Linear Programming-based Decoding of Turbo-Like Codes and its Relation to Iterative Approaches

Jon Feldman

David Karger

jonfeld@theory.lcs.mit.edu

karger@theory.lcs.mit.edu

MIT LCS

MIT LCS

Martin Wainwright

martinw@eecs.berkeley.edu

UC Berkeley

J. Feldman, Allerton, 10/02/02 - p.1/18

Decoding via Linear Programming

- New algorithm for decoding any turbo-like code [Feldman, Karger, FOCS 2002].
- Uses linear programming (LP) relaxation.
- Precise characterization of noise patterns that cause decoding error for BSC, AWGN: "noisy promenades."
 - Reminiscent of work on "stopping sets" in the BEC [Di, Proietti, Richardson, Telatar, Urbanke, '02; Richardson, Urbanke, Allerton'02].
- For rate-1/2 Repeat-Accumulate (RA) codes:
 - WER $\leq n^{-\epsilon}$, (noise $< f(\epsilon)$).
- ML certificate property:
 - Outputs ML information word, or "error."

Our Contributions

- Iterative subgradient decoding for any turbo-like code:
 - Uses trellis passes, message-passing.
 - ∃ step size guaranteeing convergence to same solution as LP decoder.
 - → Same noise pattern error conditions, WER bounds.
 - → ML certificate property.

Our Contributions

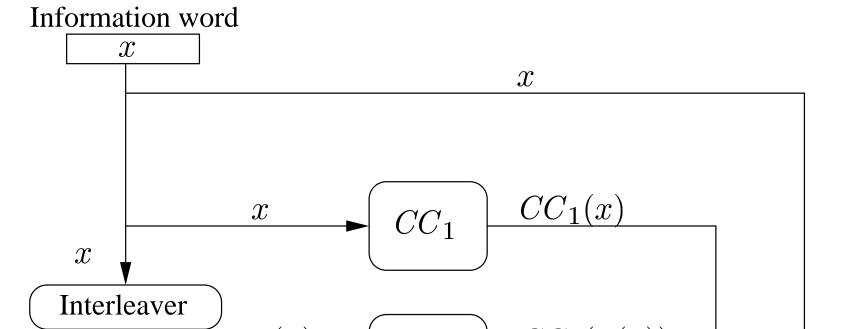
- Iterative subgradient decoding for any turbo-like code:
 - Uses trellis passes, message-passing.
 - ∃ step size guaranteeing convergence to same solution as LP decoder.
 - → Same noise pattern error conditions, WER bounds.
 - → ML certificate property.
- Relation to Tree-Reweighted Max-Product (TRMP):
 - Iterative algorithm for finding optimal configurations on factor graphs [Wainwright, Jaakkola, Willsky, Allerton'02], Session V.B, Friday, 10am.
 - Turbo-like codes: simple message-passing decoder.
 - If constituent codes agree on a code word, it is the ML code word.

Outline

- 1. Turbo Codes, RA codes.
- 2. LP-based decoding of turbo-like codes.
- 3. Lagrangian dual form of LP:
 - Subgradient decoding,
 - TRMP decoding.
- 4. Noisy Promenades.

Classic Turbo Codes

[Berrou, Glavieux, Thitimajshima, 1993]



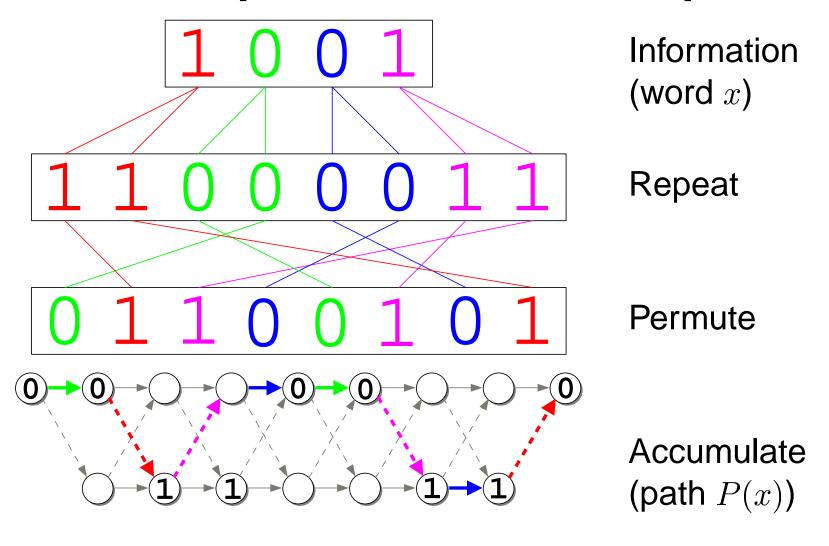
Convolutional Codes

 "Turbo-like" codes: Parallel, serial concatenated convolutional codes.

