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Abstract. Linear programming (LP) relaxation is a common technique used to find good solutions to
complex optimization problems. We present the method of “LP decoding”: applying LP relaxation to
the problem of maximum-likelihood (ML) decoding. An arbitrary binary-input memoryless channel is
considered. This treatment of the LP decoding method places our previous work on turbo codes [6] and
low-density parity-check (LDPC) codes [8] into a generic framework. We define the notion of a proper
relaxation, and show that any LP decoder that uses a proper relaxation exhibits many useful properties.
We describe the notion of pseudocodewords under LP decoding, unifying many known characterizations
for specific codes and channels. The fractional distance of an LP decoder is defined, and it is shown
that LP decoders correct a number of errors equal to half the fractional distance. We also discuss the
application of LP decoding to binary linear codes. We define the notion of a relaxation being symmetric
for a binary linear code. We show that if a relaxation is symmetric, one may assume that the all-zeros
codeword is transmitted.

1 Introduction
The problem of maximum-likelihood (ML) decoding is to find the codeword most likely to
have been transmitted, given a corrupted codeword from a noisy channel. Linear programming
is the problem of finding an optimal solution to a system of linear inequalities under a linear
objective function [2]. In this paper, we consider linear programming (LP) formulations of the
ML decoding problem on binary codes. We use LP variables to represent code bits, and the LP
objective function is defined by the channel likelihood ratios.

Previous work on LP decoding [6, 4, 7, 8, 5] has focused on two specific cases: turbo
codes [1] and low-density parity-check codes [11]. These two families of codes have received
a lot of attention recently due to their excellent performance. Performance bounds for LP
decoding in these cases are for specific LP formulations, code constructions, and/or channel
models.

In this paper we consider LP decoders for arbitrary binary codes, under an arbitrary binary-
input memoryless channel. We provide a framework for designing LP decoders, and general
techniques for analyzing them. Central to every LP decoder is its associated polytope: the
set of points that satisfy the constraints of the LP. A decoding polytope should contain ev-
ery codeword, and should also exclude every binary word that is not a codeword. We define
such polytopes as proper. We show that LP decoders that use proper polytopes have the ML
certificate property: whenever they output a codeword, it is guaranteed to be the ML codeword.

In general, for any sub-optimal decoder, the pseudocodewords correspond to the set of pos-
sible results of the decoder. This set includes the codewords, but also some non-codewords
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that can “fool” the algorithm. In this paper, we provide a general characterization of the pseu-
docodewords for any LP decoder, under any binary-input memoryless channel. This charac-
terization allows us to give an exact expression for the word error rate (WER) of the decoder:
the probability that the transmitted codeword is not the “most likely” pseudocodeword. When
applied to specific codes, polytopes and channels, LP pseudocodewords are equivalent to other
sets of pseudocodewords that have been studied in previous work. For example, in the binary
erasure channel (BEC), when the polytope from [8] is used, the set of LP pseudocodewords
is equivalent to the stopping sets of the code, as defined by Di et. al [3]. For tail-biting trel-
lises, when the polytope from [5] is used, the set of LP pseudocodewords is equivalent to the
pseudocodewords defined by Forney et. al [9].

The fractional distance of an LP decoder is defined as an analog to the (classical) distance.
It is shown that under the binary symmetric channel (BSC), LP decoders correct a number of
errors equal to half the fractional distance of the code. We also discuss the application of LP
decoding to binary linear codes. We define the notion of a polytope being symmetric for a
binary linear code. We show that if a polytope is symmetric, one may assume that the all-zeros
codeword is transmitted, which greatly simplifies analysis for this rich class of codes.

1.1 Channel Model. In this paper we assume an arbitrary binary-input memoryless channel;
i.e., the data is transmitted as discrete symbols from {0, 1}, and each transmitted symbol is
affected by the noise in the channel independently. Let y ∈ C denote the transmitted codeword.
We will use ỹ = (ỹ1, . . . , ỹn) to denote the received (corrupted) word. Each ỹi is a symbol
from some space Σ that depends on the channel model. For example, in the binary symmetric
channel (BSC), we have Σ = {0, 1}; in the AWGN channel, we have Σ = R.

