
2003 Conference on Information Sciences and Systems, The Johns Hopkins University, March 12–14, 2003

Using Linear Programming to Decode Linear Codes

Jon Feldman
Laboratory for Computer Science

MIT, Cambridge, MA, 02139

email:

jonfeld@theory.lcs.mit.edu

Martin Wainwright
Electrical Engineering and CS

UC Berkeley, Berkeley, CA, 94720

email:

martinw@eecs.berkeley.edu

David R. Karger1

Laboratory for Computer Science
MIT, Cambridge, MA, 02139

email:

karger@theory.lcs.mit.edu

Abstract — Given a linear code and observations

from a noisy channel, the decoding problem is to de-

termine the most likely (ML) codeword. We describe

a method for approximate ML decoding of an arbi-

trary binary linear code, based on a linear program-

ming (LP) relaxation that is defined by a factor graph

or parity check representation of the code. The result-

ing LP decoder, which generalizes our previous work

on turbo-like codes [FK02, FWK02], has the ML cer-

tificate property: it either outputs the ML codeword

with a guarantee of correctness, or acknowledges an

error. We provide a precise characterization of when

the LP decoder succeeds, based on the cost of pseu-

docodewords associated with the factor graph. We in-

troduce the notion of the fractional distance δ of a

code, defined with respect to a particular LP relax-

ation, and prove that the LP decoder will correct up

to [δ/2] − 1 errors. For the BEC, we prove that the

performance of LP decoding is equivalent to standard

iterative decoding.

I. Introduction

The families of turbo codes [BGT93] and low-density
parity-check (LDPC) codes [Gal62] have received a lot of
attention recently due to their demonstrated robustness
against extremely high levels of noise. Much is understood
about code design and error-correcting performance within
these families (for a survey, see [Mac03]). Despite this
attention, however, the current understanding of finite-length
turbo codes and LDPC codes is still limited. For instance, the
conditions under which the conventional belief-propagation
(BP) decoders [MDC98] succeed, or even converge, are not
fully understood, nor are there satisfying analytical bounds
explaining their superb performance observed in practice.

Decoding via Linear Programming. In previous
work [FK02, FWK02], we introduced the approach of
decoding any “turbo-like” code based on network flow and
linear programming relaxation techniques. We gave a precise
combinatorial characterization of the conditions under which
this decoder succeeds. We used properties of this LP decoder
to design a rate-1/2 Repeat-Accumulate (RA) code (a certain
class of simple turbo codes), and proved an upper bound on
the probability of decoding error. We also showed how to
derive a more classical iterative algorithm whose performance
is identical to that of our LP decoder.
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Our Contribution. In this paper, we generalize our meth-
ods to an arbitrary binary linear code. We define the linear
code linear program (LCLP), which is an approximation to
the maximum-likelihood (ML) decoding problem based on the
method of linear programming (LP) relaxation. An LP decoder
is a decoder based on the LCLP relaxation. Experiments show
that the performance of LP decoding is on par with the iter-
ative min-sum algorithm. In addition, as in turbo-like codes,
the LP decoder has the ML certificate property; whenever it
outputs a codeword, it is guaranteed to be the ML codeword.
None of the standard iterative methods are known to have this
desirable property.

We give an exact combinatorial characterization of the con-
ditions for LP decoding success. We use the channel model
to define a cost function on the bits such that the lowest cost
codeword is the ML codeword. We define the set of pseu-
docodewords, which is a superset of the set of codewords, and
we prove that the LP decoder always finds the lowest cost
pseudocodeword. Thus, the LP decoder succeeds if and only
if the lowest cost pseudocodeword is actually the transmitted
codeword.

Our notion of a pseudocodeword unifies other known results
for particular cases of codes and channels. For tail-biting trel-
lises, the pseudocodewords analyzed in this paper are equiva-
lent to those introduced by Forney et al. [FKKR01]. For the
case of the binary erasure channel (BEC), pseudocodewords
are exactly stopping sets, as defined by Di et al. [DPR+02].
Thus, the performance of the LP decoder is equivalent to it-
erative methods in both these cases. Also, when applied to
the analysis of computation trees for min-sum decoding, pseu-
docodewords have a connection to the deviation sets defined
by Wiberg [Wib96].

