Decoding Error-Correcting Codes via Linear Programming
by
Jon Feldman

S.M. Computer Science, Massachusetts Institute of Technology, 2000
A.B. Computer Science, Dartmouth College, 1997

Submitted to the Department of Electrical Engineering and Computer
Science in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2003

(© Massachusetts Institute of Technology 2003. All rights reserved.

AUthor ..
Department of Electrical Engineering and Computer Science
June 27, 2003

Certified Dy
David R. Karger

Professor

Thesis Supervisor

Accepted by ...
Arthur C. Smith
Chairman, Department Committee on Graduate Students

Decoding Error-Correcting Codes via Linear Programming
by
Jon Feldman

Submitted to the Department of Electrical Engineering and Computer Science
on June 27, 2003, in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Abstract. Error-correcting codes are fundamental tools used to transmit digital infor-
mation over unreliable channels. Their study goes back to the work of Hamming [Ham50]
and Shannon [Sha48], who used them as the basis for the field of information theory. The
problem of decoding the original information up to the full error-correcting potential of the
system is often very complex, especially for modern codes that approach the theoretical
limits of the communication channel.

In this thesis we investigate the application of linear programming (LP) relazation to
the problem of decoding an error-correcting code. Linear programming relaxation is a
standard technique in approximation algorithms and operations research, and is central to
the study of efficient algorithms to find good (albeit suboptimal) solutions to very difficult
optimization problems. Our new “LP decoders” have tight combinatorial characterizations
of decoding success that can be used to analyze error-correcting performance. Furthermore,
LP decoders have the desirable (and rare) property that whenever they output a result,
it is guaranteed to be the optimal result: the most likely (ML) information sent over the
channel. We refer to this property as the ML certificate property.

We provide specific LP decoders for two major families of codes: turbo codes and low-
density parity-check (LDPC) codes. These codes have received a great deal of attention
recently due to their unprecedented error-correcting performance. Our decoder is particu-
larly attractive for analysis of these codes because the standard message-passing algorithms
used for decoding are often difficult to analyze.

For turbo codes, we give a relaxation very close to min-cost flow, and show that the
success of the decoder depends on the costs in a certain residual graph. For the case
of rate-1/2 repeat-accumulate codes (a certain type of turbo code), we give an inverse
polynomial upper bound on the probability of decoding failure. For LDPC codes (or any
binary linear code), we give a relaxation based on the factor graph representation of the
code. We introduce the concept of fractional distance, which is a function of the relaxation,
and show that LP decoding always corrects a number of errors up to half the fractional
distance. We show that the fractional distance is exponential in the girth of the factor
graph. Furthermore, we give an efficient algorithm to compute this fractional distance.

We provide experiments showing that the performance of our decoders are comparable
to the standard message-passing decoders. We also give new provably convergent message-
passing decoders based on linear programming duality that have the ML certificate property.

Thesis Supervisor: David R. Karger
Title: Professor

Acknowledgments

From the first time I stepped in the door of LCS, until now, as I am putting the finishing
touches on my thesis, David Karger has taught me every aspect of how to do research in the
field of theoretical computer science. Not only is his knowledge and experience a valuable
resource; his instinct and intuition is an inspiration to work with. I am forever indebted to
him for the knowledge and experience (and funding...) I have gained while at MIT.

The results in this thesis are joint work with David and also Martin Wainwright, who
has been an invaluable colleague during the past year. His knowledge in this area has been
key to the success of the research, and I thank him very much for the time he has put
into discussions, writing and research. I have also enjoyed many helpful conversations with
David Forney on this subject, and I thank him very much for his time and attention. I also
thank Ralf Koetter, Rudi Urbanke, Jonathan Yedidia, Muriel Medard, Piotr Indyk, Dan
Spielman, Madhu Sudan, Vanu Bose, Matteo Frigo and Ibrahim Abou-Faycal for helpful
conversations concerning this research.

Besides David, many other mentors and teachers have contributed to my growth as a
researcher during my time at MIT. These include Piotr Indyk, David Williamson, Madhu
Sudan, David Forney, Dan Spielman and Santosh Vempala (who is also an extremely valu-
able member of the theory volleyball team). A special thank you to David (F) and Madhu
for serving on my thesis committee along with David (K). I'd also like to thank the pro-
fessors I worked with as a teaching assistant that I have not mentioned already, including
Michel Goemans, Seth Teller, Mike Sipser, Michael Kleber, Shafi Goldwasser and Bruce
Maggs.

I spent the last two summers at Vanu, Inc., a company in Cambridge specializing in
software radio. Not only did Vanu provide me with a wonderful place to work during the
summer, but they also introduced me to the world of coding theory, the subject of this
thesis, for which I am forever grateful. Thanks go out to Vanu Bose, Andy Beard and John
Chapin for giving me this opportunity. I would also like to thank those researchers with
whom I worked closely, including Matteo Frigo, Ibrahim Abou-Faycal, Andrew Russell and
Desmund Lun. A special thanks goes out to Matteo, from whom I have learned a great deal,
and whose persistence in the effort to do things the right way has been enlightening. Finally,
a thanks to those who made the atmosphere at Vanu so enjoyable, including those I have
already mentioned, in addition to Rick, Alok, Jon S, Stan, Victor (the best acronym-scrabble
player I know), Steve, Andrew, Mary, Mike I, Jeremy, Ariel, Mike S, Jess, Elizabeth, and
others to whom I apologize for leaving out.

My summer at Tel-Aviv University was also an enriching experience that I am grateful
for having had. I thank Guy Even for his support and guidance during my time there, and
afterward; Guy is also a pleasure to work with. I also thank Guy Kortarz, Zeev Nutov and
Zvika Brakerski for working with me during my time in Israel.

I also thank CIliff Stein, Javed Aslam and Daniela Rus for teaching me computer science
at Dartmouth, strongly suggesting that I attend graduate school, and then undoubtedly
helping me to get into MIT. A special thanks to Cliff for encouraging me to write an un-
dergraduate thesis, and sponsoring me for the upcoming two years at Columbia.

My fellow MIT theory students deserve as much of the credit as anyone else for my
education. Every personality that has walked the hallways of the third floor at LCS has
in some way contributed to my experience here. The incredible intelligence of the students

here has been inspiring, and at times even intimidating, but has always been what I point
to as the single most important reason that MIT is a fabulous environment in which to do
graduate research.

Matthias Ruhl has been a great research partner during my time here, and I enjoy
working with him very much; I have learned a great deal from Matthias about how to do
work in this field, and also how to write good papers.

It is hard to determine whether I had a net gain or loss in research progress from
having known Adam Klivans. However, Adam has without a doubt been a reliable (albeit
opinionated) source of knowledge and guidance, an often times much-needed distraction,
and a good friend.

I have also gotten to know Ryan O’Donnell very well during my MIT life. It has been
especially good to have him as a friend and comrade through the sometimes hair-raising
experience of the last year of grad school.

I thank the other students and postdocs who have contributed to the environment here,
and with whom I have had many wonderful and enlightening discussions, classes, seminars,
lunches, games of anagrams and scrabble, grading sessions, Christmas parties and volleyball
matches, including Nati, Dunagan, Rudi, Maria, Adrian, Prahladh, Alantha, Matt L (both
of them), Venkat, Salil, Amit, Anna, Leo, Sofya, Yevgeniy, Lars, Kalai, Eli, Rocco, Wizong,
DLN, Peikert, Hanson, Steve, April, Brian D, Mike R, Carly, Abhi, Mohammad, Moses,
Susan, Yoav, Mihai, Adam S, and others.

I would also like to thank Be, Chuck and Joanne for making all our lives easier. The
importance of Be’s everlasting M&M jar (as well her energy and enthusiasm) cannot be
overstated. I also thank Greg and Matt for their talent in making things work.

Even though the probability that those responsible will actually read this is quite low,
I need to mention a Cambridge institution that served as my second office throughout my
studies: the 1369 Coffeehouse. Their coffee is the standard to which I hold all other coffee.
Their bagels are actually pretty good too.

Finally, I would like to thank my friends and family, who have always been the most
important part of my life, and have believed in me and supported me throughout. You
know who you are, and I love you all.

Jon Feldman
Cambridge, Massachusetts
May, 2003

I acknowledge David Karger, the Laboratory of Computer Science at MIT and the De-
partment of Electrical Engineering and Computer Science at MIT for the financial support
of this research.

Contents

Introduction
1.1 Thesis Outline
1.2 Intended Audience

Coding Theory Background
2.1 Components of an Error-Correcting Code
2.2 Evaluating an Error-Correcting Code
2.3 Decoding an Error-Correcting Code
2.3.1 Distance vs. WER oo
2.4 Channel Model
241 AWGN Channel
2.5 A Linear Likelihood Cost Function
2.6 List Decoding vs. ML Decoding
2.7 Binary Linear Codes
2.7.1 Generator Matrixo
2.7.2 Parity Check Matrix
2.7.3 Factor Graph Representation
2.7.4 Low-Density Parity-Check (LDPC) Codes

Linear Programming and Network Flow Background

3.1 Linear Programming Relaxation
3.1.1 Writing the Integer Linear Program
3.1.2 LP Relaxation
3.1.3 Integrality Gap
3.1.4 Rounding to Obtain an Integral Solution
3.1.5 Polytopes and LP Solving

3.2 Network Flow
321 Min-Cost Flow

LP Decoding of Error-Correcting Codes

4.1 An LP Relaxation of MLL Decoding

4.2 The LP Relaxation as a Decoder
4.2.1 Noise as a perturbation of the LP objective.
4.2.2 Success Conditions for LP Decoding

4.3 The Fractional Distance

13
16
17

19
19
21
22
23
23
24
25
27
27
27
28
29
30

33
33
33
34
35
35
36
36
38

4.3.1 The Max-Fractional Distance 47

4.4 Symmetric Polytopes for Binary Linear Codes 48
4.4.1 C-symmetry of a polytope 48
4.4.2 Turning Fractional Distance into Fractional Weight 49
4.4.3 Computing the Fractional Distance 50
4.4.4 All-Zeros Assumption 51

4.5 Conclusion 53

LP Decoding of Low-Density Parity-Check Codes 55

5.1 An LP relaxation on the Factor Graph Y
5.1.1 The Polytope Q 57
5.1.2 Fractional Solutions to the Polytope @ 59
5.1.3 Polytope Representation 60
5.1.4 The properness of the polytope 61
5.1.5 The C-symmetry of the polytope 62

5.2 Pseudocodewords 63
5.2.1 Definitions 63
5.2.2 Pseudocodeword Graphs 65

5.3 Fractional Distance L 67
5.3.1 Computing the Fractional Distance 68
5.3.2 Experiments 68
5.3.3 A Lower Bound Using the Girth 70

5.4 Tighter relaxations Lo 75
5.4.1 Redundant Parity Checks 75
5.4.2 Lift and Projecto 76
5.4.3 ML Decoding 79

5.5 High-Density Code Polytope 79
5.5.1 Definitionso oo 79

5.6 The Parity Polytope 82

LP Decoding of Turbo Codes 85

6.1 TrellissBased Codes 86
6.1.1 Finite State Machine Codes and the Trellis 86
6.1.2 Convolutional Codes 89
6.1.3 Tailbitingo 91
6.1.4 LP Formulation of trellis decoding 93

6.2 A Linear Program for Turbo Codes 95
6.2.1 Turbo Codes 96
6.2.2 TCLP: Turbo-Code Linear Program 97
6.2.3 A Note on Turbo Codes as LDPC Codes. 98

6.3 Repeat-Accumulate Codes 99
6.3.1 Definitions and Notation 100
6.3.2 RALP: Repeat-Accumulate Linear Program. 102
6.3.3 An Error Bound for RA(2) Codes 103
6.3.4 Proof of Theorem 6.2 109

6.3.5 Combinatorial Characterization for RA(R) Codes 116

7 Comparison with Message-Passing Algorithms 119
7.1 Message-Passing Decoders for LDPC Codes 121
7.1.1 Min-Sum Decodingo 121
7.1.2 Sum-Product (Belief Propagation) 122
7.2 Message-Passing Decoders for Turbo Codes 123
7.3 Success Conditions for Message-Passing Decoders and their Relation
to LP Decoding 125
7.3.1 Tailbiting Trellises 125
7.3.2 The Binary Erasure Channel 126
733 CycleCodes 127
7.3.4 Min-Sum Decoding of LDPC Codes 128
7.3.5 Tree-Reweighted Max-Product 129
7.4 Experimental Performance Comparison 130
7.4.1 Repeat-Accumulate Codes 130
742 LDPC Codes 130
8 New Message-Passing Algorithms Using LP Duality 133
8.1 Rate-1/2 Repeat-Accumulate Codes 134
8.1.1 Lagrangian Dual 134
8.1.2 TIterative Subgradient Decoding 135
8.1.3 Iterative TRMP Decoding 136
8.2 Low-Density Parity-Check Codes 137
8.2.1 The Dual of O for LDPC Codes 137
8.2.2 Cost-Balanced Message-Passing Algorithms 138
8.2.3 ML Certificate Stopping Condition 138
8.2.4 Lagrangian Dual 139
8.2.5 The Subgradient Algorithm 141
8.2.6 Another Message-Passing ML Certificate 142
9 Conclusions and Future Work 143
9.1 Turbo Codes. 143
9.2 Low-Density Parity-Check Codes 144
9.3 Message-Passing Algorithms 145
9.4 Higher-Order Relaxations 145
9.5 More Codes, Alphabets and Channels 146
9.6 A Final Remark 146

10

List of Figures

2-2

3-1
3-2
3-3

4-1

5-1

6-10
6-11
6-12

7-2

The high-level model of an error-correcting code
A factor graph for the (7,4) Hamming Code

A network flow problem example
A min-cost flow problem example
A flow and its residual graph L.

Decoding with linear programming (LP) relaxation

A fractional solution to the LP for a factor graph of the (7,4,3) Ham-
ming code
The equivalence of the polytopes 2; and Qj in three dimensions . . .
A pseudocodeword graph for the (7,4,3) Hamming Code
Another pseudocodeword graph for the (7,4,3) Hamming Code
The average fractional distance of a random LDPC code
The classical vs. fractional distance of the “normal realizations” of the
Reed-Muller(n — 1, n) codes
The WER vs. Fractional Distance of a Random LDPC Code.

Performance gain from redundant parity checks
Performance gain from using lift-and-project

A state transition table for a rate-1/2 convolutional encoder
A trellis for a rate-1/2 FSM code L.
An example of the actions of a convolutional encoder over time
A terminated trellis for a rate-1/2 convolutional encoder
A trellis for a rate-1/2 convolutional encoder
A circuit diagram for a classic rate-1/3 Turbo code
A state transition table for an accumulator.
The trellis for an accumulator
The auxiliary graph ©.
The residual graph T7.o oo
An example of a cycle in the residual graph T%.
A promenade in © and its corresponding circulation in Ty oo

A stopping set in the BEC L.
A WER comparison between LP decoding and min-sum decoding,
block length 200

7-3
7-4

7-5

WER plot for rate-1/2 repeat-accumulate codes 131
A WER comparison between LP decoding, min-sum decoding and sum-

product decoding, block length 200 132
A WER comparison between ML decoding, LP decoding, min-sum
decoding and sum-product decoding, block length 60 132

12

Chapter 1

Introduction

Error-correcting codes are the basic tools used to transmit digital information over
an unreliable communication channel. The channel can take on a variety of different
forms. For example, if you are sending voice information over a cellular phone, the
channel is the air; this channel is unreliable because the transmission path varies, and
there is interference from other users.

A common abstraction of channel noise works as follows. We first assume that
the information is a block of % bits (a block of k 0s and 1s). When the sending party
transmits the bits over the channel, some of the bits are flipped — some of the 0s
are turned into 1s, and vice-versa. The receiving party must then try to recover the
original information from this corrupt block of bits.

In order to counter the effect of the “noise” in the channel, we send more infor-
mation. For example, we can use a repetition code: for each bit we want to send, we
send it many times, say five times. This longer block of bits we send is referred to
as the codeword. The receiving party then uses the following process to recover the
original information: for every group of five bits received, if there are more 0s than 1s,
assume a 0 was transmitted, otherwise assume a 1 is transmitted. Using this scheme,
as long as no more than two out of every group of five bits are flipped, the original
information is recovered.

The study of error-correcting codes began with the work of Hamming [Ham50]
and Shannon [Sha48], and is central to the field of information theory. Volumes of
research have been devoted to the subject, and many books have written [MS81,
Bla83, Wic95, v1.99]. We give more background in coding theory in Section 2.1.

This thesis is a study of a particular approach to the problem of decoding an
error-correcting code under a probabilistic model of channel noise. (Decoding is the
process used on the receiving end to recover the original information.) Our approach is
based on linear programming relazation, a technique often used in computer science
and combinatorial optimization in the study of approximation algorithms for very
difficult optimization problems. We introduce the “LP decoder,” study its error-
correcting performance, and compare it to other decoders used in practice.

Linear Programming Relaxation. Linear programming is the problem of solv-
ing a system of linear inequalities under a linear objective function [BT97]. While
many useful optimization problems can be solved using linear programming, there

13

are many that cannot; one problem is that the optimum solution to the system of
inequalities may contain real values, whereas the variables may only be meaningful as
integers. (For example, a variable could represent the number of seats to build on an
airplane.) If we add to the LP the restriction that all variables must be integers, we
obtain an integer linear programming (ILP) problem. Unfortunately, integer linear
programming is NP-hard in general, whereas linear programs (LPs) can be solved
efficiently.

A natural strategy for finding a good solution to an ILP is to remove the integer
constraints, solve the resulting LP, and somehow massage the solution into one that is
meaningful. For example, in many problems, if we simply round each value to an inte-
ger, we obtain a decent solution to the ILP problem we wish to solve. This technique
is referred to as linear programming relaxation. Some of the most successful approxi-
mation algorithms to NP-hard optimization problems use this technique [Hoc95].

An LP Relaxation of the Maximum-Likelihood Decoding Problem. The
problem of maximum-likelihood (ML) decoding is to find the codeword that maxi-
mizes the likelihood of what was received from the channel, given that that particular
codeword was sent. This codeword is then translated back into the original informa-
tion. For many common channel noise models, the likelihood of a particular codeword
may be expressed as a linear cost function over variables representing code bits. In
this thesis we give integer linear programming (ILP) formulations of the ML decod-
ing problem for large families of codes, using this likelihood cost function as the ILP
objective function.

We focus our attention on the modern families of turbo codes and low-density
parity-check (LDPC) codes. We give generic ILPs that can be used for any code
within these families. When we relax the ILP, we obtain a solvable LP. However, in
the ILP, each code bit is constrained to be either 0 or 1, whereas in the LP, the code
bits may take on values between 0 and 1.

Despite this difficulty, the relaxed LP still has some useful properties. In the ILP,
the solution space is exactly the set of codewords that could have been sent over the
channel. In the LP, the solution space extends to real values; however, it is still the
case that every integral setting of the variables corresponds to a codeword, and that
every codeword is a feasible solution. Given these properties, suppose the optimal
solution to the LP sets every bit to an integer value (either 0 or 1). Then, this must
be a codeword; furthermore, this solution has a better objective value than all other
codewords, since they are all feasible LLP solutions. Therefore, in this case the decoder
has found the ML codeword.

The “LP decoder” proceeds as follows. Solve the LP relaxation. If the solution is
integral, output it as the ML codeword. If the solution is fractional, output “error.”
Note that whenever the decoder outputs a codeword, it is guaranteed to be the ML
codeword. We refer to this property as the ML certificate property. This procedure
may surprise those that are familiar with LP relaxation, since usually the interesting
case is when the solution is fractional. However, in the decoding application, we are
not concerned with finding approximately good solutions, we want to find the right
solution: the codeword that was transmitted. Therefore, we design our relaxation to

14

increase the probability, over the noise in the channel, that the LP decoder succeeds
(i.e., that the transmitted codeword is the optimal LP solution).

The relaxations we give in this thesis all have the property that when there is
no noise in the channel, the transmitted codeword is indeed the LP solution. Addi-
tionally, we show that for many codes and channels, this remains true as long as not
too much noise is introduced. More precisely, we give turbo codes with the property
that as long as the noise in the channel is under a certain constant threshold, the
probability that the LP decoder fails decreases as 1/n®, where n is the length of the
codeword and « is a constant. We also show that there exist LDPC codes where our
LP decoder succeeds as long as no more than n'~¢ bits are flipped by the channel,
where 0 < € < 1 is a constant.

Turbo Codes and Low-Density Parity-Check Codes. The work in this thesis
is focused on the application of the LP decoder to decoding the families of turbo
codes [BGTI3] and low-density parity-check codes [Gal62]. These two families have
received a lot of attention in the past ten years due to their excellent performance.
Although much is understood about these codes, their excellent performance has yet
to be fully explained. One of the main difficulties in analyzing these codes lies in
the “message-passing” decoders most often used for these families; the success condi-
tions of these decoders are very difficult to characterize for many codes. Remarkable
progress has been made, however, particularly in the case of LDPC codes where the
length of the codewords is allowed to be arbitrarily large [RU01, LMSS98]|. We give
more detail on previous work in these areas within the appropriate chapters of the
thesis.

We introduce two major types of LP relaxations for decoding, one for turbo codes,
and one for LDPC codes. The turbo code LP is very similar to the LP for the min-
cost network flow problem [AMO93]. In the min-cost network flow problem, we are
given a directed network, and we must set “flow rates” to the edges in order to meet
a resource demand at a destination node. The goal is to minimize a cost function
while fulfilling the demand and obeying the capacities of the network. Turbo codes
are made up of a set of simpler “trellis-based” codes, where the trellis is a directed
graph modeling the code. We formulate the LP for a single trellis-based code as a
min-cost flow problem, using the trellis as the directed flow network. We then extend
this formulation to any turbo code by applying constraints between the LP variables
used in each component code. For LDPC codes, our relaxation is based on the factor
graph modeling the code. The factor graph is an undirected bipartite graph, with
nodes for each code bit, and nodes representing local codeword constraints. Our LP
has a variable for each code bit node, and a set of constraints for each check node,
affecting the code bit variables for the nodes in its neighborhood.

One of the main advantages of the LP decoder is that its success conditions can
be described exactly, based on combinatorial characteristics of the code. We define
success conditions for both turbo codes and low-density parity-check codes, and use
them to derive performance bounds for LP decoding. These bounds apply to codes
of any length, whereas most other bounds that we are aware of for the conventional
“message-passing” algorithms suffer from the limitation that the code length must be

15

very large for the bound to apply (e.g., [RU01, LMSS98]).

Specifically, we define precisely the set of pseudocodewords, a superset of the code-
words, with the property that the LP always finds the pseudocodeword that optimizes
the likelihood objective function. This definition unifies many notions of “pseudocode-
words” known for specific channels [DPR*02], codes [FKMTO01] and decoders [Wib96]
under a single definition. Our pseudocodewords extend beyond these cases, and are
well defined for any turbo code or LDPC code, under any binary-input memoryless
channel. (A channel is memoryless if the noise affects each bit independently.)

New Message-Passing Decoders. The message-passing decoders often used in
turbo codes and LDPC codes show superb performance in practice. However, in
many cases these algorithms have no guarantee of convergence; furthermore, even if
the algorithm does converge, the point of convergence is not always well understood.

In this thesis we use the dual of our linear programs to show that if a message-
passing decoder follows certain restrictions, then it gains the ML certificate property,
since its solution corresponds to a dual optimum. Furthermore, we use a Lagrangian
dual form of our LP to derive specific message update rules. Using the subgradi-
ent algorithm, we show that our new message-passing decoders converge to the LP
optimum.

1.1 Thesis Outline

e In Chapter 2 we give definitions and terminology necessary for any work in
coding theory. We discuss how to evaluate the quality of an error-correcting
code and decoder. We also establish some coding notation used throughout the
thesis. We review the family of binary linear codes and low-density parity-check
(LDPC) codes. We also derive a general linear cost function for use with LPs
over any binary-input memoryless channel.

e In Chapter 3 we give a basic tutorial on the LP relaxation technique, as well
as some background on the min-cost flow problem.

e In Chapter 4, we introduce LP decoding as a generic method; we first de-
scribe the LP relaxation abstractly, as it applies to any binary code. We then
describe how to turn this relaxation into a decoder, and how to analyze its per-
formance. The fractional distance of an LP relaxation for decoding is defined
in this chapter. Maximum-likelihood decoders correct a number of errors up
to half the classical distance of the code; we show that LP decoders correct a
number of errors up to half the fractional distance. We discuss the application
of LP decoding to binary linear codes, and establish symmetry conditions on
the relaxation. We show that if a relaxation meets these conditions, then some
simplifying assumptions can be made in the analysis, and the fractional distance
can be computed efficiently.

e We discuss general binary linear codes and low-density parity-check (LDPC)
codes in Chapter 5. We define a linear programming relaxation using the factor

16

graph representation of the code. We define the notion of a pseudocodeword,
which is a generalization of a codeword; the LP decoder finds the minimum-
cost pseudocodeword. We show that there exist codes with a polynomial lower
bound on the fractional distance. In this chapter we also discuss the idea of
using various techniques to tighten the LP relaxation.

In Chapter 6, we define the family of turbo codes, and give the LP decoder for
this family. We begin by defining trellis-based codes and convolutional codes,
which form the basic building blocks for turbo codes; the LP for these codes
is a simple min-cost flow LP on a directed graph. We then give a general
LP relaxation for any turbo code. We describe in detail the special case of
Repeat-Accumulate codes, a particularly simple (yet still powerful) family of
turbo codes, and prove bounds on the performance of LP decoding on these
codes.

In Chapter 7, we compare the LP decoder with some standard message-passing
decoders used in practice. We begin by showing that the success conditions for
LP decoding are identical to standard message-passing decoders for several spe-
cific codes and channels. These results unify many known notions of a “pseu-
docodeword” [DPR*02, FKMTO01, Wib96] under a single definition, and show
that LP decoders and message-passing decoders have identical performance in
many cases. This chapter also includes some experimental work comparing the
performance of LP decoding with two standard message-passing decoders: the
min-sum algorithm and the sum-product (belief propagation) algorithm.

Finally, in Chapter 8 we give new message-passing algorithms for both turbo
codes and LDPC codes. We use the duals of our linear programs from previ-
ous chapters in order to derive message update rules. We use the subgradient
algorithm to derive new message-passing decoders that provably converge to
the LP optimum. We also show that if any message-passing decoder follows
certain restrictions, then it gains the ML certificate property, since its solution
corresponds to a dual LP optimum.

We conclude our work in Chapter 9, and survey some of the major open
questions in LP decoding of turbo codes and LPDC codes. We also suggest a
number of general ideas for future research in this area.

1.2 Intended Audience

This thesis represents the application of a technique from theoretical computer science
and operations research to a problem in communication and information theory. It
is intended for any researcher within these broad areas. Consequently, we include a
background chapter (2) on coding theory intended for computer scientists, as well as
a background chapter (3) on linear programming intended for coding theorists. The
reader should be aware that since the author is from a computer science background,
the language is inevitably tilted toward the computer science audience.

17

18

Chapter 2

Coding Theory Background

In this chapter we review the basics of coding theory. We discuss the various compo-
nents and parameters that go into the design of an error-correcting code, as well as
the different measures of performance that are used to evaluate a code. We review
the high-level abstraction of a binary-input memoryless communication channel, and
show some common examples. We formulate the problem of maximume-likelihood
(ML) decoding, and show that for any binary-input memoryless channel, ML decod-
ing can be expressed as minimizing a linear cost function on the code bits

Those readers who are well-versed in the basics of coding theory may skip this
section, although we do establish notation here that is used throughout the thesis,
and we state some general assumptions.

2.1 Components of an Error-Correcting Code

The repetition code example we gave in the introduction illustrates every basic com-
ponent of an error-correcting code. Below we list these components to familiarize the
reader with the terminology used throughout this thesis, and in all the coding theory
literature. Figure 2-1 illustrates the high-level model of an error-correcting code.

e The information word is a block of symbols that the sending party wishes
to transmit. This information could be a sound, a picture of Mars, or some
data on a disk. For our purposes, the information word z € {0,1}* is simply
an arbitrary binary word of k bits.

There are some error-correcting codes built on information streams of arbitrary
(infinite) length, but we will restrict ourselves to block codes in this thesis
(codes defined for some finite length n). With a block code, in order to send
more than k bits of information, multiple blocks are transmitted. It is assumed
that each block is independent with respect to information content, and the
effect of noise; therefore, we concentrate on sending a single block over the
channel. We also note that some codes use non-binary alphabets; i.e., the
symbols of the information word are not just bits, but are symbols from a
larger alphabet. We restrict ourselves to binary codes in this thesis; those
built on the alphabet {0, 1}.

19

information word codeword

x y = enc(x)
010011 110011101001
Encoder
origina word? corrupt codeword
x' = dec(g) 0]

010011 110010101011

Decoder

Figure 2-1: The high-level model of an error-correcting code. An information word z of
length & is encoded into a longer codeword y = enc(x) of length n > k. This codeword
y is sent over a noisy channel, and a corrupt word ¢ is received at the other end. This
corrupt word is then decoded to a word z’ = dec(7), which hopefully is equal to the original
information x.

e The encoder is the process the sending party uses to build redundancy into
the information word. The encoder is simply a function enc : {0,1}F — {0,1}"
that given an information word, outputs a longer binary word y of length n > k.
In our repetition code example, the encoder is the function that repeats every
bit five times, and so n = 5k. For example, if x = 101, then our encoder would
output y = enc(101) = 111110000011111.

e The codeword is the binary word output by the encoder. This is the word that
is transmitted over the channel.

e The code C is the set of codewords that could possibly be transmitted, i.e., they

are the binary words that are encodings of some information word. Formally,

={y : y = enc(z),z € {0,1}*}. In our repetition code example, the code

is exactly the set of binary words of length n where the first five bits are the
same, and the next five bits are the same, etc.

e The (block) length of the code is equal to n, the length of the codewords
output by the encoder. The parameter k, the length of the information word,
is often referred to as the dimension of the code. This term is used for linear
codes, when the code is a vector space (we detail linear codes in Section 2.7).

e The rate r of the code is the ratio between the dimension and the length. More
precisely, 7 = k/n. The rate of our example code is 1/5. It is desirable to have
a high rate, since then information can be transmitted more efficiently. One

20

of the main goals in the study of error-correcting codes is to transmit reliably
using a code of high rate (close to 1).

e The channel is the model of the communication medium over which the trans-
mission is sent. We have already described a channel that flips bits of the
codeword arbitrarily. Another common model is called the binary symmet-
ric channel (BSC), where each bit is flipped independently with some fixed
crossover probability p. There are many other models, some of which we
will discuss in later parts of this chapter.

e The received word y is the output of the channel, the corrupted form of
the codeword y. Each symbol ¢; of the received word is drawn from some
alphabet 3. In the BSC, ¥ = {0, 1}. In the additive white Gaussian noise
(AWGN) channel (the details of which we review in Section 2.4.1), each symbol
of the received word is a real number, so ¥ = R.

e The decoder is the algorithm that receiving party uses to recover the original
information from the received word g. In the repetition code example, the
decoder is the following algorithm: (1) examine every five bits of the codeword;
(2) for each set of five bits, if there are more Os than 1s, output a 0, otherwise
output a 1. We can think of the decoder as a function dec : ¥" — {0, 1}*, which
takes as input the corrupt code word ¢ and outputs a decoded information word

.

Usually the difficulty of the decoding process is not in translating from code-
words back into information words, but rather in finding a codeword that was
likely sent, given the received word g. In most codes used in practice, and in all
the codes of this thesis, given a codeword y € C, finding the information word x
such that enc(z) = y is straightforward. Thus, in the discussion we will simply
talk about a decoder finding a codeword, rather than an information word.

2.2 Evaluating an Error-Correcting Code

What do we want out of an error-correcting code? This depends highly on the ap-
plication. The various parameters listed above play against each other in complex
ways. We measure the efficiency of the code using the rate. We need to understand
the computational complexity of the both the encoder and decoder, since this can
play a role in the feasibility of a system. The latency of transmission is affected by
both the encoder and decoder complexity, as well as the code length.

Finally, we need a measure of the error-correcting power of the code. Listed below
are three possible such measures.

e A decoding success is when the decoder recovers the original transmitted code-
word. A decoding failure is when the decoder outputs the incorrect codeword
(even if only one bit is incorrect). The word error rate (WER) is the prob-
ability, taken over the random noise in the channel, of decoding failure. To

21

measure this quantity, we need to make an assumption about the distribution
of information words. Since the model is a general one, and all words in {0, 1}*
are possible, we will assume throughout the thesis that they are all equally
likely.

e Let A(y,y’) denote the Hamming distance between binary vectors y and 3’. The
minimum distance d of a code is a the minimum Hamming distance between
any pair of distinct code words in the code:

d= min Ay,y

vy’ €C, y'#y (:9)
This is also referred to as simply the distance of the code. We would like the
distance to be large, so that many bits need to be flipped by the channel before
a codeword starts to “look” like a different code word. In our repetition code
example, the distance of the code is 5.

The art and science of coding theory is to discover the best possible system within
a given range of parameters. For example, suppose we were designing a scheme for
storing bits on a hard drive. We know that when we read each bit, there is an
independent 1/100 chance of an error. Furthermore, suppose we are required to have
a system where for every block of 128 bits of information read from the drive, there
is only a 107® (one in a million) chance of reading that block incorrectly. However,
we would like to reduce the amount of extra space taken up on the hard disk by our
code, and we are limited to a decoder whose running time is linear in the number
of bits read (otherwise reading from your hard drive would be quite inefficient). In
coding theory language, this problem is the following: Given a BSC with crossover
probability 1/100, what is the highest rate code of dimension 128 with a decoder that
runs in linear time and achieves a WER of 10767

2.3 Decoding an Error-Correcting Code

The design of a decoding algorithm is perhaps the most difficult task in the design
of an error-correcting code, especially those that approach the theoretical limits of
error-correcting capability. Given a particular code C, a natural question to ask is:
what is the best possible decoder, if our goal is to minimize WER? The maxzimum-
a-posteriori (MAP) codeword y* is the one that was most likely transmitted, given
the received vector y:

y* =argmax Pr [y transmitted | § received |
yec noise

Using Bayes’ rule, and the assumption that all information words have equal proba-
bility, the MAP codeword is the same codeword y that maximizes the probability g
was received, given that y was sent:

y* =argmax Pr [y received | y transmitted | (2.1)
yec noise

22

This is referred to as the maximume-likelihood (ML) codeword.

Consider the binary symmetric channel, with crossover probability p < 1/2. Given
a particular transmitted codeword y, the probability that a word ¢ is received on the
other end of the channel is a strictly decreasing function of the Hamming distance
between 3 and y. Thus, under the BSC, the ML codeword y* is the codeword that is
closest in Hamming distance to the received codeword y:

y* =argmin Ay, 79) (Under the BSC)
yeC
Note that the ML codeword is not necessarily the original transmitted codeword, so
even the optimal decoding algorithm can suffer decoding failure.

An ML decoder is one that always finds the ML codeword. This is also often
called optimal decoding. For many codes, there is no known polynomial-time ML
decoding algorithm. In fact, the problem is NP-hard in general, and remains NP-
hard for many families of codes used in practice [Mac03]. Therefore in most cases,
one would settle for a sub-optimal (but efficient) decoder. The goal then is to show
that the WER of that decoder is still low.

A bounded-distance decoder is one that always succeeds when fewer than [d/2]
errors occur in the BSC, where d is the distance of the code. It is simple to see that
ML decoders are also bounded-distance decoders: If fewer than [d/2] errors occur,
then the Hamming distance between the transmitted word y and the received word ¥y
is less than [d/2]. If there were some other codeword 3’ at distance less than [d/2]
from ¢, then y and v’ would have distance less than d from each other, a contradiction
of the fact that the code has minimum distance d.

2.3.1 Distance vs. WER

A lot of work in the field of coding theory focuses on code constructions that maximize
the distance d. The distance of a code is certainly an important, fundamental and
mathematically beautiful property of a code, and finding codes with good distance
has applications outside of digital communication. However, the minimum distance
is a “worst-case” measure of decoding performance, especially for ML decoding.

If only slightly more than d/2 errors occur in the channel, it still may be extremely
unlikely that decoding fails. To analyze this effect, more of the distance spectrum
of the code must be considered, not just the minimum. Thus, if our goal is good
performance, then considering the distance as the only measure of quality ignores
other important attributes of the code and the decoder. The WER provides a more
practical measure of quality, and applies to any noise model, not just the BSC.

2.4 Channel Model

In this thesis we assume a binary-input memoryless symmetric channel. The channel
being “binary-input” means that the data is transmitted as discrete symbols from
{0,1}. The channel being “memoryless” means that each symbol is affected by the

23

noise in the channel independently. Finally, “symmetric” refers to the fact that the
noise affects Os and 1s in the same way.

