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Decoding via Linear Programming

e New algorithm for decoding any turbo-like code
[Feldman, Karger, FOCS 2002].

e Uses linear programming (LP) relaxation.

e Precise characterization of noise patterns that cause
decoding error for BSC, AWGN: “noisy promenades.”

- Reminiscent of work on “stopping sets” in the BEC
[DI, Proietti, Richardson, Telatar, Urbanke, '02;
Richardson, Urbanke, Allerton’02].

e Forrate-1/2 Repeat-Accumulate (RA) codes:
- WER < n7¢ (noise < f(e)).

e ML certificate property:
- Outputs ML information word, or “error.”

J. Feldman, Allerton, 10/02/02 — p.2/18



Our Contributions

e lterative subgradient decoding for any turbo-like code:
- Uses trellis passes, message-passing.

- J step size guaranteeing convergence to same
solution as LP decoder.

— Same noise pattern error conditions, WER
bounds.

— ML certificate property.
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e lterative subgradient decoding for any turbo-like code:
- Uses trellis passes, message-passing.

- J step size guaranteeing convergence to same
solution as LP decoder.

— Same noise pattern error conditions, WER
bounds.

— ML certificate property.

e Relation to Tree-Reweighted Max-Product (TRMP):

- Iterative algorithm for finding optimal configurations
on factor graphs [Wainwright, Jaakkola, Willsky,
Allerton’02], Session V.B, Friday, 10am.

- Turbo-like codes: simple message-passing decoder.

- If constituent codes agree on a code word, it is the
ML code word.
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. Turbo Codes, RA codes.

. LP-based decoding of turbo-like codes.

. Lagrangian dual form of LP:
e Subgradient decoding,
e TRMP decoding.

. Noisy Promenades.
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Classic Turbo Codes

[Berrou, Glavieux, Thitimajshima, 1993]
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e “Turbo-like” codes: Parallel, serial concatenated
convolutional codes.
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Repeat-Accumulate Codes

[Divsalar, Jin, McEliece, 1998]
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Decoding
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Max-Likelilhood Agreeable Path
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Receilved word

e Path P is Agreeable If,
for all info bits z;:

“l-edge” at ¢t and ¢, or
“O-edge” at t and ¢

e How do we find ML
agreeable path?



Turbo Code Linear Program
e Variable fp for all paths P, 0 < fp < 1. Costcp = > ce.

ecP
For rate-1/2 RA codes (RALP):

max :E:Cpfp s.t.
P
pr = 1
Vi, Xi = {t,1}, Z fp = Z fp

PeS(t PeS(t

e S(t): set of paths that “switch” at segment .
o X; = {t,t}: two copies of z;.
e Natural generalization for any turbo-like code.
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Using RALP to Decode

e Solving RALP finds maximume-likelihood agreeable
distribution f* on paths.

e Strict “relaxation” of ML decoding problem.
e All the mass on one path: “integral solution.”
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Using RALP to Decode

Solving RALP finds maximume-likelihood agreeable
distribution f* on paths.

Strict “relaxation” of ML decoding problem.
All the mass on one path: “integral solution.”
If f* integral:

- fp =1for some P.

- fpn=0forall P # P'.

- P is the ML agreeable path.

If not, f* is an agreeable convex combination of paths.
- Output “error.”
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Solving RALP

e Use generic LP solver.
- Ellipsoid algorithm: provably poly-time, but
iImpractical.
- Simplex algorithm: useful in practice, but not in real
time.
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Solving RALP

e Use generic LP solver.

- Ellipsoid algorithm: provably poly-time, but
iImpractical.

- Simplex algorithm: useful in practice, but not in real
time.
e Solve using subgradient algorithm:
- Operates on Lagrangian dual form of the LP.

- Takes the form of a standard message passing
decoder
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L agrangian Dual

e Lagrange multipliers \; for each info bit z;.
e For a path P, cost under A:

LIP,A)=cp+ Y NAi(P)

+1 if P S(t) P ¢ S(t)
“agreeablility” A;, = < 0 if P agreeable for z;
—1 if P¢ S(t) Pe S
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L agrangian Dual

Lagrange multipliers \; for each info bit x;.
For a path P, cost under \:

LIP,A)=cp+ Y NAi(P)
+1 if P S(t) P ¢ S(t)
“agreeablility” A;, = < 0 if P agreeable for z;
—1 if P¢ S(t) Pe S
Cost \; on 1-edges at segment ¢.

Cost —)\; on 1-edges at segment ¢.

Natural generalization to any parallel concatenated
convolutional code.
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L agrangian Dual, continued...

e Dual function Q(\) = max {L(P,\)}.

o Let P(\) = arglrjnax {L(P,\)}.



L agrangian Dual, continued...

