Decoding Turbo Codes and LDPC
Codes via Linear Programming

Jon Feldman David Karger
jonfeld@theory.lcs.mit.edu karger@theory.lcs.mit.edu
MIT LCS MIT LCS

Martin Wainwright
martinw@eecs.berkeley.edu
UC Berkeley

Binary Error-Correcting Code

Encoder

Information word code word

L Y
010011 ——*1 110011101001
[=F Yl =n

decoded info decoded code word corrupt code word

L y y
010011 110011101001 110010101011

z| =k yl=n gl =n

Decoder

e Binary Symmetric Channel (BSC): each bit flipped
Independently with probability p (small constant).

J. Feldman, Decoding Turbo Codes and LDPC Codes via Linear Programming — p.2/22

Turbo Codes + LDPC Codes

e Low-Density Parity-Check (LDPC) codes [Gal ’62] .

e Turbo Codes introduced [BGT ’93], unprecedented
error-correcting performance.

e Ensuing LDPC “Renaissance” [SS 94, MN 95,
Wib ’96, MMC ’98, Yed 02, ...].

e Simple encoder, “belief-propagation” decoder.

e Theoretical understanding of good performance:
- “Threshold” as n — oo [LMSS ’01, RU ’01];
- Decoder unpredictable with cycles.

e Finite-length analysis: combinatorial error

conditions known only for the binary erasure
channel [DPRTU ’02].

Our contributions

[FK, FOCS ’02] [FKW, Allerton "02] [FKW, CISS ’03]
e Poly-time decoder using LP relaxation.

e Decodes: binary linear codes © LDPC codes O
turbo codes.

e “Pseudocodewords:” exact characterization of error
patterns causing failure.
e “Fractional distance” 9:
- LP decoding corrects up to §/2 errors.
- Computable efficiently for turbo, LDPC codes.

e Error rate bounds based on high-girth graphs.

e Closely related to iterative approaches, other notions
of “pseudocodewords.”

Decoding Turbo Codes and LDPC Codes via Linear Programming — p.4/22

Outline

Error correcting codes.

Using LP relaxation for decoding.

Details of LP relaxation for binary linear codes.
Pseudocodewords.

Fractional Distance.

Girth-based bounds.

J. Feldman, Decoding Turbo Codes and LDPC Codes via Linear Programming — p.5/22

Maximum-Likelihood Decoding

e Code C' C {0,1}",

e Cost function ~;: negative log-likelihood ratio of ;.
e BSC. v, =+4+11fy; =0, ~=-11Ify,=1.

e Other channels: ~; takes on arbitrary *“soft values.”

Given: Corrupt code word 7.
Find: y € C such that) . v;y; is minimized.

e Linear Programming formulation:
- Variables y; for each code bit, 0 < ¢, < 1.
- Linear Program:

Minimize Z%yz- s.t. y € CH(C).

J. Feldman, Decoding Turbo Codes and LDPC Codes via Linear Programming — p.6/22

Linear Programming Relaxation
e Polytope P: relaxation, C' = P N {0, 1}".

e Decoder: Solve LP using simplex/ellipsoid. If
y* € {0,1}", output y*, else output “error.”

e ML certificate property: all outputs ML codewords.
e Want low word error rate (WER) := Pryoice]l ¥ # ¥ .

e Min) .viy; -y € P.
110 e No noise: y optimal.

e Nolise: perturbation of
objective function.

e Design code, relaxation
accordingly.

Decoding Turbo Codes and LDPC Codes via Linear Programming — p.7/22

Tanner Graph

e The Tanner Graph of a linear code Is a bipartite
graph modeling the parity check matrix of the code.

e “Variable nodes” vy, ..., y,.

e “Check Nodes” ¢y, ..., ¢p,.

e N(7): n’hood of check c;.

e Code words: y € {0,1}"s.t.

\V/Cj, Z Y; = 0 (mod 2)

i€EN(J)

e Codewords: 0000000, 1110000, 1011001, etc.

|P/LP Formulation of ML Decoding

e Variables { f;} for each code bit y;.