Formally, let 3 be the space of possible received symbols 7;. For example, in the
BSC, ¥ = {0,1}. In other channels, we may have ¥ = R. We use the notation
Pr[¢ | y | to mean the probability, over the random noise in the channel, that § was
received, given that y was sent. If X is a continuous space, then Pr[¢ | y | denotes
the probability density function at the point .

Symmetry tells us that ¥ can be partitioned into pairs (a,a’) such that

Pr|
r

Pr|

aly=0] = Pif
=al|ly,=1] = Prf

a' |y;=1], and (2.2)

Yi Yi
Yi gi=a |yi=0]

Clearly, the BSC is symmetric (as its name would suggest). Note also that a = a’
is a possibility. For example, the Binary Erasure Channel (BEC) is where each
bit is erased with some fixed probability p. In the BEC, we have ¥ = {0,1,x}. If a 0
is transmitted, then a 0 is received with probability 1 — p, and an x is received with
probability p. If a 1 is transmitted, then a 1 is received with probability 1 — p, and a
x is received with probability p. Thus, in the definition of a symmetric channel, our
partitioned pairs are (0,1) and (x, x).

2.4.1 AWGN Channel

Everybody believes in the exponential law of errors:

the experimenters, because they think it can be proved by mathematics;

and the mathematicians, because they believe it has been established by observation.
-Whittaker and Robinson

Another common channel is the Additive White Gaussian Noise (AWGN) channel.
In this channel, a Gaussian is added to each bit, and a real number is received. In
this case it is convenient to use {—1,+1} to represent a bit, rather than {0,1}. We
use the common convention and map 0 — +1 and 1 — —1.

Formally, if y; is transmitted where y; € {+1, —1}, then

Ui =i + %

where z; € N(0,0?) is a Gaussian random variable with 0 mean and variance 0. The
Gaussian added to each bit is independent, so this channel is memoryless. Note that
in this case ¥ = R.

To evaluate the likelihood of a a received symbol 7;, we use the probability density

function given by
. 1 (5 — yi)?
Prlg; |y] = —_ 2.4
[Ji | yi] 27m2€9€29(5 (2.4)

To show that this channel is symmetric, we partition ¥ = R into the pairs (a, —a) for
all non-negative a € R. We must show the relationships in Equation (2.2) and (2.3).

24

Since o and 7 are constant, we just need to show that

(a) = (+1))* = ((—a) —(-1))? and
((a) = (-1)* = ((—a) = (+1))?,

for all a € R. This is clear.

2.5 A Linear Likelihood Cost Function

In this section we define a linear cost function to measure the likelihood of a received
word gy, given that a particular codeword y is sent. We need the function to be
linear in the variables y, which will take on values between zero and one in our LP
relaxations.

Given a particular received word ¢, we define the log-likelihood ratio v; of a code

bit y; to be:

v =1In (W) (2.5)

Prlg; |y = 1]

The sign of the log-likelihood ratio 7; determines whether transmitted bit y; is more
likely to be a 0 or a 1. If y; is more likely to be a 1 then 7; will be negative; if y; is
more likely to be a 0 then ~; will be positive. We will usually refer to 7; as the cost
of code bit y;, where ~; represents the cost incurred by setting a particular bit y; to
1. We refer to) . ~v,y; as the cost of a particular codeword y.

Theorem 2.1 For any binary-input memoryless channel, the codeword of minimum,
cost 1s the mazimum-likelihood codeword.

Proof: In the following, every probability is taken over the noise in the channel. The
ML codeword y* is defined (equation 2.1) as

*

y* = argmax Pr[g|y].
yeC

By the fact that the channel is memoryless, we have

y* = argmax (HPr[gz|yZ]>
i=1

yeC

= argmin —In || Prly; | v
1 (1} [|])

= argmin (—Zln Pr[g; | y,]) . (2.6)
yeC i—1

If we add the constant

ZlnPr[gji | 0]
i=1

25

y*© = argmin
yeC

(
- arger?in <Z n (%)>

= argmin
yeC

Rescaling for Particular Channel Models. We will frequently exploit the fact
that the cost vector v can be uniformly rescaled without affecting the solution of the
ML problem. For example, given a binary symmetric channel (BSC) with crossover
probability p, we have v; = In[(1—p)/p] if the received bit g; = 0, and 7; = In[p/(1—p)]
if ; = 1. Rescaling by —In[p/(1 — p)] allows us to assume that v, = —1if §; = 1, and
v =+1if g, = 0.

This rescaling makes sense in the context of the BSC. We said before that the ML
decoding problem in the BSC is equivalent to finding the codeword that minimizes
the Hamming distance to the received word. The rescaled cost function ~ described
above provides a proof of this fact, since the cost of a codeword under this function
is equal to the Hamming distance to the received word, normalized by the distance of
the all-zeros vector to the received word. In other words, for a codeword y, we have

which, along with Theorem 2.1 shows y* = arg min,c.A(y, 7), since A(0",7) is con-
stant.

The AWGN also simplifies when we rescale. Recall that in the AWGN, we map
the bit 0 — +1, and the bit 1 — —1. So, we have

(Pr[yi =+
v = In A

(using (2.4))

Thus, if we rescale by the constant 02/2, we may assume ; = ;.

26

2.6 List Decoding vs. ML Decoding

Recently, there has been a lot of attention on the method of list decoding [Gur01].
With list decoding (usually defined for channels where ¥ is some finite alphabet), the
decoder is allowed to output not just one codeword, but many. It is then up to a
different external process to determine the proper codeword. The decoder is said to
be successful if the transmitted codeword is in the output list. A parameter of a list
decoder is the error tolerance. A list decoder with error tolerance e outputs all the
codewords within Hamming distance e from the received word. It is assumed that the
error tolerance e is set such that the output list size is always polynomial in the block
length n. Clearly if e is set to [d/2] — 1, then the list decoder is a minimum-distance
decoder. Thus list decoding goes beyond minimum-distance decoding by allowing
many choices for the candidate information word.

Strictly speaking, ML decoding and list decoding are incomparable. In the case
of fewer than e errors in the channel, list decoding can give the ML codeword by
outputting the most likely codeword in its output list. Thus in this case, list decoding
is more powerful. However, if there are more than e errors in the channel, and the
transmitted codeword is still the ML codeword, the ML decoder will output the
transmitted codeword, whereas list decoding may not.

2.7 Binary Linear Codes

A binary code C of length n is a binary linear code if C is a linear subspace of the
vector space {0,1}". Recall that a linear subspace of a vector space is any subspace
closed under addition and scalar multiplication. So a binary code C is linear if

0" e,
and for all pairs of codewords y,y" € C,

(y+y)ecC,

where
W+y) =@+ yLy2+ s Yn+).
Note that addition is performed mod 2.

2.7.1 Generator Matrix

A linear subspace of a vector space can be specified by the basis of the subspace. For
our purposes, the basis is linearly independent set of codewords B = {y!,..., y*},
each of length n, such that every codeword in C can be expressed as the sum of a

27

subset of codewords in that set. In other words,

C:{Zyi:B’gB}.

i€B’

Note that defined in this way, there are exactly 2% codewords, each of length n,
which is exactly what we would expect. Thus the dimension of the subspace is equal
to the dimension of the code (length of the information word).

The generator matriz G of a binary linear code is a k X n binary matrix whose rows
are the basis vectors {y',...,4*}. The encoder for a binary code simply multiplies
the information word by the generator matrix G. In other words,

enc(x) = zG

and we have
C={2G:2€{0,1}"}.

Thus for an arbitrary binary linear code, the encoder takes O(nk) time to compute
the codeword.

Example. As an example of a linear code, we will construct the (7,4) Hamming
code. This code has k =4, n = 7, and therefore the rate is equal to r = 4/7. We will
define the code by the following basis B:

B =1{(1,1,1,0,0,0,0),(1,0,0,0,1,0,1),(0,0,1,0,0,1,1),(1,0,1,1,0,0,1)}

From the basis, we form the generator matrix G:

1110000
|t 000101
9=loo1o001 1

1011001

Now suppose we would like to encode the information word x = (1,0,1,1). Then we
apply the encoder to obtain the codeword:

1110000
yzenc(x)zx@z(lOll)3828321:(0111010)
1011001

2.7.2 Parity Check Matrix

Denote the inner product of binary vectors y and y’ as (y,vy') = > ., y;y; mod 2.
Every linear subspace of dimension k has an orthogonal linear subspace C* of dimen-

28

sion n— k such that for all y € C and 3y’ € C*t, we have (y, ') = 0. This new subspace
C* can be though of as a new code, and is often called the dual code to C. This dual
code also has a basis, and so we can write down a generator matrix H for this code
as well.
Since we have (y,4') = 0 for all y € C and 3 € C*, it must be the case that for
all y € C, we have
y'"H =0,

and so we have

G'H = 0.

In fact the converse is also true; i.e., for all y € {0,1}" such that y?H = 0, we have
y € C. Thus H is another way to specify the original code C. The matrix H is called
the parity check matriz of the code C, and has the property that a word y is in the
code if and only if y is orthogonal to every row of H. The matrix H is called the
parity check matrix because every row induces a parity check on the codeword; i.e.,
the elements of the row that are equal to 1 define a subset of the code bits that must
have even parity (sum to 0, mod 2).

Example. We return to our (7,4) Hamming code, with the following parity check
matrix:

1101100
H=10 11 1 0 10
0 00 1111
Now consider the codeword y = (0,1,1,1,0,1,0) € C. We have:
. 1101 1 00
yYH=(0 1110 10) |0111010]|=0
0 0011 11

2.7.3 Factor Graph Representation

A linear code C with parity check matrix H can represented by a Tanner or fac-
tor graph G, which is defined in the following way. Let Z = {1,...,n} and J =
{1,...,m} be indices for the columns (respectively rows) of the n x m parity check
matrix of the code. With this notation, GG is a bipartite graph with independent node
sets Z and J.

We refer to the nodes in Z as variable nodes, and the nodes in 7 as check nodes.
All edges in G have one endpoint in Z and the other in 7. For all (i,7) € Z x J,
the edge (,7) is included in G if and only if H;; = 1. The neighborhood of a check
node j, denoted by N(j), is the set of variable nodes i that are incident to j in G.
Similarly, we let N (i) represent the set of check nodes incident to a particular variable
node i in G. Generally, we will use i to denote variable nodes (code bits), and j to
denote parity checks.

29

Figure 2-2: A factor graph for the (7,4) Hamming Code. The nodes {i} drawn in open
circles correspond to variable nodes, whereas nodes {j} in black squares correspond to check
nodes.

Imagine assigning to each variable node i a value in {0, 1}, representing the value
of a particular code bit. A parity check node j is “satisfied” if the collection of bits
assigned to the variable nodes in its neighborhood N(j) have even parity; i.e., if
ZieN(j) y; = 0 mod 2. The binary vector y = (yi,...,y,) forms a code word if and
only if all check nodes are satisfied. Figure 2-2 shows the factor graph associated with
the parity check matrix specified earlier for the (7,4) Hamming code. In this code, if
we set o =y3 = ys = ys = 1, and y; = y5 = y; = 0, then the neighborhood of every
check node has even parity. Therefore, this represents a code word (the same code
word as in our previous example), which we can write as 0111010.

Note that the factor graph depends on the parity check matrix of the code. Since
there are many possible parity check matrices for a given code, there are may possible
equivalent factor graphs for the code. This becomes important when we consider
decoding algorithms, many of which depend on structural properties of the factor
graph.

2.7.4 Low-Density Parity-Check (LDPC) Codes

Let C be a linear code, let H be the parity check matrix for the code, and let G be
a factor graph for the code. Let deg, denote the maximum variable (left) degree of
the factor graph; i.e., the maximum, among all nodes ¢ € Z, of the degree of i. Let
deg, denote the minimum variable degree. Let deg! and deg. denote the maximum
and minimum check (right) degree of the factor graph.

We say that C is a low-density parity-check code if both deg} and deg,” are con-
stant. In other words, a family of codes (parameterized by their length n) is considered
to be a family of LDPC codes if deg, and deg, stay constant as n grows.

30

More Information

For more information on error-correcting codes, we refer the reader to some standard
textbooks. MacWilliams and Sloane [MS81] is perhaps the most common text, and
has a mostly algebraic approach to coding theory. For a more combinatorial perspec-
tive, the textbooks of van Lint [vL99] and Blahut [Bla83] are good sources. For an
engineering approach, the reader is referred to the textbook of Wicker [Wic95]; this
is also a good source for convolutional codes and the Viterbi algorithm. A compre-
hensive reference is the Handbook of Coding Theory by Pless and Huffman [PH9S].
For Turbo codes, there is the text by Vucetic and Yuan [VY00]. For LDPC codes,
there is an excellent introductory chapter in the book by MacKay [Mac03].

31

32

Chapter 3

Linear Programming and Network
Flow Background

The principal algorithmic technique used in this thesis is linear programming (LP)
relazxation. This technique is central to the study of approximation algorithms; the
method of finding valid solutions to NP-hard optimization problems whose cost is
close to the optimum. In this chapter we give a brief introduction to the method of
LP relaxation. We also review the network flow problem, which is central to the under-
standing our turbo code relaxation. We refer the reader to various textbooks for more
background on linear programming [BT97, Sch87], approximation algorithms [Hoc95]
and network flow [AMO93].

Those readers who are familiar with LP relaxation and network flow may skip this
chapter.

3.1 Linear Programming Relaxation

As a running example of an optimization problem, we will use the VERTEX COVER
problem: given an undirected graph G = (V| F), and a cost 7; for each node i € V,
find the lowest-cost subset S C V of the nodes such that every edge in E has at least
one endpoint in S.

3.1.1 Writing the Integer Linear Program

The first step in the LP relaxation technique is to formulate the problem as an integer
linear program (ILP). An ILP consists of a set of variables, linear constraints defined
on the variables, and a linear cost function on the variables. The variables are further
constrained to be integers. Each constraint is an inequality on the LP variables, and
must be linear. Equality constraints are also allowed, as they can be simulated by
two inequalities.

For example, in the vertex cover problem, we have a variable v; for each node
1 € V. This variable indicates whether or not to include node i in the set S. Since

33

this variable is an indicator, it must be either 0 or 1, so we enforce the linear constraint
ViGV, OSUZS]_

We also need to formulate a constraint that forces at least one of the nodes incident
to each edge to be in S. The following linear constraint serves that function:

V(i,j) e E, vi+uv; >1 (3.1)

Our cost function should minimize the cost of .S, which can be expressed as), v;v;.
Overall, the ILP is the following:

minimize Z Yiv; 8.t (3.2)

Vi e V, V; € {O, 1},
V(i,j)e E, vi+v;>1

Note that every feasible solution to the ILP above represents the incidence vector
of a legal vertex cover S, where S = {i : v; = 1}. Furthermore, every vertex cover
S can be represented by an incidence vector v that is a feasible solution to these
equations. Since the cost of a cover S with incidence vector v is exactly > . v,v;,
solving the ILP in equation (3.2) solves the VERTEX COVER problem.

3.1.2 LP Relaxation

Unfortunately, integer linear programming is NP-hard. In fact, we have just proven
this, since VERTEX COVER is NP-hard [GJ79]. So, the next step is to relaz the
integer linear program into something solvable. A linear program (LP) is the same as
an ILP, but the variables are no longer constrained to be integers. Linear programs
are solvable efficiently, which we discuss at the end of the section. In our example,
when we relax the integer constraints, we now have the following linear program:

minimize Z ~iv; 8.t (3.3)

VieV, 0<uv <I1;
V(Z,]) S E, ’Ui—l—’Uj Z 1.

Many LP relaxations are of this form, where binary variables are relaxed to take
on arbitrary values between zero and one. Note that all the integral solutions to the
ILP remain feasible for the above LP, but now the feasible set includes fractional
solutions: settings of the variables to non-integral values.

A polytope is a set of points that satisfy a set of linear constraints. Every LP
has an associated polytope: the points that satisfy all of the constraints of the LP.
The vertices of a polytope are the points in the polytope that cannot be expressed
as convex combinations of other points. These are the extreme points of the feasible
solution space. The optimum point in an LP is always obtained at a vertex of the

34

polytope [Sch87]. (Note that there may be multiple LP optima; however, at least one
of these optima must be a vertex.)

3.1.3 Integrality Gap

For our minimization problem, the cost of the LP solution is certainly a lower bound
on the true optimum, since all integral solutions remain feasible for the relaxed LP.
However, the lower bound is not always tight; for example, suppose in our vertex
cover problem we have as input a cycle on three vertices, each with a cost of 1. The
optimal solution to the LP is to set every v; = 1/2, for a total cost of 3/2. However,
the minimum-cost vertex cover must contain at least two nodes, for a total cost of 2.
Thus we see that for this relaxation, the true optimum can have a cost of 4/3 times
the relaxed optimum.

This is an example of when the LP has its optimum at a fractional vertex: a vertex
whose coordinates are not all integers. This example also illustrates the integrality
gap of a relaxation, which is the ratio between the cost of the optimal integral solution
and the cost of the optimal fractional solution. It turns out that in this case, for all
graphs, the integrality gap is always at most 2. This is tight; i.e., there are graphs
that exhibit an integrality gap of 2 (actually, 2(1 — 1/n) to be precise).

We conclude that LP relaxation can sometimes be used to obtain an approximation
of the cost of an optimal solution. In the case of vertex cover, this approximation is
guaranteed to be at least half of the true optimum.

3.1.4 Rounding to Obtain an Integral Solution

Often the solution to the LP relaxation can be used to obtain (efficiently) an integral
solution to the original problem whose cost is within the integrality gap. In the
example of vertex cover, this is the case. The algorithm is the following:

e Solve the linear program in equation 3.3 to obtain the optimal vertex v. Note
that for all 7, we have 0 < v; < 1.

e For all vertices i € V', if v; > 1/2, include 7 in S. Otherwise, do not.

The LP constraints (3.1) guarantee that for each edge, at least one of its incident
nodes i has value v; > 1/2. Therefore the solution S is a valid vertex cover, since
for each edge, at least one of the incident nodes will be included in the vertex cover.
Now consider the cost of S, compared to the cost of the LP optimum v; each node i
in S contributes 7; to the cost of S. However, if i € S, we must have v; > 1/2, and
so v; contributes at least 1/2 «; to the cost of v. Therefore the overall cost Zie s
of S is at most twice the cost >, 7v; of the LP optimum v. Since the cost of the
LP optimum is a lower bound on the true optimum, the solution S has cost at most
twice that of the true optimum.

35

3.1.5 Polytopes and LP Solving

The size of an LP problem instance is proportional to the number of variables and
constraints in the associated polytope. Linear programs are solvable efficiently using
a variety of techniques. The most commonly used algorithm in practice is the simplex
algorithm [Sch87]. Although not guaranteed to run in time polynomial in the input
size, in practice the simplex algorithm is usually quite efficient. In fact, this situation
has been explained theoretically by the recent work in “smoothed analysis” [STO01].
The ellipsoid algorithm [GLS81] is guaranteed to run in polynomial time, given the
constraints of the LP as input. However, this algorithm is considered impractical,
and so is mainly of theoretical interest.

In fact, in some cases we can solve an LP efficiently without giving the constraints
explicitly. For the ellipsoid algorithm to run efficiently, one only needs to provide
a “separation oracle;” a polynomial-time procedure that determines whether or not
a given point satisfies the LP constraints (and if not, provides a hyperplane that
separates the point from the polytope).

3.2 Network Flow

Suppose we have a network of pipes carrying water, with a single source of water,
and a destination (sink) for the water. We can set the flow rate for every pipe in the
system, and our goal is to achieve a certain overall flow rate from the source to the
sink. However, each pipe has a certain flow rate capacity that we cannot exceed.

We model this as the following combinatorial optimization problem. The pipe
network is given as a directed graph, with two special nodes denoted as the source
and the sink. Each edge e in the graph has a capacity c., and a fixed demand d of
flow is given at the sink. Our goal is to assign flow values f. to each edge e in the
graph such that:

e Every flow value is less than or equal to the capacity of the edge; i.e., f. < c.
for all edges e.

e For every node besides the source and the sink, the total flow entering the node
equals the total flow leaving the node; i.e., for all nodes v (besides the source
and the sink), we have

Y>oofe= > fe.

e entering v e leaving v

This is referred to as flow conservation.

e The flow demand is met at the sink; i.e.,

Z fe:d-

e entering sink

36

N

1
\
Q snk src
i /

Figure 3-1: An instance of the network flow problem, with a demand of one at the sink.
The graph on the left shows the problem instance, where each edge is labeled with its
capacity. The graph in the right shows the flow values of a feasible flow from the source to
the sink (the labels on the edges are flow / capacity).

PN

STC

DN [—=
I
[\
[\
N[
o
=
N[=
~
DO [—=
=
~
N | =

src i [1.8] Q snk src %/% Q snk

Figure 3-2: An instance of the min-cost flow problem, with a demand of one at the sink. The
graph on the left shows the problem instance, where each edge is labeled with its capacity
and its cost (in brackets). The graph in the right shows the flow values of the optimal
feasible flow from the source to the sink (the labels on the edges are flow / capacity).

A flow that meets all the constraints above is said to be a feasible flow. An
example instance is given in Figure 3-1. In this graph, the demand is 1 at the sink.
The solution shown is one of many possible solutions.

This problem is known as network flow, and there are many well-studied vari-
ations [AMO93]. For the fundamental flow problem above, and many of the basic
extensions, efficient algorithms to find feasible flows are known. For a basic intro-
duction to network flow (and many other algorithmic topics), a good source is the
textbook of Cormen, Leiserson, Rivest and Stein [CLRS01]. For a thorough presen-
tation of the network flows, we refer the reader to the textbook of Ahuja, Magnanti
and Orlin [AMO93].

In the remainder of this section, we discuss the min-cost flow problem, and present
some of the basic analytical tools that will be needed when analyzing LP relaxations
for turbo codes.

37

STC STC

Figure 3-3: A flow and its residual graph. The flow f on the left is a feasible flow for
the min-cost flow instance in Figure 3-2. The residual graph G on the right contains a
negative-cost cycle, so the flow must not be optimal. Sending 1/4 unit of flow around this
cycle results in the solution in Figure 3-2, which is optimal.

3.2.1 Min-Cost Flow

In the min-cost flow problem, costs are associated with each edge in the graph. The
goal in the min-cost flow problem is to find a feasible flow that minimizes cost, where
the cost of a flow is the sum, over the edges in the graph, of the cost of that edge times
the flow on that edge. For example, suppose we add costs to the graph in Figure 3-1,
and obtain the min-cost flow instance in Figure 3-2. Note that the optimal solution to
this instance takes advantage of the fact that there is more than one way to construct
a feasible flow.

It is not hard to see that min-cost flow is a special case of linear programming.
If we make an LP variable f. for each edge, we can model the feasibility constraints
(capacity, conservation, and demand) using LP constraints on the flow variables. The
objective function of the LP is the the sum, over the edges in the graph, of the cost
times the flow on the edge. Since the min-cost flow algorithm has more structure
than a generic LP, combinatorial algorithms are known for min-cost flow that are
more efficient than using the simplex or ellipsoid algorithms [AMO93].

The min-cost circulation problem is a variant of the min-cost flow problem where
the graph contains no source or sink. In this case, a flow is referred to as a circulation,
since it simply circulates flow around the graph. In other words, a circulation is a
setting of flow values that obey edge capacities and flow conservation. The goal of
min-cost circulation is to find a feasible circulation that minimizes cost. Note that
if the costs are all positive, the optimal solution is to set all flow values to zero; the
interesting case of min-cost circulation is when some of the costs are negative.

Residual Graphs. Algorithms for min-cost flow take advantage of an easy test for
optimality of a solution, using the residual graph of a flow. The residual graph G
of a flow f (or a circulation) is a graph that models the possible changes to the flow
one can make. It is obtained by subtracting out the flow f from the capacities of the
graph. An example is shown in Figure 3-3. The residual graph G; has two edges for
each edge in the original graph GG, one going in each direction.

Formally, consider an edge (v — v) in G with capacity c¢,,. The residual graph

38

Gy has edges (v — v) and (v — w). The capacity of the edge (u — v) is equal
to Cyp — fuv, Where fy, is the flow along edge (v — v). Thus, the capacity of Gy
represents the remaining available capacity along (u — v) after applying flow f to
the original graph G. The cost of edge (v — v) in Gy is the same as the cost of
(v — v) in G. The capacity of edge (v — u) in G is equal to f,,, and represents the
flow that can be sent back from v to u by decreasing the flow along (v — v). The
cost of (v — u) in G is equal to the negative of the original cost of (v — v) in G,
since that cost is recovered when flow is sent back. If an edge has zero capacity, it is
removed from the residual graph.

Theorem 3.1 [AMO93] A feasible flow f is an optimal min-cost flow or min-cost
circulation iff its residual graph Gy contains no negative-cost cycles.

We can see an example of this theorem in the residual graph of Figure 3-3. In this
graph, there is a cycle among the three rightmost vertices, with total cost of —4.4.
Now imagine routing 1/4 unit of flow around this cycle, changing the original flow
into the solution in Figure 3-2. We now have a new feasible flow with less cost, since
the cycle had negative cost in the residual graph.

In general, the difference f’ — f between two feasible flows f’ and f becomes a
feasible circulation in the residual graph G. The cost of the circulation ' — f in Gy
is equal to the difference in cost between the two flows in the original graph. So, if
there is a flow in the original graph G with cost less than f, it will manifest itself as a
negative-cost circulation in Gy. In fact, the converse is also true; all circulations in Gy
represent the difference f’ — f between feasible flow f’ and the flow f. Furthermore,
the cost of the circulation is exactly the difference in cost between f’ and f.

Path and Cycle Decompositions. A path flow is a feasible flow that only sends
flow along a single simple path from the source to the sink. In min-cost flow, a
path decomposition of a flow f is a set of path flows in the graph G from the source
to the sink, such that f is the sum of those flows. Every feasible flow has a path
decomposition.

In min-cost circulation, a cycle flow is a feasible circulation that only sends flow
around a single simple cycle. A cycle decomposition of a circulation is a set of cycle
flows such that the circulation is the sum of the cycle flows. Every circulation has a
cycle decomposition.

An integral flow is one where all the flow values are integers. Integral flows have
integral decompositions; i.e., any integral flow f can be decomposed into integral path
flows. Similarly, any integral circulation can be decomposed into integral cycle flows.

39

40

Chapter 4

LP Decoding of Error-Correcting
Codes

In this thesis we give a new approach to the problem of decoding an error-correcting
code. The approach is motivated by viewing the ML decoding problem as a combi-
natorial optimization problem. A classic example of such a problem is the VERTEX
COVER problem defined in the previous chapter.

Abstractly, an optimization problem can be viewed as finding an element in a set
that minimizes (or maximizes) some predefined function on elements of the set. In the
VERTEX COVER problem, we have the set of all legal vertex covers, and the function is
the cost of the vertices in the particular cover. In the ML decoding problem, we have
the set of all codewords, and the function is the likelihood that that i was received,
given that the particular codeword was sent.

In this thesis we design LP relaxations for the maximum-likelihood decoding prob-
lem. We refer to our new decoder as the “LP decoder.” While the ML decoding
problem does have the basic elements of an optimization problem, it differs from con-
ventional optimization problems in the sense of what we want out of an approximate
solution. In VERTEX COVER, in order to be able to run an efficient algorithm, we
settle for a solution whose cost is within a factor of two of the optimum. However,
in ML decoding we are not concerned with finding an approximate solution (i.e., a
“fairly likely” codeword). We are concerned with the probability, over the noise in
the channel, that we actually find the transmitted codeword. Additionally, in coding
we often have the freedom to choose the code itself, which defines the subset over
which we are optimizing; in most other optimization problems, we are expected to
handle arbitrary instances of the problem.

Chapter Outline. In this chapter we outline the general technique of LP decoding,
as it applies to any binary code, over any binary-input memoryless channel. We define
the notion of a proper polytope for an LP relaxation, which is required for the LP
decoder to have the ML certificate property. We discuss the details of using the LP
relaxation as a decoder, and how to describe the success conditions of the decoder
exactly.

41

We also define the fractional distance of an LP relaxation, which is a generalization
of the classical distance. Recall that ML decoders correct a number of errors up to
half the (classical) distance in the binary symmetric channel. We prove that LP
decoders correct a number of errors up to half the fractional distance.

Finally, we discuss the application of LP decoding to binary linear codes. We
define the notion of a polytope being C-symmetric for a binary linear code C. We show
that if the polytope is C-symmetric, one may assume that the all-zeros codeword is
transmitted over the channel. This greatly simplifies analysis. Furthermore, polytope
symmetry has some implications in terms of the fractional distance. In later chapters
we will give polytopes that exhibit symmetry.

4.1 An LP Relaxation of ML Decoding

Our LP relaxations for decoding will have LP variables f; for each code bit. We
would like these to take on binary values; however, in the relaxation, they will be
relaxed to take on values between zero and one. We will define some additional linear
constraints on the variables that are a function of the structure of the code itself,
and obtain a polytope P C [0, 1]". We call a polytope P proper if the set of integral
points in P is exactly the set C of codewords; i.e.,

PN{0,1}" =C. (4.1)

Let V(P) be the set of vertices of the polytope P. Recall that a vertex is a point in
the polytope that cannot be expressed as the convex combination of other points in
the polytope. Note that for any proper polytope P (where equation (4.1) holds), we
have that every codeword y € C is a vertex of P. This is the case because in the unit
hypercube [0, 1]", every binary word of length n cannot be expressed as the convex
combination of points in the hypercube; since P is contained within the hypercube
[0,1]", we have that every binary word of length n (including all the codewords)
cannot be expressed as the convex combination of points inside P. It may not be
the case that every polytope vertex is a codeword, however, since the polytope could
have fractional vertices. So, in general we have

CCVP) CPClo

The objective function of our LP will measure the likelihood of a particular setting
of the {f;} variables, given the received word g. In Section 2.5 we defined a cost 7;
for a code bit such that the minimum-cost codeword is the ML codeword, for any
binary-input memoryless channel. We will use this as the objective function of our
LP. Overall, our LP solves the following system:

minimize Z%f, st. feP (4.2)

i=1

Define the cost of a point f € P as Y., v f;- Our LP will find the point in P with

42

minimum cost. Notice that the only part of the LP relaxation that depends on the
received vector is the objective function.

Figure 4-1: An illustration of decoding an error-correcting code using linear programming
relaxation, and the possible cases for the objective function.

Figure 4-1 provides an abstract visualization of the relaxation P. This figure is of
course two-dimensional, but all the elements of the LP relaxation can still be seen.
The dotted line represents the polytope P, and the circles represent vertices of the
polytope. The black circles in the figure represent codewords, and the gray circles
represent fractional vertices that are not codewords. The inner solid line encloses
the convex hull of the codewords, the set of points that are convex combinations of
codewords. The arrows inside the polytope represent various cases for the objective
function, which depend on the noise in the channel. We will go through these cases
explicitly later in the discussion.

4.2 The LP Relaxation as a Decoder

Maximum-likelihood (ML) decoding can be seen as optimizing the objective function
over points inside the convex hull of the codewords (solid line in Figure 4-1); since ev-
ery point in this convex hull is a convex combination of codewords, then the optimum
will obtained at a codeword. Unfortunately, this convex hull will be too complex to
represent explicitly for any code for which ML decoding is NP-hard (unless P = NP).

43

Our decoding algorithm using the relaxed polytope P is the following: solve the
LP given in equation (4.2). If the LP solution is integral (a black vertex in Figure 4-1),
output the corresponding codeword. If the LP solution is fractional (a gray vertex in
Figure 4-1), output “error.” Note that if this algorithm outputs an integral solution
(codeword), then we know it outputs the ML codeword. This is because the cost of
the codeword found is at most the cost of all the points in P, including all the other
codewords. Therefore this decoder has what we call the ML certificate property: if it
outputs a codeword, it is guaranteed to be the ML codeword. This property is one
of the unique advantages of LP decoding.

4.2.1 Noise as a perturbation of the LP objective.

Suppose the relaxation has the following reasonable property: when there is no noise
in the channel, the transmitted codeword y will be the optimum point of the LP, and
thus the LP decoder will succeed. (All the relaxations we give in this thesis have
this property.) Noise in the channel then amounts to a perturbation of the objective
function away from the “no noise” direction. If the perturbation is small, then y will
remain the optimal point of the LP. If the perturbation is large (there is a lot of noise
in the channel), then y will no longer be optimal, and the LP decoder will fail.

In Figure 4-1, an objective function can be seen as a direction inside the polytope;
solving the LP amounts to finding the point in the polytope that is furthest in that
direction. The following mental exercise often helps visualize linear programming.
Rotate the polytope such that the objective function points “down.” Then, the
objective function acts like gravity; if we drop a ball inside this polytope, it will settle
at the point that optimizes the objective function. In Figure 4-1 we have rotated the
polytope so that when there is no noise in the channel, then the objective function
points “down,” directly at the transmitted codeword (y; in the figure).

There are four cases describing the success of LP decoding, related to ML decoding.
These cases are illustrated in Figure 4-1 by four arrows (a, b, ¢, d), representing
directions inside the polytope. The gray arrow is the objective function without noise
in the channel. The cases are described as follows:

(a) If there is very little noise, then both ML decoding and LP decoding succeed,
since both still have y; as the optimal point.

(b) If more noise is introduced, then ML decoding succeeds, but LP decoding fails,
since the fractional vertex f is optimal for the relaxation.

(c) With still more noise, ML decoding fails, since y, is now optimal; LP decoding
still has a fractional optimum (f), so this error is detected.

(d) Finally, with a lot of noise, both ML decoding and LP decoding have y, as the
optimum, so both fail, and the error is undetected.

Note that in the last two cases when ML decoding fails, this is in some sense the fault
of the code itself, rather than the decoder.

44

4.2.2 Success Conditions for LP Decoding

Overall, the LP decoder succeeds if the transmitted codeword is the unique optimal
solution to the LP. The decoder fails if the transmitted codeword is not an optimal
solution to the LP. In the case of multiple LP optima (which for many noise models
has zero probability), we will be conservative and assume that the LP decoder fails.
Therefore,

Theorem 4.1 For any binary-input memoryless channel, an LP decoder using poly-
tope P will fail if and only if there is some point in P other than the transmitted
codeword y with cost less than or equal to the cost of y.

This theorem allows us to characterize the probability of error, given a particular
transmitted codeword y, as:

Prierr|y| =Pr |3f e P, f #y : Z%fl < Z%yz (4.3)

In the upcoming chapters we will derive specific relaxations for turbo codes and
LDPC codes. We will apply the generic characterization of LP decoding success to
these relaxations, giving more precise conditions for success based on the combina-
torial properties of the code and the relaxation. We then use these more precise
characterizations to derive bounds on the performance of LP decoding.

4.3 The Fractional Distance

We motivate the definition of fractional distance by providing an alternate definition
for the (classical) distance in terms of a proper polytope P. Recall that in a proper
polytope P, there is a one-to-one correspondence between codewords and integral
vertices of P; i.e., C = PN{0,1}". The Hamming distance between two points in the
discrete space {0,1}" is equivalent to the [; distance between the points in the space
[0,1]™. Therefore, given a proper polytope P, we may define the distance of a code
as the minimum [; distance between two integral vertices, i.e.,

d = ;
min S

vy €(V(P =
y#y -

The LP polytope P may have additional non-integral vertices, as illustrated in
Figure 4-1. We define the fractional distance djy,. of a polytope P as the minimum /;
distance between an integral vertex (codeword) and any any other vertex of P; i.e.,

dfmc - mlIl Z |% fz

EV(P)
I#y

45

This fractional distance has connections to the minimum weight of a pseudocode-
word, as defined by Wiberg [Wib96], and also studied by Forney et. al [FKKRO1].

Note that this fractional distance is always a lower bound on the classical distance
of the code, since every codeword is a polytope vertex (in the set V(P)). Moreover,
the performance of LP decoding is tied to this fractional distance, as we make precise
in the following:

Theorem 4.2 Let C be a binary code and P a proper polytope in an LP relazation
for C. If the fractional distance of P is dfre, then the LP decoder using P is successful
if at most [dpac/2] — 1 bits are flipped by the binary symmetric channel.