We define the notion of the fractional distance δ of a linear
code, which is a generalization of the classical distance. In
analogy to the performance guarantees of exact ML decod-
ing with respect to classical distance, we prove that the LP
decoder can correct up to δ/2 − 1 errors in the binary sym-
metric channel (BSC). We prove that the fractional distance
of a linear code with check degree at least three is at least ex-
ponential in the girth of the graph associated with that code.
Thus, given a graph with logarithmic girth, the fractional dis-
tance can be lower bounded by Ω(n1−ε), for some constant ε,
where n is the code length.

For the case of LDPC codes, we show how to compute the
fractional distance efficiently. This fractional distance is not
only useful for evaluating the performance of the code under
LP decoding, but it also serves as a lower bound on the true
distance of the code.

II. Background

A linear code C with parity check matrix A can represented by
a Tanner or factor graph G, which is defined in the following



way. Let I = {1, . . . , n} and J = {1, . . . , m} be indices for the
columns (respectively rows) of the n×m parity check matrix
of the code. With this notation, G is a bipartite graph with
independent node sets V = {vi | i ∈ I} and C = {cj | j ∈ J }.
We refer to the nodes in V as variable nodes, and the nodes
in C as check nodes. All edges in G have one endpoint in V
and the other in C. For each i, j, the edge (vi, cj) is included
in G if and only if Aij = 1. The neighborhood of a check
node cj , denoted by N(cj), is the set of variable nodes vi that
are incident to cj in G. Similarly, we let N(vj) represent the
set of check nodes incident to a particular variable node vj in
G. We will often use N(j) to denote the set of indices i such
that vi ∈ N(cj); similarly, N(i) denotes the set of indices j
for which cj ∈ N(vi). The particular meaning should be clear
from the context; generally, we will use i to denote variable
nodes (code bits), and j to denote parity checks.

Imagine assigning to each variable node vi a value in {0, 1},
representing the value of a particular code bit. A parity check
node cj is “satisfied” if the collection of bits assigned to the
variable nodes in its neighborhood N(cj) have even parity.
The binary vector v = (v1, . . . , vn) is codeword if and only if
all check nodes are satisfied. Figure 1 shows an example of a
linear code and its associated Tanner graph. In this Hamming
code, if we set v1 = v3 = v4 = v7 = 1, and v2 = v5 = v6 = 0,
then the neighborhood of every check node has even parity.
Therefore, this represents a codeword, which we can write as
1011001. Other codewords include 1111111, 0101001, and
1010110.
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Figure 1. A factor graph for the (7,4,3) Hamming Code.
The nodes {vi} drawn in open circles correspond to variable
nodes, whereas nodes {cj} in black squares correspond to
check nodes.

III. Decoding with Linear Programming

In this section, we formulate the ML decoding problem for
an arbitrary binary linear code, and show that it is equivalent
to solving a linear program over the codeword polytope. We
then define a modified linear program that represents a relax-
ation of the exact problem. Due to space limitations, we leave
out most of the proofs in this paper, and defer them to the
full version.

A. Exact ML decoding

A codeword y is sent over a noisy channel, and a corrupted
word ŷ is received. Given the received word ŷ, the ML decod-
ing problem is find the codeword that maximizes the likelihood
(or, equivalently minimizes the negative log likelihood) of ob-
serving ŷ under the channel model. This cost function can be
written as

∑n
i=1 γivi, where γi = − log(Pr[1 | ŷi]/Pr[0 | ŷi]) is

the negative log likelihood ratio (LLR) at each variable node.
For example, given a binary symmetric channel (BSC) with
crossover probability p, we set γi = − log[(1 − p)/p] if the re-
ceived bit ŷi = 1, and γi = − log[p/(1 − p)] if ŷi = 0. The

interpretation of γi is the “cost” of decoding vi = 1. We will
frequently exploit the fact that the cost vector γ can be uni-
formly rescaled without affecting the solution of the ML prob-
lem. In the BSC, for example, rescaling by − log[p/(1 − p)]
allows us to assume that γi = −1 if ŷi = 1, and γi = +1 if
ŷi = 0.