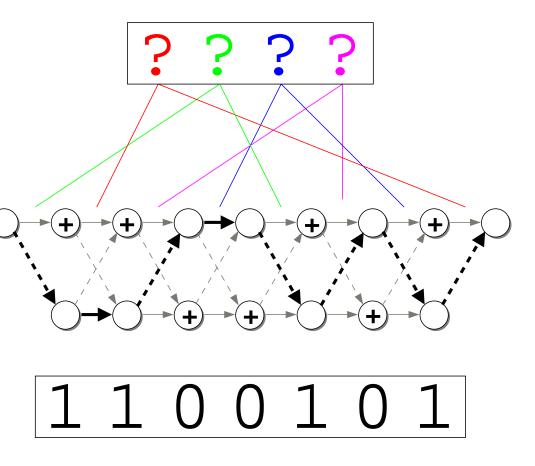
codeword

Repeat-Accumulate Codes

[Divsalar, Jin, McEliece, 1998]



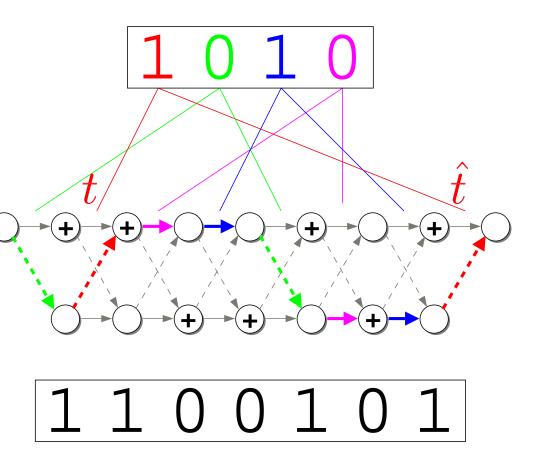
Decoding



Received word

- Costs on nodes: local log-likelihood ratio (LLR).
- Viterbi algorithm: finds max-cost path.
- Max-cost path does not necessarily correspond to code word.

Max-Likelihood Agreeable Path



Received word

Path P is Agreeable if, for all info bits x_i:
 "1-edge" at t and t̂, or
 "0-edge" at t and t̂

 How do we find ML agreeable path?

Turbo Code Linear Program

• Variable f_P for all paths P, $0 \le f_P \le 1$. Cost $c_P = \sum_{e \in P} c_e$. For rate-1/2 RA codes (RALP):

$$\max \sum_{P} c_{P} f_{P} \qquad \text{s.t.}$$

$$\sum_{P} f_{P} = 1$$

$$\forall x_{i}, X_{i} = \{t, \hat{t}\}, \qquad \sum_{P \in S(t)} f_{P} = \sum_{P \in S(\hat{t})} f_{P}$$

- S(t): set of paths that "switch" at segment t.
- $X_i = \{t, \hat{t}\}$: two copies of x_i .
- Natural generalization for any turbo-like code.

Using RALP to Decode

- Solving RALP finds maximum-likelihood agreeable distribution f* on paths.
- Strict "relaxation" of ML decoding problem.
- All the mass on one path: "integral solution."

Using RALP to Decode

- Solving RALP finds maximum-likelihood agreeable distribution f* on paths.
- Strict "relaxation" of ML decoding problem.
- All the mass on one path: "integral solution."
- If f^* integral:
 - $f_P^* = 1$ for some P.
 - $f_{P'}^* = 0$ for all $P \neq P'$.
 - P is the ML agreeable path.
- If not, f^* is an agreeable *convex combination* of paths.
 - Output "error."

Solving RALP

- Use generic LP solver.
 - Ellipsoid algorithm: provably poly-time, but impractical.
 - Simplex algorithm: useful in practice, but not in real time.