Proof: Let y be the codeword transmitted over the channel. Suppose the LP decoder
fails; i.e., y is not the unique optimum solution to the LP. Then there must be some
other vertex f* € V(P) (where f* # y) that is an optimum solution to the LP,
since the LP optimum is always obtained at a vertex. By the definition of fractional
distance, we have

Z ‘fl* - yl| Z dfmc-
=1

For all bits i € {1,...,n}, let f; = |fF — y;|. From the above equation, we have

Z fz > dfmc' (44)
i=1

Let & = {i : §; # y;} be the set of bits flipped by the channel. By assumption, we
have that
|5| < |_dfm0/2-| -1,

and so

> i < [dae/2] — 1, (4.5)

€€
since all f; < 1. From (4.4) and (4.5), it follows that

> fi > Ldpae/2] + 1. (4.6)

itE

Therefore, from (4.5) and (4.6), we have

=Y fi>o. (4.7)

1¢E €€

Since f* is an optimum solution to the LP, its cost must be less than or equal to
the cost of y under the objective function 7; i.e.,

D owfi=> i <0. (4.8)
=1 =1

46

We can rewrite the left side of equation (4.8) as follows:

STk =Y v o= > wulf —w)
=1 i—1 i=1
= Y uf =D =1

1:y; =0 By =1

= Z Yifi — Z Yifi (4.9)
1:y;=0 iy =1

= Zfi_Zfi- (4.10)
i¢E =

Equation (4.9) follows from the fact that

TV fr =1

Equation (4.10) follows from the fact that under the BSC, we have v, = —1if g; = 1,
and ; = +1 if g; = 0. From (4.8) and (4.10), it follows that

Zfi_Zfi <0,

ig€ ic€
which contradicts (4.7). u

Note the analogy to the classical case: just as ML decoding has a performance
guarantee in terms of classical distance, Theorem 4.2 establishes that the LP decoder
has a performance guarantee specified by the fractional distance of the code.

In Chapter 5, we will give a polytope for LDPC codes, and show that there exist
LDPC codes where the fractional distance of the polytope grows like Q(n!'=¢), for a
constant e.

4.3.1 The Max-Fractional Distance

We can slightly refine the notion of fractional distance by observing some slack in the
proof of Theorem 4.2. To get equation 4.5, the proof essentially assumes that there
is a fractional vertex that can set f; = 1 —y; for every bit flipped by the channel. As
a first step toward refining this argument, we define the notion of the maz-fractional
distance. In fact, our bounds for LDPC codes apply to this refined notion of fractional
distance.

Formally, the max-fractional distance of a proper polytope P € [0,1]™ for code C

is equal to
M2 — min |: Zi:l |yl - f1’ :|
rac c n 3
et [maxi, i =

f#y
Using identical arguments, we can easily derive a theorem for the max-fractional

47

distance analogous to Theorem 4.2 for the fractional distance:

Theorem 4.3 Let C be a binary code and P a proper polytope in an LP relazation
for C. If the max-fractional distance of P is d32*, then the LP decoder using P is

frac’

successful if at most [dg3% /2] — 1 bits are flipped by the binary symmetric channel.

The exact relationship between dj,. and djo is an interesting question. Clearly
d}‘;gf > dfrqc in general, since max; f; is always at most 1. For the LDPC relaxation
we give in Chapter 5, the two quantities differ by at most a constant.

4.4 Symmetric Polytopes for Binary Linear Codes

Binary linear codes have some special algebraic structure that we can exploit when we
analyze decoding algorithms. For example, for most message-passing decoders, one
may assume without loss of generality that the all-zeros codeword 0™ was transmitted.
(Recall that 0" is always a codeword of a binary linear code.) This greatly simplifies
analysis (and notation). Furthermore, the distance of a binary linear code is equal
to the lowest weight of any non-zero codeword, where the weight of a codeword y is
equal to), ;.

In this section we discuss the application of LP decoding to binary linear codes.
We define the notion of a polytope being C-symmetric for a particular binary linear
code C. We then show that if a decoder uses a C-symmetric polytope, then the all-
zeros assumption is valid, and the fractional distance is equal to the lowest weight of
any non-zero polytope vertex. This not only simplifies analysis in later chapters, it
also allows us to efficiently compute the fractional distance of a polytope.

4.4.1 C-symmetry of a polytope

For a point f € [0,1]", we define its relative point f¥ € [0,1]" with respect to
codeword y as follows: for all i € {1,...,n}, let fl-[y} = |fi — v;|- Note that this
operation is its own inverse; i.e., the relative point of f¥ with respect to y is the
original point f. Intuitively, the point f is the point that has the same spatial
relation to the point 0" as f has to the codeword y (and vice-versa).

Definition 4.4 A proper polytope P for the binary code C is C-symmetric if, for
all points f in the polytope P and codewords y in the code C, the relative point fW¥ is
also contained in the polytope P.

Note that the definition of C-symmetry only allows for proper polytopes for binary
linear codes. In a sense, the definition generalizes the notion of a binary linear code.

We make this formal in the following:

Theorem 4.5 If a polytope P is proper for the binary code C, and P is C-symmetric,
then C must be linear.

48

Proof: Recall that a binary code is linear if 0" € C and (y + ¢') € C for all distinct
y,y’ € C. For any codeword y € C C P, we have y¥ = 0. Because P is C-symmetric,
we conclude that 0" € P; since P is proper, 0" € C. Furthermore, for two distinct
codewords y,y’ € C, we have yl¥' = y+4/; therefore, (y+1v') € P, and so (y+y') € C,
and C must be linear. [|

4.4.2 Turning Fractional Distance into Fractional Weight

The (classical) distance of a binary linear code is equal to the minimum weight of a
non-zero codeword. It would be very convenient to have a similar result for fractional
distance. In this section we establish that the fractional distance of a C-symmetric
polytope is equal to the the minimum weight of a non-zero vertex of P. Before proving
this fact, we must show that relative points of vertices are also vertices:

Theorem 4.6 Let P be a C-symmetric polytope P. Then, for all vertices f of P, for
all codewords y € C, the relative point f¥ is also a vertex of P.

Proof: Suppose not, and there is some vertex f and codeword y such that fI is
not a vertex of P. By definition of C-symmetric, we have fl¥ e P. Since fI is not
a vertex, it must be a convex combination of two points a,b € P, where the three
points a, b and f¥ are all distinct. In other words,

¥ = xa+ (1 -\, (4.11)

for some scalar A where 0 < \ < 1.

Consider the relative points al! and b, both of which must be in P, since P is
C-symmetric. Note that ¥, b and f must also be distinct, which follows from the
fact that the operation of taking a relative point is its own inverse. We claim that
f=Xa¥ + (1 — \)bl. This contradicts the fact that f is a vertex.

It remains to show that f = Aal + (1 — A\)bl. In other words, we must show the
following:

fi=xa” + (1= forall ie{1,... n} (4.12)
Consider some code bit y;. If y; = 0, then

fi - fi[y]v a; = agy} and bz = b[y]’

and (4.12) follows from (4.11). If y; = 1, we have

fi = 1= fi[y]
= 1—(Aa;i+ (1= \b)

- 1- ()\(1 A R bﬁy]))
= A+ (1 -,
giving (4.12). n

49

Now we are ready to prove the main result of the section. Recall that the weight
of a codeword y is equal to), y;. Define the weight of a point f in P to be equal to

Theorem 4.7 The fractional distance of a C-symmetric polytope P for a binary lin-
ear code C 1s equal to the minimum weight of a non-zero verter of P.

Proof: Let f™® be the minimum-weight non-zero vertex of P; i.e.,

™ = argmin fi-
fFe(V(P)\0™) ;

Since the [; distance between f™" and 0" is equal to the weight of f™® we have that
the fractional distance of P is at most the weight of f™. Suppose it is strictly less;
i.e., dpge < >_; [, Then, there is some vertex f € V(P) and codeword y # f where

Doyl < Yo (4.13)

Consider the point f¥. By Theorem 4.6, f1¥ is a vertex of P. Furthermore, f% must
be non-zero since y # f. Since fi[y] = |fi — y;| for all i, equation (4.13) implies that
the weight of fI is less than the weight of f™™, a contradiction. [|

Define the normalized weight of a point f in P as (D, fi)/(max; f;). Using this
normalized weight, we obtain a theorem for max-fractional distance analogous to
Theorem 4.7:

Theorem 4.8 The max-fractional distance of a C-symmetric polytope P for a binary
linear code C is equal to the minimum normalized weight of a non-zero vertex of P.

4.4.3 Computing the Fractional Distance

In contrast to the classical distance, the fractional distance of a C-symmetric polytope
P for a binary linear code C can be computed efficiently. This can be used to bound
the worst-case performance of LP decoding for a particular code and polytope. Since
the fractional distance is a lower bound on the real distance, we thus have an efficient
algorithm to give a non-trivial lower bound on the distance of a binary linear code.

Let V= (P) = V(P) \ 0" be the set of non-zero vertices of P. To compute the
fractional distance, we must compute the minimum weight vertex in V= (P). We
consider instead a more general problem: given the m constraints of a polytope P
over variables (z1,...,,), a specified vertex z° of P, and a linear function ¢(z),
find the vertex z' in P other than z° that minimizes /(). For our problem, we are
interested in the C-symmetric polytope P, the special vertex 0™ € P, and the linear
function) . f;.

An efficient algorithm for this general problem is the following: let F be the set of
all constraints of P for which 2V is not tight. (We say a point is tight for a constraint if
it meets the constraint with equality.) Now for each constraint in F do the following.

50

Define a new P’ by making the constraint into an equality constraint, then optimize
{(x) over P'. The minimum value obtained over all constraints in F is the minimum
of £(z) over all vertices ! other than z°. The running time of this algorithm is equal
to the time taken by |F| < m calls to an LP solver.

This algorithm is correct by the following argument. It is well known that a vertex
of a polytope of dimension D is uniquely determined by giving D linearly independent
constraints of the polytope for which the vertex is tight. Using this fact, it is clear that
the vertex ! we are looking for must be tight for some constraint in F; otherwise,
it would be the same point as z°. Therefore, at some point in our procedure, each
potential ! is considered. Furthermore, for each P’ considered during the algorithm,
we have that all vertices of P’ are vertices of P not equal to 2°. Therefore the point
x! we are looking for will be output by the algorithm.

4.4.4 All-Zeros Assumption

When analyzing linear codes, it is common to assume that the codeword sent over the
channel is the all-zeros vector (i.e., y = 0™), since it tends to simplify analysis. In the
context of our LP decoder, however, the validity of this assumption is not immediately
clear. In this section, we prove that one can make the all-zeros assumption when
analyzing LP decoders, as long as the polytope used in the decoder is C-symmetric.

Theorem 4.9 For any LP decoder using a C-symmetric polytope to decode C under a
binary-input memoryless symmetric channel, the probability that the LP decoder fails
1s independent of the codeword that is transmitted.

Proof: We use Pr[err|y| to denote the probability that the LP decoder makes an
error, given that y was transmitted.

For an arbitrary transmitted word y, we need to show that Prlerr |y] = Prlerr|0™].
Define BAD(y) C X" to be the set of received words ¢ that cause decoding failure,
assuming y is transmitted. The set BAD(y) consists of all the possible received words
that cause the transmitted codeword not to be the unique LP optimum:

BAD(y) = {?J :3f € P, f #y, where Z%-fi < Z%yz}

Note that in the above, the cost vector 7 is a function of the received word y. Fur-
thermore, we have considered the case of multiple LP optima to be decoding failure.
Rewriting equation (4.3), we have that for all codewords y,

Prlerr|y] = Y Pr[j|y]. (4.14)
gez’n7
JEBAD(y)

51

Applying this to the codeword 0", we get

>

geX™,
FEBAD(O™)

Prlerr |0"] = Pr[g|0™]. (4.15)

We will show that the space X" of possible received vectors can be partitioned into
pairs (77, 9°) such that Pr[¢ | y | = Pr[4° | 0"], and § € BAD(y) if and only if 3° €
BAD(0™). This, along with equations (4.14) and (4.15), gives Prlerr | y] = Prlerr|0™].

The partition is performed according to the symmetry of the channel. Fix some
received vector 7. Define ¢° as follows: let §? = g; if y; = 0, and 3? = ¢} if y = 1,
where ¢! is the symmetric symbol to g; in the channel. (See Section 2.4 for details
on symmetry.) Note that this operation is its own inverse and therefore gives a valid
partition of ¥" into pairs.

First we show that Pr[g | y | = Pr[¢" | 0"]. From the channel being memoryless,

we have

7]yl HPryAyZ = [Prls: 1o) T] Prlg | 1]

1:y;=0 By =1

= JI Pe@? 0] I Prli | 1] (4.16)
2:y;=0 ny;=1

= [@10] Prl@ (4.17)
2:y;=0 ny;=1

= [@ 10 I Prlo (4.18)
2:y;=0 ny;=1

= Pr[g" | 0"]

Equations (4.16) and (4.18) follow from the definition of 7°, and equation (4.17)
follows from the symmetry of the channel (equations (2.2) and (2.3)).

Now it remains to show that § € BAD(y) if and only if §° € BAD(0"). Let « be
the cost vector when 7 is received, and let 4% be the cost vector when §° is received,
as defined in equation (2.5).

Suppose y; = 0. Then, g; = 7, and so 7; = 7Y. Now suppose y; = 1; then 70 = g,

and so

Pr(g; | yi = 0]
0 = o (L
K S\ Prlg [y = 1]
Prg; | yi = 1])
= log (~— 4.19
Pr[g; | yi = 0] ()
= V-

Equation (4.19) follows from the symmetry of the channel (equations (2.2) and (2.3)).
We conclude that

v =77 if 4 =0, and v = =] if y; = 1. (4.20)

Fix some point f € P and consider the relative point f¥. We claim that the
difference in cost between f and y is the same as the difference in cost between f¥!
and 0". This is shown by the following:

Z%’fi—Z%yi = Z% i — Yi)
= Z Yifi + Z ’71

Ly = ny;=1

= Z %= s (4.21)
Ly = 1y =1

= Z W+ 3 A (4.22)
Ly = ny;=1

— ZV‘ fll
=AY, (1.23)

Equation (4.21) follows from the definition of fI¥, and equation (4.22) follows from
equation (4.20).

Now suppose § € BAD(y), and so by the definition of BAD there is some f € P,
where f # y, such that >, vifi — >, %y < 0. By equation (4.23), we have that
> fi[y 37907 < 0. Because P is C-symmetric, f¥) € P, and by the fact that
f # vy, we have that f £ 0". Therefore j° € BAD(0"). A symmetric argument
shows that if §° € BAD(0") then g € BAD(y). [

Since the all-zeros codeword has zero cost, we have the following corollary to The-
orem 4.1:

Corollary 4.10 For any binary linear code C over any binary-input memoryless sym-
metric channel, the LP decoder using C-symmetric polytope P will fail if and only if
there is some non-zero point in P with cost less than or equal to zero.

4.5 Conclusion

In this chapter we outlined the basic technique of LP decoding of binary codes. We
derived general success conditions for an LP decoder, and showed that any decoder
using a proper polytope has the ML certificate property. The fractional distance of a

53

polytope was defined, and it was shown that LP decoders correct a number of errors
up to half the fractional distance.

Furthermore, for binary linear codes, we established symmetry conditions for the
polytope that allow for the all-zeros assumption, and regarding fractional distance as
fractional weight.

In the chapters to come, we will use this technique for LDPC codes and turbo
codes. We will use the success conditions to derive performance bounds for our
decoders, and to compare the performance with other known decoders.

o4

Chapter 5

LP Decoding of Low-Density
Parity-Check Codes

Low-density parity-check (LDPC) codes were discovered by Gallager in 1962 [Gal62).
In the 1990s, they were “rediscovered” by a number of researchers [Mac99, Wib96,
SS96], and have since received a lot of attention. The error-correcting performance
of these codes is unsurpassed; in fact, Chung et al. [CFRUO1] have given a family of
LDPC codes whose error rate comes within a factor of approximately 1.001 (0.0045
dB) of the capacity of the channel, as the block length goes to infinity. The decoders
most often used for this family are based on the belief-propagation algorithm [MMC98|,
where messages are iteratively sent across a factor graph for the code. While the
performance of this decoder is quite good in practice, analyzing its behavior is often
difficult when the factor graph contains cycles.

In this chapter, we introduce an LP relaxation for an arbitrary binary linear code.
The polytope for the relaxation is a function of the factor graph representation of
the code. We have an LP variable for each code bit node in the factor graph, and a
set of constraints for each check node. Experiments have shown that the relaxation
is more useful for LDPC codes than for higher-density codes, hence the title of the
chapter. Experiments on LDPC codes show that the performance of the LP decoder
is better than the iterative min-sum algorithm, a standard message-passing algorithm
used in practice. In addition, the LP decoder has the ML certificate property; none
of the standard message-passing methods are known to have this desirable property
on LDPC codes.

We introduce a variety of techniques for analyzing the performance of the LP
decoder. We give an exact combinatorial characterization of the conditions for LP
decoding success, even in the presence of cycles in the factor graph. This characteri-
zation holds for any binary-input memoryless symmetric channel. We define the set
of pseudocodewords, which is a superset of the set of codewords, and we prove that
the LP decoder always finds the lowest cost pseudocodeword. Thus, the LP decoder
succeeds if and only if the lowest cost pseudocodeword is actually the transmitted
codeword.

We prove that the max-fractional distance of our polytope on any binary linear
code with check degree at least three is at least exponential in the girth of the graph

95

associated with that code. (The girth of a graph is the length of its shortest cycle.)
Thus, given a graph with logarithmic girth (which are known to exist), the max-
fractional distance is at least 2(n'~), for some constant ¢, where n is the code length.
This shows that LP decoders can correct Q(n'~¢) errors in the binary symmetric
channel.

We also discuss various generic techniques for tightening our LP relaxation in
order to obtain a better decoder. One method of tightening is to add redundant
parity checks to the factor graph, thus obtaining more constraints for the polytope
(without cutting off any codewords). Another method is to use generic LP tightening
techniques (e.g., [LS91, SA90]); we discuss the “lift-and-project” [LL.S91] technique, as
it applies to our decoding polytope.

The results in this chapter are joint work with David Karger and Martin Wain-
wright. Most of this work has appeared in conference form [FWKO03a|, or has been
submitted for journal publication [FWKO3b].

Error Thresholds for Large Block Lengths. The techniques used by Chung
et al. [CFRUO1] are similar to those of Richardson and Urbanke [RUO1] and Luby
et. al. [LMSS98], who give an algorithm to calculate the threshold of a randomly
constructed LDPC code. This threshold acts as a limit on the channel noise; if the
noise is below the threshold, then reliable decoding (using belief propagation) can
be achieved (with high probability) by a random code as the block length goes to
infinity.

The threshold analysis is based on the idea of considering an “ensemble” of codes
for the purposes of analysis, then averaging the behavior of this ensemble as the block
length of the code grows. It has been shown [RUO1] that for certain ensembles, as
long as the error parameter of the channel is under the threshold, any word error
rate is achievable by the ensemble average with large enough block length. For many
ensembles, it is known [RUO1] that for any constant ¢, the difference in error rate
(under belief-propagation decoding) between a random code and the average code in
the ensemble is less than e with probability exponentially small in the block length.

Calculating the error rate of the ensemble average can become difficult when the
belief network contains cycles; because message-passing algorithms can traverse cycles
repeatedly, noise in the channel can affect the final decision in complicated, highly
dependent ways. This complication is avoided by fixing the number of iterations of
the decoder, then letting the block length grow; then, the probability of a cycle in the
belief network goes to zero. However, this sometimes requires prohibitively large block
lengths [RUO1], whereas smaller block lengths are desirable in practice [DPR*02].

Therefore, it is valuable to examine the behavior of a code ensemble at fixed
block lengths, and try to analyze the effect of cycles. The finite length analysis
of LDPC codes under the binary erasure channel (BEC) was taken on by Di et.
al [DPR102]. Key to their results is the notion of a purely combinatorial structure
known as a stopping set. Belief propagation fails if and only if a stopping set exists
among the erased bits; therefore the error rate of belief propagation is reduced to a
purely combinatorial question.

56

With LP decoding we provide a similar combinatorial characterization through the
notion of a pseudocodeword. In fact, in the BEC, stopping sets and pseudocodewords
are equivalent (we prove this in the next chapter). However, in contrast to stopping
sets, LP pseudocodewords for LDPC codes are defined over arbitrary binary-input
memoryless symmetric channels.

Chapter Outline. In Section 5.1, we give our LP relaxation using the factor graph,
and give intuition on the structure of fractional solutions. We also show that the
relaxation is proper, and that it is C-symmetric for any binary linear code C. In
Section 5.2 we define the notion of a pseudocodeword for this relaxation, which is
a combinatorial way to view the success conditions of the decoder. This will be
useful for proving our fractional distance bound, and in later chapters for comparing
the performance of LP decoding with message-passing algorithms. We prove our
bound on the fractional distance of the polytope in Section 5.3. In Section 5.4 we
discuss generic methods for tightening the relaxation, including adding extra parity
check constraints and using the “lift-and-project” method. The relaxation we give
in Section 5.1 will only have a polynomial-sized description when the code is an
LDPC code; we remedy this situation is Section 5.5 by providing a polynomial-sized
description of an equivalent polytope. In Section 5.6, we include a proof deferred
from Section 5.1.

5.1 An LP relaxation on the Factor Graph

Recall that a factor graph is an undirected bipartite graph, with variable nodes for
each code bit, and check nodes representing local parity check constraints. (See
Section 2.7.3 for background.) Our LP has a variable for each variable node, and a
set of linear constraints for each check node. The constraints for a check node affect
only the code bit variables for the nodes in its neighborhood. We will also introduce
auxiliary LP variables to enforce the check node constraints. These variables will not
play a role in the objective function, but will simplify the presentation and analysis
of the relaxation.

We motivate our LP relaxation with the following observation. Each check node
in a factor graph defines a local code; i.e., the set of binary vectors of even weight on
its neighborhood variables. The global code corresponds to the intersection of all the
local codes. In LP terminology, each check node defines a local codeword polytope
(the set of convex combinations of local codes), and our global relaxation polytope
will be the intersection of all of these polytopes.

5.1.1 The Polytope O

In this section we formally define the polytope Q that we use for the remainder of the
chapter. The polytope has variables (fi,..., f,) to denote the code bits. Naturally,

57

we have:
Vi e T, 0< ;<1 (5.1)

To define a local codeword polytope, we consider the set of variable nodes N (j) that
are neighbors of a particular check node j € J. Of interest are subsets S C N(j)
that contain an even number of variable nodes; each such subset corresponds to a
local codeword set, defined by setting y; = 1 for each index i € S, y; = 0 for each
i € N(j) but i ¢ S, and setting all other y; arbitrarily.

For each S in the set E; = {S C N(j) : | S| even}, we introduce an auxiliary LP
variable w; ¢, which is an indicator for the local codeword associated with S. Note
that the variable w; is also present for each parity check, and represents setting all
variables in N (j) equal to zero.

As indicator variables, the variables {w; ¢} must satisfy the constraints:
VS e Ej, 0< (PR <1 (52)

The variable w; ¢ can also be seen as indicating that the codeword “satisfies” check
7 using the configuration S. In a codeword, each parity check is satisfied with one
particular even-sized subset of nodes in its neighborhood set to one. Therefore, we
may enforce:

> wis =1 (5.3)

SGEj

Finally, the indicator f; at each variable node ¢ must be consistent with the point
in the local codeword polytope defined by w for check node j. This leads to the
constraint:

Vie NG, fi=) ws (5.4)

We define, for all j € J, the polytope Q; as follows:
Q; = {(f,w) : equations (5.1), (5.2), (5.3) and (5.4) hold}

Let Q =N, Q, be the intersection of these polytopes; i.e., the set of points (f, w) such
that equations (5.1), (5.2), (5.3) and (5.4) hold for all j € J. Overall, the LCLP
relaxation corresponds to the problem:

minimize Z%’fi st. (f,w) e Q (5.5)

i=1

58

5.1.2 Fractional Solutions to the Polytope Q

Given a cycle-free factor graph, it can be shown that any optimal solution to LCLP
is integral. Therefore LCLP is an exact formulation of the ML decoding problem in
the cycle-free case. In contrast, for a factor graph with cycles, the optimal solution
to LCLP may not be integral.

_ 1
WA{1,2} = 3

_ 1
WB,{24} = 3

Figure 5-1: A fractional solution f = [1,1/2,0,1/2,0,0,1/2] to the LP for a factor graph
of the (7,4,3) Hamming code. For check node A, we have w4 112y = w4 1,4y = 1/2. Check
node B has wp 24y = wpp = 1/2. Check node C has we 47y = wep = 1/2. This
fractional solution has cost —1/4 under the cost function v = [-7/4,1,1,1,1, 1, 1], whereas
every integral solution (codeword) has non-negative cost.

Take, for example, the Hamming code in Figure 5-1 (also in Figure 2-2). Suppose
that we define a cost vector v as follows: for variable node 1, set v; = —7/4, and for
all other nodes {2,3,4,5,6,7}, set v; = +1. Tt is not hard to verify that under this
cost function, all codewords have non-negative cost: any codeword with negative cost
would have to set y; = 1, and therefore set at least two other y; = 1, for a total cost of
at least +1/4. Consider, however, the following fractional solution to LCLP: first, set
f=11,1/2,0,1/2,0,0,1/2] and then for check node A, set w12} = wa 1,4y = 1/2;
at check node B, assign wp (24} = wpy = 1/2; and lastly at check node C, set we (4,7}
= weg = 1/2. It can be verified that (f,w) satisfies all of the LCLP constraints.
However, the cost of this solution is —1/4, which is strictly less than the cost of any
codeword.

Note that this solution is not a convex combination of codewords. This solution
exploits the local perspective of the relaxation: check node B is satisfied by using the
configuration {2,4}, whereas in check node A, the configuration {2,4} is not used.

59

The analysis to follow will provide further insight into the nature of such fractional
(i.e., non-integral) solutions to LCLP.

We note that the local codeword constraints (5.4) are analogous to those enforced
in the Bethe formulation of belief propagation [YFW02].

5.1.3 Polytope Representation

The polytope Q contains auxiliary variables, and so we cannot simply plug in the
generic results on LP decoding from Chapter 4. However, consider the projection Q
of the polytope Q onto the subspace defined by the {f;} variables; i.e.,

Q:{f:EIw s.t. (f,w) € Q}.

Since the objective function of LCLP only involves the { f;} variables, optimizing over
Q and Q will produce the same result. Furthermore, this polytope sits in the space
[0,1]™, and so fits into the paradigm of Chapter 4. In this section we give an explicit
description of the projection Q. This will be useful for analysis, and also gives a more
concrete perspective on the polytope Q.

An Explicit Description of the Projected Polytope. In this section we derive
an explicit description of the polytope Q. The following definition of Q in terms of
constraints on f was derived from the parity polytope of Jeroslow [Jer75, Yan91]. We
first enforce 0 < f; < 1 for all © € Z. Then, for every check j, we explicitly forbid
every bad configuration of the neighborhood of j. Specifically, we require that for all
j € J, forall S C N(j) such that |S| odd,

Dofit Y (—f) S ING)-1L (5.6)

€S 1€(N(5)\9)

Let Q; be the set of points f that satisfy the constraints (5.6) for a particular
check j and all S € N(j) where |S| odd. Let the polytope = Njc 7€, i.e., the set
of points in [0, 1] that satisfy equation (5.6) for all j € J and S € N(j) where |S|
odd. Let Q; = {f : Jw s.t.(f,w) € Q;}. In other words, Q; is the convex hull of
local codeword sets defined by sets S € Ej.

Theorem 5.1 The polytopes Q and Q are equivalent. In other words, O = Q = {f:
Jw s.t. (f,w) € Q}.

Proof: It suffices to show 2; = Qj for all j € J, since Q = ﬂjeij and Q = N;c 7.
This is shown by Jeroslow [Jer75]. For completeness, we include a proof of this fact
in Section 5.6. u

Here we offer some motivation for understanding the constraints in €2;. We can
rewrite equation 5.21 as follows:

Z fz+zl_fz - & (57)

€S

60

111

010

100

Figure 5-2: The equivalence of the polytopes §2; and Qj in three dimensions. The polytope
(1; is defined as the set of points inside the unit hypercube with I; distance at least one
from all odd-weight hypercube vertices. The polytope Qj is the convex hull of even-weight
hypercube vertices.

In other words, the [; distance between (the relevant portion of) f and and the
incidence vector for set S is at least one. This constraint makes sure that f is far
away from the illegal configuration S. In three dimensions (i.e, |N(j)| = 3), it is
easy to see that these constraints are equivalent to the convex hull of the even-sized
subsets S € £}, as shown in Figure 5-2.

5.1.4 The properness of the polytope

Recall that a coding polytope is proper if there is a one-to-one correspondence between
integral points and codewords. In this section we show that Q is proper, thus showing
that LP decoding with Q has the ML certificate property.

Lemma 5.2 The polytope Q for code C is proper; i.e., QN {0,1}" =C.

Proof: First we show that every codeword is contained within Q = Q. Suppose some

codeword y is not in €2, and so does not satisfy equation (5.6). Then, for some j € 7,
S C N(j) where |S| odd, we have

Z?JH‘ Z (I—w)>|N(G)| -1
€S i€(N(5)\S)
Since all y; € {0,1}, we have
Syt Y (o) = ING)

i€S i€(N(5)\S)

We may conclude that y; is exactly the incidence vector for the set S. However, S
has odd size, contradicting the fact that y is a codeword.

Now we show that every integral point of 2 is a codeword. Let f € (2N {0,1}")
be an arbitrary integral point of 2. Suppose f is not a codeword. Then, for some

61

parity check j, it must be that |[S = {i : i € N(j), fi = 1}| is odd. However, this

implies that
dhi+ D (—=f)=ING)I,

€S 1€(N(5)\S)

contradicting the fact that f € €. [|

Recall that the LP decoding algorithm based on polytope Q consists of the follow-
ing steps. We first solve the LP to obtain (f*, w*). If f* € {0, 1}", we output it as the
ML codeword; otherwise, f* is fractional, and we output “error.” From Lemma 5.2,
we get the following:

Proposition 5.3 LP decoding using polytope Q has the ML certificate property: if
the algorithm outputs a codeword, it is guaranteed to be the ML codeword.

Proof: If the algorithm outputs a codeword y, then (y,w*) has cost less than or
equal to all points in Q, and so y has cost less than or equal to all points in Q. For
some codeword ¢y # y, we have that ¢/ is a point in @ by Lemma 5.2. Therefore y
has cost less than or equal to 3. (Recall that the minimum-cost codeword is the ML
codeword.) n

5.1.5 The C-symmetry of the polytope

In this section, we prove that the projected polytope Q is C-symmetric for any binary
linear code C. Using the generic results from Chapter 4, this implies that we can
make the all-zeros assumption when analyzing the polytope Q, and that the fractional
distance of Q is equal to the minimum weight of a vertex in Q

Theorem 5.4 The polytope Q is C-symmetric for any binary linear code C.

Proof: Fix an arbitrary point f € Q and codeword y € C. Recall that f¥ is the
relative point to ¥y, where fi[y] = |f; — y;| for all i € Z. We must show that f¥ € Q.
To show this, we will use the fact that 2 = Q

We must show that f¥ obeys the odd-set constraints (5.6) of Q. Let j € J be
some arbitrary check node, and let S be some arbitrary odd-sized subset of N(j). We
use the operator @ to denote the symmetric difference of two sets. Let

S'=Se{ie N({y):y;=1}.

Since y is a codeword, we have |{i € N(j) : y; = 1}| even, and so |S’| is odd. In the
remainder of the proof, it is assumed that all values ¢ that we sum over are contained
in the set N(j). From the fact that f € Q, we have

Zfi"‘Z(l_fi) <|N(G) -1

i€s’ i¢S'

62

We separate the sums above by values of y; to obtain

Sohe Y he Y -+ Y a-f) < NG -t

i€S’ ;=0 i€S” yi=1 ¢S’ y;=0 1S yi=1

By the definition of S’, we have

Soh+ Y+ Y a-f)+ Y a-f) < INGI-1L

i€5,y;=0 i¢Sy;=1 i¢S,y;=0 i€S,y;=1

By the definition of fI, we have

S S a-M e S a-My e Y Y < NG -1

i€5,y;=0 i¢S,y;=1 i¢S,y;=0 1€S,y;=1

S M-) < NG -1

€S ¢S

and therefore

This is exactly the odd-set constraint for j and S. Since the check j and set S were
chosen arbitrarily, we may conclude that fI¥ obeys all odd-set constraints of €2, and
so fW e Q. [|

From this point forward in our analysis of the polytope O, we assume that the all-zeros
codeword is the transmitted codeword. From Theorem 5.4, we can use Corollary 4.10
and obtain the following:

Corollary 5.5 Given that the all-zeros codeword was transmitted (which we may
assume by Theorem 5.4), the LP decoder using Q will fail if and only if there is some
point in (f,w) € Q with cost less than or equal to zero, where f # 0".

5.2 Pseudocodewords

In this section, we introduce the concept of a pseudocodeword. A pseudocodeword
is essentially a scaled and normalized version of a point in the polytope Q. As a
consequence, Corollary 5.5 will hold for pseudocodewords in the same way that it
holds for points in Q. In Chapter 7, we will use this notion to connect the success
conditions of LP decoding with that of other message-passing algorithms for various
special cases. We will also use pseudocodewords to derive our bound on fractional
distance.

5.2.1 Definitions

The following definition of a codeword motivates the notion of a pseudocodeword.
Recall that FE; is the set of even-sized subsets of the neighborhood of check node j.
Let E; = E;\ {0}, the set of even-sized subsets not including the empty set. Let h be

63

a vector in {0, 1}", and let u be a setting of non-negative integer weights, one weight
u;s for each check j and S € E;. In a codeword, the vector h will represent the
codeword, and the variable u; ¢ will be set to 1 if the codeword has the configuration
S for check node j, and 0 otherwise.

We can enforce that h is a codeword with consistency constraints; for all edges
(i,7) in the factor graph G, we have

hi = Z Uj.S- (58>

SGEJ._ 521

This corresponds exactly to the consistency constraints (5.4) in Q. It is not difficult
to see that the constraints guarantee that the binary vector h is always a codeword
of the original code.

We obtain the definition of a pseudocodeword (h,u) by removing the restriction
h; € {0,1}, and instead allowing each h; to take on arbitrary non-negative integer
values. In other words, a pseudocodeword is a vector h = (hq, ..., hy,) of non-negative
integers such that, for every parity check j € J, the neighborhood {h; : i € N(j)} is
the sum of local codewords (incidence vectors of even-sized sets in E}).

With this definition, any (global) codeword is (trivially) a pseudocodeword as
well; moreover, any sum of codewords is a pseudocodeword. However, in general
there exist pseudocodewords that cannot be decomposed into a sum of codewords.
As an illustration, consider the fractional solution in Figure 5-1. If we simply scale
this fractional solution by a factor of two, the result is a pseudocodeword (h,u)
of the following form. We begin by setting h = [2,1,0,1,0,0,1]. To satisfy the
constraints of a pseudocodeword, set w4 {12y = U, {14} = UB f2,4y = Uc,{4,7} = 1. This
pseudocodeword cannot be expressed as the sum of individual codewords.

Note that we do not have variables u;g. This is because pseudocodewords are
normalized to the all-zeros codeword; the values on the variables u; ¢ represent the
total weight of A on non-zero local configurations. Thus the all-zeros codeword is still
a pseudocodeword, by setting all wg; = 0.

In the following, we use the fact that all optimum points of a linear program with
rational coefficients are themselves rational. We can restate Corollary 5.5 in terms of
pseudocodewords as follows:

Theorem 5.6 Given that the all-zeros codeword was transmitted (which we may as-
sume by Theorem 5.4), the LP decoder will fail if and only if there is some pseu-
docodeword (h,u), h # 0", where Y. ~v;h; <O0.

Proof: Suppose the decoder fails. Let (f, w) be the point in Q that minimizes), v; f;.
By Corollary 5.5, >, v f; < 0. Construct a pseudocodeword (h,u) as follows. Let
be an integer such that 3f; is an integer for all bits 4, and Sw, ¢ is an integer for all
for all checks j and sets S € E;". Such an integer exists because (f,w) is the optimal
point of the LP, and all optimal points of an LP are rational [Sch87]. For all bits 4,
set h; = B f;; for all checks j and sets S € £}, set u; 5 = fw;s.

By the consistency constraints of Q, we have that (h,u) meets the definition of a
pseudocodeword. The cost of (h,w) is exactly 8->, vif;. Since f # 0™, 3 > 0. This

64

implies that h # 0". Since >, v f; <0 and 5 > 0, we see that), v;h; <O0.

To establish the converse, suppose a pseudocodeword (h,u) where h # 0" has
> 7ihi < 0. Let § = max;(}_gep uj,s). We construct a point (f, w) € Q as follows:
Set f; = h;/ for all code bits i. For all checks j, do the following:

(i) Set w;s = u;s/0 for all sets S € E} .
(i) Set wjp=1-— ZS@E{ Wj.g.

We must handle w; g as a special case since u;y does not exist. By construction, and
equation (5.8), the point (f,w) meets all the constraints of Q. Since h # 0", we have
f # 0™ The cost of (f,w) is exactly (1/8) >, vih;. Since >, v;h; < 0, the point
(f,w) has cost less than or equal to zero. Therefore, by Corollary 5.5, the LP decoder
fails. [|

This theorem will be essential in proving the equivalence to message-passing de-
coding in the BEC in Section 7.3.