To motivate our linear programming (LP) relaxation, we
first show how ML decoding can formulated as an equivalent
LP. For a given code C, we define the codeword polytope to be
the convex hull of all possible codewords:

CH(C) =

{

∑

v∈C

λvv : λv > 0,
∑

v∈C

λv = 1

}

Every point in CH(C) corresponds to a vector f = (f1, . . . , fn),
where element fi is defined by the summation fi =

∑

v λvvi.
We can define ML decoding as the problem of minimizing
∑n

i=1 γifi subject to the constraint f ∈ CH(C). This formula-
tion is a linear program, since it involves minimizing a linear
cost function over the polytope CH(C).

The vertices of a polytope are those points that cannot
be expressed as convex combinations of other points in the
polytope. A key fact is any linear program attains its optimum
at a vertex of the polytope. Consequently, the optimum will
always be attained at a vertex of CH(C), and these vertices
are in one-to-one correspondence with codewords.

B. Linear programming relaxation

In this LP formulation of exact ML decoding, the complex-
ity of the problem lies in the nature of the codeword polytope.
Although CH(C) can be characterized by a finite number of
linear constraints, the number of constraints is exponential in
the code length n. Therefore, our strategy will be to formulate
a relaxed polytope, one that contains all the codewords, but
has a more manageable representation.

More concretely, we motivate our LP relaxation with the
following observation: each check node in a factor graph de-
fines a local code, and the global code corresponds to the
intersection of all the local codes. In LP terminology, each
check node defines a local codeword polytope (the set of con-
vex combinations of local codes), and our global polytope is
the intersection of all of these polytopes.

To define a local codeword polytope, we consider the set
of variable nodes {vi | i ∈ N(j)} that are neighbors of a
given check node cj . Of interest are subsets S ⊆ N(j) that
index an even number of variable nodes, since each such subset
corresponds to a local codeword, defined by setting variable
node vi = 1 for each index i ∈ S, and vi = 0 for each i /∈ S. For
each S in the set Ej = {S ⊆ N(j) : |S| even}, we introduce an
auxiliary LP variable wj,S , which is an indicator for the local
codeword associated with S. Note that the variable wj,∅ is
also present for each parity check, and it represents setting all
variables in N(j) equal to zero.

As indicator variables, the variables {wj,S} must satisfy the
constraints:

∀j ∈ J , S ∈ Ej , 0 6 wj,S 6 1. (1)

Moreover, since each parity check can only be “satisfied” with
one particular even-sized subset of nodes in its neighborhood
set to one, we must have:

∀j ∈ J ,
∑

S∈Ej

wj,S = 1. (2)



Finally, the indicator fi at each variable node vi must belong
to the local codeword polytope associated with cj (for each
j ∈ N(i)). This leads to the constraint:

∀ (i, j) ∈ I × J , fi =
∑

S∈Ej

S3vi

wj,S . (3)

Let the polytope P be the set of points (f, w) such that equa-
tions (1) , (2), and (3) hold. Overall, the LCLP relaxation
corresponds to the problem:

minimize

n
∑

i=1

γifi s.t. (f, w) ∈ P (4)

An integral solution to a linear program is a feasible point
whose values are all integers. We begin by observing that
there is a one-to-one correspondence between codewords and
integral solutions (f, w) to LCLP:

Lemma 1 For all integral solutions (f, w) to LCLP, the se-
quence (f1, . . . , fn) represents a codeword. Furthermore, for
all codewords (v1, . . . , vn), there is a setting of the variables w
such that (f, w) is an integral solution, where f = v.