In our analysis of binary linear codes in Section 3, we also assume a symmetric channel;
i.e., the noise affects 0s and 1s in the same way. Formally, symmetry tells us that Σ can be
partitioned into pairs (a, a′) such that

Pr[ ỹi = a | yi = 0 ] = Pr[ ỹi = a
′ | yi = 1 ], and (1)

Pr[ ỹi = a | yi = 1 ] = Pr[ ỹi = a
′ | yi = 0 ]. (2)

2 The Method of LP Decoding
2.1 Linear Programming Relaxation. A linear program (LP) consists of a set of linear
inequalities (constraints) and a linear objective function over a set of variables. Solving the
linear program means finding a setting of the variables that satisfies the inequalities, and op-
timizes the objective function. Linear programs can be solved efficiently using the simplex
algorithm [19], which runs efficiently in practice, or the ellipsoid algorithm [12], which has
worst-case run-time guarantees.

Although many important problems can be solved as LPs, not all problems are directly
amenable to this treatment. One issue is that LP solutions can be real-valued, whereas the
variables (in certain problems) may only be meaningful as integers (e.g., number of seats in
an airplane). If we add the restriction that all variables must be integers, we obtain an integer
linear programming (ILP) problem, which (unfortunately) is NP-hard in general.

A natural strategy for finding an approximate solution to an ILP, then, is to remove the
integer constraints, solve the resulting LP, and then transform the solution into a meaningful
one. (For example, rounding techniques, often randomized, are one method of transforming an
LP solution into a decent solution to the ILP of interest.) This generic technique is referred to
as linear programming relaxation, and many successful approximation algorithms to NP-hard
optimization problems are based on it [14].

2.2 An LP Relaxation of ML Decoding. Suppose we wish to decode a binary code C ⊆
{0, 1}n under some binary-input memoryless channel. Let y ∈ C denote the transmitted code-



word, and let ỹ denote the received codeword. Let γi be the log-likelihood ratio of the ith code
bit:

γi = ln

(

Pr[ỹi | yi = 0]

Pr[ỹi | yi = 1]

)

. (3)

The sign of the log-likelihood ratio γi determines whether transmitted bit yi is more likely to
be a 0 or a 1. (In particular, if yi is more likely to be a 1, then γi will be negative, whereas if yi

is more likely to be a 0, then γi will be positive.) We will refer to γi as the cost of code bit yi,
where γi represents the cost incurred by setting a particular bit yi to 1, and to the sum

∑

i γiyi

as the cost of a particular codeword y. With these definitions, the ML codeword is exactly the
codeword of minimum cost [5].

Our LP relaxations for decoding will have LP variables fi for each code bit, where i ∈
{1, . . . , n}. Suppose we were able to solve the following problem:

minimize
n

∑

i=1

γifi s.t. f ∈ C.

Any optimal solution f to this system is an ML codeword. However, optimizing over C is
too complex in general. Therefore, we optimize instead over a less complex polytope P ⊆
[0, 1]n, defined by a set of linear constraints on the variables fi. The particular nature of the
constraints will depend on the underlying code. In previous work [6, 8], we have defined
polytopes for turbo codes, LDPC codes, and arbitrary binary linear codes. In each of these
cases, our polytopes contain a linear (in n) number of constraints, and are therefore solvable
efficiently.

Since we are looking for codewords, it should be the case that our polytope includes all the
codewords, and does not include any non-codewords.

Definition 1. A polytope P is proper for code C if the integral points in P are exactly the
codewords of C; i.e., P is proper if P ∩ {0, 1}n = C.

Given a proper polytope P , our LP decoder solves the following linear program:

minimize
n

∑

i=1

γifi s.t. f ∈ P (4)

Define the cost of a point f ∈ P as
∑n

i=1 γifi. The LP in equation (4) will find the point in
P with minimum cost. If the LP solution is integral (i.e., all fi are either 0 or 1), then the LP
decoder outputs the codeword f . In contrast, if the LP solution is fractional (i.e., some fi is
non-integral), then the decoder outputs “error.”

Theorem 2. An LP decoder using a proper polytope has the ML certificate property: if the
decoder outputs a codeword, it is guaranteed to be an ML codeword.

Proof. If the LP decoder outputs a codeword f ∈ C, then the cost of the point f ∈ P is at most
the cost of any point in P . Since P is proper, we have P ⊇ C, and so f has cost at most the
cost of any codeword y ∈ C. We conclude that f is the ML codeword.