5.2.2 Pseudocodeword Graphs

A codeword y corresponds to a particular subgraph of the factor graph G. In par-
ticular, the vertex set of this subgraph consists of all the variable nodes 7 € Z for
which y; = 1, as well as all check nodes to which these variable nodes are incident.
Any pseudocodeword can be associated with a graph H in an analogous way. In this
section we define the notion of a pseudocodeword graph and give some examples.

In a pseudocodeword graph, we allow multiple copies of a node. Locally, a pseu-
docodeword graph looks identical to a codeword graph: variable nodes ¢ must connect
to exactly one copy of each check in N (i), and check nodes j must connect to some
even-sized configuration of the variable nodes in N(j) (without connecting to multiple
copies of the same node). Globally, however, the ability to use multiple copies of a
node can allow for weight distributions that are not possible using only codewords.
We see this in the examples at the end of the section.

This graphical characterization of a pseudocodeword is essential for proving our
lower bound on the fractional distance. Additionally, the pseudocodeword graph is
helpful in making connections with other notions of pseudocodewords in the literature.
We discuss this further in Section 7.3.

Definition. The vertex set of the graph H for a pseudocodeword (h,u) consists of
e h; copies of each variable node 7 € Z, and

® > ocp- s copies of each check node j € J. Each copy of j is “labeled” with
J
its corresponding set S € E.

We refer to the set of h; copies of the variable node i as Y; = {[i, 1], [¢,2], ..., [i, hi]}.
We refer to the set of wu;g copies of the check node j with label S as Z;¢5 =

{[]a Sa 1]7 []7 S’ 2]7 R [jv S,ang]}.

65

Figure 5-3: The graph of a pseudocodeword for the (7,4,3) Hamming code.

The edges of the graph are connected according to membership in the sets S.
More precisely, consider an edge (i,7) in G. There are h; copies of node i in H, i.e.,
Y| = hi. Now define Z>* as the set of nodes in H that are copies of check node j
labeled with sets S that include i. In other words, we have

zZ= |J Zs

SGE]._,SBZ'

By the definition of a pseudocodeword,

hi - E Uj.s,

SGEj_ 521

and so]Z]91| = h; = |Y;|. In the pseudocodeword graph H, connect the same-sized
node sets Z]9’ and Y; using an arbitrary matching (one-to-one correspondence). This
process is repeated for every edge (7,7) in G.

Note that in a pseudocodeword graph, every check node in Z; ¢ appears in exactly
|S| sets Zfi, one for each i € S. Therefore, the neighbor set of any node in Z; ¢
consists of exactly one copy of each variable node ¢ € S. Furthermore, every variable
node in Y; will be connected to exactly one copy of each check node j in N (7).

Examples. As a first example, we will walk through the construction of the pseu-
docodeword graph in Figure 5-3, which is the graph for the pseudocodeword h =
[2, 1,0, 1,0,0,]_], where UA7{172} = UA,{1,4} = UB7{274} = ’LLC7{477} = 1. We have hl =2
copies of node 1, which make up the set Y1 = {[1,1],[1,2]}; we also have 1 copy
of each of the nodes 2,4 and 7, making up the sets Yo = {[2,1]}, Y4 = {[4,1]} and
Y7 = {[7,1]}. We have 2 copies of check node A, one with label {1,2}, one with
label {1,4}. We have one copy of check nodes B and C, with labels {2,4} and {4, 7}
respectively. Note that Z4 19y = {[A,{1,2},1]} and Z4 .4 = {[A4,{1,4},1]}, and
so the set Z3' = Usens 551448 = {[A,{1,2},1],[A, {1,4},1]}. We have |Y;| = |Z3}],
and we make an arbitrary matching between these node sets, as shown in the figure.

66

Figure 5-4: A graph H of the pseudocodeword [0,1,0,1,0,2,3] of the (7,4,3) Hamming
code. The dotted circles show the original variable nodes i of the factor graph G, which are
now sets Y; of nodes in H. The dotted squares are original check nodes j in G, and contain
sets Zj g (shown with dashed lines) for each S € E;.

We see another example from Figure 5-4, where we have h = [0,1,0,1,0,2, 3].
Consider the variable node 7, and the check node C. Since h; = 3, we have three
copies of variable node 3, i.e., Y7 = {[7,1],[7,2],[7,3]}. For check node C, we have
uc a7y = 1 and uc 6,73 = 2. Therefore, we have 1 copy of C labeled with {4,7} (i.e.,
Zejan = {[C,{4,7},1]}), and two copies of C labeled with {6,7} (i.e., Zcn =
{[C,{6,7},1],[C,{6,7},1]}). These three copies of C' are separated into two groups
(using dotted squares in the figure) according to membership in sets Ze 47 and
Zeoge,7)-

We have Z2" = {[C,{4,7},1],[C,{6,7},1],[C,{6,7},1]}, and so we see that |Y7| =
|Z37]. An arbitrary matching is made between node sets Y7 and Z2.

Cost. The cost of the pseudocodeword graph is the sum of the costs ~; of the
variable nodes in the graph; if there are multiple copies of a variable node, then
each contributes to the cost of the pseudocodeword. The cost of the pseudocodeword
graph is equal to the cost of the pseudocodeword from which it was derived. Therefore,
Theorem 5.6 holds for pseudocodeword graphs as well.

5.3 Fractional Distance

Recall that the fractional distance of a proper C-symmetric polytope for the code C
is the minimum weight of any non-zero vertex of the polytope. All codewords are
non-zero vertices of the polytope, so the fractional distance is a lower bound on the
true distance.

67

For a point f in O, recall that the weight of f is defined as > fio Let V()
be the set of non-zero vertices of Q. Since Q is C-symmetric, the fractional distance
of Q is equal to the minimum weight of any vertex in V~(Q), by Theorem 4.7. The
fractional distance dj,. is always a lower bound on ﬁhe classical distance of the code,

since every non-zero codeword is contained in V'~ (Q). Moreover, using Theorem 4.2,
we have that LP decoding can correct up to [d./2] — 1 errors in the BSC.

5.3.1 Computing the Fractional Distance

In order to run the procedure outlined in Section 4.4.3, we use the small explicit
representation € of Q given by Theorem 5.1. The number of constraints in Q has
an exponential dependence on the check degree of the code. For an LDPC code, the
number of constraints will be linear in n, so that we can compute the exact fractional
distance efficiently. For arbitrary linear codes, we can still compute the minimum
weight non-zero vertex of the polytope R (covered in Section 5.5), which provides
a (possibly weaker) lower bound on the fractional distance. However, this polytope
introduces many auxiliary variables, and may have many “false” vertices with low
weight.

5.3.2 Experiments

Figure 5-5 gives the average fractional distance of a randomly chosen LDPC factor
graph, computed using the algorithm described in Section 4.4.3. The graph has left
degree 3, right degree 4, and is randomly chosen from an ensemble described by Sipser
and Spielman [SS96]. This data is insufficient to extrapolate the growth rate of the
fractional distance; however it certainly grows non-trivially with the block length.
We conjecture that this growth rate is linear in the block length.

Figure 5-6 gives the fractional distance of the “normal realizations” of the Reed-
Muller(n — 1, n) codes [For01]'. These codes, well-defined for lengths n equal to a
power of 2, have a classical distance of exactly n/2. The curve in the figure suggests
that the fractional distance of these graphs is roughly %nm. Note that for both
these code families, there may be alternate realizations (factor graphs) with better
fractional distance.

Although we have shown that the fractional distance is related to the worst-case
error event for LP decoding, it would be interesting to see if the fractional distance is
a good overall predictor of performance, especially since the fractional distance can be
computed. In Figure 5-7, we show that the fractional distance does predict somewhat
the performance of LP decoding. However, our data seem to show that the fractional
distance is not a good predictor of the performance of the standard message-passing
sum-product decoder.

'We thank G. David Forney for suggesting the normal realizations of the Reed-Muller codes.

68

Average Fractional Distance: Random (3,4) LDPC Code

14 T T T T T
Upper, lower quartiles ——+—
13 + Average -
Least squares curve
12 + Max -—e— A
3
g 1 o
14
a 10
<
s 9
8 8
LL
7
6
5 1 1 1 1 1
100 150 200 250 300
Code Length

Figure 5-5: The average fractional distance dj,. as a function of length for a randomly
generated LDPC code, with left degree 3, right degree 4. Also shown are the max, and the
upper and lower quartiles, for 100 samples per block length.

Classical vs. Fractional Distance: Reed-Muller(n-1,n) codes

I I I CIassical (Idistance J——
Fractional distance —e— |
256 E
8
g e]
B
(|
? 16 + —
O
=
g
L
4 - -
1 - 4
1 1 1 1
1 4 16 64 256 1024
Code Length

Figure 5-6: The classical vs. fractional distance of the “normal realizations” of the Reed-
Muller(n — 1, n) codes [For01]. The classical distance of these codes is exactly n/2. The

upper part of the fractional distance curve follows roughly %n(”.

69

WER vs. Fractiona Distance: Random Rate-1/4 (3,4) LDPC Code

-1.2
10 ; T T T T T T
Sum-Product Decoder X
LPDecoder e
-1.4
10 B |
o
° L[] ¢ L) N °
R ° oo . L 2 H
T 16 H D *".’"”! e oo o ot ':. : .
o 107" . . o "”\"‘\“*ﬁ;i» il]
a . o ote’ee D S -
e ° o o 4 '.o . °
LTJ . o e
© *)
5wt T T T - _
X ¢ X
; x X ><>< . ><><>Z<) XX >§<>< >8<>< XX x X
, X X X % X X * XX R
10° x XX . |
« % X X
X X X X x X x
X X X x
10-2.2 | . | | 1 X L 1
6 6.5 7 7.5 8 85 9 9.5 10

Fractional Distance

Figure 5-7: The word error rate (WER) as a function of the fractional distance of a random
LDPC code, under both LP and sum-product decoding. Each of the 100 data points for
each decoder represents a randomly chosen rate-1/4 (3,4) LDPC code of length 200. Three
instances are not shown, nor considered in the curve fit (these had fractional distances of
2, 4 and 4, and very poor WER). The curves are fit to minimize the sum of the squared
differences between the curve and the data points.

5.3.3 A Lower Bound Using the Girth

The following theorem asserts that the max-fractional distance of polytope Q is ex-
ponential in the girth of G. It is analogous to an earlier result of Tanner [Tan81],
which provides a similar bound on the classical distance of a code in terms of the
girth of the associated factor graph.

Theorem 5.7 Let G be a factor graph with deg, > 3 and deg, > 2. Let g be
the girth of G, g > 4. Then the max-fractional distance of Q is at least dp2* >

(degy — 1)lo/1 1.

We prove this theorem shortly, making heavy use of the combinatorial properties
of pseudocodewords. One consequence of Theorem 5.7 is that the max-fractional
distance is at least Q(n!'~¢) for some constant ¢, for any graph G' with girth Q(logn).
Note that there are many known constructions of such graphs (e.g., [RV00]).

Theorem 5.7 demonstrates that LP decoding can correct Q(n'=¢) errors for any
code defined by a graph with logarithmic girth. However, we need a linear lower bound
on the fractional distance to yield a non-trivial bound on the WER. For example,
consider the BSC with a constant crossover probability p. In expectation, we have

70

a linear number of bits flipped by the channel; therefore a sub-linear bound on the
fractional distance says nothing about the WER. On the other hand, even if the
fractional distance is sub-linear, the code may still perform quite well, just as a code
with low classical distance may still perform well. In RA(2) codes for example, even
though the classical distance (and the fractional distance) are both logarithmic, the
decoder still succeeds with high probability at low noise levels.

We note that for the polytope Q, we have dp> < dpac(deg, /2) (proven below).

ac —

It follows that for LDPC codes, where deg:r is constant, we have that d,. and d3:2%

frac

for the polytope Q are the same up to a constant factor.

Theorem 5.8 If djyq. is the fractional distance of Q, and dias 18 the maz-fractional
distance of Q, then AP < dprac(deg, /2).

ac —

Proof: Suppose not. Then, dF > dj,.(deg, /2). It follows that there exists some

vertex f € V(Q) such that
f’ < 2 max
2 Hi< gy i

By the definition of dp7%, it follows that

Zfi< 2 Elfl

)
deg max; f;

and so
fi< o
max f; .
i deg
Since deg; = maxjc7 |N(j)|, it follows that:
Vied, Y fi<2 (5.9)
iEN(5)

Set the variables {w; s};c7,ser, such that (f,w) € Q. From the constraints (5.4),
it follows that for all j € 7,

Do fi=) Shws >) 2wy

i€EN(5) SeE; 5;6#%1

The last step follows from the fact that for all S € E; where S # (), we have |S| > 2.
From the above equation, and equation (5.9), we have that for all j € 7,

Z wjs < 1.

SEE]'
S#0

Since ZSGEJ_ wjs = 1 (by the constraints (5.3) of Q), it follows that w;g > 0 for all
7 € J. This allows us to define a positive scaling factor ¢ > 0 that is small enough

71

to stay within Q: .
min e 7 W; 0
Qdejg;r
Construct a new (f',w’) € Q as follows. Set f/ = (1 +¢€)f; for all i € Z, and set
w) g = (1+€)wjs forall j € J and S € (E;\ (). Note that from the way we defined
¢, we have, for all j € J
Z w; g < 1.

€ =

SEE;,
S#0
Accordingly, we set
/ /
SeE;
S#£0

It follows that 0 < w;p < 1 and ZSGEJ, wig = 1for all j € J. Thus, the con-

straints (5.3) are met by (f’,w’). From the constraint (5.4) on (f,w), it follows that
for alli € Z and j € N(1),

fi=0+afi=1+e Y ws=) ws
SEEJ‘ SEE]‘
S2i S3i
and so (f’,w') meets the constraints (5.4) of Q. We conclude that (f',w’) € Q, and
so f' e Q.
To complete the proof, note that

1 ! 1 n
f=(1—+e)f+<1—1—+e>°'

Since 0" € Q, it follows that f is a convex combination of two other distinct points
in Q. Therefore f is not a vertex, a contradiction. []

Proving Theorem 5.7. Before proving Theorem 5.7, we will prove a few useful
facts about pseudocodewords and pseudocodeword graphs. For all the theorems in
this section, let G be a factor graph with all variable nodes having degree at least deg, ,
where deg, > 3 and all check nodes having degree at least deg, , where deg, > 2.
Let g be the girth of G, g > 4. Let H be the graph of some arbitrary pseudocodeword
(h,u) of G where h # 0™,

We define a promenade ¥ to be a path U = (¢1,¢2,..., ¢y) in H that may
repeat nodes and edges, but takes no U-turns; i.e., for all ¢ where 0 < i < |[U| -2, we
have ¢; # ¢;12. We will also use ¥ to represent the set of nodes on the path ¥ (the
particular use will be clear from context). Note that each ¢; could be a variable or a
check node. These paths are similar to the irreducible closed walk of Wiberg [Wib96].
A simple path of a graph is one that does not repeat nodes.

Recall that Y; consists of variable nodes in H that are all copies of the same vari-
able node 7 in the factor graph G similarly, the set Z; ¢ consists of check nodes in

72

H that are all copies of the same check node j in G. Accordingly, for some variable
node ¢ in H, let G(¢) be the corresponding node in G; i.e., (G(¢p) =i:¢ €Y;) if ¢
is a variable node, and (G(¢) = j : ¢ € Z; s for some S € Ej) if ¢ is a check node.

Lemma 5.9 For all promenades V = (¢1, ¢, . .., dw|) where |¥| < g,
o U is a simple path in H, and
o G(V) = (G(¢1),...,G(¢w))) is a simple path in G.

Proof: First note that G(¥) is a valid path. This follows by construction, since if
there is an edge (¢;, ¢;+1) in H, there must be an edge (G(¢;), G(¢41)) in G. If the
path G(WV) is simple, then the path ¥ must be simple. So, it remains to show that
G(V) is simple. This is true since the length of G(¥) is less than the girth of the
graph. [|

For the remainder of the section, suppose without loss of generality that h; =
max; h;. We have Y7 = ([1,1],[1,2],...,[1, h1]) as the set of nodes in the pseudocode-
word graph that are copies of the variable node 1. Note that g is even, since G is
bipartite. For all i € {1,... h}, let 7; be the set of nodes in H within distance
(9/2) — 1 of [1,i]; i.e., 7; is the set of nodes with a path in H of length at most
(9/2) — 1 from [1,1].

Lemma 5.10 The subgraph induced by the node set T; is a tree.

Proof: Suppose not. Then, for some node in ¢ in H, there are at least two different
paths from [1,14] to ¢, each with length at most (¢/2) — 1. This implies a cycle in H
of length less than ¢; a contradiction to Lemma 5.9. [|

Lemma 5.11 The node subsets (T,...,7y,) in H are all mutually disjoint.

Proof: Suppose not; then, for some ¢ # i’, 7; and 7; share at least one vertex. Let
¢ be the vertex in 7; closest to the root [1,:] that also appears in 7. Now consider
the path ¥ = ([1,4],...,¢’,6,¢",...,[1,7]), where the subpath from [1,i] to ¢ is the
unique such path in the tree 7;, and the subpath from ¢ to [1,4'] is the unique such
path in the tree 7;.

To establish that the path ¥ is a promenade, we must show that ¥ has no U-
turns. The subpaths ([1,4],...,¢’,¢) and (¢, d",...,[1,i]) are simple (since they are
entirely within their respective trees), so the only possible U-turn is at the node ¢;
thus it remains to show that ¢’ # ¢”. Since we chose ¢ to be the node in 7; closest to
[1,17] that also appears in 7, the node ¢’ must not appear in 7;. From the fact that
¢" does appear in 7, we conclude that ¢’ # ¢”, and so ¥ is a promenade.

Since the trees all have depth (g/2) — 1, the path ¥ must have length less that
g. Therefore the path G(¥) must be simple by Lemma 5.9. However, it is not, since
node 1 appears twice in G(V), once at the beginning and once at the end. This is a
contradiction. [|

73

Lemma 5.12 The number of variable nodes in H is at least hi(deg, — 1)19/41=1,

Proof: Consider the node set 7;. We will count the number of nodes on each “level”
of the tree induced by 7;. Each level ¢ consists of all the nodes at distance ¢ from [1,].
Note that even levels contain variable nodes, and odd levels contain check nodes.

Consider a variable node ¢ on an even level. All variable nodes in H are incident
to at least deg, other nodes, by the construction of H. Therefore, ¢ has at least
deg, — 1 children in the tree on the next level. Now consider a check node on an odd
level; check nodes are each incident to at least two nodes, so this check node has at
least one child on the next level.

Thus the tree expands by a factor of at least deg, —1 > 2 from an even to an
odd level. From an odd to an even level, it may not expand, but it does not contract.
The final level of the tree is level (¢g/2) — 1, and thus the final even level is level
2([g/4] — 1). By the expansion properties we just argued, this level (and therefore
the tree 7;) must contain at least (deg, — 1)/9/41=! variable nodes.

By Lemma 5.11, each tree is disjoint, so the number of variable nodes in H is at
least hy(deg, — 1)l9/41-1, |

We are now ready to prove Theorem 5.7. Recall that we assumed h; = max; h;,

and that V= (Q) = V(Q) \ 0.

Theorem 5.7 Let G be a factor graph with deg, > 3 and deg, > 2. Let
g be the girth of G, g > 4. Then the max-fractional distance of Q is at least
(Jmax > (degg_ _ 1)[g/4wfl‘

frac

Proof: Let f be an arbitrary vertex in V7 (Q). Set the variables {w;s}jes ser; such
that (f,w) € Q. Construct a pseudocodeword (h,u) from (f,w) as in Lemma 5.6;
i.e., let 3 be an integer such that 3f; is an integer for all bits ¢, and Sw, g is an integer
for all for all checks j and sets S € E;. Such an integer exists because (f,w) is a
vertex of Q, and therefore rational [Sch87]. For all bits i, set h; = [f;; for all checks
J and sets S € E, set u; s = fw;s.

Let H be a graph of the pseudocodeword (h,u), as defined in Section 5.2.2. By
Lemma 5.12, H has at least (max;h;)(deg, — 1)/9/41=1 variable nodes. Since the
number of variable nodes is equal to), h;, we have:

Z h; > (max h;)(deg, — 1)19/4171, (5.10)

Recall that h; = (f;. Substituting into equation (5.10), we have:
83" fi = Blmax fi)(degy — 1)1,

It follows that

< Zz Ji) > (deg[_ 1)[9/41—1‘

max; f;

74

This argument holds for an arbitrary f € V~(Q). Therefore

max _ - phin < Zz fl) Z (degﬁ— _ 1)[9/4171.

frae ™ pey(0) \ max; f;

5.4 Tighter relaxations

It is important to observe that LCLP has been defined with respect to a specific
factor graph. Since a given code has many such representations, there are many
possible LP relaxations, and some may perform better than others. The fractional
distance of a code is also a function of the factor graph representation of the code.
Fractional distance yields a lower bound on the true distance, and the quality of
this bound could also be improved using different representations. In addition, there
are various generic techniques for tightening LP relaxations that are of use in the
decoding application. In this section we present possible strategies to tighten the LP
relaxation, at the expense of a more complex polytope.

This area is largely unexplored; our goal in this section is to present some possible
tightening strategies, and a few experimental results. Another unexplored area is to
employ an adaptive strategy to decoding, using LP tightening methods. In other
words, the decoder solves the LP; if a codeword is found, we are done. If not, the
decoder adds an LP constraint to eliminate the the fractional vertex found, and
repeats. We discuss this further in Chapter 9.

5.4.1 Redundant Parity Checks

Adding redundant parity checks to the factor graph, though not affecting the code,
provides new constraints for the LP relaxation, and will in general strengthen it. For
example, returning to the (7,4,3) Hamming code of Figure 2-2, suppose we add a
new check node whose neighborhood is {1,3,5,6}. This parity check is redundant
for the code, since it is simply the mod two sum of checks A and B. However, the
linear constraints added by this check tighten the relaxation; in fact, they render our
example pseudocodeword f = [1,1/2,0,1/2,0,0,1/2] infeasible. Whereas redundant
constraints may degrade the performance of BP decoding (due to the creation of small
cycles), adding new constraints can only improve LP performance.

As an example, Figure 5-8 shows the performance improvement achieved by adding
all “second-order” parity checks to a factor graph GG. By second-order, we mean all
parity checks that are the sum of two original parity checks. It turns out that the only
effect of adding second-order parity checks is on 4-cycles in the original factor graph.
(This is not hard to see.) This explains the meager performance gain in Figure 5-8.

It would be interesting to see a good strategy for adding redundant parity checks
that would have a real effect on performance. A natural question is whether adding
all redundant parity checks results in the codeword polytope poly(C) (and thus an
ML decoder). This would not imply P = NP, since there are an exponential num-

1)

ber of unique redundant parity checks. However, this turns out not to be the case
(Hadamard codes provide the counterexample).

WER Comparison: Random Rate-1/4 (3,4) LDPC Code

0
107 T T T T T]
s First-Order LP Decoder —e— |
Second-Order LP Decoder —e— |
10t F .
(]
T
x
f—
o
S
-
W g2 b .
o
P
s
10° | 1
1 1 1 1 1 1
10708 10t 1012 1014 1016 1018 102

BSC Crossover Probability

Figure 5-8: Error-correcting performance gained by adding a set of (redundant) parity
checks to the factor graph. The code is a randomly selected regular LDPC code, with
length 40, left degree 3 and right degree 4, from an ensemble of Gallager [Gal62]. The
“First Order Decoder” is the LP decoder using the polytope Q defined on the original
factor graph. The “Second Order Decoder” uses the polytope O defined on the factor
graph after adding a set of redundant parity checks; the set consists of all checks that are
the sum (mod 2) of two original parity checks.

5.4.2 Lift and Project

In addition to redundant parity checks, there are various generic ways in which an
LP relaxation can be strengthened (e.g., [LS91, SA90]). Such “lifting” techniques
provide a nested sequence of relaxations increasing in both tightness and complex-
ity, the last of which is equivalent to the convex hull of the codewords (albeit with
exponential complexity). Therefore we obtain a sequence of decoders, increasing in
both performance and complexity, the last of which is an (intractable) ML decoder.
It would be interesting to analyze the rate of performance improvement along this
sequence. Another interesting question is how complex a decoder is needed in order
to surpass the performance of belief propagation.

Performing one round of “lift-and-project” [L.S91] on the polytope Q results in a
natural LP relaxation that can be explained independently. In this section we present

76

this LP and give some experimental results illustrating the improvement gained over
the “first-order” relaxation Q.

The new relaxation will have n? variables f;;, one for each (i, j) € Z?. The variable
fi; can be thought of as an indicator for setting both y; and y; equal to 1. Therefore,
codewords y will correspond to integral solutions that have have f;; = y;y; for all
(i,7) € I?. (Note that f;; = y; for alli € Z.)

We can view a particular setting f of the variables as an n x n matrix F'. For
example, the following matrix represents the matrix F' for the codeword 0111010 of
the Hamming code in Figure 2-2:

O O O O O o O
O, OKF R~ MO
O, O M= FP, O
OFr OMPL —» O
O O OO O oo
[l el N o)
S O OO O OO

Note that the codeword 0111010 sits on the diagonal of the matrix.

In the discussion below, we will argue that this matrix has certain properties.
From these properties we will derive valid LP constraints that any integral solution
must obey; since the codeword solutions obey these constraints, we may enforce them
in our relaxation.

We describe the LP constraints in detail as follows. The variables are indicators,

so we have
0< fy; <1 forall (i,j)€Z>

Note that in the matrix I, we have Fj; = y;y; = Fj;; so we may conclude that the
matrix F'is symmetric. Therefore we may enforce the constraints

fij = [forall (i,j)€ 7

The diagonal of F' is the codeword y. Therefore, we may enforce the constraints of
Q on the variables on the diagonal. We use the projected polytope Q to simplify
notation:

(f11>f227---7fnn) c Q

Now consider a row ¢ of the matrix F. If y; = 0, then this row will be all zeros. If
y; = 1, then this row will be exactly the codeword y. Since 0" is a codeword, we may
conclude that every row of F'is a codeword. Thus, we may enforce the constraints of
Q on each row:

(fiir foir- o fni) €Q forall i€

We also have that all columns of F' are codewords; however from symmetry and the
row constraints above, we already have the Q constraints enforced on each column.

Finally, consider the difference between the values on the diagonal of F' and the
values in a particular row i; i.e., the values (Fi3 — Fi, Fog — Foiy oo Frp — Fyy). If

7

WER Comparison: Random Rate-1/4 (3,4) LDPC Code

10° ¢ ;
: LP Decoder —e—]
Lift-and-project Decoder —=— 1
ML Decoder —«—]
10" | E
[}
T
o
S
m 0§ ;
S i 1
S
s
10° | E
10-4 | | 1 1
2 3 4 5 6 7

AWGN Signal-to-noiseratio (E, / Ny in dB)

Figure 5-9: The word error rate of the lift-and-project relaxation compared with LP de-
coding and ML decoding.

y; = 0, then row ¢ is all zeros, and we have that this difference is equal to y. If y; = 1,
then row i is the codeword y, and the difference is equal to all zeros. Therefore, this
difference vector is always a codeword. Thus, we may enforce the polytope constraints
on this vector as well:

(fir = frir foo = fois ooy fan — fri) € Q forall ie?

Again, the corresponding column constraints are implied. The cost function is applied
to the diagonal, since it represents the codeword. Therefore, our objective function
is of the form:
minimize Z% fii
ieT

By the way we constructed this LP, we immediately have that all codewords are
feasible solutions. Furthermore, an integral solution must have a codeword on the
diagonal, since all integral points in Q are codewords. We may therefore conclude
that this LP has the ML certificate property. (Also, the projection of the defined
polytope onto the {f;; }icz variables is a proper polytope.)

This new “lifted” polytope is a tighter relaxation to the ML decoding problem
than the polytope Q. This offers a better decoder, at the expense of increasing the
complexity of the polytope from O(n) to ©(n?). Figure 5-9 shows the performance
gained by using this tighter relaxation, using a random (3,4) LDPC code of length
36.

78

We note that for codewords, the matrix F' is always positive semi-definite [LS91].
This constraint can be enforced in the relaxation, and the resulting problem would be
a semi-definite program, also solvable in polynomial time. It would be interesting to
interpret this constraint as we have done here, and analyze its affect on performance.

5.4.3 ML Decoding

Another interesting application of LP decoding is to use the polytope Q to perform
ML decoding. Recall that an integer linear program (ILP) is an LP where variables
are constrained to take on integer values. If we add the constraint f; € {0,1} to our
linear program, then we get an exact formulation of ML decoding. In general, integer
programming is NP-hard, but there are various methods for solving an IP that far
outperform the naive exhaustive search routines. Using the program CPLEX (which
uses a branch-and-bound algorithm) [ILO01], we were able to perform ML decoding
on LDPC codes with moderate block lengths (up to about 100) in a “reasonable”
amount of time. Figure 7-5 includes an error curve for ML decoding an LDPC code
with a block length of 60. Each trial took no more than a few seconds (and often
much faster) on a Pentium IV (2GHz) processor. Drawing this curve allows us to see
the large gap between various suboptimal algorithms and the optimal ML decoder.
This gap further motivates the search for tighter LP relaxations to approach ML
decoding.

5.5 High-Density Code Polytope

The number of variables and constraints in the polytope Q has an exponential de-
pendence on the degrees of the check nodes. For LDPC codes, the check nodes have
constant degree, so Q has size linear in n, and this is not a problem. For high-density
codes, however, the size of the LP may make it very complex to solve.

Recall that deg, is the maximum degree of any check node in the graph. The
polytope Q has O(n—i—m2d€9j) variables and constraints. For turbo and LDPC codes,
this complexity is linear in n, since deg, is constant.

In this section we give a polytope R with O(mn + m(deg,)? + ndeg/ deg,) =
O(n?®) variables and constraints, for use with arbitrary (high-density) linear codes.
Furthermore, the projection of this polytope R will be equivalent to Q; thus the
polytopes Q, 2 and R produce the same results when used for LP decoding.

To derive this polytope, we give a new polytope for each local codeword polytope
whose size does not have an exponential dependence on the size of the check neigh-
borhood. The local polytopes are based on a construction of Yannakakis [Yan91].

5.5.1 Definitions

For a check j € J, let T; = {0,2,4,...,|N(j)|} be the set of even numbers from 0 to
|N(j)]. Our new polytope has three sets of variables:

79

e For all 1 € Z, we have a variable f;, where 0 < f; < 1. This variable represents
the code bit y;, as before.

e For all j € J, and k € T}, we have a variable «;;, where 0 < «;; < 1. This
variable indicates the contribution of weight-k local codewords.

e Forall j € J, k€T, and i € N(j), we have a variable z; ; 5, where 0 < z; ;, <
o ;. This variable indicates the portion of f; locally assigned to local codewords
of weight k.

Using these variables, we have the following constraint set:

VieT,je N(i), fi=" ziju (5.11)
kETj
VjeJ, D ajr=1 (5.12)
kGTj
Vj eJ, k e 7}, Z Zijk = k- QK (513)
iEN(5)
Vi €T, 0<f;i <1 (5.14)
VjEj,k‘GTj, 0<a;,<1 (5.15)
ViEI,j S N(i),/{?GTj, 0< Zi gk S@j,k (516)

Let R be the set of points (f, a, z) such that the above constraints hold. This polytope
R has only O((deg;H)?) variables per check node j, plus the { f} variables, for a total of
O(n+m(deg;)?) variables. The number of constraints is at most O(mn+ndegy deg,’).
In total, this representation has at most O(n?®) variables and constraints.

We must now show that optimizing over R is equivalent to optimizing over Q.
Let R represent the projection of R onto the {f;} variables; i.e.,

R={f:(f a2z R}

Since the cost function only affects the {f} variables, it suffices to show that Q = R.
Before proving this, we need the following fact:

Lemma 5.13 Let X = {xy,...,z,}, v; <M, and), x; = kM, where k, n, M and
all x; are non-negative integers. Then, X can be expressed as the sum of sets of size
k. Specifically, there exists a setting of the variables {wg : S C {1,...,n},|S| = k}
to non-negative integers such that Y qws = M, and for all i € {1,...,n}, z; =

ZSaz‘ ws.

Proof:* By induction on M. The base case (M = 1) is simple; all z; are equal to
either 0 or 1, and so exactly k of them are equal to 1. Set wy;.,,—1) = 1.

2We thank Ryan O’Donnell for showing us this proof

80

For the induction step, we will greedily choose a set S consisting of the indices of
the k largest values x;. After increasing wg by 1, what remains will be satisfied by
induction.

Formally, we assume wlog that 7y > x5 > -+ > x,. Set X' = (2,...,2}), where

x; = x; — 1 for i <k, and 2} = z; otherwise. Since), z; = kM and z; < M, it must
be the case that the largest k values x1, ...,z are at least 1. Furthermore, we must
have z; < M — 1 for all i > k. Therefore 0 < 2 < M — 1 for all i. We also have
Yoxi=>.x;—k= (M —1)k. Therefore, by induction, X’ can be expressed as the
sum of wy, where S has size k. Set w = w’, then increase wyy, . 5y by 1. This setting

of w expresses X. [|

Proposition 5.14 The polytopes R and Q are equivalent. Therefore optimizing over
R is equivalent to optimizing over Q.

Proof: Suppose f € Q. Set the variables {wj,s}jes,sem; such that (f,w) € Q. Now
set

= > wis (Vje T, keTy), (5.17)

Zijk = > wis (Vi€ Z,je N(i)keTy). (5.18)

It is clear that the constraints (5.14), (5.15) and (5.16) are satisfied by this setting.
Constraint (5.11) is implied by (5.4) and (5.18). Constraint (5.12) is implied by (5.3)
and (5.17). Finally, we have, for all Vj € J,k € T},

Z Zijk = Z Z wWj.s (by (5-18))

iEN() iEN(j) SEE;,
|S|=F,
S5i
= [Slwjs =k Y wis = k-aj (by (5.17)),
SeE;, SeE;,
|SI=k |SI=k

giving constraint (5.13). We conclude that (f,«,2) € R and so f € R. Since f was
chosen arbitrarily, we have Q C R.

Now suppose f is a vertex of the polytope K. Set the variable sets a and z such
that (f,a,2) € R. For all j € J, k € T}, consider the set

X, = {Zﬂk i€ N(j)}.

aj7k

81

By (5.16), all members of X; are between 0 and 1. Let 1/8 be a common divisor of
the numbers in X; such that 3 is an integer. Let

Xy = {ﬂzi’j’k i€ N(j)} .
Q5

The set X, consists of integers between 0 and (. By (5.13), we have that the sum of

the elements in X, is equal to kG. So, by Lemma 5.13, the set X5 can be expressed

as the sum of sets S of size k. Set the variables {ws : S € N(j),|S| = k} according

to Lemma 5.13. Now set w; g = “ZEwg, for all S € N(j),|S| = k. We immediately

B
satisfy (5.2). By Lemma 5.13 we get:

Zigk = E wy.s, and (519)
SckEj,
SETA
|S|=F

Qg = Y Wi (5.20)

SEEj,
|S|=k

By (5.11), we have

fi = Zzi,j,k = Z Z wj,s (by (5.19))

kETj kGTj S§E<‘j7
21,
[S|=F

= E w;j s,

SEE;,83i

giving (5.4). By (5.12), we have

1 = .a];k = Z Z wj 5 (by (5.20))

kGT] kGTj ;|5:§|E]k,

= : : wjvs7

SEE]'

giving (5.3). We conclude that (f,w) € Q, and so f € Q. We have shown that all
vertices f € R are contained in @, and so R C Q. [|

5.6 The Parity Polytope

In this section we present the proof of Jeroslow, showing that the parity polytope is
exactly the polytope described by the odd-set constraints for a particular check node
in equation (5.6).

Recall that €2; is the set of points f such that 0 < f; <1 for all ¢ € Z, and for all

82

S S N(), |S] odd,

Dofit DY (-f)<INGI -1 (5.21)

€S 1€(N(5)\9)

We must show the following:
Theorem 5.15 [Jer75] The polytope Q; = Q; = {f : Jws.t. (f,w) € Q;}.

Proof: For all i ¢ N(j), the variable f; is unconstrained in both Q; and Q; (aside
from the constraints 0 < f; < 1); thus, we may ignore those indices, and assume that
NG) =T, | |

Let f be a point in Q;. By the constraints (5.3) and (5.4), Q, is the convex
hull of the incidence vectors of even-sized sets S € E;. Since all such vectors satisfy
the constraints (5.21) for check node j, then f must also satisfy these constraints.
Therefore f € ;.