One consequence of this claim is that any integral optimal
solution to LCLP specifies the ML codeword. Given a cycle-
free factor graph, it can be shown that any optimal solution
to LCLP is integral, so that LCLP is an exact formulation
of the ML decoding problem. In contrast, for a factor graph
with cycles, the optimal solution to LCLP may not be in-
tegral. Take, for example, the Hamming code in Figure 1.
Suppose that we define a cost vector γ as follows: for vari-
able node v1, set γ1 = −7/4, and for all other nodes vi,
set γi = +1. It is not hard to verify that under this cost
function, all codewords have non-negative cost: any codeword
with negative cost would have to set v1 = 1, and therefore set
at least two other vi = 1, for a total cost of at least +1/4.
Consider, however, the following fractional solution to LCLP:
first, set f = [1, 1/2, 0, 1/2, 0, 0, 1/2] and then for check node
1, set w1,{v1,v2} = w1,{v1,v4} = 1/2; at check node 2, as-
sign w2,{v2,v4} = w2,∅ = 1/2; and lastly at check node 3, set
w3,{v4,v7} = w3,∅ = 1/2. It can be verified that (f, w) sat-
isfies all of the LCLP constraints. However, the cost of this
solution is −1/4, which is strictly less than the cost of any
codeword. The analysis to follow will provide further insight
into the nature of such fractional (i.e., non-integral) solutions
to LCLP.

We note that the local codeword constraints (3) are analo-
gous to those enforced in the Bethe formulation of belief prop-
agation [YFW02].

IV. Analysis of LP decoding

Overall, the decoding algorithm based on LCLP consists of
the following steps. We first solve the LP in equation (4) to
obtain (f∗, w∗). If f∗ is integral (all zeros and ones), we out-
put it as the optimal codeword; otherwise, f∗ is fractional, and
we output an “error.” Lemma 1 implies that this algorithm
has the ML certificate property: if the algorithm outputs a
codeword, it is guaranteed to be the ML codeword.

When using the LP decoding method, an error can arise in
one of two ways. Either the LP optimum f∗ is not integral,
in which case the algorithm outputs “error”; or, the LP op-
timum may be integral (and therefore correspond to the ML

codeword), but the ML codeword is not what was transmit-
ted. In this latter case, the code itself has failed, so that even
exact ML decoding would make an error.

We use the notation Pr[err | y] to denote the probability
that the LP decoder makes an error, given that y was trans-
mitted. By Lemma 1, there is some feasible solution (y, w0)
to LCLP corresponding to the transmitted codeword y. We
can characterize the conditions under which LP decoding will
succeed as follows:

Theorem 2 Suppose the codeword y is transmitted. If all fea-
sible solutions to LCLP other than (y, w0) have cost more than
the cost of y, the LCLP decoder succeeds. If some solution to
LCLP has cost less than the cost of y, the decoder fails.

In the degenerate case where (y, w0) is one of multiple optima
of LCLP, the decoder may or may not succeed. We will be
conservative and consider this case to be decoding failure, and
so by Theorem 2:

Pr[err | y] = Pr

[

∃(f, w) ∈ P, f 6= y :
∑

i

γifi 6
∑

i

γiyi

]

(5)

In the analysis to follow, we provide combinatorial character-
izations of decoding success, and analyze the performance of
LP decoding in various settings.

A. The All-Zeros Assumption

When analyzing linear codes, it is common to assume that
the codeword sent over the channel is the all-zeros vector (i.e.,
y = 0n), since it tends to simplify analysis. In the context of
our LP relaxation, however, the validity of this assumption is
not immediately clear. In this section, we prove that one can
make the all-zeros assumption when analyzing LCLP.

Specifically, we show that for all codewords y, Pr[err | y] =
Pr[err | 0n]. In the BSC, let E be the set of bits flipped by the
channel; i.e., E = {i : ŷi 6= yi}. For all i ∈ I, let γ0

i = −1 if bit
i ∈ E , and γ0

i = +1 otherwise. Note that if the all-zeros word
was transmitted, then γ0 would represent the cost function.
The following lemma establishes a one-to-one correspondence
between the points of P under cost function γ, and the points
of P under cost function γ0:

Lemma 3 Fix some codeword y. For every (f, w) ∈ P ,
f 6= y, there is some (f r, wr) ∈ P , fr 6= 0n, such that
∑

i γifi −
∑

i γiyi =
∑

i γ0
i fr

i −
∑

i γ0
i 0n

i . Furthermore, for
every (fr, wr) ∈ P , fr 6= 0n, there is some (f, w) ∈ P , f 6= y,
such that

∑

i γ0
i fr

i −
∑

i γ0
i 0n

i =
∑

i γifi −
∑

i γiyi.