Example. Suppose we have the linear code C = {0000, 1101, 1011, 0110}. This code can be characterized by
the parity check equations (y1 ⊕ y2 ⊕ y3) = 0 and (y2 ⊕ y3 ⊕ y4) = 0. We define a polytope R on four variables
{f1, f2, f3, f4} as the set of points that satisfy the following linear inequalities:

(A) (B) (C)

f1 ≤ f2 + f3 f2 ≤ f3 + f4 0 ≤ f1 ≤ 1

f2 ≤ f1 + f3 f3 ≤ f2 + f4 0 ≤ f2 ≤ 1

f3 ≤ f1 + f2 f4 ≤ f2 + f3 0 ≤ f3 ≤ 1

f1 + f2 + f3 ≤ 2 f2 + f3 + f4 ≤ 2 0 ≤ f4 ≤ 1



The (C) constraints ensure that all fi take on values between zero and one. The (A) and (B) constraints ensure that
the polytope R is proper; i.e., the set of binary words of length four that satisfy the above constraints are exactly
the set of codewords of C. To see this, consider the (A) constraints; the binary words that satisfy these constraints
are exactly the words that satisfy the parity check equation (y1 ⊕ y2 ⊕ y3) = 0. Similarly, the (B) constraints
correspond to the parity check equation (y2 ⊕ y3 ⊕ y4) = 0. This polytope is a special case of a general-purpose
polytope for binary linear codes and LDPC codes [8, 5].

2.3 Success Conditions for LP Decoding. Overall, the LP decoder succeeds if the trans-
mitted codeword is the unique optimal solution to the LP. The decoder fails if the transmitted
codeword is not an optimal solution to the LP. In the case of multiple LP optima (which for
many noise models has zero probability), we will be conservative and assume that the LP de-
coder fails. Therefore, we have the following theorem.

Theorem 3. For any binary-input memoryless channel, an LP decoder using polytope P will
fail if and only if there is some point in P other than the transmitted codeword y with cost less
than or equal to the cost of y.

We use WERy to denote the word error rate (WER) of the LP decoder, given a particular
transmitted codeword y. By Theorem 3, we have:

WERy = Pr

[

∃f ∈ P , f 6= y :
∑

i

γifi ≤
∑

i

γiyi

]

(5)

2.4 Vertices, Codewords and Pseudocodewords. An extreme point, or equivalently a vertex
of a polytope is a point that cannot be expressed as the convex combination of other points in
the polytope. Let V(P) be the set of vertices of the polytope P . A fundamental fact of linear
programming is that the optimal solution to an LP can always be found at a vertex of the
polytope associated with the LP [19]. Therefore, the LP decoder will always find the lowest
cost vertex of the polytope P .

Theorem 4. For any polytope P ⊆ [0, 1]n that is proper for C, every codeword y ∈ C is a
vertex of P .

Proof. In the unit hypercube [0, 1]n, binary words of length n cannot be expressed as the convex
combination of other points in the hypercube. Since P is contained within the hypercube
[0, 1]n, we have that all points in P ∩ {0, 1}n are vertices of P . Since P is proper, we have
P ∩ {0, 1}n = C, and the theorem follows.

It is important to note that the converse statement (i.e., every polytope vertex is a codeword)
may not hold, however, since the polytope could have fractional (non-integral) vertices. So, in
general we have

C ⊆ V(P) ⊆ P ⊆ [0, 1]n.

In LP decoding, vertices take on the role of pseudocodewords: the set of possible results that a
sub-optimal decoder may produce. Pseudocodewords are a superset of the codewords, and may
contain “false” codewords that “fool” the algorithm. While the set of codewords is a function of
the code itself, the set of pseudocodewords is a function of the sub-optimal decoding algorithm
being used.

Understanding the pseudocodewords of a sub-optimal algorithm allows a thorough analysis
of its WER. For example, Di et. al [3] exploit the structure of “stopping sets” to analyze the
word error rate of iterative decoding on the binary erasure channel. Even and Halabi [4] derive
combinatorial theorems about “promenades” (the pseudocodewords of an LP relaxation for



rate-1/2 repeat-accumulate codes [6]), and use them to show tight upper and lower bounds on
the WER of LP decoding.

Example. Consider the polytope R designed earlier for the code C = {0000, 1101, 1011, 0110}. The vertices

of this polytope include the codewords, as well as the fractional vertices (1, 1

2
, 1

2
, 0) and (0, 1

2
, 1

2
, 1). Note that

neither of the fractional vertices can be expressed as convex combinations of codewords. We have V(R) =
{

(0, 0, 0, 0), (1, 1, 0, 1), (1, 0, 1, 1), (1, 1, 1, 1), (1, 1

2
, 1

2
, 0), (0, 1

2
, 1

2
, 1)

}

. This is the set of pseudocodewords for

the LP decoder using R on this code.