IP: f; € {0,1}. LP:0< f; <1.

e For check bit ¢;, E/; = valid configurations of N (7).

E;,={SCN(j):|S]| even}

o Variables {w, g} for each check node ¢;, S € E;.

|P: w; s € {O, 1} LP: 0 < w; g < 1.

Yo

e \ars: W10, W1{1,245} W1{12},
W1 {1,4}» W1 {15} W1 {24} W1 {25}
W1, {4,5}

|P/LP Formulation of ML Decoding
e Minimize > ., f;, subject to:

V checks 7, Z W, g =

\Y edges (27]) = G, fz — Z w; s

e Let P be the relaxed polytope.
codeC={fe{0,1}" |3 w s.t. (fw)e P}

e |P: formulation of ML decoding.
e \What do fractional solutions look like?

Fractional Solutions

e Suppose: 71 = —2.8
Yo = +0.8
3T T+

e ML codeword: [1,1,1,0,0,0,0]
e ML codeword cost; —1.

1 % e Frac. sol: f =1, , 0,0, %]-

1
2
® W1 {1,2) = W1 {14} = 35

Wo 24} = Wop =
W3 {473 = W30 =
Frac. sol cost: —1.4.

DO DO

DO | =
o

J. Feldman, Decoding Turbo Codes and LDPC Codes via Linear Programming — p.11/22

P Decoding Success Conditions

e Pr[Decoding Success | = Pr[7 Is the unique OPT].
e Assume iy = 0"

- Common asssumption for linear codes.

- OK In this case due to symmetry of polytope.

o Pr[7 is the unique OPT]
= Pr[All other solutionss have cost > 0].

Theorem [FKW, CISS ’03]: Assume the all-
zeros codeword was sent. Then, the LP de-

codes correctly iff all non-zero points in P have
positive cost.

Pseudocodewords
e Pseudocodewords are scaled points in P.

e Previous example:

f — [17 %707 %70707 %]

e Scaled to Integers:
f'=12,1,0,1,0,0,1].

e Natural combinatorial definition of pseudocodeword
(independent of LP relaxation).

Theorem [FKW, CISS '03]: LP decodes correctly
iff all pseudocodewords have cost > (.

J. Feldman, Decoding Turbo Codes and LDPC Codes via Linear Programming — p.13/22

Fractional Distance

e Classical distance:
- 0 = min Hamming dist. of codewords in C'.

e Adversarial performance bound:
- ML decoding can correct §/2 — 1 errors.

e Another way to define minimum distance:
- 0r =min ({;) dist. between two integral verts of P.

e Fractional distance:

- 0r = min (/;) dist. between an integral and a
fractional vertex of P.

- 0y = min wt. fractional vertex of P.
- Lower bound on classical distance: o < 0.

- LP Decoding can correct 6;/2 — 1 errors.

J. Feldman, Decoding Turbo Codes and LDPC Codes via Linear Programming — p.14/22

LP Decoding corrects 6;/2 — 1 errors

e Suppose fewer than d¢/2 errors occur.

e Let (f*, w*)beavertexof P, f* £ 0" =7.
Zi fz > (5f-
e Wheny = 0", v; = —1 1f ¢ flipped, +1 0.w.; So,

Z’Yz‘fz'*: Z fi — Z fi

i not fipped ¢ flipped

o Since » ff < /2 = > fI>6/2

i flipped i not flipped

o Therefore) .~ f* > 0.

Computing the Fractional Distance

e Computing o for linear/LDPC codes Is NP-hard.
e If the polytope has small size (LDPC), the fractional
distance is easily computed.

- More general problem: Given an LP, find the two
best vertices v, v'.
- Algorithm:
Find v.
Guess the facet on which v’ sits but v does not.
Set facet to equality, obtaining F’.
Minimize g() over P'.

e Good approximation to the classical distance?
e Good prediction of relative classical distance?

Decoding Turbo Codes and LDPC Codes via Linear Programming — p.16/22

Using Girth for Error Bounds

e For rate-1/2 RA (cycle) codes: If G has large girth,
neg-cost pseudocodewords (promenades) are rare.

e Erdos (or [BMMS ’02]): Hamiltonian 3-regular
graph with girth log n.