For the other direction, suppose some point f’ € 2, is not contained in Qj Then
some facet F' of Q; cuts f' (makes it infeasible). Since 0 < f/ < 1 for all i € Z, it
must be the case that F' passes through the hypercube [0, 1]", and so it must cut off
some vertex of the hypercube; i.e., some z € {0,1}". Since all incidence vectors of
even-sized sets are feasible for Qj, the vertex x must be the incidence vector for some
odd-sized set S ¢ E;.

For a particular f € [0,1]", let [f]; =1 — f; if x; =1, and [f]; = f; if 2, = 0. We
specify the facet F' in terms of the variables [f], using the equation

Fo alfli +ag[fla+ - +an[fln 20

Since z is infeasible for F, it must be that), a;[x]; < b. Since [z], = 0 for all i € Z,

we have). a;[z]; = 0, so we may conclude that b > 0.
@i’

7:/
and z7" = z; for all i # ¢'. Since x has odd parity, we have that for all 7/, z®" has
even parity, so % € Q;, and 2% is not cut by F. This implies that for all i’ € Z,

Z a; [I@i/]i Z b

i

For some ' € T, let 2" denote vector = with bit i flipped; i.e., 0¥ =1 — x,

Note that [z9"]; = [z]; = 0 for all i # 4', and [2%]y = 1 — [2]y = 1. So, we may
conclude ay > b > 0, for all i/ € 7.

The polytope Q; is full-dimensional (for a proof, see [Jer75]). Therefore F must
pass through n vertices of Qj; i.e., it must pass through at least n even-parity binary
vectors. We claim that those n vectors must be the points {z®" : i € Z}. Suppose
not. Then some vertex 2’ of Qj is on the facet F', and differs from x in more than
one place. Suppose wlog that z| # z; and z}, # x4, and so [2/]; = 1, [2/]s = 1. Since
2’ is on F, we have). a;[z']; = b. Therefore

ar +az + Zai[x’]i =b.
i=3

83

Since a; > 0 Vi, we have Y " . a;[z]; > 0, and so
a; +ay <b.

This contradicts the fact that ai,as > b > 0.

Thus F passes through the vertices {z% : i € Z}. It is not hard to see that
F is exactly the odd-set constraint (5.21) corresponding to the set S for which z is
the incidence vector. Since F' cuts f’, and F is a facet of ;, we have f' ¢ Q,, a
contradiction. [|

84

Chapter 6

LP Decoding of Turbo Codes

The introduction of turbo codes [BGT93] revolutionized the field of coding theory by
demonstrating error-correcting performance that was significantly better than that of
any other code at the time. Since then, volumes of research has focused on design,
implementation, and analysis of turbo codes and their variants and generalizations.
For a survey, we refer the reader to a textbook written on the subject [VY00].

Turbo codes consist of a set of convolutional codes, concatenated in series or in
parallel, with interleavers between them. A convolutional code (as a block code) is
based on convolving the information bits with a fixed-length binary word, and an
interleaver reorders the bits using a fixed permutation. Each individual convolutional
code has a simple ML decoder; however, the system as a whole is much more complex
to decode. The sum-product (also known as belief propagation) algorithm is the de-
coder most often used for turbo codes; this decoder iteratively passes messages about
the likelihood of each bit between the decoders for the individual convolutional codes.

In this chapter we define a linear program (LP) to decode any turbo code. Our
relaxation is very similar to the min-cost flow problem (see Chapter 3). We will
motivate the general LP by first defining an LP for any convolutional code. In fact,
we will give an LP for a more general class of codes: any code that can be defined by
a finite state machine. Then, we use this LP as a component in a general LP for any
turbo code. We discuss the success conditions of this decoder, which are related to
the optimality conditions for the network flow problem.

We apply this LP to a family of codes known as Repeat-Accumulate (RA) codes,
which are the simplest non-trivial example of a turbo code. For RA codes with rate
1/2, we give a specific code construction, and show that the word error rate under LP
decoding can be bounded by an inverse polynomial in the block length of the code,
as long as the noise is below a certain constant threshold.

The results in Section 6.3 on RA codes are joint work with David Karger, and
have appeared elsewhere [FK02a, FK02b].

85

6.1 Trellis-Based Codes

In this section we define a linear program for codes represented by a trellis. This
family of codes is quite general; in fact trellises in their most general form may be
used to model any code (even non-binary codes). The trellis is a directed graph
where paths in the graph represent codewords. The trellis representation is most
useful when the code admits a small-sized trellis; in this case, ML decoding can be
performed using the Viterbi algorithm [Vit67, For73, For74], which essentially finds
the shortest path in the trellis.

The size of our LP will depend (linearly) on the size of the trellis. For simplicity
(and because we lose no insight into the LP decoding technique), we will restrict our
definition of a trellis-based code to binary codes that model a finite-state machine
over time. We also assume that each code has rate r = 1/R, for positive integer R.

Section Outline. We begin in Section 6.1.1 by defining an encoding process based
on finite state machines. We also define the trellis, which can be seen as a model of
the actions of the encoder over time. Finally, we discuss how this encoding process
can be made into a code, and how we can use the trellis to perform ML decoding
efficiently. In Section 6.1.2, we review a commonly studied form of trellis-based code
called a convolutional code. These codes traditionally form the building blocks for
turbo codes. In Section 6.1.3, we discuss the method of tailbiting a trellis, which
improves the quality of the code, and changes the structure of the trellis. Finally, in
Section 6.1.4, we give an LP relaxation to decode any trellis-based code.

6.1.1 Finite State Machine Codes and the Trellis

Finite State Machines. Let M be a finite-state machine (FSM) over the input
alphabet {0,1}. An FSM M (Figure 6-1 for example) is simply a directed graph made
up of states. Each state (node) in the graph has two outgoing edges, an input-0 edge
and an input-1 edge. For a given edge e, we use type(e) € {0,1} to denote the “type”
of the edge. In diagrams of the FSM, we use solid lines to denote input-0 edges, and
dotted lines to denote input-1 edges. Each edge has an associated output label made
up of exactly R bits. For an edge e, we use label(e) € {0,1}% to denote the output
label.

The FSM can be seen as an encoder as follows. When the machine receives a block
of input bits, it examines each bit in order; if the bit is a zero, the machine follows
the input-0 edge from its current state to determine its new state, and outputs the
output label associated with the edge it just traveled. If the bit is a one, it follows
the input-1 edge. The overall rate of this encoding process is r = 1/R.

For example, consider the FSM in figure 6-1. Suppose we start in state 00, and
would like to encode the information bits 1010. Our first information bit is a 1, so
we follow an input-1 edge (dotted line) to the new state 10, and output the label 11.
The next information bit is 0, so we follow the input-0 edge (solid line) to the new
state 01, and output the label 10. This continues for the next two information bits,

86

Figure 6-1: A state transition table for a rate-1/2 convolutional encoder with generating
polynomials 5,7. The bit pairs on the transition edges represent encoded output bits.

and overall, we travel the path 00 — 10 — 01 — 10 — 01, and output the code bits
11100010.

The Trellis In order to simulate the operation of a single FSM M over some number
k of input bits, we will define a trellis T. The trellis T" is a graph with k£ + 1 copies
(Mo, ..., My) of the states of M as nodes.

The trellis T" has edges between every consecutive copy of M, representing the
transitions of the encoder at each time step, as it encodes an information word of
length k. So, for each edge (s,s’) connecting state s to state s’ in the FSM M, the
trellis contains, for each time step ¢t where 1 <t < k, an edge from state s in M;
to state s’ in M;. This edge will inherit the same type and output label from edge
(s,s") in M. Figure 6-2 gives the trellis for the FSM in Figure 6-1, where k = 4. The
bold path in Figure 6-1 indicates the path taken by the encoder in the example given
earlier, when encoding 1010.

We can view the encoder as building a path through the trellis, as follows. Denote
a “start-state” of the FSM. The trellis length & is equal to the length of the information
word. The FSM encoder begins in the start state in My, uses the information word x
as input, and outputs a codeword y. The length of this codeword will be kR = k/r
= n. Since every state has exactly two outgoing edges, there are exactly 2* paths of
length k from the start state, all ending in trellis layer Mj. So, the set of codewords
is in one-to-one correspondence the set of paths of length k from the start state in
MQ.

Before proceeding, we need to establish some notation we will use throughout our
study of trellis-based codes and turbo codes. For each node s in a trellis, define out(s)
to be the set of outgoing edges from s, and in(s) to be the set of incoming edges.
For a set of nodes S, define out(S) and in(S) to be the set of outgoing and incoming
edges from the node set S.

87

Figure 6-2: A trellis for the rate-1/2 FSM code in figure 6-1. The trellis has length & = 4,
and five node layers (Mg, My, Mo, M3, My). As in the state transition table, the bit pairs on
the transition edges represent encoded output bits. Each layer of the trellis represents one
input bit. The bold path is the path taken by the encoder while encoding the information
bits 1010.

Let I; be the set of “input-1” edges entering layer ¢. Formally,
I = {e € in(M,) : type(e) = 1}.

We also define edge sets O;, where an edge is in O; if it outputs a 1 for the i”* code
bit. Formally,

O; ={e € in(M,) : label(e), = 1},

where t = |(i — 1)/R| +1and £ =i — R(t — 1).

Decoding Trellis-Based Codes The Viterbi algorithm, developed by Viterbi
[Vit67], and Forney [For73] [For74], is the one used by most decoders of trellis-based
codes. The idea is to keep track (implicitly) of all possible codewords using dynamic
programming, and output the one that is most likely. This can be done by assigning
a cost to each edge of the trellis, and then finding the lowest-cost path of length &
from the start state of the trellis.

For each edge e in T, define a cost .. This is also referred to as the branch
metric. This cost will be the sum of the costs v; of the code bits y; in the output label
(denoted label(e)) of the edge that are set to 1. (Recall that the cost v; of a code bit
is the log-likelihood ratio of the bit, as defined in Section 2.5.) More formally,

Ye = Z Yi-

i:e€O;

88

In the BSC, the cost, or branch metric of an edge can also be set to the Ham-
ming distance between the label on the edge and the bits of § that were apparently
transmitted at that time step. This is the same “cost-rescaling” we discussed in Sec-
tion 2.5. For example, suppose we were using the code from Figure 6-2, and we have
71 = 1 and g2 = 0. The two code bits y; and y, were originally transmitted using
the label of some edge from the first trellis layer (i.e., for some e € in(M;)). So, for
each edge in that layer, we assign a cost equal to the Hamming distance between the
label on the edge and the received sequence 10. For example, the edge e from 01 to
10 between layers M, and M; would have cost A(label(e),10) = A(00, 10) = 1.

The ML decoding problem is to find the minimum cost path of length k from
the given start state. Since the graph is acyclic, the shortest path can be found
by breadth-first search from the start state. This is exactly the Viterbi algorithm.
There are many implementation issues surrounding the Viterbi algorithm that affect

its performance; for details we refer the reader to textbooks that discuss convolutional
codes [Wic95, JZ98].

6.1.2 Convolutional Codes

Convolutional codes can be seen as a particular class of FSM-based codes. Their
simple encoder and decoder have made them a very popular class of codes. In this
section we describe the basics of convolutional codes; for more details, we refer the
reader to textbooks written on the subject [Wic95, JZ98].

The state of a convolutional encoder is described simply by the last x — 1 bits fed
into it, where x is defined as the constraint length of the code. So, as the encoder
processes each new information bit, it “remembers” the last x — 1 information bits.
The output (code bits) at each step is simply the sum (mod 2) of certain subsets of
the last k — 1 input bits. (We note that convolutional codes with feedback cannot be
described this way, but can still be expressed as FSM codes.)

Convolutional encoders are often described in terms of a circuit diagram, such as
the one in Figure 6-3. These diagrams also illustrate how simple these encoders are
to build into hardware (or software). The circuit for a convolutional encoder with
constraint length x has k — 1 registers, each holding one bit. In general, at time ¢
of the encoding process, the i register holds the input bit seen at time t — 4. In
addition, there are R output bits, each one the mod-2 sum of a subset of the registers
and possibly the input bit. The connections in the circuit indicate which registers
(and/or the input bit) are included in this sum.

For example, in Figure 6-3, the constraint length is 3, and so there are 2 registers.
The rate is 1/2, so there are two output bits. The bits (x1,xs,...,x;) are fed into
the circuit one at a time. Suppose the current “time” is t. The first output bit is the
sum of the current input bit (at time ¢) and the contents of the second register: the
bit seen at time ¢t — 2. The second output bit is the sum of the input bit, and the two
registers: the bits seen at time ¢t — 1 and t — 2.

The FSM and Trellis For Convolutional Codes We can also describe a con-
volutional code using a finite state machine. The state s of a convolutional encoder

89

Figure 6-3: The actions of a convolutional encoder for a rate-1/2 convolutional code, from
its initial state 00, given an input stream of 100. Diagram (a) shows the initial state of the
encoder, with both memory elements set to 0. The first input bit is a 1. Upon seeing this
bit, the encoder outputs 1 + 0 = 1 for the first code bit, and 1 + 04 0 = 1 for the second
code bit. Diagram (b) shows the encoder after processing the first input bit; the memory
elements have slid over one step, so the new state is 10. The new input bit is 0, and so the
next output bits are 0+ 0 = 0 and 0+ 1 + 0 = 1. Diagram (c) shows the next state (01),
the new input bit (0) and the next output bits (1 and 1). Finally, diagram (d) shows the
final state 00 after processing all three input bits.

can be described by the contents of the registers in the circuit, so s € {0,1}%71.

The FSM for our running example is the same one shown in Figure 6-1. This is
simply a graph with one node for each possible state s € {0,1}*! of the circuit in
Figure 6-3. For each node with state s, we draw two edges to other states, representing
the two possible transitions from that state (one for an input bit of 1, one for an input
bit of 0). As before, the edges are solid lines if the transition occurs for an input bit
of 0 and dotted lines for an input bit of 1.

The edges are labeled as before, with the bits output by the encoder circuit making
this transition. For example, if we take the first step in Figure 6-3, the current state
is 00, the input bit is a 1, the next state is 10, and the output bits are 11. So, in our
FSM graph we make an edge from state 00, written with a dotted line, into state 10,
and label the edge with code bits 11. We derive the trellis for a convolutional code
from the FSM, as we did in the previous section. The trellis for the code in Figure 6-3
is shown in Figure 6-2.

Feedback If a convolutional code has feedback, then its new state is not determined
by the previous x — 1 information bits, but rather is determined by the previous xk — 1
feedback bits. The feedback bit at time ¢ is the sum (mod 2) of the information bit
at time ¢ and some subset of the previous x — 1 feedback bits. These codes still
have a simple state transition table, and can be decoded with a trellis. We will see

90

",’11 n11

., 10
“1or

Figure 6-4: A terminated trellis for a rate-1/2 convolutional encoder. The bold path is the
cycle taken by the encoder while encoding the information bits 1010 00, which corresponds
to the original information 1010 padded with two zeros.

an “accumulator” later in the thesis, which is a simple example of a convolutional
code with feedback. For more details on feedback in convolutional codes, we refer the
reader to [Wic95] or [JZ98|.

6.1.3 Tailbiting

There are other ways to define codes based on this trellis that use “tailbiting.” This
is a method of code design such that codewords correspond to cycles in a cyclic trellis
rather than paths in a conventional trellis. Depending on the structure of the FSM,
tailbiting methods may remove edges and nodes of the trellis, redefine the encoding
process, or assume a certain structure of the input sequence.

We can see the importance of tailbiting when we consider convolutional codes.
In convolutional codes without tailbiting, the final few bits of the input stream are
not as “protected” as the first bits; they do not participate in as many code bits. To
counteract this problem, there are two common solutions.

1. One solution is to terminate the code by forcing it to end in the all-zero state.
We can do this by padding the end of the information stream with x — 1 0Os.
This way, the encoder always finishes in state 0! at time k. The drawback to
padding with Os is the loss of rate; we must add (k — 1)(1/r) symbols to the
codeword without gaining any information bits.

If we use this scheme, then we can redraw the trellis with xk — 1 extra layers, as
in figure 6-4. Note that in the figure we have removed some nodes and edges
that are never used by the encoder. This new trellis can easily be made into
a cyclic trellis if we merge the start state in M, with the final all-zeros state
in node layer M}, (not shown in the figure). If we do this merge, the set of
codewords is exactly the set of cycles in the trellis of length k.

2. A more elegant solution is to use the last x — 1 bits of the information word,
in reverse order, to determine the starting state at trellis layer 0. For example,

91

Figure 6-5: A cyclic trellis for a tailbiting rate-1/2 convolutional encoder. The trellis has
length k& = 4, and four node layers (My, M, Ma, Ms3). The bold path is the path taken by
the encoder while encoding the information bits 1010.

if k = 3, and the last two bits were 01, then the start state of the encoder is
set to state 10. Now encode as before, starting from this state rather than 00.
The encoder will always end in the state it began, since the state is exactly the
previous k — 1 bits seen. Therefore, we can merge the first and last node layer
of the trellis, and the codewords correspond to cycles in the trellis, rather than
paths.

Figure 6-5 shows an appropriate trellis for this scheme, applied to our running
example code. Now, if the information word is 1010, we set the start state equal
to 01, then follow the cycle 01 — 10 — 01 — 10 — 01, as seen in the figure.

From these two examples, we define a cyclic trellis abstractly as follows. A cyclic
trellis has k layers of nodes (My,..., My_1). All edges in the trellis go between
consecutive layers of the trellis. (Note that My_; and M, are considered consecutive.)

As in the conventional trellis, every node has two outgoing edges, one of each
“input type.” In addition, every edge has an output label with exactly R bits. The
definitions of I; and O; remain the same, where M), is considered to be the same as
Mg.

Given a cyclic trellis T, the set of codewords in the code it defines is in one-to-
one correspondence with the set of cycles in T' of length exactly k. Each such cycle

92

contains exactly one node from each node layer (M, ..., Mj_1). The codeword itself
can be read from the labels on the cycle, starting with the edge emanating from the
node from M. Furthermore, if we examine the “types” of the edges in the cycle
(either input-0 or input-1) beginning with the node in layer My, then we have the
information word that this codeword encodes.

The particular tailbiting scheme used depends on the code. Any non-cyclic trellis
can be made cyclic by adding “dummy edges” from the last trellis node layer to the
start state in the first layer. So, for the purposes of defining our LP decoder, we will
assume tailbiting has been performed, and we will work with cyclic trellises.

6.1.4 LP Formulation of trellis decoding

Since every cycle in the trellis passes through M,, the ML decoding problem on
tail-biting trellises is easily solved by performing | M| shortest path computations.
However, we present a sub-optimal LP (min-cost flow) formulation of decoding in
order to make it generalize more easily to turbo codes, where we have a set of trellises
with dependencies between them.

We define a variable f, for each edge e in the trellis T, where 0 < f, < 1. Our LP
is simply a min-cost circulation LP [AMO93] applied to the trellis T'; with costs .
Specifically, our objective function is:

Minimize Z Ve fe

ecT

We have flow conservation constraints on each node:

Z fe: Z fe (61>

ecout(s) ecin(s)

We also force the total flow around the trellis to be one. Since every cycle in 7" must
pass between layers My and M;, it suffices to enforce:

Yo =1 (6.2)

ecout(My)
We define auxiliary LP variables (x1,...,x;) for each information bit, and LP
variables (yi,...,y,) for each code bit. These variables indicate the value that the

LP assigns to each bit. They are not necessary in the definition of the linear program,
but make the connection to decoding much clearer. The value of an information bit
x; should indicate what “type” of edge is used at layer ¢ of the trellis; if z; = 1, this
indicates that the encoder used an input-1 edge at the i trellis layer. Accordingly,
we set

r=> fo (6.3)

ecl;

The value of y; indicates the i bit output by the encoder. Therefore, if y; = 1, then

93

the edge taken by the encoder that outputs the i bit should have a 1 in the proper
position of the edge label. To enforce this in the LP, we set

Yi = Z fe- (64)

e€0;

Since all variables are indicators, we enforce the constraints

0<fe<1 forall ee T,
0<z <1 forall te{l,... ,k} and (6.5)
0<y; <1 for all i€ {1,...,n}.

We use the notation poly(7') to denote the polytope corresponding to these con-
straints; formally,

poly(T) = {(f,x,y) : equations (6.1) — (6.5) hold}.

Overall, our LP can be stated as:

Minimize Z%fe s.t. (f,z,y) € poly(T).

ecT

Or, equivalently,

Minimize Z%yi s.t. (f,z,y) € poly(T).

=1

The integral points of the polytope. The polytope poly(T') is a min-cost circu-
lation polytope for the graph 7', with the added requirement (6.2) that the total flow
across the edges of the first layer of the trellis is exactly one. From simple flow-based
arguments, we can see that the integral solutions are in one-to-one correspondence
with codewords.

Before proceeding, consider the possible cycles in the trellis T'. It is not hard to
see that every cycle in T" has length ak for some integer o > 1, and has exactly «
edges per layer of the trellis. Codewords correspond to cycles of length exactly k.

Theorem 6.1 For any trellis T, the set of integral points in poly(T') is in one-to-one
correspondence with the cycles of T of length k.

Proof: Let y be an arbitrary codeword. Let f be the cycle flow that corresponds to
the length-k cycle in the trellis taken by the encoder, with one unit of flow across the
cycle. In other words, f. = 1 if e is on the encoder cycle, and f, = 0 otherwise. Let
x; be the information word that the codeword y encodes. The point (f, z,y) is in the
polytope poly(T'), since it satisfies every polytope constraint.

Let (f,z,y) be some integral point in poly(7"). By the flow conservation con-
straints (6.1), the flow f is a circulation in the graph 7. By the constraint (6.2), the

94

flow f is non-zero. Since f is integral, it must have a decomposition into integral
cycle flows [AMO93]. However, f must itself have only one unit of flow, since we
have f, <1 for all edges e. Therefore, f can be decomposed into a collection of cycle
flows, each with one unit of flow. Since f. < 1 for all edges in the trellis, these cycle
flows must be disjoint. By the constraint (6.1), at most one of these cycle flows passes
through the first trellis layer; however, every cycle in the trellis must pass through
the first trellis layer. Therefore, f is itself a single cycle of length k& with one unit of
flow. This is exactly the cycle corresponding to the codeword y. [|

Optimality Conditions The linear program will output a min-cost circulation
that sends one unit of flow around the trellis. Every circulation has a cycle de-
composition; in circulations with one unit of flow, this can be regarded as a convex
combination of simple cycles. If all the flow was put onto the minimum-cost cycle
in this decomposition, the resulting flow would have cost at most the cost of the
circulation. Therefore we may assume that some simple cycle flow f* obtains the LP
optimum.

We have argued that if the circulation is integral, then it corresponds to a cycle
of length k. Note also that the cost of an integral solution is exactly the cost of the
cycle, which in turn is equal to the cost of the codeword. So if the LP solution is
integral, it corresponds to the minimum-cost, or MLL codeword, which is contained in
the LP variables {y;}. Thus in this case we may output this codeword, along with a
proof that it is the ML codeword.

If the solution is fractional, then the cycle f* has length ak for some integer
a > 1. As in our previous relaxations, in this case we simply output “error.” Note
that whenever we output a codeword, it is guaranteed to be the optimal ML codeword.
Thus our decoder has the ML certificate property.

As before, the decoder will succeed if the output codeword is the one that was
transmitted. Thus the decoder can fail in two ways: if it outputs “error,” or if it
outputs a codeword, but the most likely codeword was not the one transmitted. In
the latter case, we can say that the code (rather than the decoder) has failed, since
ML decoding would have failed as well.

6.2 A Linear Program for Turbo Codes

In general, a turbo code is any set of convolutional codes, concatenated in serial or
parallel, with interleavers between them. These are often referred to in the literature
as “turbo-like” codes [DJMO8], because they are a generalization of the original turbo
code [BGT93]. In this section we describe an LP to decode any turbo code. In fact,
we will describe an LP for a more general class of code realizations, defined on trellises
built from arbitrary finite-state machines, and associations between sets of edges in
the trellises.

95

———= copy L CC. —

W
CC, —

Figure 6-6: A circuit diagram for a classic rate-1/3 Turbo code. The “copy” FSM sim-
ply copies the input to the three outputs. The two component codes CC; and CCy are
convolutional codes.

6.2.1 Turbo Codes

The original turbo code [BGT93] consists of two component rate-1 convolutional codes
concatenated in parallel, with an interleaver in front of each of them. Additionally,
the information bits themselves are added to the codeword. Figure 6-6 shows a tree
representation of this code. The encoder for the turbo code in Figure 6-6 takes as input
an information word z of length k. Two separate interleaves (fixed permutations) m
and 7 are applied to the information word. Then, the length-k words 7 (z) and
mo(x) are sent to the encoders for rate-1 convolutional codes CC; and CC,y. The
output of these encoders, along with a copy of the information word z, is output as
the codeword.

In general we will define a turbo code by a directed out-tree 7, whose nodes
correspond to trellises T'. Each edge in the tree has an associated interleaver m; this
is a permutation on k elements, where k£ is the length of the trellis whose corresponding
node the edge enters.

Formally, let 7 be a directed out-tree, where the nodes {1,...,|7 |} correspond to
trellises {T",...,T!71}, where each trellis is as described in Section 6.1. We assume
that each trellis has tailbiting. By convention, we have node 1 in 7 as the root,
corresponding to trellis T". Let k,, denote the length of trellis 7, 1 < m < |7, and
let R,, denote the length of the output labels on edges of trellis 7. For each edge
from m to m’ in the tree 7, there is an interleaver m[m,m’|, a permutation on k,,
elements. Let L(7) denote the set of leaves of 7 (the nodes in 7 with no outgoing
edges).

The encoder for a turbo code takes a block of k information bits, feeds it into
the trellis at the root, and sends it through the tree. The codeword is output at the
leaves of the tree. An individual trellis T™ of size k,, receives a block of bits of size
k., from its parent in 7, applies its encoding process to the block, and sends a copy
of its output block of size R,,k,, to each of its children in 7. Each edge applies its
permutation to the bits sent across it. For the encoder to work properly, it must be
the case that for every edge from m to m’ in 7, we have k,, R,, = k., so the number
of output bits of trellis 7™ is equal to the number of input bits for trellis 7 .

The overall codeword is the concatenation of all the outputs of the leaf trellises of

96

7. For a trellis T™ where m € L(T), we use y™ to denote the string of R,,k,, code
bits output by trellis 7. The overall code length is then n = L(T) Rk, and
the overall rate is k/n. This codeword is transmitted over the channel, and a corrupt
codeword g is received. We use ¢y™ to denote the corrupt bits corresponding to the
code bits y™, for some m € L(7).

6.2.2 TCLP: Turbo-Code Linear Program

In this section we define the Turbo Code Linear Program (TCLP), a generic LP that
decodes any turbo code. We will first outline all the variables of TCLP, then give
the objective function and the constraints. Basically, the LP will consist of the min-
cost flow LPs associated with each trellis, as well as “agreeability constraints,” tying
together adjacent trellises in 7.

Variables. All variables in TCLP are indicator variables in {0, 1}, relaxed to be
between 0 and 1. For each m € 7, we have variables 2™ = (27", ..., z}") to denote the
bits entering trellis 7. The TCLP variables (21, ...,z _,) represent the information
bits, since they are fed into the root trellis 7!. Additionally, we have variables
y" = (..., Yk, k,) to denote the output bits of each trellis 7™. Finally, for
each m € 7, and edge e in trellis T™, we have a flow variable f.; we use the notation
f™ to denote the vector of flow variables f. for all edges e in trellis T™.

Objective Function. The objective function will be to minimize the cost of the
code bits. Since the code bits of the overall code are only those output by the leaves
of the encoder, we only have costs associated with trellises that are leaves in 7.
For each trellis 7 where m € L(7T), we have a cost vector v, with a cost 7/ for
all i € {1,..., Ryukm}. These costs are associated with the bits y* output by the
encoder for trellis 7. The value of ;" is the log-likelihood ratio for the bit y;, given
the received bit ", as described in Section 2.5. Thus our objective function is simply

Rinkm
minimize E E vy
meL(T) i=1

Constraints. Recall that for a trellis 7', the polytope poly(T’) is the set of unit
circulations around the trellis 7' (defined in section 6.1.4). In TCLP, we have all the
constraints of our original trellis polytope poly(7™) for each trellis 7™ in the tree
7. In addition, we have equality constraints to enforce that the output of a trellis is
consistent with the input to each of the child trellises. We define the LP constraints
formally as follows:

e Individual trellis constraints: For all m € T,
(f™, 2™, y™) € poly(T™).

These constraints enforce that the values f™ are a unit circulation around the
trellis T, and that 2™ and y™ are consistent with that circulation.

97

e Interleaver consistency: For all edges (m,m') € T, for all t € {1,... k. },

m m/

Y+ = Tamm/)(t)
These constraints enforce consistency between trellises in the tree 7 that share
an edge, using the interleaver associated with the edge.

A decoder based on TCLP has the ML certificate property for the following rea-
sons. Every integral solution to TCLP corresponds to a single cycle in each trellis
(this follows from Theorem 6.1 for trellis-based codes). Furthermore, the consistency
constraints enforce a correspondence between adjacent trellises in 7, and the output
bits {y™ : m € L(7)}. We may conclude that every integral solution to this LP
represents a valid set of encoding paths for an information word z, and the cost of
the solution is exactly the cost of the codeword output by this encoding at the leaves.
Thus this LP has the ML certificate property.

Success Conditions. We can use network flow theory to get a handle on when the
LP decoder will succeed; i.e., when the encoder path is in fact the optimal solution
to the LP. Formally, let (f,Z,7) represent the TCLP solution corresponding to the
actions of the encoder. In other words, T represents the words input to each trellis by
the encoder, § represents the words output by each trellis, and for every trellis 7™,
the flow f is exactly the simple cycle of length k,, followed by the encoder. The LP
decoder will succeed if and only if (f,Z,7) is the optimal solution to TCLP. (Note
that we assume failure under multiple LP optima.)

Consider some other feasible solution (f,z,y) to TCLP, where f # f. The flow
difference f— f represents a circulation (with a net flow of zero across each trellis layer)
in the residual graph T%“ for each trellis 7. Furthermore, this circulation “agrees”
between trellis layers, i.e., the interleaver consistency constraints are satisfied. Define
an agreeable circulation as any circulation f — f formed in this way. The cost of the
circulation is the difference in cost between f and f. We conclude that decoding
with TCLP fails if and only if there is some negative-cost agreeable circulation in the
residual graphs of the trellises {T%n}me’]’. In the next section on repeat-accumulate
codes, we will use this idea to derive specific combinatorial conditions for decoding
failure, and use these conditions to derive codes and error bounds.

6.2.3 A Note on Turbo Codes as LDPC Codes.

Many trellis-based codes, including convolutional codes, can be represented by a
factor graph; furthermore, the factor graph will have constant degree for a fixed-size
FSM. This can be extended to turbo codes [Mac99] as well, and so turbo codes are
technically a special case of LDPC codes.

However, if we were to write down a factor graph for a trellis-based code or a
turbo code and plug in the polytope Q from Chapter 5, we would get a weaker
relaxation in general. When the factor graph is written for a trellis, the w; ¢ variables
of Q correspond to edge variables of the trellis. However, in Q, the variables w, g

98

Figure 6-7: A state transition table for an accumulator.

are constrained only in their relation to single bit values f; in the neighborhood
N(7), whereas in poly(7'), the edge variables are constrained by flow conservation
constraints on states. Each state can potentially represent a whole sequence of bit
values.

Thus our turbo code relaxation can also be seen as a tightening of the polytope Q
for the special case of turbo codes. We note that for repeat-accumulate codes, since
the trellis is so simple, the polytopes turn out to be equivalent, and so the TCLP
relaxation is not a tightening of the polytope Q in this case.

6.3 Repeat-Accumulate Codes

Repeat-Accumulate codes are perhaps the simplest non-trivial example of a turbo
code. They were introduced by Divsalar and McEliece [DJM9S] in order to show the
first bounds for error probabilities under ML decoding. Their simple structure and
highly efficient encoding scheme make them both practical and simpler to analyze
than other more complex turbo codes. They have also been shown experimentally to
have excellent error-correcting ability under iterative decoding [DJM98], competing
with classic turbo codes.

The RA code is the concatenation (in series) of an outer repetition code and a
particular inner convolutional code. A repetition-R code is simply a code whose
encoder repeats each bit of the information word R times, and outputs the result.
The encoder for an accumulator code simply scans through the input, and outputs
the sum (mod 2) of the bits seen so far.

The accumulator is a convolutional code with feedback. For details on feedback
in convolutional codes, we refer the reader to [Wic95]. For our purposes, it suffices
to consider the state transition table for the accumulator, as shown in figure 6-7.

In this section we present the TCLP relaxation as it applies to RA codes. We
give precise conditions for LP decoding error when using TCLP for RA codes. We
also show how these conditions suggest a design for an interleaver for RA(2) codes,
and prove an inverse polynomial upper bound on the word error probability of the
LP decoder when we use this interleaver.

99

< v < e v
- 0. - : o
g N 0 -

- . C e /
< N L
\\@/ 1 \\‘ ::)/// \\.//

Seg. 1 Seg. 2 Seg. n

Figure 6-8: The trellis for an accumulator, used in RA codes. The dashed-line edge
correspond to information bit 1, the solid-line edges to information bit 0. The edges are
labeled with their associated output code bit.

6.3.1 Definitions and Notation

Formally, an RA(R) code is a rate-1/R code of length n = Rk. The code has an
associated interleaver (permutation) 7 : {1,...,n} — {1,...,n}. The encoder is
given an information word x = (z1,...,xy) of length k. Let 2’ be the be the repeated
and permuted information word, i.e., for all i € {1,...,n}, we have

Ty = T{(i-1)/RI1-

The RA encoder outputs a codeword y of length n, where for all i € {1,...,n},

yi = i:x;, mod 2.
=1

For all t € {1,...,k}, let X; be the set of R indices to which information bit z;
was repeated and permuted, i.e.,

Xe={m(R(t—=1)+1),7(R(t —1)+2),...,m(Rt)}.

Let X = {X;:t e {l,...,k}}. As a tailbiting scheme, we assume that the input
contains an even number of 1s. This can be achieved by padding the information
word with an extra parity bit. Thus the rate of this code is (k—1)/Rk, or 1/R—o(1).

The Accumulator Trellis. Using the table in Figure 6-7, we can view the accu-
mulator as a simple finite state machine, receiving the n-bit binary input string " one
bit at a time. The accumulator has two possible states per time step, depending on
the parity of the input bits seen so far. We refer to the two states of the accumulator
as 0 and 1; state 0 represents even parity, 1 represents odd parity.

We can construct a trellis for this inner accumulator in the same way as a conven-
tional convolutional code. The trellis 7" for an accumulator is shown in Figure 6-8.
The trellis has n layers, one for each code bit. Since the accumulator has only two
states, each node layer M; has two nodes, representing even and odd parity. We
use {s),...,s%} and {si,...,s._;} to refer to the sets of even and odd parity nodes,
respectively.

100

An encoder using this trellis begins in state s§. At each time step, if it receives a
1 as input, it follows the dashed-line transition to the next layer of nodes, switching
states. If it receives a 0, it follows the solid-line transition to the next layer of nodes,
staying in the same state (see Figure 6-8). The labels on the transition edges represent
the code bit output by the encoder taking that transition; label 0 for edges entering
state 0, label 1 for edges entering state 1.

A path from s{) across the trellis to s? corresponds to an entire n-bit input string.
Since the accumulator begins and ends in state 0 (the input string has even parity
by assumption), we do not need the states s} and s!. Looking at the edge labels on
the path, one can read off the codeword corresponding to that input string. Let P
be the path taken by the encoder through the trellis 7" while encoding z’.

Recall that in a trellis, the set M; refers to the nodes in the i segment of the
trellis; in this case,

M; ={s), s;

1) %)

Furthermore, recall that in(s) refers to the edges entering a node s and that in(S)
refers to the edges entering nodes in a set S. Also, as before, type(e) indicates the
“type” of the edge (either input-1 or input-0). In this case, for all layers 1 < i < n,
we have

0

type(s)_y,s}) = type(si_y,s)) = 1, and
type(sy_1, s)) = type(s;_y,s;) = 0.

Finally, recall the definitions of I; and O;. In this case, we have

I, = {eein(M): type(e) =1}
= { (S?—lﬂ S%)? (51‘1—17 S?) }

and

O;, = {eeciin(M): label(e) =1}

= { (S?—la 82-1), (Szl—lasb }

The cost v, of an edge e in the trellis at segment ¢ is as defined for trellis codes.
In this case, we have v, = 7; for all e € O;, and 7. = 0 otherwise, where ~; is the
log-likelihood ratio for the bit, as defined in Section 2.5. In the BSC, the cost of an
edge in segment ¢ can be set to the Hamming distance between the label of the edge
and the received bit y;. The cost of a path is the sum of the costs of the edges on the
path.