Remarks: Pseudocodewords have been studied by Wiberg [21], Forney et. al [9] and Frey et.
al [10] as codewords of an iterative decoder computation tree, under min-sum decoding. They
have also been studied for tail-biting trellises [9], LDPC codes in the binary erasure chan-
nel [3], and Tanner graph covers [15]. In many of these specific cases, LP pseudocodewords
are equivalent to (or very related to) previously studied pseudocodeword sets (see [8, 5] for
details). It would be interesting to see how the known techniques for analyzing the weights
of pseudocodewords could be used to analyze the weights of LP pseudocodewords for other
codes and channels.
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Figure 1. A decoding polytope P (dotted line) and the convex hull PML (solid line) of the
codewords y(1) through y(4). Also shown are the four possible cases (a–d) for the objective
function, and the normal cones to both P and PML.

2.5 Geometric Perspective. Figure 1 provides a geometric perspective of LP decoding, and
its relation to exact ML decoding. The inner solid line encloses the convex hull of the code-
words (i.e., the set of points that are convex combinations of codewords), denoted by PML.
The dotted line in the figure represents the relaxed LP decoding polytope P , and the circles
represent pseudocodewords (vertices of P). The black circles in the figure represent code-
words (also members of PML), whereas the gray circles represent fractional vertices that are
not codewords.

The objective function is the only element of the LP that depends on channel noise. An
LP objective function can be seen as a direction inside the polytope; solving the LP amounts
to finding the point in the polytope that is furthest in that direction. If there is no noise in the
channel, then the transmitted codeword will be the ML codeword, and thus the lowest cost
codeword. The gray arrow in Figure 1 represents the objective function without noise, and it
points directly toward the transmitted codeword y(1). Noise in the channel appears in the LP as
a perturbation of the objective function away from the “no noise” direction. If the perturbation
is small, then y(1) will remain the optimal point of the LP. If the perturbation is large (i.e., high
channel noise), then y(1) will no longer be optimal.

Both exact ML and relaxed LP decoding can be seen as minimizing the LP objective speci-



fied by the channel, but over different constraint sets. In exact ML decoding, the constraint set
is the convex hull PML of codewords, whereas relaxed LP decoding uses the larger polytope P .
As a concrete illustration, consider again the set-up of Figure 1, in which codeword y(1) was
transmitted. The four arrows labeled (a)–(d) correspond to different “noisy” versions of the LP
objective function. (a) If there is very little noise, then both ML decoding and LP decoding
succeed, since both have the transmitted codeword y(1) as the optimal point. (b) If more noise
is introduced, then ML decoding succeeds, but LP decoding fails, since the fractional vertex
f is optimal for the relaxation. (c) With still more noise, ML decoding fails, since y(4) is now
optimal; LP decoding still has a fractional optimum f , so this error is detected. (d) Finally,
with a lot of noise, both ML decoding and LP decoding have y(4) as the optimum, and so both
methods fail and the error is undetected. Note that in the last two cases (c,d), when ML decod-
ing fails, the failure of the LP decoder is in some sense the fault of the code itself, as opposed
to the decoder.

2.6 Normal Cones. The behavior of relaxed LP decoding and exact ML decoding can be
distinguished in terms of the normal cones [13] associated with the LP and ML polytopes at a
given codeword y ∈ C. The (negative) normal cones are defined as follows:

Ny(P) =
{

γ ∈ R
n :

∑

i

γi(fi − yi) ≥ 0 for all f ∈ P
}

,

Ny(PML) =
{

γ ∈ R
n :

∑

i

γi(fi − yi) ≥ 0 for all f ∈ PML

}

.

Note that Ny(P) corresponds to the set of cost vectors γ such that y is an optimal solution to the
LP defined by polytope P , and the objective function

∑

i γifi. The set Ny(PML) has a similar
interpretation as the set of cost vectors γ for which y is an ML codeword. Since PML ⊂ P , it is
immediate from the definition that Ny(PML) ⊃ Ny(P) for all y ∈ C. For example, in Figure 1,
cost vector (a) belongs to both Ny(1)(PML) and Ny(1)(P). In contrast, the vector (b) belongs to
Ny(1)(PML), but not to Ny(1)(P).

If codeword y is transmitted, the success probability of an LP decoder is equal to the total
probability mass of Ny(P), under the distribution on cost vectors defined by the channel. The
success probability of ML decoding is similarly related to the probability mass in the normal
cone Ny(PML). Thus, the discrepancy between the normal cones of P and PML is a measure
of the gap between exact ML and relaxed LP decoding.

