the constituent codes (repeater, accumulator)
agree on a codeword.

By LP duality,
TRMP has found the ML code word.
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Promenades

� Precise characterization of noise patterns that cause
decoding error for BSC, AWGN.

� Let

�

be a particular weighted, undirected graph:

PSfrag replacements

�

�
�

� � �� �� �� �� �� ��

� 
� � � �
	 � �

� � � 
 � � �

j

� �
� � � � ��� � � �� � � �

� � 
 � �� � � ���

� A promenade is a collection

�

of subpaths of

�

, where

- For all
�

� � � �
�

�
� �

,

���� � � � � � ��� � ��
� � �

.

� ���� � � � �

= number of subpaths in

�

that start or end at

�

.
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Noisy Promenades

� The cost of a promenade is the sum of the costs of its
subpaths.
- A noisy promenade is one whose cost is less than or

equal to zero.

Theorem [FeKa02]: RALP makes a decoding error iff

�

has a noisy promenade.

� Natural generalization to AWGN, any turbo-like code.

Rate- RA codes, :
- Combinatorics tricky (future work).

Rate-1/2 RA codes:

Theorem [FeKa02]: Pr[noisy promenade] , if:

(BSC) (AWGN)
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Conclusions

� LP decoding of turbo-like codes:
- Precise characterization of noise patterns that cause

decoding error for BSC, AWGN: “noisy promenades.”
- Rate-1/2 RA codes: WER

� � � �.
- ML certificate property.

� New iterative algorithms for decoding turbo-like codes:
- Subgradient decoding: converges to LP solution.
- TRMP: finds ML code word when LLRs agree.
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Open Questions

� Better WER bound for rate-

� ��

RA
using noisy promenades ?

- Conjecture: LP decoding WER

� � � ��� � � �
.

� WER bounds for other turbo-like codes?

� (Poly-time) convergence proof for TRMP?

� Relationship to sum- and max-product?
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