Note that we are not regarding this trellis in a cyclic manner; We could say that
59 = 52, and thus binary words of length n would correspond to cycles in the trellis.

However, we separate these two nodes in this section for clarity.

Decoding with the Trellis. Assume for the moment that the accumulator was
the entire encoder (i.e., the information bits are fed directly into the accumulator

101

without repeating and permuting). Then, all paths through the trellis from s to
sY represent valid information words, and the labels along the path represent valid
codewords. Furthermore, the cost of the path is equal to the cost of the associated
codeword. Thus, a simple shortest-path computation (the Viterbi algorithm) yields
the ML information word.

However, if we tried to apply the Viterbi algorithm to RA codes, we would run into
problems. For example, suppose R = 2, and let x; = 1 be some arbitrary information
bit, where X; = {i,7'}. Since information bit x; is input into the accumulator at
time ¢ and time ', any path through the trellis 7' that represents a valid encoding
would use an input-1 at trellis layer i, and at trellis layer ¢’. In general, any path
representing a valid encoding would use the same type of edge at every time step
1 € X;. We say a path is agreeable for x; if it has this property for x;. An agreeable
path is a path that is agreeable for all z;. Any path that is not agreeable does not
represent a valid encoding, and thus finding the lowest cost path is not guaranteed
to return a valid encoder path.

The ML codeword corresponds to the lowest cost agreeable path from s9 to sU.
Using TCLP, we instead find the lowest-cost agreeable flow from s to s%.

6.3.2 RALP: Repeat-Accumulate Linear Program.

Repeat-accumulate codes fall under our definition of a turbo code by regarding the
code as a repetition code concatenated with an accumulator. So in a sense we have
two trellises: a “repeater” and an accumulator. In the following, we have simplified
the LP by eliminating the variables associated with the “repeater” trellis. In addition,
we do not write down the variables representing the code bits, and adjust the cost
function to affect the edge variables instead.

The resulting integer program contains variables f. € {0, 1} for every edge e in the
trellis, and free variables x; for every information bit, ¢ € {1,...,k}. The relaxation
RALP of the integer program simply relaxes the flow variables such that 0 < f, < 1.
RALRP is defined as follows:

RALP : minimize Z’Yefe s.t.

ecT

Z fe =1 (66)

ecout(s))
Y= D fo VseT\{s),s%} (6.7)
e€out(s) ecin(s)

=Y fe VieX, X, eX (6.8)
ecl;

0<f<1 VeeT

The relaxation RALP is very close to being a simple min-cost flow LP, as in the
case of a simple unconstrained trellis. Equation (6.6) enforces that exactly one unit

102

of flow is sent across the trellis. Equation (6.7) is a flow conservation constraint at
each node. Unique to RALP are the agreeability constraints (6.8). These constraints
say that a feasible flow must have, for all X; € X', the same amount z; of total flow
on input-1 edges at every segment ¢ € X;. Note that these constraints also imply a
total flow of 1 —x; on input-0 edges at every segment i € X;. We will refer to the flow
values f of a feasible solution (f,z) to RALP as an agreeable flow. The free variables
x; do not play a role in the objective function, but rather enforce constraints among
the flow values, and represent the information word input to the encoder.

Using RALP as a decoder. A decoding algorithm based on RALP is as follows.
Run an LP-solver to find the optimal solution (f*, z*) to RALP, setting the costs
on the edges according to the received word y. If f* is integral, output z* as the
decoded information word. If not, output “error.” We will refer to this algorithm as
the RALP decoder.

All integral solutions to RALP represent agreeable paths, and thus valid encodings
of some information word. This implies that if the optimal solution (f*, z*) to RALP
is in fact integral, then f* is the lowest cost agreeable path, and represents the ML
codeword. Thus the RALP decoder has the ML certificate property: whenever it
finds a codeword, it is guaranteed to be the ML codeword.

6.3.3 An Error Bound for RA(2) Codes

Let f represent the path flow where one unit of flow is sent along the path P taken
by the encoder. As in the TCLP relaxation from Section 6.2.2, the RALP decoder
fails (does not return the original information word) if and only if the residual graph
T contains a negative-cost circulation. In this section, we apply this statement more
precisely to the trellis for RA(2) codes. We define an auxiliary graph for the purposes
of analysis, where certain subgraphs called promenades correspond to circulations in
the residual graph T%. The graph has a structure that depends on the interleaver 7
and weights that depend on the errors made by the channel.

The promenades in the auxiliary graph have a combinatorial structure that sug-
gests a design for an interleaver. We use a graph construction of Erdos and Sachs
[ES63] and Sauer [Sau67] (see also [Big98]) to construct an interleaver, and show that
the LP decoder has an inverse-polynomial error rate when this interleaver is used.

Notation. For this section we deal exclusively with RA(2) codes. This means that
each set X; € X has two elements. We also use the notation f(s, s’) to denote the flow
f(s,) along edge (s,s"). Note that in RA(2) codes, the agreeability constraints (6.8)
say that for every X; = {i,7'}, the total flow on input-1 edges across trellis segment i
is equal to the total flow on input-1 edges across trellis segment i’; i.e., we have that
VX, € X where X; = {i,'},

Ty = f(S?_pSil) + f(Sg_pS?) = f(sg’—la zl’) + f(sil’—la 3?’)'

103

Figure 6-9: The auxiliary graph © for RA(2) codes. The graph © is defined as a Hamilto-
nian line (g1,...,gn), plus a matching edge (g;, gi7) for each {i,7'} € X.

The Auxiliary Graph and the Promenade. Let © be a weighted undirected
graph with n nodes (g1, ..., g,) connected in a line, where the cost c[g;, ;1] of edge
(9, gi+1) is equal to the cost added by decoding code bit i to the opposite value of
the transmitted codeword. Formally, we have

C[Qi, 9i+1] = ’Yz‘(l - yi) — YiYi, (6-9)

where y is the transmitted codeword, and ~; is the log-likelihood ratio of code bit 7,
as defined in Section 2.5. In the BSC, we have c[g;, gi;1] = —1 if the i bit of the
transmitted codeword is flipped by the channel (7; # v;), and +1 otherwise. Note
that these costs are not known to the decoder, since they depend on the transmitted
codeword. Call these edges the Hamiltonian edges, since they make a Hamiltonian
path. Note that we do not have an edge representing the n'® code bit. This is
because the n'* code bit is always equal to 0, and need not be transmitted. For
each {i,7'} € X, we also add an edge to © between node g; and node g; with cost
clgi, 9] = 0. We refer to these edges as the matching edges, since they form a perfect
matching on the nodes of ©.

Note that © is a Hamiltonian line plus a matching; if the edge (g,, g1) were added,
then © would be a 3-regular Hamiltonian graph (a cycle plus a matching). This graph
O is illustrated in Figure 6-9. We comment that the graph © is essentially the factor
graph for the code; in fact, if we regard the existing nodes of © as check nodes, and
place a variable node on each edge of the graph ©, we obtain the factor graph for the
code.

Define a promenade to be a path in © that begins and ends in the same node,
and may repeat edges as long as it does not travel along the same edge twice in a
row. Let |O] denote the length of the path. The cost of a promenade is the total cost
of the edges in the path, including repeats (i.e., repeats are not free). Formally, a
promenade is a path ¥ = (po, p1, ..., pjw| = po) in O that begins and ends at the same

node po, where for all i € {0,...,|¥| =1}, p; 7# Dit2 mod |u|- The cost of a promenade
U is [V] = Zg'o_l c[pi, pi+1]. We are now ready to state our main structural theorem.

Theorem 6.2 The RALP decoder succeeds if all promenades in © have positive cost.
The RALP decoder fails if there is a promenade in © with negative cost.

When there is a zero-cost promenade, the RALP decoder may or may not decode
correctly (this is the degenerate case where the LP has multiple optima). We will

104

prove Theorem 6.2 in Section 6.3.4, but first we show what it suggests about inter-
leaver design, and how it can used to prove a bound on the probability of error of our
algorithm.

For most reasonable channels (e.g., the BSC with crossover probability less than
1/2), it will be the case that if a transmitted bit y; = 0, then the cost 7; is more
likely to be positive than negative; if y; = 1, then ~; is more likely to be negative than
positive. Since the cost of a Hamiltonian edge c[g;, g;11] in © is equal to v;(1—y;) =7,
we have that in both cases, Hamiltonian edges are more likely to have positive cost
than negative cost. Thus, promenades with more edges are less likely to have a
total negative cost than promenades with fewer edges (at least every other edge of a
promenade is Hamiltonian). The girth of a graph is the length of its shortest simple
cycle. Certainly every promenade contains at least one simple cycle, and so graphs
with high girth will only have promenades with many edges. This suggests that what
we want out of an interleaver, if we are to use the RALP decoder, is one that produces
a graph © with high girth.

We use a result of Erdés and Sachs [ES63] and Sauer [Sau67] (see also [Big98]) to
make a graph that is a line plus a matching, and has high girth. Their construction
allows us, in cubic time, to start with an n-node cycle and build a 3-regular graph
© with girth logn that contains the original cycle (assume for simplicity that n is
a power of two). We remove an edge from the original cycle to obtain a line plus a
matching with girth at least as high. To derive the interleaver, we simply examine
the edges added by the construction. We will refer to this interleaver as mp. This
is the same construction used by Bazzi et al. [BMMS01] to show a 1/2logn lower
bound on the minimum distance of an RA code using this interleaver.

Theorem 6.3 [BMMSO01] The rate 1/2 - o(1) RA code with block length n, using
wg as an interleaver, has minimum distance of at least %log n.

Proof: To show that the code has minimum distance more than % log n, we will show
that the RALP decoder succeeds as long as fewer than ilogn bits are flipped by
the binary symmetric channel. This immediately implies the theorem, since if the
minimum distance was less than %log n, then the decoder would not be able to have
this property.

If fewer than ilogn bits are flipped by the channel, then all simple paths in ©
containing %logn Hamiltonian edges have less than half of their edges with cost —1,
and thus have more than half with cost +1. Thus all such paths have positive cost,
and by Lemma 6.4, every promenade has positive cost. By Theorem 6.2, the RALP
decoder succeeds. []

Error Bound. We would like to bound the probability that © contains a promenade
with cost less than or equal to zero, thus bounding the probability that the RALP
decoder fails. However, there are many promenades in O, so even a tight bound on
the probability that a particular one is negative is insufficient. Furthermore, the fact
that promenades may repeat edges creates dependencies that interfere with using
standard Chernoff bound analysis. Consequently, we need to find a simpler structure

105

that is present when there is a promenade with cost less than or equal to zero. In the
following, a simple path or cycle means a path or cycle that does not repeat edges.
For clarity (to avoid floors and ceilings), we will assume n is a power of 16, though
our arguments do not rely on this assumption.

Lemma 6.4 Assume © has girth at least logn. If n > 2%, and there exists a prom-
enade ¥ in © where c[V] < 0, then there exists a simple path or cycle Y in © that
contains £ logn Hamiltonian edges, and has cost c[Y] < 0.

Proof: Let ¥ = (po,p1,...,Dpw-1,Pw| = Po) be a promenade in © where c[¥] < 0.
Since ¥ contains a cycle, we have || > logn. Contract every matching edge in ¥ to
obtain a closed path H = (ho, hy, ..., hu = ho).

No two matching edges share an endpoint, so at most every other edge of H is a
matching edge. Thus,

1 1
|H| > S|¥| = S logn.
2 2

Let the cost of H be the sum of the costs of the edges on H, where repeated edges
count every time they appear in H, i.e.,

|H[-1

c[H) =Y clhi his).

1=0

We know that h; # h;o for all i where 0 < i < |H| (operations on indices of h € H
are performed mod |H|). If this was not the case, then there would be a cycle in ©
of length 3; this in turn would violate our assumption that n > 2%, since the girth of
O is at least logn.

Let H; = (hi, . .., hH%logn), a subsequence of H containing 3 logn edges, and let
i—l—%logn—l
H]= Y chyhinl.
j=i

We know that H; has no repeated edges (i.e., it is a simple path or a simple cycle);
if it were not, then if we added the matching edges back into H we would get a path
in © with at most logn edges that repeated an edge, which would imply a cycle in ©
of length less than logn.

Since all matching edges have zero cost, ¢[¥] = ¢[H]. Note that

|H|-1

c[H] = (%lolgn> ; c[Hi],

since every edge of H is counted in the sum exactly (5logn) times. Since ¢[H]| =
c[¥] <0, at least one simple path or cycle H;« must have ¢[H;<] < 0. Set Y to be the
simple path or cycle in © obtained by expanding the zero-cost matching edges in the
path or cycle H;«. [|

106

Theorem 6.2, along with the above construction of © and a union bound over the
paths of length %logn of ©, gives us an analytical bound on the probability of error
when decoding with the RALP decoder under the BSC:

Theorem 6.5 For anye > 0, the rate 1/2—o(1) RA code with block length n using 7
as an interleaver decoded with the RALP decoder under the binary symmetric channel
with crossover probability p < 2-4+1820/2) has o word error probability WER of at

€

most n”¢.

Proof: By Theorem 6.2, and Lemma 6.4, the RALP decoder succeeds if all simple
paths or cycles in © with % log n Hamiltonian edges have positive cost. We claim that

there are at most n-32 195" different simple paths that have % log n Hamiltonian edges.
To see this, consider building a path by choosing a node, and building a simple path
from that node, starting with a Hamiltonian edge. On the first step, there are two
choices for the Hamiltonian edge. On each subsequent step, if one has just traversed
a Hamiltonian edge to some node g, one can either continue along the Hamiltonian
path, or traverse a matching edge. If a matching edge is traversed to some node ¢,
then one of the two Hamiltonian edges incident to ¢’ is the next edge traversed. We
conclude that after traversing a Hamiltonian edge, there are at most three choices for
the next Hamiltonian edge; thus the total number of paths with %logn Hamiltonian

edges starting at a particular node is at most 3218 " and the total number of paths
in the graph with %logn Hamiltonian edges is at most n - 32logn,

The remainder of the proof is a union bound over the paths of © with %logn
Hamiltonian edges. Let Y be a particular path with % log n Hamiltonian edges. Each
Hamiltonian edge has cost —1 or +1, so at least half of the Hamiltonian edges must
have cost —1 in order for ¢[Y] < 0. Each Hamiltonian edge had cost —1 with prob-

%logn

ability p, so the probability that ¢[Y] < 0 is at most (?og)p
1 ogn

bound,

1
Zlogn'

By the union

WER

IN

1
TL3% logn [2 logn p% logn
ilogn

< n1+%log3n%2—(e+%log24) logn
< TL1+% log3+%—(e+% log 24)
< n

A Bound for the AWGN Channel. We can derive a WER bound for the AWGN
channel, also using a union bound, stated in the following theorem.

Theorem 6.6 For any € > 0, the rate 1/2 — o(1) RA code with block length n using
mE as an interleaver decoded with the RALP decoder under the AWGN channel with

. 2 loge 1 g
variance o° < T2logsTie has a word error probability WER. of at most il

—€

107

Proof: As in the proof for Theorem 6.5, we have a union bound over the over the
simple paths with %1ogn Hamiltonian edges. The cost of a Hamiltonian edge in
the AWGN channel is 1 + z, where z € N(0,0?) is a Gaussian random variable
representing the additive noise on code bit i with zero mean and variance o2.

Consider a particular path P of © with %logn Hamiltonian edges. We also use
P to denote the set of code bits ¢ such that the Hamiltonian edge (g;, gi+1) is on the
path P. Thus the probability that the path has negative cost is at most:

Pr[c[P] <0] = Pr Z(Hzi)go]

LieP

= Pr ZZZ < —|P|

LicP

All z are independent Gaussian random variables with zero mean. The sum of
independent Gaussian variables with the same mean is itself a Gaussian variable
whose variance is the sum of the variances of the individual variables. So, if we let
Z =3 .cp 4, we have that Z € N (O, %02 log n) is a Gaussian with zero mean and
variance %(72 log n. Furthermore, we have

1
Pric[P] <0] < Pr [Z < —Elog n]
1
= Pr {Z > §logn} .

For a Gaussian z € N(0, s*) with mean 0 and variance s?, we have [Fel68], for all

x>0,
S o

PI“[Z > J]] < x\/%e 257
and so
Ol
Pr[c[P] <0] < We 1o
o _loge

et N 402 .

V2mlogn

As argued in Theorem 6.5, the number of paths with %logn Hamiltonian edges is

at most n321°6". Thus by the union bound,

WER < n32"8"Pr[¢[P] < 0]
n'*2°83pr[e[P] < 0]
< a 3 log3— o2

V2mlogn

108

. 2 loge o 1 _ loge ER .
By assumption, 0° < o5 Tog 3740 and so —e > 1+ 51og3 — 7%r. This implies

g
WER < ———n~°¢.
= rlogn.

We note that as € — 0, the threshold on p stated in Theorem 6.5 approaches
~ 27917 "and the threshold on ¢? stated in Theorem 6.6 approaches = 1/5.

6.3.4 Proof of Theorem 6.2

In this section we prove Theorem 6.2. We will use some basic analytical tools used for
the min-cost flow problem, specifically the notions of a residual graph, a circulation
and a path decomposition [AMO93]. (See Section 3.2 for background.)

Theorem 6.2 The RALP decoder succeeds if all promenades in © have positive cost.
The RALP decoder fails if there is a promenade in © with negative cost.

Proof: Let f be the unit flow along the path P taken by the encoder through the
trellis. The RALP decoder will succeed if f is the unique optimal solution to RALP.
The RALP decoder will fail if f is not an optimal solution to RALP. To prove the
theorem, we will first establish conditions under which f is optimal that are very
similar to the conditions under which a normal flow is optimal; specifically, we will
show that f is optimal if and only if the residual graph T does not contain a certain
negative-cost subgraph. We will then show a cost-preserving correspondence between
these subgraphs in 7% and promenades in ©, the Hamiltonian line graph on which
Theorem 6.2 is based.

Agreeable Circulations. Suppose that f is some feasible flow for a normal min-
cost flow problem (without agreeability constraints) on an arbitrary graph G. Let
Gy be the residual graph after sending flow according to f. A fundamental fact in
network flows is that a solution f is optimal iff Gy does not contain a negative-cost
circulation [AMO93].

Now consider the agreeable flow problem (RALP) on the trellis 7', and the solution
f to RALP. For an arbitrary flow f, we denote the cost of f as c[f], where

c[f] = el

ecT

Define the residual graph 7% in the same manner as in normal min-cost flow. The
residual graph T% has the following structure. Since f is a unit flow across a single
path the trellis, and each edge has unit capacity, the graph 7% contains all the edges
on P in the reverse direction (toward s{), with cost —v.. All other edges of the trellis
remain the same, and have cost .. Figure 6-10 shows an example of the residual
graph T5.

109

o
0

DA O

RN

\‘@ & '1 g

Seg. 1 Seg. 2 Seg. 3 Seg. n

Figure 6-10: The residual graph T* - The bold path is the path P taken by the encoder, in
reverse. All edges e in T? have the same cost v, as they did in the original trellis, except

the reversed edges of P, which have cost —e.

Let f’ be some feasible agreeable flow in 7', where f’ # f. Consider the circulation
f'— fin T%. This circulation sends one unit of flow from s to s¥ along the flow f7,
then sends it back from s to s) along the path P. The cost of the circulation is
c[f'] — c[f]. Since both f and f’ obey the agreeability constraints, the circulation
f'— f also obeys the agreeability constraints. We call such a circulation an agreeable
circulation.

Lemma 6.7 The RALP decoder succeeds if all agreeable circulations in T have pos-
wtrve cost.

Proof: If the RALP decoder fails, then f is not the unique optimal solution to RALP.
Let f* # f be some optimal solution to RALP. Consider the circulation f’ = f* — f.
Since c[f'] = c[f*] — c[f], and c[f*] < c[f], we know that c[f’] < 0. It is clear that
the sum or difference of two agreeable flows is agreeable, so f’ is agreeable. [|

Lemma 6.8 The RALP decoder fails if there exists an agreeable circulation in Ty
with negative cost.

Proof: Let f’ be a circulation in T7 with negative cost. Let f* = f+ f'. Since

c[f'] < 0, we have ¢[f*] < ¢[f]. The flow f* is the sum of two agreeable flows, and
so it is also an agreeable flow. Since f* is a feasible solution to RALP with cost less
than f, the flow f is not optimal, thus the RALP decoder fails. [|

Subpaths of © and cycles in 7. In the remainder of the proof, we show a
correspondence between agreeable circulations in T and promenades in ©. We first
define a special class of cycles in TF and show that the cost of a cycle in this class is
the same as that of a corresponding subpath in ©. This is depicted in Figure 6-11.
Then we show that every simple cycle in TF is from this class. We conclude the
proof by arguing that agreeable circulations always contain sets of these cycles that
correspond to promenades in © with the same cost.
We define our “special” paths and cycles as follows:

110

LT OO O
@%@*

Seg. 0 =5 Seg. 7 =8
HE B =B =B
g5 96 g7 g8

Figure 6-11: An example of a cycle v(o = 5,7 = 8) in the residual graph T%, and the
corresponding path p(c = 5,7 = 8) in ©. The cycle v(oc = 5,7 = 8) (above in bold)
contains a subpath (straight bold lines) backward along residual edges of P, where P =
(...,89, st sk, 89, s8,...), and the complimentary forward path from s to s} (curved bold
lines). The subpath u(oc = 5,7 = 8) in © is the path from g5 to gs along the Hamiltonian
edges of O.

e Let p(o,7) (where o < 7) be a certain path in O, as depicted in Figure 6-11.
Specifically, pu(o, 7) denotes the path (gs, go11, - - -, g-) of Hamiltonian edges in
©. The cost c[u(o, T)] of the path is equal to the sum of the costs of the edges
on the path.

e Let v(o,7) (where 0 < 7) be a certain cycle in T%, as depicted in Figure 6-11.
This cycle will correspond to rerouting flow away from P between trellis seg-
ments o and 7. We define v(o, 7) formally as follows. Let y be the transmitted
codeword. For the purposes of this definition, we let yo = 0. (The bit yq is
not part of the codeword; it just makes the notation simpler.) Recall that P is
the path taken by the accumulator when encoding . The path P can also be
expressed as follows:

P = (s, s7",... s%).
Recall that in T%, all edges along P have a unit residual capacity going backward
toward s9, since f is the unit flow across path P. The cycle v(o,7) in T consists
of the backward subpath along P:

Yr—1 Y Yo—1
(S’T‘ »Sr—1 7"'7300750—1)7

and the forward subpath that is “opposite” to P between segments o and 7:

Yo—1 1—y 1-yo+1 1-yr—2 1-yr—1 Y
(Sa_l ' Sg U’SU+1 R R s | 787-7—)'

The cost c[v(o, T)] of the cycle is the sum of the costs of the edges in v(o, 7).

111

In Figure 6-11, we have 0 =5, 7 = 8; we also have y, =0, y5 = 1, ys = 1, y7 = 0,
ys = 1. The figure shows both the cycle v(o,7) and the corresponding path p(o, 7).

Consider the flow P’ = P + v(o,7) in the original trellis 7. By pushing flow
around the cycle v(o, 7), the resulting flow P’ is a path flow that follows the subpath
“opposite” to P between segments o and 7; otherwise, P’ is identical to P. Note
that when we “reroute” this flow, the types of the edges (either input-0 or input-1)
change only for the segments ¢ and 7 (and not the edges in-between). The labels of
the edges, however, change for the segments o ...7 — 1. This idea of “rerouting” flow
will be important as we continue with the proof.

The following claim shows that the cost of the flow u(o,7) in T% is the same as
the cost of the path u(o,7) in ©.

Claim 6.9 For all pairs of trellis segments o and 7, where 1 < o <1 < n, we have
clu(o,)] = (o, 7)].

Proof: First note that the two edges of v(o, 7) from trellis segment 7 have opposite
cost, and thus have a net contribution of zero to the cost of v(o, 7). (In Figure 6-11,
the two edges in consideration are (sg,s9) and (s}, s%).) To see this, recall that the
cost of an edge is determined by the state that it enters; the forward edge of v(o, 1)
from trellis segment 7 enters state s¥7, and thus has a cost of 7;y; in TF. The backward
edge leaves state s¥7; therefore the edge has cost v;y; in T', and cost —v;y; in T7.

For the remainder of the proof, we will show that for all i € {o,...,7 — 1}, the
cost of the edge (g, gi+1) is equal to the sum of the cost of the two edges of v(o,7)
in trellis segment 1.

At each trellis segment i where o < i < 7, the cycle v(o,7) in T7 consists of

a backward edge leaving s!*, and a forward edge entering si “Y% . The cost of the
backward edge in TF is —7;y; and the cost of the forward edge is ~i(1 —y;), for a total
cost of v;(1 — y;) — v;y;. This is the same as the cost of edge (g;,g;+1) in p(o, 7), by
equation (6.9). u

In order to deal with an arbitrary circulation in 7%, we will decompose it into
simple cycles. It turns out that the cycles of the form v(o, T) represent every possible
simple cycle in T%, as shown in the following claim.

Claim 6.10 For every simple cycle C in Tf, C' = v(o,7) for some 1l <o <1 <n.

Proof: Let s be the node on the cycle C that is the “closest” to the last node s
in the trellis, i.e., 7 is maximum among all nodes on C' (break ties arbitrarily). Now
consider the outgoing edge from s2 on the cycle C; it must not go forward in the
trellis, since the node s is the node on C' that is closest to s2. Therefore, this edge
goes backward in trellis, and we may conclude that the node s must be on P (the
only backward edges are those on P).

Follow the cycle C' backward in the trellis along P, “marking” edges along the
way, until it diverges from P at some node s} ;. Since C' is a simple cycle, it must
connect to s@ via some path that does not traverse a marked edge. The only such
path from s]_; back to s* that does not go past v(co,7) is the path forward in the
trellis along the edges that complete the cycle v (o, 7). [|

112

O%h@%@ O<—O<—O%)—O O—O/“O O%)—O%Y‘O—JO

01 T1 73 03 T2 02 T4 04
| e pame pam | | e pams pam | | | | S pamn Eamy m |

Figure 6-12: A promenade in © and its corresponding circulation in 7%. The promenade
consists of the Hamiltonian subpaths U = {u(o1,71),...,1(04,74)}, and the circulation
consists of the cycles W = {v(o1,71),...,v(04,74)}.

Promenades in © and agreeable circulations in 77. We are now ready to
complete the proof of Theorem 6.2. We use our correspondence between paths in ©
and cycles in T% to show a correspondence between promenades in © and agreeable
circulations in 77%.

In the definitions of u(o,7) and v(o, 7), we have assumed 7 > o. For 7 < o, we
let p(o,7) = p(r,0) and v(o,7) = v(1,0). We will use the notation Av to represent
a circulation in 7' that sends A units of flow around a residual cycle v. For a set W
of cycles v in T%, we say that AW is the circulation Y ew AV

Lemma 6.11 If there is a promenade in © with negative cost, there is an agreecable
circulation in Ty with negative cost.

Proof: Let U be a promenade in © with negative cost. Let 1/\ be the maximum
number of occurrences of any single Hamiltonian edge in W. If the matching edges
along ¥ are removed, what remains is a multiset of subpaths of the Hamiltonian path
of ©, of the form (o, 7). Let U = {p(o1,71), ..., (o), Tgy) } be this set of subpaths,
ordered by their occurrence during a traversal of ¥. In other words, one may traverse
U by following the path p(oq,7), matching edge (gr,, 9o,), Path p(oa, 72), ..., path
(1(op; Tw)), and finally matching edge (g, 90,). An example is shown in Figure 6-
12. Note that o; > 7; is possible, as is the case for the paths in Figure 6-12. (Here
we use the fact that u(o,7) = p(r,0).)

Let W = {v(o1,71), ..., v(0u, Tiy) } be the set of corresponding cycles in T%.
Figure 6-12 shows the set VW corresponding to a particular promenade with subpaths
U. Consider the circulation AW in T%, obtained by sending A units of flow around
every cycle in WW. No edge in AW has more than one unit of flow sent across it by
the definition of A, so AW is a feasible circulation in T%. (Note that we have not yet
shown that AW is agreeable, just that it is a circulation in conventional sense.)

Since all the matching edges of © have zero cost, and ¥ has negative cost, we have

U

c[W] =" clu(oj, 7)) < 0.

J=1

113

Therefore by Claim 6.9, we have

4%
W] =" ev(oj,)] < 0.

=0

It remains to show that AW is agreeable. Consider the first cycle in W, namely
v(o1, 7). The only agreeability constraints violated by sending flow around this cycle
are at trellis segments o; and 7y; all segments between o; and 7 have the same
amount of flow on input-1 edges as they did before. This can be seen clearly in the
example of Figure 6-11: At trellis segment 5, flow shifts from an input-1 edge to an
input-0 edge; at segment 8, flow shifts from an input-0 edge to an input-1 edge; at
segments 6 and 7, however, flow shifts among the same type of edge.

Consider building AW by adding the flows Av(o1,71), Av(02,72), ... in order. As
we argued above, after adding Av(oy,71) to AW, we have that agreeability constraints
are violated at segments o1 and 7. When we add Av(o3, 72), we “fix” the agreeability
at segment 71, and violate the agreeability at 7o; this is implied by the agreeability
of P, by the following argument. By the definition of ¥, we have that {7, 0.} € X.
Since P is agreeable, the graph T% has the same type (either input-0 or input-1) of
backward edge at segments 7 and g5. Therefore, routing A units of flow around both
v(o1,) and v(og, o) preserves the agreeability constraint for {7, o5}.

We can see an example of this in Figure 6-12. Consider the cycle v(oy,7) in
Figure 6-12. When we send A units of flow around v(o1, 1), the total flow on input-1
edges decreases by A at segment 7;. Consider the segment o9; since {71, 0.} € X, it
must be the case that P uses the same type of edge (in this case input-1) at segments
71 and o9. Therefore, the flow A\v(o9, 79) must also decrease the total flow on input-1
edges by A\ at segment o».

By induction, we have that the flow Mv(oy1,m),v(02,72),...,v(0j,7;)} affects
only the agreeability constraints at segments o; and 7;. Thus in the flow AW, we
need only consider the segments oy and 7). However, we have that {o1, 7|} € X;
thus by the previous argument, the agreeability constraint is maintained, and we have
that AW is agreeable. [|

Lemma 6.12 If all promenades in © have positive cost, all agreeable circulations in
T have positive cost.

Proof: Suppose [’ is an agreeable circulation in T where c[f'] < 0. We may assume

wlog that f’ = f — f for some vertex (f,x) of the polytope for RALP; otherwise
there is some other circulation with less cost. This implies that all flow values in f’
are rational, since all vertices of polytopes are rational. Therefore, there is a positive
rational value A < 1 such that every flow value is an integer multiple of \. It follows
that we may construct a cycle decomposition of f’ where every cycle has A units
of flow around it. Let VW be the collection of cycles in this decomposition, and so
f"=2AW. By Claim 6.10, every cycle in T5 is of the form v(o, 7). So, W is a multiset
of cycles of the form v(o, 7).

114

Let B; be the set of cycles in VW that begin or end at segment . Formally, for all
ie{l,...,n}, we have

Bi={veW:v=v(o,1) where 0 =i or 7 = i}.

Recall that Each cycle v(o, 7) only affects the agreeability constraints at segments
o and 7. Let z; be the information bit such that o € X;. If x; = 0, then T7 has a
backward input-0 edge at segment ¢, and thus Av increases the flow on input-1 edges
at segment o by \. If z; = 1, then \v decreases the flow on input-1 edges at segment
o by A. We conclude that at all segments ¢, where i € X;, the flow on input-1 edges
changes by

NBi| if 2, =0, —\Bi| if z =1. (6.10)

Consider some {i,7'} € X. Since f’ is agreeable, then the flow on input-1 edges at

7 and ¢ must change by the same amount when we send flow around f’. Therefore,

equation (6.10) implies that for all X; € X where X; = {i,i'}, we have |B;| = |By|.
For all {i,7} € X, create a one-to-one correspondence between the members of

B; and B (we can do this because the sets are the same size). This correspondence
will be used to define the matching edges of our promenade ¥ in ©.

Create an auxiliary multigraph H with a node v[v] for each v € W. Add edges
according to the correspondence we just created between B; and By, for each {i,7'} €
X. Each v € W where v = v(o, 7) is in exactly two sets: B, and B;; therefore each
node v[v] has exactly 2 incident edges. Note that if we have a cycle v € W where
v =v(i,q) for some {i,7'} € X, then v would be in both B; and By. In this case, the
correspondence may assign v[v] to itself; we represent this situation by a self-loop on
v[y].

Since H is 2-regular, it is a collection) of simple undirected cycles (where a node
with a self-loop is considered a cycle). For a cycle Y € Y, let Wy be the set of (trellis)
cycles that correspond to nodes in); formally,

Wy ={veW: vy eY}.

The set {Wy : Y € YV} constitutes a partition of the cycles of W into subsets. The
total cost of the flow f = AW is negative, so there must be at least one cycle Y* € Y
such that the flow AWy~ has negative cost.

We build a promenade ¥ in © by following the cycle Y*. We use

(v[v(o1,)], v[v(o2, 7). . ., vV (o)« Tiv=))])

to denote a traversal in © of the cycle Y*. By definition of H, we have {7;,0,41} € X
for alli e {1,...,|Y*| =1}, and {7y+|,01} € X. Therefore, the collection of paths

U= (“(Ula 7_1)7 N(U% 7—2)a cee 7”(0-|Y*|7 7_|Y*|))

115

forms a promenade ¥ by adding the matching edges between each consecutive sub-
path. Matching edges have zero cost, so

Y|

c[W) =" cluloi, 7))

=1

Since the cost of AWy~ is negative (by definition of Y*), we have

By Claim 6.9, we have

Y| Y|

¥l =) clu(os,m)] = clv(onm)] <0

i=1 i=1
Thus ¥ is a negative-cost promenade, and we have a contradiction. [|

Theorem 6.2 is implied by Lemmas 6.7, 6.8, 6.11 and 6.12. []

6.3.5 Combinatorial Characterization for RA(R) Codes

In this section we give the generalization of Theorem 6.2 to the case of RA(R) codes,
for any positive integer R > 2.

We will define an auxiliary graph © as in RA(2) codes, and claim that LP decoding
succeeds if and only if this graph does not contain a certain negative-cost subgraph.
However, in the general case, the graph © will be a hypergraph; i.e., it may include
hyperedges that contain more than two nodes.

Let © be a line graph on n vertices (g1, . . ., gn), as in RA(2) codes, where the graph
includes n — 1 Hamiltonian edges between consecutive nodes in the line. Note that
these edges are “normal” (non-hyper) edges. In RA(2) codes, we defined a matching
edge for all {i,i'} € X. In the general RA(R) case, we define an R-hyperedge in
© for all X; € X. This edge consists of exactly the nodes {g; : i € X;}, where
Xy = {i',i?, ..., i®%}. We still refer to these edges as matching edges, since they form
an R-dimensional perfect matching among the nodes.

The costs of the edges in the graph © are exactly the same as in the RA(2) case.
We have c[g;, gi+1] = (1 — y;) — 7:y:, where y is the transmitted codeword, and ~; is
the log-likelihood ratio of code bit 7, as defined in Section 2.5. The matching edges
all have zero cost.

We must define the generalization of a promenade in order to state the generaliza-
tion to Theorem 6.2. We define a hyperpromenade ¥ as follows. A hyperpromenade
U is a set of subpaths of the form u(o, 7) (as defined in Section 6.3.4), possibly with
multiple copies of the same subpath in the set. We further require the the set ¥
satisfies a certain “agreeability” constraint. Formally, we define, for each segment i

116

in the trellis where 1 < i < n, the following multiset B;:
Bz‘:{HE‘I’i,u:,u(U,T), Whereizaori:T}

Note that if multiple copies of some p(o,7) exist in ¥, then B; contains multiple
copies as well. We comment that these sets are similar to the sets B; defined in the
proof for Lemma 6.12. We say that ¥ is a hyperpromenade if, for all X; € X where
X, = {i',i% ..., i}, we have

’BZI| — ‘312’ —_ = |BZR|

The cost of a subpath p(o,) is as before; the sum of the costs of its edges. The
cost of a hyperpromenade is equal to the sum of the costs of the subpaths it contains.
Now, we may state the generalization to Theorem 6.2:

Theorem 6.13 For an arbitrary RA(R) code, the RALP decoder succeeds if all hy-
perpromenades have positive cost. The RALP decoder fails if there is a hyperprome-
nade with negative cost.

This theorem can be proved using the same arguments used for the proof of
Theorem 6.2. The interesting question is whether we can construct graphs © to
derive good interleavers for RA(R) codes. We would need to show that the graph ©
has a very small probability of having a negative-cost hyperpromenade.

