Decoding Turbo Codes and LDPC Codes via Linear Programming

Jon Feldman

David Karger

jonfeld@theory.lcs.mit.edu

karger@theory.lcs.mit.edu

MIT LCS

MIT LCS

Martin Wainwright

martinw@eecs.berkeley.edu

UC Berkeley

Binary Error-Correcting Code

• Binary Symmetric Channel (BSC): each bit flipped independently with probability *p* (small constant).

Turbo Codes + LDPC Codes

- Low-Density Parity-Check (LDPC) codes [Gal '62].
- Turbo Codes introduced [BGT '93], unprecedented error-correcting performance.
- Ensuing LDPC "Renaissance" [SS '94, MN '95, Wib '96, MMC '98, Yed '02, ...].
- Simple encoder, "belief-propagation" decoder.
- Theoretical understanding of good performance:
 - "Threshold" as $n \to \infty$ [LMSS '01, RU '01];
 - Decoder unpredictable with cycles.
- Finite-length analysis: combinatorial error conditions known only for the binary erasure channel [DPRTU '02].

Our contributions

[FK, FOCS '02] [FKW, Allerton '02] [FKW, CISS '03]

- Poly-time decoder using LP relaxation.
- Decodes: binary linear codes ⊇ LDPC codes ⊇ turbo codes.
- "Pseudocodewords:" exact characterization of error patterns causing failure.
- "Fractional distance" δ :
 - LP decoding corrects up to $\delta/2$ errors.
 - Computable efficiently for turbo, LDPC codes.
- Error rate bounds based on high-girth graphs.
- Closely related to iterative approaches, other notions of "pseudocodewords."

Outline

- Error correcting codes.
- Using LP relaxation for decoding.
- Details of LP relaxation for binary linear codes.
- Pseudocodewords.
- Fractional Distance.
- Girth-based bounds.

Maximum-Likelihood Decoding

- Code $C \subset \{0, 1\}^n$.
- Cost function γ_i : negative log-likelihood ratio of y_i .
- BSC: $\gamma_i = +1 \text{ if } \hat{y}_i = 0, \quad \gamma_i = -1 \text{ if } \hat{y}_i = 1.$
- Other channels: γ_i takes on arbitrary "soft values."

Given: Corrupt code word \hat{y} .

Find: $y \in C$ such that $\sum_{i} \gamma_{i} y_{i}$ is minimized.

- Linear Programming formulation:
 - Variables y_i for each code bit, $0 \le y_i \le 1$.
 - Linear Program:

Minimize
$$\sum_{i} \gamma_{i} y_{i}$$
 s.t. $y \in CH(C)$.

Linear Programming Relaxation

- Polytope P: relaxation, $C = P \cap \{0, 1\}^n$.
- Decoder: Solve LP using simplex/ellipsoid. If $y^* \in \{0,1\}^n$, output y^* , else output "error."
- *ML certificate* property: all outputs ML codewords.
- Want low word error rate (WER) := $Pr_{noise}[y \neq \overline{y}]$.

- Min $\sum_i \gamma_i y_i : y \in P$.
- 110 No noise: \overline{y} optimal.
 - Noise: perturbation of objective function.
 - Design code, relaxation accordingly.

Tanner Graph

• The *Tanner Graph* of a linear code is a bipartite graph modeling the *parity check matrix* of the code.

- "Variable nodes" y_1, \ldots, y_n .
- "Check Nodes" c_1, \ldots, c_m .
- N(j): n'hood of check c_i .
- Code words: $y \in \{0,1\}^n$ s.t.:

$$\forall c_j, \sum_{i \in N(j)} y_i = 0 \pmod{2}$$

• Codewords: 0000000, 1110000, 1011001, etc.

IP/LP Formulation of ML Decoding

• Variables $\{f_i\}$ for each code bit y_i .

IP:
$$f_i \in \{0, 1\}$$
. LP: $0 \le f_i \le 1$.