This lemma, along with equation (5), gives:

Pr[err|y] = Pr

[

∃(fr, wr) ∈ P, fr 6= 0n :
∑

i

γ0
i fr

i 6
∑

i

γ0
i 0n

i

]

= Pr[err | 0n].

A similar result can be shown for the AWGN channel. From
this point forward in our analysis of LP decoding, we assume
that the all-zeros codeword was the transmitted codeword,
and so γ = γ0. Since the all-zeros codeword has zero cost,
Theorem 2 says that the LP decoder will fail only if there is
some non-zero point in P with cost less than or equal to zero.

B. Decoding Efficiency

The linear program can be solved with any generic LP
solver, such as the simplex algorithm [Sch87], which is of-
ten efficient in practice, or the Ellipsoid algorithm [GLS81],



which has better worst-case guarantees. To establish that the
LP solver will run efficiently using one of these two methods,
we must show that the LP either has a limited number of vari-
ables and constraints, or a separation oracle. Let dr denote
the maximum check (right) degree of the code. As stated,
LCLP has O(n + m2dr ) variables and constraints. For turbo
and LDPC codes, this complexity is linear in n, since dr is
constant. For arbitrary linear codes, we use results of Yan-
nakakis [Yan91] to obtain a characterization of LCLP with
O(n + md2

r ) = O(n3) variables and constraints. We leave
these details for the complete version of the paper.

V. Fractional Distance

A classical quantity associated with a code is its distance,
which for a linear code is equal to the minimum weight of any
non-zero codeword. In this section, we introduce a fractional
analog of distance, and use it to prove additional results on
the performance of LP decoding. Roughly speaking, the frac-
tional distance is the minimum weight of any non-zero LCLP
optimum; since all codewords are potential optima, the frac-
tional distance is a lower bound on the true distance.

A. Definitions and Basic Properties

Define the weight of a point (f, w) in the polytope P as
∑

i fi. Let VP denote the set of vertices of the polytope P ,
and define V−

P = VP \ (f0, w0) to be the set of all vertices
excluding that corresponding to the all-zeros codeword.

Since there is a one-to-one correspondence between code-
words and integral vertices of P , the distance of the code is
equal to the minimum weight of an integral vertex in V−

P . How-
ever, the relaxed polytope P may have additional non-integral
vertices, as illustrated, in particular, by our earlier example
with the Hamming code. Since the optimal solution to LCLP
will always be a vertex of P , it is natural to define the mini-
mum weight of any vertex in V−

P as an analog to the distance.
It turns out that we can obtain a slightly sharper definition
by exploiting the fact that not all vertices of P can be optimal
solutions to instances of LCLP.

Let Q be the projection of P onto the subspace defined
defined by the variables f1, . . . , fn. More formally, this pro-
jection is defined as Q = {f : ∃w s.t. (f, w) ∈ P}. As stated
previously, any optimal solution (f∗, w∗) to LCLP must be a
vertex of P . However, the fact that the cost function for LCLP
only affects the variables f1, . . . , fn implies that f∗ must also
be a vertex of the projection Q. (In general, not all vertices
of P will be projected to vertices of Q.) For a point f in Q,
define the weight of f to be

∑

i fi, and let V−
Q be the set of

non-zero vertices of Q.
With this notation, we define the fractional distance of a

code to be the minimum weight of any vertex in V−
Q . Note that

this fractional distance is always a lower bound on the classical
distance of the code, since every codeword is contained in
V−

Q . Moreover, the performance of LP decoding is tied to this
fractional distance, as we make precise in the following:

Theorem 4 For a code G with fractional distance δ, the LP
decoder is successful if fewer than δ/2 bits are flipped by the
binary symmetric channel.

Proof: Suppose the LP decoder fails; i.e., the optimal solution
(f∗, w∗) to LCLP has f∗ 6= 0n. We know that f∗ must be a
vertex of Q. Since f∗ 6= 0n, f∗ ∈ V−

Q . This implies that
∑

i f∗
i > δ, since the fractional distance is at least δ.