Solving RALP

- Use generic LP solver.
 - Ellipsoid algorithm: provably poly-time, but impractical.
 - Simplex algorithm: useful in practice, but not in real time.
- Solve using subgradient algorithm:
 - Operates on Lagrangian dual form of the LP.
 - Takes the form of a standard message passing decoder

Lagrangian Dual

- Lagrange multipliers λ_i for each info bit x_i .
- For a path P, cost under λ :

$$\mathcal{L}(P,\lambda) = c_P + \sum_{x_i} \lambda_i A_i(P)$$

"agreeability"
$$A_i = \begin{cases} +1 & \text{if } P \in S(t) \ P \notin S(\hat{t}) \\ 0 & \text{if } P \text{ agreeable for } x_i \\ -1 & \text{if } P \notin S(t) \ P \in S(\hat{t}) \end{cases}$$

Lagrangian Dual

- Lagrange multipliers λ_i for each info bit x_i .
- For a path P, cost under λ :

$$\mathcal{L}(P,\lambda) = c_P + \sum_{x_i} \lambda_i A_i(P)$$

"agreeability"
$$A_i = \begin{cases} +1 & \text{if } P \in S(t) \ P \notin S(\hat{t}) \\ 0 & \text{if } P \text{ agreeable for } x_i \\ -1 & \text{if } P \notin S(t) \ P \in S(\hat{t}) \end{cases}$$

- Cost λ_i on 1-edges at segment t.
- Cost $-\lambda_i$ on 1-edges at segment \hat{t} .
- Natural generalization to any parallel concatenated convolutional code.

Lagrangian Dual, continued...

- Dual function $Q(\lambda) = \max_{P} \{\mathcal{L}(P, \lambda)\}.$
- Let $\hat{P}(\lambda) = \underset{P}{\operatorname{arg\,max}} \{\mathcal{L}(P,\lambda)\}$.

Lagrangian Dual, continued...

- Dual function $Q(\lambda) = \max_{P} \{\mathcal{L}(P, \lambda)\}.$
- Let $\hat{P}(\lambda) = \underset{P}{\operatorname{arg\,max}} \{\mathcal{L}(P,\lambda)\}$.
- Let $\lambda^* = \arg\min_{\lambda} Q(\lambda)$. By LP duality, $\sum_{P} c_P f_P^* = Q(\lambda^*)$.
- Find λ^* using sequence of "message-passing" updates:

$$\lambda^{m+1} = \lambda^m - \alpha^m A_i(\hat{P}(\lambda^m))$$

- Subgradient $A_i(\hat{P}(\lambda^m))$ computed w/ Viterbi algorithm.
- Appropriate step size α^m assures convergence to λ^* .

Lagrangian Dual, continued...

- Dual function $Q(\lambda) = \max_{P} \{\mathcal{L}(P, \lambda)\}.$
- Let $\hat{P}(\lambda) = \underset{P}{\operatorname{arg\,max}} \{\mathcal{L}(P,\lambda)\}.$
- Let $\lambda^* = \arg\min_{\lambda} Q(\lambda)$. By LP duality, $\sum_{P} c_P f_P^* = Q(\lambda^*)$.
- Find λ^* using sequence of "message-passing" updates:

$$\lambda^{m+1} = \lambda^m - \alpha^m A_i(\hat{P}(\lambda^m))$$

- Subgradient $A_i(\hat{P}(\lambda^m))$ computed w/ Viterbi algorithm.
- Appropriate step size α^m assures convergence to λ^* .
- May take a long time to converge to LP optimum.

Tree-Reweighted Max-Product

- General MAP estimation algorithm [Wainwright, Jaakkola, Willsky, Allerton '02].
- On turbo-like codes: simple message passing decoder.
- Same "cost adjustments" λ as subgradient decoding.
- Messages computed using log-likelihood ratio (LLR):

$$\lambda_i^{m+1} = \lambda_i^m + \alpha^m \left(LLR(\lambda^m; \hat{t}) - LLR(\lambda^m; t) \right)$$

- If $sign(LLR(\lambda; \hat{t})) = sign(LLR(\lambda; t))$, for all $X_i = \{t, \hat{t}\}$:
 - → the constituent codes (repeater, accumulator) agree on a codeword.