117

118

Chapter 7

Comparison with Message-Passing
Algorithms

Explaining the superb performance of message-passing decoders on turbo codes and
LDPC codes has been the subject of intense study since the introduction of turbo
codes in 1993 [BGT93]. In this chapter we define the general framework for message-
passing decoders and give the details for two common decoders used in practice.
We show how these algorithms apply to both turbo codes and LDPC codes. We
cover the standard method used for decoding both turbo codes and LDPC codes:
the sum-product algorithm (also known as belief propagation [MMC98]). The other
message-passing algorithm we cover is the min-sum algorithm [Wib96], which has
received some attention due to its simplicity (although it does not perform as well
as sum-product). Message-passing algorithms can be regarded as generic procedures
for inference on a graphical model [YFW02, Wai02], and have applications outside
of coding theory; these applications include Bayesian networks [Pea88|, computer
vision [GG84] and statistical physics [EAT75].

After reviewing these methods, we compare the performance of LP decoding to
these decoders, both analytically and experimentally. We show that LP decoding is
equivalent to message-passing decoding in several cases. For the case of tailbiting
trellises, we can show that the success conditions of LP decoding are equivalent to
those introduced by Forney et al. [FKMTO01]. In the binary erasure channel (BEC),
belief propagation fails if and only if a “stopping set” exists in the factor graph among
the bits erased by the channel. In this chapter we show that the pseudocodewords
we defined for LDPC codes are exactly stopping sets. Thus, the performance of
the LP decoder is equivalent to belief propagation on the BEC. Our notion of a
pseudocodeword also unifies other known results for particular cases of codes and
channels. In cycle codes, our pseudocodewords are identical to the “irreducible closed
walks” of Wiberg [Wib96]. Also, when applied to the analysis of computation trees for
min-sum decoding, pseudocodewords have a connection to the deviation sets defined
by Wiberg [Wib96], and refined by Forney et. al [FKKRO1].

The sum-product algorithm is known to perform very well in practice [DJM9S|.
However, it will not always converge; additionally, when the algorithm finds a code-
word, there is no theoretical guarantee that it has found the ML codeword, i.e., it

119

does not have the ML certificate property enjoyed by the LP decoder. It should be
acknowledged, however, that in practice (for LDPC codes with large block length),
when the sum-product decoder converges to a codeword, it is extremely rare for it not
to be the ML codeword [For03]. In Chapter 8 we will see how to derive new message-
passing algorithms that are guaranteed to converge to the LP optimum. If one of
these algorithms converges to a codeword, it is guaranteed to be the ML codeword.

We note that Gallager’s original decoding algorithm [Gal62] and Sipser and Spiel-
man’s algorithm for decoding expander codes [SS96] also fall under the category of
message-passing decoders, but we do not discuss them here. It would be interesting
to see how these algorithms compare to LP decoding.

The results in this chapter are joint work with David Karger and Martin Wain-

wright, and most of them have been appeared previously, or have been submitted for
publication [FWKO03a, FWKO03b, FK02a, FK02b].

Notes on computational complexity. Comparing the computational complexity
of LP decoding and message-passing decoding is still very much an open issue, both
in theory and practice. The primary goal in this study of LP decoding is not necessar-
ily to derive an algorithm that will compete computationally with message-passing
decoders in practice, but rather to derive an efficient (polynomial time) algorithm
whose performance can be understood analytically. Many interesting issues remain
open in this area, both in theory and in practice.

Linear programming is considered one of the most complex natural problems that
is still solvable in polynomial time (the efficiency of the ellipsoid algorithm grows
as O(n?®), with a large constant). So in theory, the LP decoder is far less efficient
than the message-passing decoders, most of which run in linear time (for a fixed
number of iterations). Intuitively, it would also seem that one would have to “pay”
computationally for the ML certificate property [Yed03]. However, using recent work
on “smoothed analysis” [ST01], one may be able show that the simplex algorithm
has better performance guarantees for this application. Furthermore, there may be
more efficient methods for solving the coding LPs than using a general-purpose LP
solver. For example, the relaxation for RA(2) codes can be solved using a single
instance of min-cost flow. Also, our “pseudocodeword unification” results in this
chapter can be seen as showing that message-passing decoders represent efficient
methods for solving the coding LP for certain special cases. It would be interesting
to see more special cases that yield efficient algorithms, or (ideally) a general-purpose
combinatorial algorithm for solving the turbo code and LDPC code relaxations we
give in this thesis.

The author has not yet performed an experimental study comparing the efficiency
of the two methods, nor is aware of any such work. Due to the variety of implementa-
tions of message-passing decoders (and of LP solvers), we hesitate to generalize about
the relative efficiency (in practice) of the two methods. It would be very interesting
to see a comprehensive study done on this issue.

120

7.1 Message-Passing Decoders for LDPC Codes

Message-passing decoders for LDPC codes are built on a factor graph for the code.
Every edge (4, 7) in the factor graph maintains two messages, one going in each direc-
tion. We denote the message from variable node ¢ to check node j by m,;. Similarly
we use mj; to denote the message from check j to variable i. The messages (in both
directions) represent a “belief” regarding the value of the code bit y;.

The algorithm goes through a series of updates on the messages. The order in
which messages are updated (and whether in series or parallel) depends on the par-
ticular heuristic being used. A message m;; from a variable to check node is up-
dated using some function of the local cost 7; at variable node ¢ and the messages
{mj; : j € N(i)} incoming to ¢. The messages from check to variable nodes are
updated using a function of the messages {m;; : i € N(j)} incoming to j.

The messages are all initialized to some neutral value (typically zero), and up-
dating usually begins with the messages m;; from variables to checks. The iterative
message update process continues until some sort of stopping condition is reached,
which differs between algorithms and implementations. Then, a final decision is made
for each bit. This final decision for bit y; is a function of the local cost +; and the
incoming messages {m;; : j € N (i)} to the variable node i.

In the remainder of this section, we give the details of two specific message-passing
algorithms, min-sum and sum-product, as they apply to decoding on a factor graph
for a binary linear code.

7.1.1 Min-Sum Decoding

The min-sum algorithm is a particular message-passing decoder for LDPC codes. We
describe this algorithm in a way that is specific to binary decoding; for its application
in a more general setting, we refer the reader to Wiberg’s thesis [Wib96]. The min-
sum algorithm can be thought of as a dynamic program that would compute the ML
codeword if the graph were a tree. The graph is usually not a tree, but the this
decoder proceeds as if it was.

In this algorithm the messages m;; and mj; on an edge (4, j) represent the cost of
setting y; = 1. So, a positive message represents “evidence” that the bit y; should
be set to 0, and a negative message represents evidence that the bit y; should be
set to 1. The messages are all initialized to zero. All variable-to-check messages
are then updated simultaneously, followed by all check-to-variable messages updated
simultaneously. This alternation continues, either for a fixed number of iterations, or
until the hard decision procedure yields a codeword.

The message from a variable 7 to a check j is simply the sum of the local cost ;
and the messages coming into ¢ (other than the one from j):

mij = "}/l—i- Z mj/i'
J'EN(D),j'#5

For a check-to-variable message update, we use the incoming messages to a check

121

J as costs, and compute the cost of each configuration (S € E;). Then, for each bit
7 in the neighborhood of 7, the message to ¢ is the difference between the minimum
cost configuration S where ¢ € S (i.e., bit y; is set to 1) and the minimum cost
configuration S where i ¢ S (i.e., bit y; is set to 0). Thus the sign of the message
determines whether the check “believes” that the bit is either a 0 or a 1. Specifically:

ms; = min E m;; | — min E My i
It SGEJ-,SSZ'< ”) SeEj,saz'< ”)

€S, il#i i'es

Note that when we update a message to a node (either variable or check), the message
from the node that will be receiving the new message is not factored into the calcu-
lation. Intuitively, this is done because the node already “knows” this information.
The hard decision for a bit y; is made by summing its incoming messages along
with its cost, and taking the sign. Formally, if we set a; = ~; + ZjeN(i) mj;, then the
hard decision for each bit y; is made by setting y; = 0 if a; > 0, and y; = 1 otherwise.

7.1.2 Sum-Product (Belief Propagation)

The sum-product, or belief propagation algorithm can also be thought of as a dynamic
program in the case where the factor graph is a tree. Here, the goal is to compute
the exact marginal probabilities Pr[y | y; = 0] and Pr[g | y; = 1] for each bit y;.
We begin with the local probabilities Pr| ¢; | v; = 0] and Pr[g; | v; = 1]. Note that
for a particular bit y;, the local probabilities are based only on the received symbol
y; and the channel model being used. For example, in the BSC, we have

Pl =0l ={ 4 _ {57
The messages to and from variable node i are pairs (m° m!) that represent an
estimate of the distribution on the marginal probabilities Pr[¢ | y; | over settings
of y;. The variable-to-check message m,?j is computed by multiplying the incoming
messages my, (for all j € N(i), where j* # j) together with the local probability
Pr[g; | yi = 0]. Message m}j is updated similarly.

The update on the check-to-variable message (m3;, m;;) is performed by first com-
puting an estimate (based on the incoming messages) of the probability distribution
on local configurations. Then, for all configurations where y; = 0, these probabilities

are added together to obtain mJ;. (A similar update is performed for m};.)

We define the message update rules formally as follows. All messages m;; and
m;; are initialized to (1,1). To perform an update, variable node 7 multiplies all its
incoming messages (besides the one from j) together with the local probability, and
sends the result to j:

my;, = Pr[gi |y =0] H mj; mi; = Pr[§; |y = 1] H mj;
F'EN(4),5'#7 J'EN(i),5'#J

122

When a check node j sends a message to a variable node ¢, it sums up all the proba-
bilities of its local configurations for each setting of the bit i, based on the incoming
messages other than 7. The updates are as follows:

0 _ 1 0 1 1 0
My = Z H M H M My = Z H M H My
sek;, \ ies, ¢S, SeE;, \ ies, ¢S,
SF \i'#i i #i S50\ #'#i i #i
A hard decision is made by multiplying all the incoming messages to a variable node
along with the local probability. Formally, we set

o) = Pr[g|y=0] H my;, and of =Pr[g | yi=1] H my;.

JEN(3) JEN(3)

Then, if a? > o), we set y; = 0; otherwise we set y; = 1.

If the sum-product algorithm is run on a tree, the intermediate messages represent
solutions to marginal probability subproblems on subtrees. If the graph is not a tree,
then a particular local probability can contribute to the value of an intermediate
message more than once, since the messages could have traversed a cycle. However,
the algorithm still seems to perform well in practice, even in this case. Explaining

exactly what the sum-product algorithm computes is a topic of great interest [Wib96,
YFWO02, Wai02].

7.2 Message-Passing Decoders for Turbo Codes

Turbo codes consist of a group of concatenated convolutional codes, each of which
can be easily decoded with the Viterbi algorithm. So, the first algorithm that comes
to mind for decoding Turbo codes is the following. First, decode each constituent
convolutional code separately; if the results agree, then output the resulting codeword.
However, in many cases the results will not agree; in fact, the real power of turbo
codes comes from this case. (Otherwise, turbo codes would be no different than
convolutional codes.)

Message-passing decoders recover from this case by passing messages between the
trellises, and adjusting edge costs based on these messages. The messages indicate
the “evidence” each trellis has for a bit being set to a particular value.

There are many different types of message-passing schemes; for a full review, we
refer the reader to a textbook written on the subject [VY00]. Here we review two
common approaches, the min-sum and sum-product algorithm, as they apply to rate-
1/2 repeat-accumulate (RA(2)) codes.

Recall that in RA(2) codes, for an information bit x;, we have X; = {i,7'}, where
7 and i’ are the two layers of the trellis that use information bit ¢ to determine the
next transition. The message-passing algorithm maintains a “likelihood ratio” LR,
for each trellis segment i, where ¢ € X; for some information bit x;. This ratio is an

123

estimate of the following quantity:

Pr[z, = 1]
Prz, = 0]

In other words, the algorithm maintains two separate estimates of the likelihood of
xy; the trick will be to get them to agree. Note that if LR; > 1 then z; is more likely
to be a one; if LR; < 1, then x; is more likely to be a zero.

For each edge e in the trellis at segment ¢, we have a weight w.. This weight will
be equal to the local probability Pr[g;|y;], where y; is the code bit on the label of e.
For example, in the BSC, suppose we have an edge e at trellis segment ¢ that enters
state 0, and so it has a label of 0. If we receive y; = 1, then we set w = p; If we
receive y; = 0, we set w = 1 — p, where p is the crossover probability in the channel.

The message passing scheme will repeatedly update the edge weights by main-
taining a message m; to each trellis segment i. The effective weight of an “input-1”
edge will be equal to w. = m;w., where 7 is segment of the trellis in which edge e is
contained. The effective weight of an “input-0” edge is equal to its original weight.
Let the effective weight wp of a path P through the trellis be equal to the product
of the effective weights of its edges. The messages are initialized all to 1, so they do
not affect the weight.

The high-level algorithm for a single iteration is the following:

e Let Z; be the set of paths that use an “input-1”7 edge at trellis segment i. We
update LR; as follows:

o ZPEZ’L (DP

LR; = -
D opgz, WP

(7.1)

Note that these LRs can be computed by dynamic programming (also known
as the “forward-backward” Viterbi algorithm), without explicitly computing wp
for all paths P.

e Now update the messages as follows. For each {i,i'} € X, we make new mes-
sages m; and m/,, where
, LRy , LR

mi — y mi/ -
my m;

(7.2)

e Finally, update the effective weights of each edge. For each “input-1” edge e at
trellis segment i, let
We = My;We.

Note that these weights are in a multiplicative domain, rather than the additive
domain we have been working with for LP decoding. There is a way to perform this
algorithm in an additive (log) domain using the log-likelihood ratio, but it is not as
natural to present. Also, in the log domain, sum-product can become slow; to perform
the additions necessary for equation (7.1), the algorithm needs to exponentiate, add,

124

then take logs. In the min-sum algorithm, the LR is approximated using the following

quantity: R
MPLR, = maXpez, CifP

max P¢z; wp

This approximation is significantly easier to compute, since in the log domain, the

max operator remains, and multiplication turns into addition.

The message-passing algorithm continues either for a fixed number of iterations,
or until it has “found” a codeword; i.e., if for all {i,i'} € X, we have agreement
between LR; and LR;,. By agreement, we mean that either LR; and LR; are both
greater than 1, or LR; and LR; are both less than 1.

Upon termination, a hard decision is made by multiplying the two LRs together
that correspond to each information bit. Formally, for all X; € X where X; = {i,4'},
we set the decoded information word as follows; for all ¢, set

, [0 if LRELRy <1
T\ 1 if LR,LRy > 1

7.3 Success Conditions for Message-Passing De-
coders and their Relation to LP Decoding

A natural question to ask is how the pseudocodewords for LP decoding relate to
the success conditions for the message-passing algorithms used in practice. Perhaps
understanding this relationship can help us understand why these message-passing
decoders are so successful. In this section we answer this question for several different
specific codes and channel models.

7.3.1 Tailbiting Trellises

Recall that on tailbiting trellises (Section 6.1.4), the LP decoder always finds the
minimum-cost circulation in the trellis with unit flow across each layer of the trel-
lis. Each such circulation is a convex combination of simple cycles. Therefore, the
LP decoder always finds the minimum-cost simple cycle in the trellis (or a convex
combination, in the degenerate case of many simple cycles with the minimum cost).

Suppose the trellis has length k. Then, if the circulation found by the LP decoder
is a simple cycle of length k, it corresponds to a codeword; otherwise, it is a fractional
solution that contains some cycle of length ak, where « is an integer greater than one.
We can think of the cycles in the trellis as “pseudocodewords” in the same way that
we did in LDPC codes; the cycles are a superset of the codewords, and the decoder
always finds a minimum-cost cycle. The cost of a cycle Y is the total cost of its edges,
multiplied by the amount of flow on each edge (which is the same for each edge due
to flow conservation). If the cycle has length ak, where o > 1, it must pass through
the first trellis layer exactly o times. Since the LP demands one unit of flow across
the first trellis layer, it must be that every edge has flow 1/a. Thus the cost c[Y] of

125

the cycle Y is exactly

1

clY|=— Ve- 7.3
=23 (73)
In their work on tailbiting trellises, Forney et al. [FKMTO1] have precisely the same
characterization of a pseudocodeword; i.e., cycles through the trellis of some length
ak. They show that min-sum decoding will find the pseudocodeword with minimum
“weight-per-symbol,” which is simply the average cost of the paths through the trellis
that make up the cycle. Since there are exactly a paths, their cost is exactly the cost
in equation (7.3). We may conclude that on tailbiting trellises, these two algorithms

have identical performance.

7.3.2 The Binary Erasure Channel

In the binary erasure channel (BEC), bits are not flipped but rather erased. Con-
sequently, for each bit, the decoder receives either 0, 1, or an erasure. If either
symbol 0 or 1 is received, then it must be correct. On the other hand, if an erasure
(which we denote by x) is received, there is no information about that bit. Tt is
well-known [DPR*02] that in the BEC, the message-passing belief propagation (BP)
decoder fails if and only if a stopping set exists among the erased bits. The main
result of this section is that stopping sets are the special case of pseudocodewords on
the BEC, and so LP decoding exhibits the same property.

Since the BEC is memoryless and symmetric, we can model the BEC with a cost
function 7. As in the BSC, v; = —1 if the received bit g; = 1, and ~; = +1 if
7 = 0. If §; = x, we set v; = 0, since we have no information about that bit. Note
that under the all-zeros assumption, all the costs are non-negative, since no bits are
flipped. Therefore, Theorem 5.6 says that the LP decoder will fail only if there a
non-zero pseudocodeword with zero cost.

Let & be the set of code bits erased by the channel. We define a subset § C £ as a
stopping set if all the checks in the neighborhood U;es N (7) of S have degree at least
two with respect to S (see Figure 7-1). In the following statement, we have assumed
that both the message-passing and the LP decoders fail when the answer is ambiguous.
For the message-passing algorithm, this ambiguity corresponds to the existence of a
stopping set; for the LP decoder, it corresponds to a non-zero pseudocodeword with
zero-cost, and hence multiple optima for the LP.

Theorem 7.1 In the BEC, there is a non-zero pseudocodeword with zero cost if and
only if there is a stopping set. Therefore, the performance of LP and BP decoding are
equivalent in the BEC.

Proof: If there is a zero-cost pseudocodeword, then there is a stopping set. Let (h,u)
be a pseudocodeword where) . v;h; = 0. Let S = {¢ : h; > 0}. Since all 7; > 0, we
must have 7; = 0 for all i € S; therefore S C £.

Suppose S is not a stopping set; then 3j5° € (U;esN(i)) where check node j’
has only one neighbor ¢ in §. By the definition of a pseudocodeword, we have
hy = ZSEEj/7SBi, ujrg. Since hy > 0 (by the definition of §), there must be some

126

|
|
|
|
|
Stopping Set |

Figure 7-1: A stopping set for the sum-product decoder in the BEC. A set S of variable
nodes is a stopping set if all their corresponding bits are erased by the channel, and the
checks in the neighborhood of & all have degree at least two with respect to S.

S" € Ej,S" 5 i such that uj ¢ > 0. Since S’ has even cardinality, there must be
at least one other code bit ¢ in S’, which is also a neighbor of check j. We have
hi» > wjr g by the definition of pseudocodeword, and so h;» > 0, implying " € S.
This contradicts the fact that j’ has only one neighbor in S.

If there is a stopping set, then there is a zero-cost pseudocodeword. Let S be a
stopping set. Construct pseudocodeword (h,u) as follows. For all i € S, set h; = 2;
for all i ¢ S, set h; = 0. Since S C &, we immediately have >, v;h; = 0.

For a check j, let M(j) = N(j)NS. For all j € (U;esN (7)) where |M(j)| even, set
u;m(;) = 2. By the definition of a stopping set, M (j) > 2, so if |M(j)| is odd, then
M(j) > 3. For all j € (U;jesN (7)) where |[M(j)| odd, let I = {i1, 12,13} be an arbitrary
size-3 subset of M(j). If |[M(j)| > 3, set wjming = 2. Set Wiy i} = W) firis} =
Uj {iris} = 1. Set all other u;s = 0 that we have not set in this process. We have
> ser, 55 Wi,s =2 =h; for alli € S,j € N(i). Additionally, > gcp o5 ujs = 0= h
for all i ¢ S,j € N(i). Therefore (h,u) is a pseudocodeword. ‘ n

7.3.3 Cycle Codes

A cycle code is a binary linear code described by a factor graph whose variable
nodes all have degree 2. In this case, pseudocodewords consist of a collection of
cycle-like structures that we call promenades. The connection with the RA(2) case
is intentional; RA(2) codes are in fact cycle codes. A promenade is a closed walk
through the factor graph that is allowed to repeat nodes, and even traverse edges in
different directions, as long as it makes no “U-turns;” i.e., it does not use the same
edge twice in a row. Wiberg [Wib96] calls these same structures irreducible closed
walks.

From Theorem 5.6, we have that the LP decoder fails if and only if there is some
pseudocodeword with cost less than or equal to zero. Wiberg proves exactly the
same success conditions for irreducible closed walks under min-sum decoding. Thus

127

we may conclude from this connection that min-sum and LP decoding have identical
performance in the case of cycle codes.

Even though cycle codes are poor in general, they are an excellent example of
when LP decoding can decode beyond the minimum distance. For cycle codes, the
minimum distance is no better than logarithmic. However, in Section 6.3.3 we showed
that there are cycle codes that give a WER of n™* for any «, requiring only that the
crossover probability is bounded by a certain function of the constant « (independent
of n).

We note that the results of Section 6.3.3 may be obtained by using the factor
graph representation of an RA(2) code, which turns out to be essentially the same
as the auxiliary graph ©. In fact, this turns out to be a simpler proof, since we may
invoke Theorem 5.4. However, we feel that the techniques we used in Section 6.3.3
and in the proof of Theorem 6.2 are better suited for the study of more complex turbo
codes. In RA(2) codes, the factor graph LP relaxation turns out to be equivalent to
the trellis-based relaxation; this will not hold in general.

7.3.4 Min-Sum Decoding of LDPC Codes

The deviation sets defined by Wiberg [Wib96], and further refined by Forney et.
al [FKKRO1] can be compared to pseudocodeword graphs. The computation tree of
the message-passing min-sum algorithm is a map of the computations that lead to
the decoding of a single bit at the root of the tree. This bit will be decoded correctly
(assuming the all-zeros word is sent) unless there is a negative-cost “locally-consistent
minimal configuration” of the tree that sets this bit to 1. Such a configuration is called
a deviation set, or a pseudocodeword.

All deviation sets can be defined as acyclic graphs of the following form. The
nodes of D are nodes from the factor graph, possibly with multiple copies of a node.
Furthermore,

e All the leaves of D are variable nodes,

e cach non-leaf variable node ¢ € 7 is connected to one copy of each check node
in N(i), and

e cach check node has even degree.

As is clear from the definition, deviation sets are quite similar to pseudocodeword
graphs; essentially the only difference is that deviation sets are acyclic. In fact, if you
removed the “non-leaf” condition above, the two would be equivalent. In his thesis,
Wiberg states:

Since the [factor graph] is finite, an infinite deviation cannot behave com-
pletely wrreqularly; it must repeat itself somehow. ... It appears natural to
look for repeatable, or ‘closed’ structures [in the graph]. .., with the prop-
erty that any deviation can be decomposed into such structures.[Wib96]

128

WER Comparison: Random Rate-1/2 (3,6) LDPC Code

0| T T T ' Min-Sum DEICOder —
o LP Decoder —e—
Both Error ———-- |
10t F |
(0]
g
_2 | |
5 10° |
=
L
°
§ 10° | _-
10% | |
10-5 I : L 1 1

10t 1012 104 1016 1018 102
BSC Crossover Probability

Figure 7-2: A waterfall-region comparison between the performance of LP decoding and
min-sum decoding (with 100 iterations) under the BSC using the same random rate-1/2
LDPC code with length 200, left degree 3 and right degree 6. For each trial, both decoders
were tested with the same channel output. The “Both Error” curve represents the trials
where both decoders failed.

Our definition of a pseudocodeword is the natural “closed” structure within a
deviation set. However, an arbitrary deviation set cannot be decomposed into pseu-
docodewords, since it may be irregular near the leaves. Furthermore, as Wiberg points
out [Wib96], the cost of a deviation set is dominated by the cost near the leaves, since
the number of nodes grows exponentially with the depth of the tree.

Thus strictly speaking, min-sum decoding and LP decoding are incomparable.
However, experiments suggest that it is rare for min-sum decoding to succeed and
LP decoding to fail (see Figure 7-2). We also conclude from our experiments that
the irregular “unclosed” portions of the min-sum computation tree are not worth
considering; they more often hurt the decoder than help it.

7.3.5 Tree-Reweighted Max-Product

We have explored the connection between this LP-based approach applied to turbo
codes, and the tree reweighted max-product message-passing algorithm developed by
Wainwright, Jaakkola, and Willsky [Wai02, WJWO02]. By drawing a connection to
the dual of our linear program, we showed that whenever this algorithm converges to
a code word, it must be the ML code word. We give the details of this connection for
RA(2) codes in Section 8.1.3.

129

7.4 Experimental Performance Comparison

While this is primarily a theoretical study of the method of LP decoding, we have
done some experimental work to compare the performance of LP decoding with the
standard message-passing techniques. For RA(2) codes, we show that the insight
gained from the analysis of LP decoding leads to an affirmation of the well-established
heuristic already used in code design: to make graphs with large girth. Specifically, we
demonstrate that using a graph with high girth not only leads to better performance
for LP decoding, but for message-passing decoding as well. This work also shows how
the bound from Section 6.3.3 compares to the real observed word error rate.

For LDPC codes, we see that LP decoding on random codes seems to perform
better than min-sum, and worse than sum-product (belief propagation). We also
see that when compared with ML decoding, the three algorithms have quite similar
performance.

7.4.1 Repeat-Accumulate Codes

Our experiments on RA(2) codes show that the decoding error of both the sum-
product and min-sum algorithms are strongly correlated to the performance of LP
decoding under the BSC (see Figure 7-3). Specifically, at a crossover probability of
at most p < 107°, conditioned on the LP decoder succeeding, the observed WER. of
both other algorithms, regardless of the interleaver, is always less than 1.43 x 1075,
In contrast, when LP decoding fails, the WER always exceeds 0.6. Since the Erdos
interleaver was designed to make negative-cost promenades rare, it is no surprise that
the performance of the message-passing decoders improves markedly (see Figure 7-3)
when the Erdos interleaver is used.

Our data also show the relationship between the upper bound from Section 6.3.3
and the observed probability of the existence of a negative-cost promenade (see Fig-
ure 7-3) for the BSC. The gap between the bound and the observed probability is due
to the union bound used in the analysis. The “path bound” of Theorem 6.5 could
potentially be improved by a deeper understanding of the distribution of promenades,
but the slope of the bound seems quite accurate.

7.4.2 LDPC Codes

We have compared the performance of the LP decoder with the min-sum and sum-
product decoders on the binary symmetric channel. We used a randomly generated
rate-1/4 LDPC code with left degree 3 and right degree 4. Figure 7-4 shows an error-
rate comparison in the waterfall region for a block length of 200. We see that LP
decoding performs better than min-sum in this region, but not as well as sum-product.

However, when we compare all three algorithms to ML decoding, it seems that at
least on random codes, all three have similar performance. This is shown in Figure 7-
5. In fact, we see that LP decoding slightly outperforms sum-product at very low
noise levels. It would be interesting to see whether this is a general phenomenon, and
whether it can be explained analytically.

130

WER Comparison: RA(2) Codes

101 T T T T T T T T
LP Decoder, Erdos interleaver —e—
LP Decoder, random interleaver —e—
Min-Sum Decoder, random interleaver —+—
100 b Min-Sum Decoder, Erdosinterleaver —+—
(]
o
x 10" ¢ i
S
o
S
S
L -2
-D 10 - \\\\\ -
S 2 “.._Path Bound
= ?
10°F & :
c
S
c
4(/%5
107+ :
1 1 1 1 1 1 1 1
0% 100 10*® 102 10%* 10® 10*® 10* 10* 10°
BSC Crossover Probability
p=10""1T p=10"15 p=10"2 p=10"25
err / tot | WER err [tot | WER err / tot [WER err [tot | WER
NCP? Min-Sum, Erdés interleaver
Y 787506 / 796648 .989 55817 / 59519 .938 1914 / 2099 912 101 / 112 .902
N 4 / 203352 2e-5 0 / 940481 0 0 /997901 0 0 / 999888 0
Sum-Product, Erdos interleaver
Y 792176 / 796648 .994 55461 / 59519 932 1918 / 2099 914 98/ 112 .875
N 19258 / 203352 | .0947 2 / 940481 2e-6 0 / 997901 0 0 / 999888 0
Min-Sum, random interleaver
Y 859856 / 886050 .970 176905 / 229738 770 || 36153 / 55146 .656 || 9912 / 16234 611
N 3 /113950 3e-5 1/ 770251 le-6 0 / 944854 0 0 / 983776 0
Sum-Product, random interleaver
Y 864673 / 886050 976 170668 / 229738 .743 || 35225 / 55146 .639 || 9935 / 16234 .612
N 12042 / 113950 .106 11 / 770262 le-5 0 / 944854 0 0 / 983766 0
err= number of errors tot= total trials WER = word error rate NCP = neg-cost promenade (incl. 0-cost)

Figure 7-3: Comparison of the WER of some standard message-passing algorithms to the frequency
of a negative-cost promenade for both the Erdos interleaver and a random interleaver. The sum-
product algorithm is not shown on the plot, since its rate would not be distinguishable from that
of the min-sum algorithm. Also included in the plot for reference is the theoretical bound on WER,
for the Erdos interleaver. This path bound is the error bound of Theorem 6.5.
The data show the standard max-product and sum-product message-passing decoding algorithms,
using the Erdos interleaver, and using a random interleaver (a new random interleaver is picked for
each trial). For each of these four combinations, the data are separated into the case where there is
a negative-cost promenade (Y), and when there is not (N). An RA(2) code with block length 128
is used, under the BSC with varying crossover probability p. The data show one million trials for
each interleaver type.

131

WER Comparison: Random Rate-1/4 (3,4) LDPC Code

' ' ' ' Mi'n-Sum Dlecoder -
10° F LP Decoder —e—
Sum-Product Decoder —<—
(0]
8
@ 10" E
S
(0
°
=
102 + ;
10-3 L L L 1 1 ',

1 1 1
10—0.75 10—0.8 10—0.85 10—0.9 10—0.95 10—1 10—1.05 10—1.1 10—1.15 10
BSC Crossover Probability

Figure 7-4: A comparison between the performance of LP decoding, min-sum decoding (100
iterations) and belief propagation (100 iterations) under the BSC using the same random
rate-1/4 LDPC code with length 200, left degree 3 and right degree 4.

WER Comparison: Random Rate-1/4 (3,4) LDPC Code

10° [. . . — . -
Min-Sum Decoder

I LP Decoder l
Sum-Product Decoder

I ML Decoder 1

10t | -

) I]

a 2

O 10°F .

S

o .]

=

L L |

ge]

5 10°F 1
10 b .
l0.5 1 1 1 1 1 1

10—0.6 10—0.8 10—1 10—1.2 10—1.4 10—1.6

BSC Crossover Probability

Figure 7-5: A comparison between the performance of ML decoding, LP decoding, min-
sum decoding (100 iterations) and belief propagation (100 iterations) under the BSC using
the same random rate-1/4 LDPC code with length 60, left degree 3 and right degree 4. The
ML decoder is a mixed-integer programming decoder using the LP relaxation.

132

Chapter 8

New Message-Passing Algorithms
Using LP Duality

None of the standard message-passing methods are currently able to give an ML
certificate. In this chapter we use LP duality to give message-passing algorithms this
ability. We show that if the messages satisfy certain conditions, then the output
of the decoder must be the ML codeword. Furthermore, we define a new message-
passing decoder to solve the dual of our linear program directly. Therefore all the
analytical techniques and performance guarantees given for LP decoding apply to this
new message-passing algorithm as well. We first cover rate-1/2 RA codes, then use
similar techniques for the case of LDPC codes.

The conditions we impose on the messages will correspond to complementary
slackness conditions of the LP. Upon termination, if the messages satisfy these con-
ditions, then an LP optimum is found that corresponds to the ML codeword. This
technique has connections to the tree-reweighted maz-product (TRMP) algorithm of
Wainwright et. al [WJWO02], which we show to have the ML certificate property.

Note that our result does not guarantee that the algorithm will always converge
to the ML codeword; such an algorithm would be unreasonable to expect, since ML
decoding is NP-hard. However, our result does give iterative algorithms the power
(in some cases) to prove that if they made a decoding error, then the optimal (ML)
decoder would have made an error as well.

In addition, we use a partial Lagrangian dual form of our LP to define a new
message-passing algorithm based on the subgradient method that is guaranteed to
converge to a well-understood point: the LP optimum. Thus we get all the perfor-
mance guarantees of LP decoding, but in an algorithm that more closely matches the
ones used in practice. For LDPC codes, this form of the dual also provides a more
general means by which any message-passing decoder can prove that their output is
the ML codeword.

We note that while the subgradient method has theoretical convergence guar-
antees, it does not necessarily converge in polynomial time; for a polynomial-time
guarantee of convergence, we can simply solve the linear program with the Ellipsoid
algorithm. However, in practice message-passing algorithms can have a significant
running-time advantage, especially in cases where there is little noise in the channel.

133

On the other hand, subgradient methods are sometimes slower to converge in practice
than other methods, and are quite sensitive to a certain “step-size” parameter. It
would be interesting to see whether more efficient (perhaps primal-dual) algorithms
exist to solve our LPs.

The results in this chapter are joint work with David Karger and Martin Wain-
wright. The work on turbo codes has appeared in conference form [FKW02]. The
work on LDPC codes has been submitted for conference publication [FKWO03].

8.1 Rate-1/2 Repeat-Accumulate Codes

In this section, we provide iterative algorithms for solving RALP (Section 6.3.2). We
begin by developing a particular Lagrangian dual formulation, the optimal value of
which is equivalent to the optimal value of the RALP relaxation. This dual for-
mulation suggests the use of an iterative subgradient optimization method [BT97].
We then consider the variant of the min-sum algorithm, known as tree-reweighted
max-product (TRMP), proposed by Wainwright, Jaakkola and Willsky [WJW02] for
maximum likelihood calculations on factor graphs. Like the standard min-sum and
sum-product algorithms, the algorithm is based on simple message-passing updates,
so it has the same complexity per iteration as those algorithms. Here we show that
TRMP is also attempting to solve a dual formulation of RALP. In addition, we prove
that when TRMP reaches a certain stopping condition, it has found an optimal inte-
gral point of RALP, and thus has found the ML code word.

8.1.1 Lagrangian Dual

Without the agreeability constraints, the RALP relaxation (Section 6.3.2) solves a
standard shortest path problem. This observation motivates a partial Lagrangian
dualization procedure, wherein we deal with the troublesome agreeability constraints
using Lagrange multipliers. Recall that Z; is the set of paths through the trellis that
use an input-1 edge at segment i. More specifically, for a particular path P, the
“agreeability” of that path with respect to some X; € X where X; = {i,i'} can be
expressed by the following function A:

A(P)=[Pez] — [PeZ (8.1)

Here [P € Z;] is an indicator function that takes the value one if path P is in Z;, and
zero otherwise. Note that A;(P) = 0 for all X; = {7,4'} if and only if P is agreeable.
If A;(P) # 0, then its sign determines how the two segments disagree.

We then consider the Lagrangian obtained by assigning a real-valued Lagrange
multiplier \; to each agreeability constraint:

LIPA) =) 7+ > M A(P) (8.2)

ecP XieX

For a fixed vector A\ € R¥, the corresponding value of the dual function £*()) is

134

obtained by minimizing the Lagrangian over all paths — that is,

L7(A) = min L(P;),

where P denotes the set of all paths through the trellis. Since the dual is the minimum
of a collection of functions that are linear in A, it is concave. Moreover, for a fixed
A, calculating the dual value £*(\) corresponds to solving a shortest path problem
on the trellis, where the input-1 edges in each paired set of segments {i,i'} = X,
have been reweighted by A\; and —)\; respectively. Since there may not be a unique
shortest path, we consider the set SP(\) = {P : L(P;\) = L*(\)} of shortest paths
under the weighting \.

Note that the value of an agreeable path is unchanged by the reweighting A,
whereas any non-agreeable path may be affected by A. This opens up the possibility
of “exposing” the ML agreeable path by changing the weighting A such that all
non-agreeable paths have higher cost under A than the ML agreeable path. Thus,
the problem we would like to solve is to find a reweighting A such that £*(\) is
maximized. From linear programming duality [BT97], one can show that the optimal
value maxycpr L(A) of this Lagrangian dual problem is equal to the optimal value of
the RALP relaxation, so that solving this problem is equivalent to solving RALP.