Recall that E = {i : ŷi 6= yi} is the set of bits flipped by
the channel. We can write the cost of f∗ as the following:

∑

i

γif
∗
i =

∑

i/∈E

f∗
i −

∑

i∈E

f∗
i . (6)

Since fewer than δ/2 bits are flipped by the channel, we
have that |E| < δ/2, and so

∑

i∈E f∗
i < δ/2. It follows

that
∑

i/∈E f∗
i > δ/2, since

∑

i f∗
i > δ. Therefore, by (6),

∑

i γif
∗
i > 0. However, by Theorem 2 and the fact that the

decoder failed, the optimal solution (f∗, w∗) to LCLP must
have cost less than or equal to zero; i.e.,

∑

i γifi 6 0. This is
a contradiction.

Note again the analogy to the classical case: just as exact
ML decoding has a performance guarantee in terms of classical
distance, Theorem 4 establishes that the LP decoder has a
performance guarantee specified by the fractional distance of
the code.

B. Lower Bound on the Fractional Distance

The following theorem asserts that the fractional distance
is exponential in the girth of G. It is analogous to an earlier
result of Tanner [Tan81], which provides a similar bound on
the classical distance of a code in terms of the girth of the
associated Tanner graph.

Theorem 5 Let G be a Tanner graph with variable degree
d` > 3 and check degree dr > 2, and let g be the girth of G.
Then the fractional distance is at least (2/dr)(d` − 1)g/4−1.

One consequence of Theorem 5 is that the fractional distance
is at least Ω(n1−ε) for some constant ε, for any graph G with
girth Ω(log n). Note that there are many known constructions
of such graphs [e.g., RV00]. Although Theorem 5 does not
yield a bound on the WER for the BSC, it demonstrates that
LP decoding can correct Ω(n1−ε) errors for any code defined
by a graph with logarithmic girth.

Moreover, with an alternative definition of fractional
distance, we can provide a somewhat sharper statement,
showing in particular that LP decoding can correct up to
(1/2)(d` − 1)g/4−1 errors in the channel.

C. Computing the Fractional Distance

In contrast to the classical distance, the fractional distance
of an LDPC code can be computed efficiently. Since the frac-
tional distance is a lower bound on the real distance, we thus
have an efficient algorithm to give a non-trivial lower bound
the distance of an LDPC code.

To compute the fractional distance, we must compute the
minimum weight vertex in V−

Q . We first consider a more gen-
eral problem: given the m facets of a polytope R over vertices
(x1, . . . , xn), a specified vertex x0 of R, and a linear function
`(x), find the vertex in R other than x0 that minimizes `(x).
An efficient algorithm for this problem is the following: let F
be the set of all facets of R on which x0 does not sit. Now for
each facet in F , intersect R with the facet to obtain R′, and
then optimize `(x) over R′. The minimum value obtained over
all facets in F is the minimum of `(x) over all vertices other
than x0. The running time of this algorithm is proportional
to |F | < m calls to an LP solver.

For our problem, we are interested in the polytope Q,
and the special vertex 0n ∈ Q. In order to run the
above procedure, we must provide a small representation of
Q = {f : ∃w s.t. (f, w) ∈ P}. The following definition of Q in



terms of constraints on f was derived from the parity polytope
of Yannakakis [Yan91]. We first enforce 0 6 fi 6 1 for all
i ∈ I, and then for all j ∈ J , T ⊆ N(j), |T | odd, we require:

∑

i∈T

fi +
∑

i∈(N(j)\T )

(1 − fi) 6 |N(j)| − 1. (7)

Thus, the number of facets in Q has an exponential depen-
dence on the check degree of the code. For an LDPC code,
the number of facets will be linear in n, so that we can com-
pute the exact fractional distance efficiently. For arbitrary lin-
ear codes, we can still compute the minimum weight non-zero
vertex of P , which provides a lower bound on the fractional
distance, and hence a (possibly weaker) lower bound on the
classical distance.

VI. Pseudocodewords

In this section, we introduce the concept of a pseudocode-
word, which we will define as a scaled version of a solution
to LCLP. As a consequence, Theorem 2 will hold for pseu-
docodewords in the same way that it holds for solutions to
LCLP.