Dual function Q(\) = max {L(P,\)}.
Let P()\) = argmax {L(P,\)}.
P

Let \* = argminy Q(X). By LP duality, > »cpfr = Q(\").
Find \* using sequence of “message-passing” updates:

AL = X — oA (P(A™))
Subgradient A;(P(A™)) computed w/ Viterbi algorithm.
Appropriate step size o™ assures convergence to \*.
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L agrangian Dual, continued...

Dual function Q(\) = max {L(P,\)}.
Let P()\) = argmax {L(P,\)}.
P

Let \* = argminy Q(X). By LP duality, > »cpfr = Q(\").
Find \* using sequence of “message-passing” updates:
/\m—i—l —\ _ OzmAz‘ (p(/\m))

Subgradient A;(P(A™)) computed w/ Viterbi algorithm.

Appropriate step size o assures convergence to \*.
May take a long time to converge to LP optimum.
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Tree-Rewelghted M ax-Product

e General MAP estimation algorithm [Wainwright,
Jaakkola, Willsky, Allerton '02].

e On turbo-like codes: simple message passing decoder.
e Same “cost adjustments” )\ as subgradient decoding.
e Messages computed using log-likelihood ratio (LLR):

AmHL = \m 4 o™ ( LLR(A™;£) — LLR(A™; 1))

o If sign(LLR(\; %)) = sign(LLR(X; 1)), for all X; = {t,t}:
— the constituent codes (repeater, accumulator)
agree on a codeword.
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Tree-Rewelghted M ax-Product

e General MAP estimation algorithm [Wainwright,
Jaakkola, Willsky, Allerton '02].

e On turbo-like codes: simple message passing decoder.
e Same “cost adjustments” )\ as subgradient decoding.
e Messages computed using log-likelihood ratio (LLR):

AmHL = \m 4 o™ ( LLR(A™;£) — LLR(A™; 1))

o If sign(LLR(\; %)) = sign(LLR(X; 1)), for all X; = {t,t}:
— the constituent codes (repeater, accumulator)
agree on a codeword.

e By LP duality,
— TRMP has found the ML code word.
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Promenades

e Precise characterization of noise patterns that cause
decoding error for BSC, AWGN.

e Let G be a particular weighted, undirected graph:

e) —1 if bit ] flipped by channel
cost(e;) =
g +1 otherwise

e A promenade is a collection D of subpaths of GG, where
- For all X; = {t,t}, deg,(D) = deg;(D).
e deg,(D) = number of subpaths in D that start or end at ¢.
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Noisy Promenades

The cost of a promenade is the sum of the costs of its
subpaths.

- A noisy promenade is one whose cost is less than or
equal to zero.

Theorem [FeKa02]: RALP makes a decoding error iff G
has a noisy promenade.

Natural generalization to AWGN, any turbo-like code.

J. Feldman, Allerton, 10/02/02 — p.16/18



Noisy Promenades

e The cost of a promenade is the sum of the costs of its
subpaths.

- A noisy promenade is one whose cost is less than or
equal to zero.

Theorem [FeKa02]: RALP makes a decoding error iff G
has a noisy promenade.

e Natural generalization to AWGN, any turbo-like code.

e Rate-1/R RA codes, R > 3:
- Combinatorics tricky (future work).
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Noisy Promenades

The cost of a promenade is the sum of the costs of its
subpaths.

- A noisy promenade is one whose cost is less than or
equal to zero.

Theorem [FeKa02]: RALP makes a decoding error iff G
has a noisy promenade.

Natural generalization to AWGN, any turbo-like code.

Rate-1/R RA codes, R > 3:
- Combinatorics tricky (future work).

Rate-1/2 RA codes:
Theorem [FeKa02]: Pr[noisy promenade] < n™¢, If:

p < 9—4(e+(log24)/2) (BSC) 02 < 4+211(())gg%+4€ (AWGN)
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Conclusions

e LP decoding of turbo-like codes:

- Precise characterization of noise patterns that cause
decoding error for BSC, AWGN: “noisy promenades.”

- Rate-1/2 RA codes: WER < n™¢.
- ML certificate property.

e New iterative algorithms for decoding turbo-like codes:

- Subgradient decoding: converges to LP solution.
- TRMP: finds ML code word when LLRs agree.
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Open Questions

Better WER bound for rate-1/R RA
using noisy promenades ?

- Conjecture: LP decoding WER < e—(en%),

WER bounds for other turbo-like codes?
(Poly-time) convergence proof for TRMP?

Relationship to sum- and max-product?

J. Feldman, Allerton, 10/02/02 — p.18/18



	Decoding via Linear Programming
	Our Contributions
	Outline
	Classic Turbo Codes
	Repeat-Accumulate Codes
	Decoding
	Max-Likelihood Agreeable Path
	Turbo Code Linear Program
	Using RALP to Decode
	Solving RALP
	Lagrangian Dual
	Lagrangian Dual, continued...
	Tree-Reweighted Max-Product
	Promenades
	Noisy Promenades
	Conclusions
	Open Questions