Tree-Reweighted Max-Product

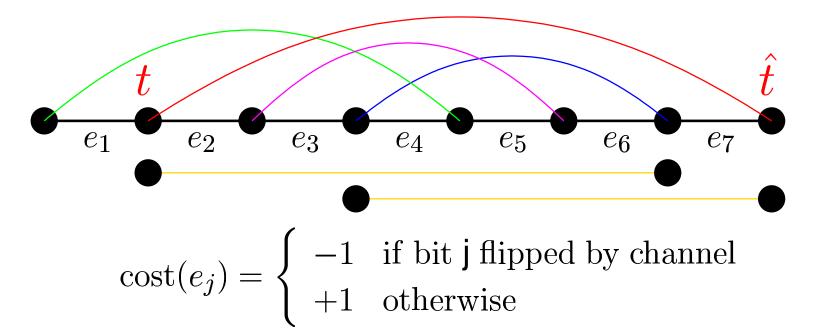
- General MAP estimation algorithm [Wainwright, Jaakkola, Willsky, Allerton '02].
- On turbo-like codes: simple message passing decoder.
- Same "cost adjustments" λ as subgradient decoding.
- Messages computed using log-likelihood ratio (LLR):

$$\lambda_i^{m+1} = \lambda_i^m + \alpha^m \left(LLR(\lambda^m; \hat{t}) - LLR(\lambda^m; t) \right)$$

- If $sign(LLR(\lambda; \hat{t})) = sign(LLR(\lambda; t))$, for all $X_i = \{t, \hat{t}\}$:
 - → the constituent codes (repeater, accumulator)
 agree on a codeword.
- By LP duality,
 - → TRMP has found the ML code word.

Promenades

- Precise characterization of noise patterns that cause decoding error for BSC, AWGN.
- Let G be a particular weighted, undirected graph:



- A promenade is a collection D of subpaths of G, where
 - For all $X_i = \{t, \hat{t}\}, \ deg_t(D) = deg_{\hat{t}}(D).$
- $deg_t(D)$ = number of subpaths in D that start or end at t.

Noisy Promenades

- The cost of a promenade is the sum of the costs of its subpaths.
 - A noisy promenade is one whose cost is less than or equal to zero.

Theorem [FeKa02]: RALP makes a decoding error iff G has a noisy promenade.

Natural generalization to AWGN, any turbo-like code.

Noisy Promenades

- The cost of a promenade is the sum of the costs of its subpaths.
 - A noisy promenade is one whose cost is less than or equal to zero.

Theorem [FeKa02]: RALP makes a decoding error iff G has a noisy promenade.

- Natural generalization to AWGN, any turbo-like code.
- Rate-1/R RA codes, $R \ge 3$:
 - Combinatorics tricky (future work).

Noisy Promenades

- The cost of a promenade is the sum of the costs of its subpaths.
 - A noisy promenade is one whose cost is less than or equal to zero.

Theorem [FeKa02]: RALP makes a decoding error iff G has a noisy promenade.

- Natural generalization to AWGN, any turbo-like code.
- Rate-1/R RA codes, $R \ge 3$:
 - Combinatorics tricky (future work).
- Rate-1/2 RA codes:

Theorem [FeKa02]: Pr[noisy promenade] $\leq n^{-\epsilon}$, if:

$$p \le 2^{-4(\epsilon + (\log 24)/2)}$$
 (BSC) $\sigma^2 \le \frac{\log e}{4 + 2\log 3 + 4\epsilon}$ (AWGN)

Conclusions

- LP decoding of turbo-like codes:
 - Precise characterization of noise patterns that cause decoding error for BSC, AWGN: "noisy promenades."
 - Rate-1/2 RA codes: WER $\leq n^{-\epsilon}$.
 - ML certificate property.
- New iterative algorithms for decoding turbo-like codes:
 - Subgradient decoding: converges to LP solution.
 - TRMP: finds ML code word when LLRs agree.

Open Questions

- Better WER bound for rate-1/R RA using noisy promenades ?
 - Conjecture: LP decoding WER $\leq e^{-(cn^{\epsilon})}$.
- WER bounds for other turbo-like codes?
- (Poly-time) convergence proof for TRMP?
- Relationship to sum- and max-product?