The following definition of a codeword motivates the notion
of a pseudocodeword. Let h be a vector in {0, 1}n, and let u
be a setting of non-negative integer weights, one weight uj,S

for each check j and S ∈ (Ej \ {∅}). We say that (h, u)
is a codeword if, for all edges (vi, cj) in the Tanner graph
G, hi =

∑

S∈Ej ,S3i uj,S . This corresponds exactly to the

consistency constraint (3) in LCLP. It is not difficult to see
that this construction guarantees that the binary vector h is
always a codeword of the original code.

We obtain the definition of a pseudocodeword (h, u) is by re-
moving the restriction hi ∈ {0, 1}, and instead allowing each
hi to take on arbitrary non-negative integer values. With
this definition, any codeword is (trivially) a pseudocodeword
as well; moreover, any sum of codewords is a pseudocode-
word. However, in general there exist pseudocodewords that
cannot be decomposed into a sum of codewords. As an il-
lustration, consider the Hamming code of Figure 1; earlier,
we constructed a fractional LCLP solution for this code. If
we simply scale this fractional solution by a factor of two, the
result is a pseudocodeword (h, u) of the following form. We be-
gin by setting h = [2, 1, 0, 1, 0, 0, 1]. To satisfy the constraints
of a pseudocodeword, set u1,{v1,v2} = u1,{v1,v4} = u2,{v2,v4}

= u2,∅ = u3,{v4,v7} = u3,∅ = 1. This pseudocodeword cannot
be expressed as the sum of individual codewords.

Using simple scaling arguments, and the all-zeros assump-
tion, we can restate Theorem 2 in terms of pseudocodewords
as follows:

Theorem 6 If all non-zero pseudocodewords have positive
cost, the LCLP decoder succeeds. If some non-zero pseu-
docodeword has negative cost, the LCLP decoder fails.

A. Pseudocodeword Graphs

Pseudocodewords have a graphical representation that is
often helpful. We begin by observing any codeword corre-
sponds to a particular subgraph of the Tanner graph G. In
particular, the vertex set of this subgraph consists of all the
variable nodes for which vi = 1, as well as all check nodes to
which these variable nodes are incident. Any pseudocodeword
(h, u) can be associated with a graph H in an analogous way.
The vertex set of the graph H consists of hi copies of each

node vi, and uj,S copies of each check node cj , with “label”
S. We refer to the copies of the variable node as (v1

i , . . . , vhi

i ).
The edges of the graph are connected according to member-PSfrag replacements

v
1

1

v
2

1

v
1

2

v
1

4

v
1

7

c1

c1

c2

c3

Figure 2. The graph of a pseudocodeword for the (7,4,3)
Hamming code. In this particular pseudocodeword, there
are two copies of node v1, and also two copies of check c1.

ship in the sets S. More precisely, consider an edge (vi, cj)
in G. There are hi copies of vi in H, and there are also hi

copies of cj labeled with sets S that include i. Connect these
node sets using an arbitrary one-to-one correspondence. Fig-
ure 2 gives the graph of the pseudocodeword example given
earlier. After all connections in H are made in this manner,
every check node in H will be connected to an even number
of variable nodes (none of them being copies of one another),
and every variable node corresponding to vi will be connected
to exactly one copy of each check node cj in N(vi). The cost
of this graph is the sum of the costs γi of the variable nodes in
the graph, and is clearly equal to the cost of the pseudocode-
word from which it was derived.

This graphical representation of a pseudocodeword is help-
ful in making connections with other notions of pseudocode-
words in the literature. For example, the deviation sets de-
fined by Wiberg [Wib96] can be compared to pseudocodeword
graphs. On tail-biting trellises, pseudocodeword graphs cor-
respond to those analyzed by Forney et al. [FKKR01]. In the
next section, we will use these graphs to show that on the
BEC, pseudocodewords are exactly stopping sets.

B. Stopping sets in the BEC

In the binary erasure channel (BEC), bits are not flipped
but rather erased. Consequently, for each bit, the decoder
receives either 0, 1, or an erasure. If either symbol 0 or 1
is received, then it must be correct. On the other hand, if
an erasure (which we denote by x) is received, there is no
information about that bit. It is well-known [DPR+02] that
in the BEC, the iterative belief propagation (BP) decoder fails
if and only if a so-called stopping set exists among the erased
bits. The main result of this section is that stopping sets are
the special case of pseudocodewords on the BEC, and so LP
decoding exhibits the same property.