• For check bit c_j , E_j = valid configurations of N(j).

$$E_j = \{ S \subseteq N(j) : |S| \text{ even} \}$$

• Variables $\{w_{j,S}\}$ for each check node c_j , $S \in E_j$.

IP:
$$w_{j,S} \in \{0,1\}$$
. LP: $0 \le w_{j,S} \le 1$.

• Vars: $w_{1,\emptyset}, w_{1,\{1,2,4,5\}}, w_{1,\{1,2\}}, \\ w_{1,\{1,4\}}, w_{1,\{1,5\}}, w_{1,\{2,4\}}, w_{1,\{2,5\}}, \\ w_{1,\{4,5\}}$

IP/LP Formulation of ML Decoding

• Minimize $\sum_{i} \gamma_{i} f_{i}$, subject to:

$$\forall \text{ checks } j, \qquad \sum_{S \in E_j} w_{j,S} = 1$$

$$\forall \text{ edges } (i,j) \in G, \qquad f_i = \sum_{\substack{S \in E_j \\ S \ni i}} w_{j,S}$$

• Let P be the relaxed polytope.

code
$$C = \{ f \in \{0,1\}^n \mid \exists w \text{ s.t. } (f,w) \in P \}$$

- IP: formulation of ML decoding.
- What do fractional solutions look like?

Fractional Solutions

- Suppose: $\gamma_1 = -2.8$ $\gamma_2 = +0.8$ $\gamma_3 \cdot ... \cdot 7 = +1$
- ML codeword: [1, 1, 1, 0, 0, 0, 0]
- ML codeword cost: -1.

- Frac. sol: $f = [1, \frac{1}{2}, 0, \frac{1}{2}, 0, 0, \frac{1}{2}].$
- $w_{1,\{1,2\}} = w_{1,\{1,4\}} = \frac{1}{2}$ $w_{2,\{2,4\}} = w_{2,\emptyset} = \frac{1}{2}$ $w_{3,\{4,7\}} = w_{3,\emptyset} = \frac{1}{2}$
- Frac. sol cost: -1.4.

LP Decoding Success Conditions

- Pr[Decoding Success] = Pr[\overline{y} is the unique OPT].
- Assume $\overline{y} = 0^n$
 - Common asssumption for linear codes.
 - OK in this case due to symmetry of polytope.
- Pr[\overline{y} is the unique OPT] = Pr[All other solutionss have cost > 0].

Theorem [FKW, CISS '03]: Assume the all-zeros codeword was sent. Then, the LP decodes correctly iff all non-zero points in P have positive cost.

Pseudocodewords

• Pseudocodewords are scaled points in P.

Previous example:

$$f = [1, \frac{1}{2}, 0, \frac{1}{2}, 0, 0, \frac{1}{2}].$$

• Scaled to integers:

$$f' = [2, 1, 0, 1, 0, 0, 1].$$

• Natural combinatorial definition of pseudocodeword (independent of LP relaxation).

Theorem [FKW, CISS '03]: LP decodes correctly iff all pseudocodewords have cost > 0.

Fractional Distance

- Classical distance:
 - $\delta = \min$ Hamming dist. of codewords in C.
- Adversarial performance bound:
 - ML decoding can correct $\delta/2 1$ errors.
- Another way to define minimum distance:
 - $\delta_f = \min(l_1)$ dist. between two integral verts of P.
- Fractional distance:
 - $\delta_f = \min(l_1)$ dist. between an integral and a fractional vertex of P.
 - $\delta_f = \min$ wt. fractional vertex of P.
 - Lower bound on classical distance: $\delta_f \leq \delta$.
 - LP Decoding can correct $\delta_f/2 1$ errors.