8.1.2 Iterative Subgradient Decoding

An iterative technique to compute maxy £*(A) is the subgradient optimization algo-
rithm [BT97]. Classical gradient ascent/descent methods rely on the fact that the
dual function is differentiable. Our dual function £* is not differentiable, but it is
concave. In this case the subgradient is a sufficient substitute for the gradient to
ensure convergence. For a concave function £*, a subgradient at A is a vector d such
that £*(u) < L£*(\) +d¥(u — A) for all . For the particular form of £* at hand, it
can be shown [BT97] that the collection of all subgradients is given by the following
convex hull:

oL (\) = CH{A(P)|Pe SP(\)} (8.3)

The subgradient method is an iterative method that generates a sequence {*} of
Lagrange multipliers. As previously described, for any pair X; = {i,i'}, segment
i is reweighted by AF, whereas segment i’ is reweighted by —\F. At each iteration
k, the algorithm entails choosing a subgradient d(\¥) € 9L*(A\¥), and updating the
multipliers via

AL = N k(AR (8.4)

where o is a scalar representing the “step size” at iteration k. This iterative proce-

dure is guaranteed to converge as long as [BT97]

Z af =00, and lim o = 0. (8.5)

)
k—oo

k=0

135

An example [BT97] of such a function is a® = 1/(k + 1). In practice, however, the
rate of convergence may be slow. A subgradient d(*) can be calculated by finding a
shortest path in the reweighted trellis £(P, \¥).

8.1.3 Iterative TRMP Decoding

In lieu of the subgradient updates, we now consider the TRMP updates [WJW02],
which take a simple form for a turbo code with two constituent codes. The TRMP
updates are similar to but distinct from standard min-sum updates. Like the sub-
gradient updates of equation (8.4), the TRMP algorithm generates a sequence of
Lagrange multipliers {*}. At each iteration, it uses the new trellis weights £(P, *)
to compute two shortest paths for each segment i: the shortest path that uses an
input-1 edge in segment 7, as well as a competing shortest path that uses an input-0
edge. As with min-sum decoding, it then uses this information to form an estimate
of the min-log likelihood ratio for each trellis segment:

koo — k . k
LLR(\%i) = min L(P,*) — min L(P,\") (8.6)
The value LLR(A*;4) corresponds to the difference between the costs of the (esti-
mated) most likely paths using an input-1 or an input-0 edge respectively on segment
1. At iteration k, the LLR estimates can be computed efficiently using dynamic pro-
gramming (also known as the “forward-backward Viterbi algorithm”) on the trellis,
where A is used to reweight the edges appropriately.

The goal of the iterative decoder is to come to a decision for each information
bit, i.e., to make the sign of LLR()*;i) agree with the sign of LLR(*;#) for all
X; = {i,7'}. With this goal in mind, the Lagrange multipliers are updated via the
recursion

A=A + o (LLR(M¥;¢') — LLR(M";4)), (8.7)

where o* € (0,1] is the step size parameter. Note that, as with the subgradient
updates (8.4), the sum of the reweighting factors on segments i and ¢’ is zero at all
iterations.

An often used heuristic for standard iterative decoding algorithms is to terminate
once thresholding the LLRs yields a valid codeword. With TRMP, we can prove
that a heuristic of this form is optimal; specifically, if we terminate when for each
information bit, both of the LLRs have the same sign for that bit, then we have found
the ML codeword. Formally, call a setting of A an agreement if for all {i,i'} € X,
LLR(A;7) - LLR(A;4") > 0. In other words, LLR(A;¢) and LLR(A;4’) have the same
sign, and neither is equal to zero.

Theorem 8.1 If * is an agreement, then SP(*) contains only one path P; further-
more, the path P corresponds to the ML code word.

Proof: Since LLR(A*;7) # 0 for all segments i, the type of edge (input-0 or input-1)
used at each segment by any path in SP(*) is determined. It follows that SP(*)

136

contains only one path P. Since * is an agreement, we know that for every X; € X
where X; = {i,4'}, the type of edge used by the shortest path P at segment ¢ matches
the type used by P at segment ', i.e., A;(P) = 0. It follows that P is agreeable, and
that £L(P; *) = ¢[P]. Since P € SP()\), we have L*(*) = L(P; *) = ¢[P].

Now consider the primal solution to RALP that sets f. = 1 for all e € P, and
fe =0 for all e € P" where P’ # P. The value of this primal solution is ¢[P]. Thus
we have exhibited a primal solution P and a dual solution A* with the same value
c[P]. By strong duality, they must both be optimal. Thus P is the ML code word. W

Corollary 8.2 If TRMP finds an agreement, then it has found the ML code word.

We have not yet shown that TRMP always finds an agreement whenever RALP has an
integral solution. Consequently, unlike the subgradient algorithm, we cannot assert
that the TRMP result is always equivalent to RALP. However, we have observed iden-
tical behavior in experiments on RA codes, and further investigation should deepen
the connection between these algorithms.

8.2 Low-Density Parity-Check Codes

In this section we define a new class of message-passing algorithms for LDPC codes
that use the dual variables of our linear program LCLP. We show that if a message-
passing decoder that fits into this class “finds” a codeword, then it must be the ML
codeword. We will make the notion of “finding” a codeword precise, and show that
upon termination, if a codeword is found, then the message-passing decoder has found
a primal and dual optimal solution. Since the primal solution found is a codeword,
the dual solution is a proof that this codeword is the ML codeword.

We then define an alternate form of the LP dual using Lagrangian relaxation,
and use it to derive a new message-passing algorithm based on the subgradient al-
gorithm [BT97]. We also use this dual form to provide a more general way for a
message-passing algorithm to give an ML certificate.

8.2.1 The Dual of 9 for LDPC Codes

Our linear program from Section 5.1, along with its dual, are written below:

Primal : minimize Z%fz s.t. Dual : maximize Z c; st
i J
Vjej, ij,S:]- ViEI, Zm”:%
SEE]' JEN(Z)
v edges (Z,j), fz = Z W s, VJ S j,S S Ej, Cj < Zmij
S€E;,S3i i€S
VS e Ej, Wj, s >0,
VieZ, f;>0.

137

Note that we do not need the restrictions f; < 1 or w;s < 1 in the primal, as
they are implied by the other constraints. In the dual, we have free variables m;; for
all edges (7,7) in G, and ¢; for all j € J. The notation for the dual variables m;;
matches the notation for messages intentionally; these dual variables correspond to
messages in the algorithms we derive.

In the above formulation of the dual, we have assumed without loss of generality
that the constraint » jen() Mij < i is tight for all 7; if some such constraint were not
tight, then we could increase the value of some m;; without affecting the feasibility
or the cost of the solution.

8.2.2 Cost-Balanced Message-Passing Algorithms

In this section we derive a class of message-passing algorithms from the dual of our
LP. We do not define message update functions; rather we place a small restriction
on the outgoing messages from a variable node in order to enforce dual constraints.
Thus any decoder that is modified to meet these restrictions fits into our class.

We will regard the dual variables m,;; as the messages from variable to check
nodes. We make no restrictions on the messages from check to variable nodes. For a
particular check j, we let the cost of a configuration S be equal to), gmi;. Let S
be the minimum-cost configuration S € E;, with ties broken arbitrarily. Then, we
maintain the dual variable ¢; equal to the cost of S;". This enforces the dual constraint
on ¢;. To enforce the dual constraint on m;;, we make the following restriction on the
outgoing messages from a variable node :

> my = (8.8)

JEN(3)

This is the only restriction we place on our algorithm. In fact, this is easily achieved
by the min-sum or belief propagation algorithm by scaling its outgoing messages. It
would be interesting to see how this rescaling affects performance.

We place this restriction in order to say that the message-passing algorithm finds
a dual solution; in fact, we need only enforce this restriction at the end of the exe-
cution of the algorithm. We call a message-passing algorithm cost-balanced if, upon
termination of the algorithm, its messages {m;;} obey equation (8.8).

8.2.3 ML Certificate Stopping Condition

As a message-passing algorithm progresses, the minimum cost configuration .S} for
some check j represents the local “best guess” for the settings of the neighbors of 7,
based on the messages received so far. Suppose, for some code bit ¢ with both 7 and
j"in N (i), we have i in S5, but 7 not in S;,. This means that in some sense j and j'
“disagree” on the proper setting for i. If there is no such disagreement anywhere in
the graph, then the message-passing algorithm has “found” a codeword. The main
result of this section is that if a cost-balanced message-passing algorithm is used, then
this codeword is the ML codeword.

138

Formally, for a codeword y € C and a configuration S € F;, we say that y agrees
with S if, for all i € N(j), we have y; = 1 if and only if 1 € S. We say that set of
configurations agrees with a codeword y if y agrees with every configuration in the
set.

Theorem 8.3 Suppose a cost-balanced message-passing algorithm is exvecuted, and
the messages {m;; : i € Z,j € N(i)} represent the final variable-to-check messages.
If some codeword y agrees with the set {S; : j € J} of minimum cost configurations
under m, then y must be the ML codeword.

Proof: Consider the solution (y,w) to the primal, where w;s = 1 if S agrees with
y, and w; g = 0 otherwise. This solution is clearly feasible, since y is a codeword. Its
cost is equal to) . v;y;.

Now consider the following solution to the dual. For all edges (i, j), set m;; equal
to the current message from i to j. For all j € J, set ¢; = mingeg, (D ;cqmij)-
This dual solution is feasible, by condition (8.8) and the definition of ¢;. We claim
that this primal and dual solution obey complementary slackness. Note that for all
wjg we have (w;s > 0) = (¢; = > ,.qgmij). Additionally, for all y; we have
> jen(yMij = 7i- Therefore (y,w) and (m,c) obey complementary slackness, and
are both optimal. Thus, by Lemma 5.2, the codeword y is the minimum cost (ML)
codeword. []

Theorem 8.3 gives a generic stopping condition for a message-passing algorithm
to give an ML certificate: if the messages are cost-balanced, and all the minimum
configurations agree on a codeword, then output that codeword.

8.2.4 Lagrangian Dual

In this section we give an alternative form for the LP dual based on a partial La-
grangian relaxation. We use this form to derive a specific message-passing algorithm
based on the subgradient algorithm [BT97] that is guaranteed to converge to the
LP optimum. Finally, we use this dual form to provide a more general way for any
message-passing algorithm to give an ML certificate.

We define a partial Lagrangian dual form of our LP by “dualizing” only the
consistency constraints (Chapter 5, equation (5.4)) on each edge. Specifically, for a
particular edge (7,) in the graph, define the “consistency” of a setting of (f,w) as

Aij (f, w) = Z wj,s — fz (89)
Sek;,53i

We define Lagrange multipliers m;; for each edge, and obtain the following objective
function:

L(f, w;m) = Z%‘fz‘ + Zmiinj(ﬁ w) (8.10)

139

Recall that Q is the LP polytope defined in Section 5.1. Note that A;;(f,w) = 0 for
all (f,w) € Q. It follows that L(f,w;m) =Y.~ f; for all (f,w) € Q. Let L(Q) D Q
be the polytope that remains after removing the constraints (5.4). Specifically, £(Q)
is the set of points (f, w) such that:

Vied, D wis=1, (8.11)

SEEj
Vie T, 0<f; <1, and (8.12)
VieJ,Sekl;, wjs>0. (8.13)

The polytope £(Q) is quite relaxed, requiring only that a value between 0 and 1
is chosen for each bit, and a convex combination of configurations in £ is chosen
for each j € J. Note that in the polytope £(Q), the {f} and {w} variables are
completely independent.

Suppose we fix m. Define

L(m) = (f’urg)ﬂelg(g)ﬁ(f,w;m).

The minimization problem above is much simpler than optimizing over Q, since f
and w are independent. To see this, we use equations (8.10) and (8.9) to rewrite
L(f,w;m) as

f w, m Zf, Yi Z mij) + Z Z wj7szmij. (814)

JEN(i) i SEE; ies
Now we can find (f,w) such that L(f,w;m) = L*(m) as follows:

e Forall j € 7, let

Sy = arégerénn Z mij. (8.15)

Now set w; - = 1. Set w;s = 0 for all other S € Ej, S # 5. This setting of
g
w minimizes the second term in equation (8.14).

e Forallt e T, let

Lif (v = 2 jenqy mag) <0
fi= { , JEN) (8.16
If v =>" jen(i) Mij then fi may be set arbitrarily. This setting of f minimizes

the first term in equation (8.14).

Since L(f,w;m) is independent of m for all (f,w) € Q, raising L*(m) “exposes”
the minimum-cost point in Q. So, we would like to find the setting of m that maxi-
mizes £*(m). In fact, using strong duality, we have the following;:

min Z%fz—maxﬁ*()

(fiw)eQ

140

8.2.5 The Subgradient Algorithm

To solve the problem max,, £L*(m), we can use the subgradient algorithm [BT97],
as we did for RA(2) codes. We generate a sequence (m° m! m? ...) of Lagrange
multipliers, which we can think of as messages. For a particular message vector m”,
we compute m*™! by adding a subgradient of the function £*(-) at the point m”*. The
subgradient d is a vector with the same dimension as m; so, it consists of a value for
each edge in the graph.

At each iteration, finding a subgradient is simple. We have already given a pro-
cedure (equations (8.15) and (8.16)) for finding (f,w) such that £L*(m) = L(f, w;m).
Using this setting of (f,w), we simply set d;; = A;;(f, w) for all edges (4, 7). It can
be shown [BT97] that this will always be a subgradient. Note that since (f,w) is
integral, we have d € {—1,0,+1}".

After finding the subgradient d, we set m**! = m* 4 a*d, where o* is the step-size
parameter. As in RA(2) codes, this procedure is guaranteed to converge as long as
the conditions in equation 8.5 hold.

To summarize, our message-passing algorithm proceeds as follows. Initially, all
m?j = 0. In the algorithm to follow, we also have messages m ;; from checks to variables
in order to fit better into the paradigm; these messages will indicate membership in the
minimum-cost configuration for a given check node. For an iteration k, the algorithm
performs the following steps:

1. Update the check-to-variable messages. The messages from a check j are indi-
cators of membership in the minimum-cost configuration S;". If a variable node
is in the min-cost configuration, then the check “believes” that it should be set
to one. Formally, for all j € J:

- _ - k-1
o Let S =argmin)_,_om;; .
SeE;

(Break ties arbitrarily).

e Forall i € N(j), if i € S}, set mfl = 1; otherwise set m;?i = 0.

2. Update the variable-to-check messages. The messages from a variable 7 indicate
whether the current setting of the bit y; agrees with the belief of each check in
the neighborhood of i. If there is agreement, then the message is unchanged from
the previous iteration; otherwise, the message is either increased or decreased,
in a way that will bias the next iteration toward agreement. Formally, for all

1 €7, we set
yi = { L (i = X jenq mag) <0
' 0 if (i = 2jenq mis) 2 0
Then, for all j € N(i):

k ko k=1
set myg; = my;

3

o Ify,=m

e If y;, =0 and m?z =1, set mic] _ m?j_l N3

= k _ ko k-1 k
o If y; =1 and mj; = 0, set mg; = m;; — a”.

k

The step-size o is any function of the form indicated in equation (8.5).

141

3. If none of the variable-to-check messages changed (i.e., if y; = mfi for all edges
(i,7)), then stop. Output y, which is the ML codeword.

This algorithm is guaranteed to converge to the LP optimum. If there is a unique
integral optimum to the LP, then the algorithm converges to the ML codeword.
However, if the LP optimum is not integral, then the algorithm will reach a state
where the minimum configurations S; oscillate between different configurations in
E;, and the cost difference between them goes to zero. A reasonable strategy to
handle this is to terminate after a fixed number of iterations.

8.2.6 Another Message-Passing ML Certificate

We can also use the Lagrangian dual to derive an ML certificate stopping condition
that applies to any message-passing algorithm. This generalizes Theorem 8.3.

Theorem 8.4 Suppose a message-passing algorithm terminates with a codeword y
and messages m;; for each edge in G. Then y is the ML codeword, as long as

o for all j € j, S e Ej, Z mg; S Zmij, and (817)
iEN (f):yi=1 i€S
vi = { 1 if ('71 — ZjeN(i) mij) <0

o for all i €7, .

(8.18)

Proof: Suppose (y, m) fits the assumptions in the statement of the theorem. We
construct a point (f,w) € Q as follows. Let f = y. For each j € J, let S} be the
unique configuration in Ej; such that for all i € N(j), y = 1 if and only if i € S7.
Now let w; - = 1 for all j € 7, and set all other w; g = 0.

We claim that the point (f, w) is a minimum point in £(Q) under the cost function
L(f,w;m); i.e., L(f,w;m) = L*(m). To see this, first note that equation (8.17)
implies that S} = S; for all j € J, where S; is as defined in equation (8.15).
Additionally, equation (8.18) implies that fi(vi — >y mij) < fi(vi — 22 jen) Mij)
for all f' € [0,1]". Using equation (8.14), we may conclude that L(f,w;m) = L*(m).

Since @ C £(Q), we have L*(m) < L(f,w';m), for all (f',w') € Q, and so
L(f,w;m) < L(f,w';m) for all (f',w') € Q.

However, for all (f',w") € Q, we have L(f",w';m) =).~ f{. Therefore, since
(f,w) € Q, we have Y . vif; <> .vf! for all (f,w') € Q. We may conclude that
(f,w) is an optimal point in Q. Since (f,w) is integral, f = y is the ML codeword. W

Note that Theorem 8.4 does not require that the message-passing algorithm be
cost-balanced. This generalization occurs because the partial Lagrangian dual form
of the LP puts the messages into the objective function, whereas the LP dual in
Section 8.2 has the messages as dual variables with hard constraints.

142

Chapter 9

Conclusions and Future Work

The work in this thesis represents the first consideration of the application of linear
programming relaxation to the problem of decoding an error-correcting code. We
have been successful in applying the technique to the modern code families of turbo
codes and LDPC codes, and have proved a number of results on error-correcting
performance. However, there is much to understand even within these families, let
alone in other code families we have yet to explore. In this final chapter we survey
some of the major open questions in LP decoding of turbo codes and LPDC codes,
and suggest a number of general ideas for future research in this area.

9.1 Turbo Codes

Improving the Running Time A drawback of the LP approach to turbo decoding
is the complexity of solving a linear program. Even though the simplex algorithm
runs quite fast in practice, most applications of error-correcting codes require a more
efficient decoding algorithm. There are two possible solutions to this problem, and
both have some important unanswered questions.

The first option is to try to solve the turbo code LPs combinatorially. For the case
of RA(2) codes, the resulting agreeable flow problem can be reduced to an instance
of normal min-cost flow, and thus yields a more efficient combinatorial algorithm. It
is an interesting open question as to whether combinatorial solutions exist for RA(R)
codes (where R > 3), or other codes.

The agreeable flow problem has a more general formulation that could apply to
areas outside of coding theory. We define the min-cost agreeable flow problem as
follows:

Min-Cost Agreeable Flow: Given a directed network G = (V, E), a source s € V and
a sink ¢t € V with a demand «, capacities u : £ — R+ and costs ¢ : £ — R on the
edges, and a sequence of edge sets A = {{A;, A1}, {As, Ao}, ..., {Am, A }}, find a

A

minimum-cost a-unit flow f from s to ¢, where V(A4;, A;), the total flow going through
arcs in A; is equal to the total flow going through arcs in A;.

Any LP with a constraint matrix made up of {+1, —1} can be expressed using only
the agreeability constraints of the above formulation, so we would not expect to be

143

able to solve Min-Cost Agreeable Flow combinatorially in its full generality. However,
the specialized structure of RALP or TCLP may allow a combinatorial solution. In
general, it is an interesting question to determine how the min-cost agreeable flow
problem must be restricted in order to make it solvable combinatorially.

Improving the Error Bounds. The RA(2) that we were able to analyze com-
pletely is not the best code experimentally in the literature. In fact, this code is a
cycle code, as discussed in Section 7.3.3. Since cycle codes are considered poor, it
is important to understand the combinatorics behind more complicated codes such
as a rate 1/3 RA code, and the classic turbo code (parallel concatenated convolu-
tional code). In order to provide better bounds for these codes, we need to prove
that negative-cost “promenade”-like subgraphs are unlikely. Theorem 6.2 suggested
a design for an interleaver for the RA(2) code. It would be interesting to see if other
design suggestions can be derived for more complex turbo codes.

9.2 Low-Density Parity-Check Codes

In Chapter 5 we described an LP-based decoding method for LDPC codes, and proved
a number of results on its error-correcting performance. Central to this character-
ization is the notion of a pseudocodeword, which corresponds to a rescaled solution
of the LP relaxation. Our definition of pseudocodeword unifies previous work on
message-passing decoding (e.g., [FKMT01, FKKR01, Wib96, DPR02]). We also in-
troduced the fractional distance of the relaxation for a code, a quantity which shares
the worst-case error-correcting guarantees with the classical notion, but with an effi-
cient algorithm to realize those guarantees.

There are a number of open questions and future directions suggested by this
work. It is likely that the fractional distance bound in Chapter 5 can be substantially
strengthened by consideration of graph-theoretic properties other than the girth (e.g.,
expansion), or by looking at random codes. A linear lower bound on the fractional
distance would yield a decoding algorithm with exponentially small error rate. This
is particularly important to show that LP decoding can compete with algorithms that
are known to correct a constant fraction of error (e.g., expander-based codes [SS96,
GI01)).

However, even if this is not the case, the performance of LP decoding may still
be very good. For RA codes, we were able to prove a bound on the error rate
of LP decoding stronger than that implied by the minimum distance. It would be
interesting to see the same result in the more general setting of LDPC codes or linear
codes. Perhaps an analysis similar to that of Di et al. [DPR02], which was performed
on stopping sets in the BEC, could be applied to pseudocodewords in other channel
models.

Our experiments on LDPC codes leave a number of open questions as well. In
Figure 7-5, it seems that LP decoding performs better than sum-product at very low
noise. While this data is insufficient to draw any general conclusions, it may be that
LP decoding has different behavior than sum-product in the “error-floor” region (very

144

low noise). This difference in behavior is due to the fact that the “pseudocodewords”
for LP decoding are different than those of sum-product decoding. An analytical
understanding of this difference would be preferable, but an experimental study would
be interesting as well.

9.3 Message-Passing Algorithms

We have used LP duality to give message-passing decoders the ability to prove that
their output is the ML codeword. In addition, new message-passing decoders based
on the subgradient algorithm were derived. Unlike the standard belief propagation
algorithm, this message-passing decoder converges; furthermore, it converges to a
well-defined point: the LP optimum. Using results from the previous chapters, we
obtained exact characterizations of decoding success for these new decoders, for any
discrete memoryless channel, and any block length, even in the presence of cycles in
the factor graph; this is something we do not have for the standard message-passing
algorithms.

There are many interesting open questions regarding the relationship between
message-passing algorithms and LP decoding. The subgradient algorithms we give
in Chapter 8 converge to the LP optimum, but to get a bound on the running time,
we need to run an interior point algorithm to solve the LP. It would be interesting
to see if there was a primal-dual or other combinatorial algorithm with a provably
efficient running time. Additionally, while we do provide a way for a message-passing
algorithm to show an ML certificate, it is not clear how well-established algorithms
like belief propagation should be modified in order to meet our conditions. An in-
teresting question is how modifying belief propagation to be “cost-balanced” affects
performance.

9.4 Higher-Order Relaxations

Perhaps the most attractive aspect to the method of LP decoding is in its potential
ability to improve. With message-passing decoders, it is unclear how to improve the
algorithm to make it perform better. However, with LP decoding, we can employ a
number of different known techniques for tightening an LP relaxation, and instantly
get a better decoder.

We discussed this idea somewhat in Section 5.4; however, there is still much to
understand. We have “interpreted” the first-order Lovasz-Schrijver relaxation as it
applies to LDPC codes; however, the higher-order relaxations remain a mystery. It
would be interesting to understand how quickly this hierarchy of decoders approaches
ML decoding, even for a class of codes specifically constructed for this purpose. Fur-
thermore, there are other generic methods for improving 0-1 LP relaxations (e.g.,
Sherali and Adams [SA90], Lasserre [Las01]; surveyed in [Lau01]), and it would be
interesting to explore the impact of these methods on LP decoding. Semi-definite
programming is an important aspect of many of these techniques; perhaps there is a

145

natural decoding relaxation similar to the Goemans and Williamson’s semi-definite
relaxation for max-cut [GW95].

Perhaps we can also use the idea of LP tightening to produce an adaptive algorithm
that approaches an ML decoder. Since our LP decoders have the ML certificate
property, they can stop when they find an integral optimum. In fact, in decoding,
when the noise in the channel is low, it is very common for the “first-order” LPs (the
ones we give in this thesis) to be correct. In the rare case when the LP returns a
fractional solution, instead of outputting “error,” we could try to come up with a cut
of the polytope that would eliminate the fractional vertex we found, then re-optimize.
It would be interesting to prove something about the relationships between running
time, noise level and decoding success in this setting.

9.5 More Codes, Alphabets and Channels

In this thesis we study binary linear codes in memoryless symmetric channels. There
is certainly a way to generalize the notion of LP decoding for more general codes and
channels, and this opens up a whole new set of questions.

In many applications, we operate over larger alphabets than binary (for example
in the transmission of internet packets). We could model this in an LP by having a
variable range over this larger space, or by using several 0 — 1 variables as indicators
of a symbol taking on a particular value. Alternatively, we could map the code to a
binary code, and use an LP relaxation for the binary code. It would be interesting
to see if anything is gained by by representing the larger alphabet explicitly.

In practice, channels are generally not memoryless due to physical effects in the
communication channel (see [Pro95] for details). Even coming up with a proper linear
cost function for an LP to use in these channels in an interesting question. The notions
of pseudocodeword and fractional distance would also need to be reconsidered for this
setting.

9.6 A Final Remark

The work in this thesis represents the exploration of a computer science theorist
into the world of error-correcting codes. We have discovered that many standard
techniques in theoretical computer science can help shed light on the algorithmic
issues in coding theory. The author therefore encourages communication between
these two fields, and hopes that this work serves as an example of the gains that can
result.

146

Bibliography

[AMO93]

[BGT93]

[Big9s]

[Blag3]

[BMMS01]

[BT97]

[CFRUO]

[CLRS01]

[DIJMOS]

[DPR102]

[EATS5)]
[ES63]

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows. Prentice-
Hall, 1993.

C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-
correcting coding and decoding: turbo-codes. Proc. IEEE International

Conference on Communication (ICC), Geneva, Switzerland, pages 1064—
1070, May 1993.

N. Biggs. Constructions for cubic graphs with large girth. FElectronic
Journal of Combinatorics, 5(A1), 1998.

R. E. Blahut. Theory and Practice of Error-Control Codes. Addison-
Wesley, 1983.

L. Bazzi, M. Mahdian, S. Mitter, and D. Spielman. The minimum distance
of turbo-like codes. manuscript, 2001.

D. Bertsimas and J. Tsitsiklis. Introduction to linear optimization. Athena
Scientific, Belmont, MA, 1997.

S.-Y. Chung, G. D. Forney, T. Richardson, and R. Urbanke. On the
design of low-density parity-check codes within 0.0045 dB of the Shannon
limit. IEEE Communications Letters, 5(2):58-60, February 2001.

T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algo-
rithms. M.I'T. Press, Cambridge, Massachusetts, U.S.A.; 2001.

D. Divsalar, H. Jin, and R. McEliece. Coding theorems for ‘turbo-like’
codes. Proc. 36th Annual Allerton Conference on Communication, Con-
trol, and Computing, pages 201-210, September 1998.

C. Di, D. Proietti, T. Richardson, E. Telatar, and R. Urbanke. Finite
length analysis of low-density parity check codes. IEEE Transactions on
Information Theory, 48(6), 2002.

S. F. Edwards and P. W. Anderson. J. Phys. F., 5(965), 1975.

P. Erdos and H. Sachs. Regulare graphen gegebene taillenweite mit
minimaler knotenzahl. Wiss. Z. Univ. Hall Martin Luther Univ. Halle—
Wittenberg Math.— Natur. Reine, 12:251-257, 1963.

147

[Fel68]

[FKO02a)

[FKO02b]

[FKKRO1]

[FKMTO1]

[FKW02]

[FKWO03]

[For73]
[For74]
[For01]
[For03]

[FWK03a]

[FWKO3b]

W. Feller. An Introduction to Probability Theory and Its Applications,
volume I. John Wiley & Sons, Inc., third edition, 1968.

J. Feldman and D. R. Karger. Decoding turbo-like codes via linear pro-
gramming. Proc. 43rd annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), November 2002.

J. Feldman and D. R. Karger. Decoding turbo-like codes via linear pro-
gramming. Manuscript, submitted to: Journal of Computer and System
Sciences, January 2002.

G. D. Forney, R. Koetter, F. R. Kschischang, and A. Reznik. On the
effective weights of pseudocodewords for codes defined on graphs with

cycles. In Codes, systems and graphical models, pages 101-112. Springer,
2001.

G. D. Forney, F. R. Kschischang, B. Marcus, and S. Tuncel. Iterative
decoding of tail-biting trellises and connections with symbolic dynamics.
In Codes, systems and graphical models, pages 239-241. Springer, 2001.

J. Feldman, D. R. Karger, and M. J. Wainwright. Linear programming-
based decoding of turbo-like codes and its relation to iterative approaches.
In Proc. 40th Annual Allerton Conference on Communication, Control,
and Computing, October 2002.

J. Feldman, D. R. Karger, and M. J. Wainwright. Giving message-
passing decoders a maximum-likelihood certificate. Manuscript, submit-
ted to: 15th ACM-SIAM Symposium on Discrete Algorithms (SODA),
April 2003.

G. D. Forney. The Viterbi algorithm. Proceedings of the IEEE, 61:268—
278, 1973.

G. D. Forney. Convolutional codes II: Maximum likelihood decoding.
Information Control, 25:222-266, 1974.

G. D. Forney. Codes on graphs: Normal realizations. IEEE Transactions
on Information Theory, 47, February 2001.

G. D. Forney. Personal communication, 2003.

J. Feldman, M. J. Wainwright, and D. R. Karger. Using linear program-
ming to decode linear codes. 37th annual Conference on Information
Sciences and Systems (CISS °03), 2003.

J. Feldman, M. J. Wainwright, and D. R. Karger. Using linear program-
ming to decode linear codes. Manuscript, submitted to: IEEE Transac-
tions on Information Theory, May 2003.

148

[Gal62]

(GG84]

[GI01]

[GJ79]

[GLSS1]

[Gur01]

(GWO5]

[Ham50]

[Hoc95]

[ILOO1]

[Jer75]

[JZ98]

[Las01]

[Lau01]

R. Gallager. Low-density parity-check codes. IRE Trans. Inform. Theory,
IT-8:21-28, Jan. 1962.

S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and
the bayesian restoration of images. IFEE Transactions in Pattern Anal-
ysis and Machine Intelligence, 6(6):721-741, 1984.

V. Guruswami and P. Indyk. Expander-based constructions of efficiently

decodable codes. /2nd Symposium on Foundations of Computer Science
(FOCS), 2001.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman, 1979.

M. Grotschel, L. Lovasz, and A. Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1(2):169—
197, 1981.

V. Guruswami. List Decoding of Error-Correcting Codes. PhD thesis,
Massachusetts Institute of Technology, 2001.

M. X. Goemans and D. P. Williamson. Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite
programming. J. Assoc. Comput. Mach., 42:1115-1145, 1995.

R. W. Hamming. Error detecting and error correcting codes. The Bell
System Tech. Journal, XXIX(2):147-160, 1950.

D. Hochbaum, editor. Approximation Algorithms for NP-hard Problems.
PWS Publishing, 1995.

ILOG, Inc. User’s Manual for ILOG CPLEX v. 7.1, 2001.

R. G. Jeroslow. On defining sets of vertices of the hypercube by linear
inequalities. Discrete Mathematics, 11:119-124, 1975.

R. Johannesson and K. Sh. Zigangirov. Fundamentals of Convolutional
Coding. ITEEE Press, 1998.

L. B. Lasserre. An explicit exact SDP relaxation for nonlinear 0 — 1 pro-
grams. K. Aardal and A.M.H. Gerards, eds., Lecture Notes in Computer
Science, 2081:293-303, 2001.

M. Laurent. A comparison of the Sherali-Adams, Lovéasz-Schrijver and
Lasserre relaxations for 0 — 1 programming. Technical Report PNA—
R0108, Centrum voor Wiskunde en Informatica, CWI, Amsterdam, The
Netherlands, 2001.

149

[LMSSO8]

[LS91]

[Mac99]

[Mac03]

[IMMCO8]

[MS81]

[Pea88]

[PHOS]

[Pro95]

[RUO1]

[RVO0]

[SA90]

[Sau67]

[Sch&7]

M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman. Improved
low-density parity-check codes using irregular graphs and belief propaga-
tion. Proc. 1998 IEEFE International Symposium on Information Theory,
page 117, 1998.

L. Lovasz and A. Schrijver. Cones of matrices and set-functions and 0 — 1
optimization. SIAM Journal on Optimization, 1(2):166-190, 1991.

D. MacKay. Good error correcting codes based on very sparse matrices.
IEEE Transactions on Information Theory, 45(2):399-431, 1999.

D. MacKay. Information Theory, Inference and Learning Algorithms.
Cambridge Press, 2003. Scheduled for publication in 2007. Avaiable elec-
tronically: http://www.inference.phy.cam.ac.uk/mackay.

R. McEliece, D. MacKay, and J. Cheng. Turbo decoding as an instance
of Pearl’s belief propagation algorithm. IEEE Journal on Selected Areas
in Communications, 16(2):140-152, 1998.

F. J. MacWilliams and N. J. A. Sloane. The Theory of Error Correcting
Codes. North-Holland, 1981.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann, 1988.

V. S. Pless and W. Huffman, editors. Handbook of Coding Theory. Elsevier
Science, 1998.

J. G. Proakis. Digital Communications. McGraw-Hill, 1995.

T. Richardson and R. Urbanke. The capacity of low-density parity-check
codes under message-passing decoding. IEEE Transactions on Informa-
tion Theory, 47(2), February 2001.

J. Rosenthal and P. O. Vontobel. Constructions of LDPC codes using
Ramanujan graphs and ideas from Margulis. In Proc. of the 38-th Annual

Allerton Conference on Communication, Control, and Computing, pages
248-257, 2000.

H. D. Sherali and W. P. Adams. A hierarchy of relaxations between
the continuous and convex hull representations for zero-one programming
problems. SIAM Journal on Optimization, 3:411-430, 1990.

N. Sauer. Extremaleigenschaften regularer graphen gegebener taillen-
weite, i and ii. Sitzungsberichte Osterreich. Acad. Wiss. Math. Natur.
Kl., S-BII(176):27-43, 1967.

A. Schrijver. Theory of Linear and Integer Programming. John Wiley,
1987.

150

[Sha48§]

5596]

[STO1]

[Tan81]

[Vit67]

[vL.99]

VY00]

[Wai02]

[Wibo6]

[Wic95]

[WJIW02]

[Yan91]

[Yed03]
[YFW02]

C. E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:379-423, 623-656, 1948.

M. Sipser and D. Spielman. Expander codes. IEEE Transactions on
Information Theory, 42(6):1710-1722, 1996.

D. Spielman and S. Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. In Proceedings of the
33rd Annual ACM Symposium on Theory of Computing (STOC), pages
296-305, 2001.

R. M. Tanner. A recursive approach to low complexity codes. [EEFE
Transactions on Information Theory, 27(5):533-547, 1981.

A. Viterbi. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IFEE Transactions on Information Theory,
13:260-269, Apr. 1967.

J. H. van Lint. Introduction to Coding Theory. Springer-Verlag, 1999.

B. Vucetic and J. Yuan. Turbo Codes. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 2000.

M. J. Wainwright. Stochastic processes on graphs with cycles: geomet-
ric and variational approaches. PhD thesis, Massachusetts Institute of
Technology, 2002.

N. Wiberg. Codes and Decoding on General Graphs. PhD thesis, Linkop-
ing University, Sweden, 1996.

S. Wicker. Error Control Systems for Digital Communication and Storage.
Prentice-Hall, Englewood Cliffs, NJ, 1995.

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. MAP estimation via
agreement on (hyper)trees: Message-passing and linear programming ap-
proaches. In Proc. 40th Annual Allerton Conference on Communication,
Control, and Computing, October 2002.

M. Yannakakis. Expressing combinatorial optimization problems by lin-
ear programs. Journal of Computer and System Sciences, 43(3):441-466,
1991.

J. S. Yedidia. Personal communication, 2003.

J. S. Yedidia, W. T. Freeman, and Y. Weiss. Understanding belief prop-
agation and its generalizations. Technical Report TR2001-22, Mitsubishi
Electric Research Labs, January 2002.

151