We can model the BEC in LCLP with our cost function γ.
As in the BSC, γi = −1 if the received bit ŷi = 1, and γi = +1
if ŷi = 0. If ŷi = x, we set γi = 0, since we have no information
about that bit. Note that under the all-zeros assumption, all
the costs are non-negative, since no bits are flipped. Therefore,
Theorem 6 implies that either the LP decoder will succeed, or
there will be a non-zero pseudocodeword with zero cost.

Let E be the set of code bits erased by the channel. A subset
S ⊆ E is a stopping set if all the checks in the neighborhood
∪i∈SN(i) of S have degree at least two with respect to S.



Theorem 7 Under the BEC, there is a non-zero pseudocode-
word with zero cost if and only if there is a stopping set. There-
fore, the performance of LP and BP decoding are equivalent
for the BEC.

In the statement, we have assumed that both the iterative
and the LCLP decoders fail when the answer is ambiguous.
For the iterative algorithm, this ambiguity corresponds to the
existence of a stopping set; for the LCLP algorithm, it cor-
responds to a non-zero pseudocodeword with zero-cost, and
hence multiple optima for the LP.

VII. Tighter relaxations

It is important to observe that LCLP has been defined
with respect to a specific factor graph. Since a given code
has many such representations, there are many possible LP-
based relaxations, and some may be better than others. Of
particular significance is the fact that adding redundant par-
ity checks to the factor graph, though not affecting the code,
provides new constraints for the LP relaxation, and will in
general strengthen it. For example, returning to the (7, 4, 3)
Hamming code of Figure 1, suppose we add a new check node
whose neighborhood is {v1, v3, v5, v6}. This parity check is
redundant for the code, since it is simply the mod two sum
of c1 and c2. However, the linear constraints added by this
check tighten the relaxation; in fact, they render the pseu-
docodeword f = [1, 1/2, 0, 1/2, 0, 0, 1/2] infeasible. Whereas
redundant constraints may degrade the performance of BP
decoding (due to the creation of small cycles), adding new
constraints can only improve LP performance.

In addition to redundant parity checks, there are various
generic ways in which an LP relaxation can be strength-
ened [e.g., LS91, SA90]. Such “lifting” techniques provide
nested sequence of relaxations increasing in both tightness and
complexity, the last of which is exact (albeit with exponential
complexity). It would be interesting to analyze how quickly
such a sequence of relaxations approaches CH(C).

Finally, the fractional distance of a code, as defined here, is
also a function of the factor graph representation of the code.
Fractional distance yields a lower bound on the true distance,
and the quality of this bound could also be improved by adding
redundant constraints, or other methods of tightening the LP.

VIII. Discussion

We have described an LP-based decoding method, and
proved a number of results on its error-correcting performance.
Central to this characterization is the notion of a pseudocode-
word, which corresponds to a rescaled solution of the LP relax-
ation. Our definition of pseudocodeword unifies previous work
on iterative decoding [e.g., FKKR01, Wib96, DPR+02]. We
also introduced the fractional distance of a code, a quantity
which shares important properties with the classical notion.
We proved a guarantee on the error-correcting performance
of LP decoding in terms of the fractional distance that paral-
lels the well-known link between exact ML decoding and the
classical distance.

There are a number of open questions and future direc-
tions suggested by the work presented in this paper. It is
likely that the fractional distance bound in this paper can be
substantially strengthened by consideration of graph-theoretic
properties other than the girth (e.g., expansion), or by look-
ing at random codes. A linear lower bound on the fractional
distance would yield a decoding algorithm with exponentially
small error rate.

In previous work on RA codes [FK02], we were able to prove
a bound on the error rate of LP decoding stronger than that
implied by the minimum distance. It would be interesting to
see the same result in the more general setting of LDPC codes
or linear codes. Perhaps an analysis similar to that of Di et
al. [DPR+02], which was performed on stopping sets in the
BEC, could be applied to pseudocodewords in other channel
models.
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