LP Decoding corrects $\delta_f/2-1$ errors

- Suppose fewer than $\delta_f/2$ errors occur.
- Let (f^*, w^*) be a vertex of P, $f^* \neq 0^n = \overline{y}$. $\sum_i f_i \geq \delta_f$.
- When $\overline{y} = 0^n$, $\gamma_i = -1$ if i flipped, +1 o.w.; So,

$$\sum_{i} \gamma_{i} f_{i}^{*} = \sum_{i \text{ not flipped}} f_{i}^{*} - \sum_{i \text{ flipped}} f_{i}^{*}$$

- Since $\sum_{i \text{ flipped}} f_i^* < \delta_f/2 \implies \sum_{i \text{ not flipped}} f_i^* > \delta_f/2.$
- Therefore $\sum_{i} \gamma_i f_i^* > 0$.

Computing the Fractional Distance

- Computing δ for linear/LDPC codes is NP-hard.
- If the polytope has small size (LDPC), the fractional distance is easily computed.
 - More general problem: Given an LP, find the two best vertices v, v'.
 - Algorithm:
 - * Find v.
 - * Guess the facet on which v' sits but v does not.
 - * Set facet to equality, obtaining P'.
 - * Minimize g() over P'.
- Good approximation to the classical distance?
- Good prediction of relative classical distance?

Using Girth for Error Bounds

- For rate-1/2 RA (cycle) codes: If G has large girth, neg-cost pseudocodewords (promenades) are rare.
- Erdös (or [BMMS '02]): Hamiltonian 3-regular graph with girth $\log n$.

Theorem [FK, FOCS '02]: For any $\alpha>0$, as long as $p<2^{-4(\alpha+(\log 24)/2)}$, WER $\leq n^{-\alpha}$.

• Arbitrary G, girth g, all var. nodes have degree $\geq d$:

Theorem [FKW, CISS '03]:
$$\delta_f \geq (d-1)^{\lceil g/4 \rceil - 1}$$

• Can achieve $\delta_f = \Omega(n^{1-\epsilon})$. Stronger graph properties (expansion?) are needed for stronger results.

Other "pseudocodewords"

- BEC: Iterative decoding successful iff no zero-cost "stopping sets." [DPRTU '02]
 - In the BEC, pseudocodewords = stopping sets.
 - Iterative/LP decoding: same performance in BEC.
- Tail-Biting trellisses (TBT): Iterative decoding successful iff "dominant pseudocodeword" has negative cost [FKMT '98].
 - TBT: need LP along lines of [FK, FOCS '02].
 - Iterative/LP decoding: same performance on TBT.
- "Min-sum" decoding successful iff no neg-cost "deviation sets" in the computation tree [Wib '96].
 - Pseudocodewords are natural "closed" analog of deviation sets.

Other Results

- For "high-density" binary linear codes, need representation of P without exponential dependence on check node degree.
 - Use "parity polytope" of Yannakakis ['91].
 - Orig. representation: $O(n + m2^{d_c})$.
 - Using parity polytopes: $O(mn + md_c^2 + nd_vd_c)$.
- New iterative methods [FKW, Allerton '02]:
 - Iterative "tree-reweighted max-product" [WJW '02] tries to solve dual of our LP.
 - Subgradient method for solving LP gives provably convergent iterative algorithm.
- Experiments on performance, distance bounds.

Performance Comparison

Random rate-1/2 (3,6) LDPC Code

• Length 200, left degree 3, right degree 6.

Growth of Average Fractional Distance

Rate 1/4 Gallager Ensemble Fractional Distance

• "Gallager" distribution, left degree 3, right degree 4.

Future Work

- New WER, fractional distance bounds:
 - Lower rate turbo codes (rate-1/3 RA).
 - Other LDPC codes, including
 - * Expander codes, irregular LDPC codes, other constructible families.
 - Random LDPC, linear codes?
- ML Decoding using IP, branch-and-bound?
- Using generic "lifting" procedures to tighten relaxation?
- Deeper connections to "sum-product" belief-propagation?
- LP decoding of other code families, channel models?