Theorem [FK, FOCS '02]: For any o > 0, as
long as p < 2~ Het(0g24)/2) \WER < n~@.

e Arbitrary G, girth g, all var. nodes have degree > d:

Theorem [FKW, CISS "03]: §; > (d — 1)19/41-1

e Can achieve §; = Q(n'¢). Stronger graph
properties (expansion?) are needed for stronger
results.

Other “pseudocodewords”

e BEC: Iterative decoding successful iff no zero-cost
“stopping sets.” [DPRTU ’02]

- In the BEC, pseudocodewords = stopping sets.
- Iterative/LP decoding: same performance in BEC.
e Tail-Biting trellisses (TBT): Iterative decoding

successful iff “dominant pseudocodeword” has
negative cost [FKMT ’98].

- TBT: need LP along lines of [FK, FOCS ’02].
- Iterative/LP decoding: same performance on TBT.
e “Min-sum” decoding successful iff no neg-cost
“deviation sets” in the computation tree [Wib *96].

- Pseudocodewords are natural “closed” analog of
deviation sets.

Decoding Turbo Codes and LDPC Codes via Linear Programming — p.18/22

Other Results

e For “high-density” binary linear codes, need
representation of P without exponential dependence
on check node degree.

- Use “parity polytope” of Yannakakis [791].

- Orig. representation: O(n + m24%).

- Using parity polytopes: O(mn + md? + nd,d,).
e New iterative methods [FKW, Allerton ’02]:

- Iterative “tree-reweighted max-product” [WJW
'02] tries to solve dual of our LP.

- Subgradient method for solving LP gives
provably convergent iterative algorithm.

e EXxperiments on performance, distance bounds.

Decoding Turbo Codes and LDPC Codes via Linear Programming — p.19/22

Performance Comparison
Random rate-1/2 (3,6) LDPC Code

! !

100 "Min-Sum Decoder (100 iterations) —=— 4
- LP Decoder —<— |
Both Error ———
o 107 |]
©
e
S 107}]
L]
T 43 L 1
S 10 _
107 ¢ __
10° | 08 4l 112 A1d 1 A6 118 A2 122 24
10~ 10- 10" 10~ 10~ 10~ 10" 10°" 10~

BSC Crossover Probability
e Length 200, left degree 3, right degree 6.

J. Feldman, Decoding Turbo Codes and LDPC Codes via Linear Programming — p.20/22

Growth of Average Fractional Distance

Rate 1/4 Gallager Ensemble Fractional Distance
10 I I I I I I I I I

Average Fractional Distance
\l

1 1 1 1 1 1 1 1 1

O 50 100 150 200 250 300 350 400 450 500
Code Length

e “Gallager” distribution, left degree 3, right degree 4.

J. Feldman, Decoding Turbo Codes and LDPC Codes via Linear Programming — p.21/22

Future Work

e New WER, fractional distance bounds:
- Lower rate turbo codes (rate-1/3 RA).

- Other LDPC codes, including
Expander codes, irregular LDPC codes, other
constructible families.

- Random LDPC, linear codes?
e ML Decoding using IP, branch-and-bound?

e Using generic “lifting” procedures to tighten
relaxation?

e Deeper connections to “sum-product”
belief-propagation?

e LP decoding of other code families, channel models?

Decoding Turbo Codes and LDPC Codes via Linear Programming — p.22/22

	Binary Error-Correcting Code
	Turbo Codes + LDPC Codes
	Our contributions
	Outline
	Maximum-Likelihood Decoding
	Linear Programming Relaxation
	Tanner Graph
	IP/LP Formulation of ML Decoding
	IP/LP Formulation of ML Decoding
	Fractional Solutions
	LP Decoding Success Conditions
	Pseudocodewords
	Fractional Distance
	LP Decoding corrects $delta _f/2-1$ errors
	Computing the Fractional Distance
	Using Girth for Error Bounds
	Other ``pseudocodewords''
	Other Results
	Performance Comparison
	Growth of Average Fractional Distance
	Future Work