The cone Ny(P) can be seen as a “signal-space” characterization of the LP pseudocode-
words. Such characterizations have been given by Frey et. al [10] in the case of iterative
decoding and by Koetter and Vontobel [15] using the notion of graph covers. In particular, the
“fundamental cone” studied by Koetter and Vontobel [15] for graph covers is polar [13] to the
normal cone N0n(Q) associated with the polytope Q defined in [8] for LDPC codes.

2.7 The Fractional Distance. We motivate the notion of fractional distance by providing an
alternative definition for the (classical) distance in terms of a proper polytope P . Recall that
any proper polytope P is characterized by a one-to-one correspondence between codewords
and integral vertices of P; i.e., C = P ∩{0, 1}n. The Hamming distance between two points in
the discrete space {0, 1}n is equivalent to the l1 distance between the points in the space [0, 1]n.
Therefore, given a proper polytope P , we may define the distance of a code as the minimum l1
distance between two integral vertices, i.e.,

d = min
y,y′∈(V(P)∩{0,1}n)

y 6=y′

n
∑

i=1

|yi − y′
i|.



The LP polytope P may have additional non-integral vertices, as illustrated in Figure 1.
Accordingly, we define the fractional distance dfrac of a polytope P as the minimum l1 distance
between an integral vertex (codeword) and any any other vertex (pseudocodeword) of P; i.e.,

dfrac = min
y∈C

f∈V(P)
f 6=y

n
∑

i=1

|yi − fi|.

Note that this fractional distance is always a lower bound on the classical distance of the code,
since every codeword is a polytope vertex (in the set V(P)). Moreover, the performance of LP
decoding is tied to this fractional distance. The proof of the following theorem is essentially
the same as the proof in [8], and so it is omitted. We refer the reader to the thesis [5] for details.

Theorem 5. Let C be a binary code and P a proper polytope in an LP relaxation for C. If
the fractional distance of P is dfrac , then the LP decoder using P is successful if at most
ddfrac/2e − 1 bits are flipped by the binary symmetric channel.

3 Symmetric Polytopes for Binary Linear Codes
Binary linear codes have some special algebraic structure that can be exploited in the analysis
of decoding algorithms. For example, for most message-passing decoders, one may assume
without loss of generality that the all-zeros codeword 0n, which is always a codeword of a
binary linear code, was transmitted. This all-zeros assumption greatly simplifies analysis as
well as notation. Furthermore, the distance of a binary linear code is equal to the lowest weight
of any non-zero codeword, where the weight of a codeword y is defined as

∑

i yi.
In this section we discuss the application of LP decoding to binary linear codes. We first

define the notion of a polytope being C-symmetric for a particular binary linear code C. We
then prove that if a decoder uses a C-symmetric polytope, then the all-zeros assumption is valid,
and the fractional distance is equal to the lowest weight of any non-zero polytope vertex. This
result not only simplifies analysis, but it also allows us to compute efficiently the fractional
distance of a polytope.

3.1 C-symmetry of a Polytope. For a point f ∈ [0, 1]n, we define its relative point f [y] ∈

[0, 1]n with respect to codeword y as follows: for all i ∈ {1, . . . , n}, let f
[y]
i = |fi − yi|. Note

that this operation is its own inverse; i.e., we have (f [y])
[y]

= f for all f ∈ [0, 1]n. Intuitively,
the point f [y] is the point that has the same spatial relation to the point 0n as f has to the
codeword y (and vice-versa).

Definition 6. A proper polytope P for the binary code C is C-symmetric if, for all points f in
the polytope P and codewords y in the code C, the relative point f [y] is also contained in P .

3.2 All-Zeros Assumption. The validity of the all-zeros assumption is not immediately clear
in the context of LP decoding. In this section, we prove that one can make the all-zeros assump-
tion when analyzing LP decoders, as long as the polytope used in the decoder is C-symmetric.

Theorem 7. For any LP decoder using a C-symmetric polytope to decode C under a binary-
input memoryless symmetric channel, the probability that the LP decoder fails is independent
of the codeword that is transmitted.

Proof. For an arbitrary transmitted word y, we need to show that WERy = WER0n . Define
BAD(y) ⊆ Σn to be the set of received words ỹ that cause decoding failure, assuming y is



transmitted:

BAD(y) =

{

ỹ ∈ Σn : ∃f ∈ P , f 6= y, where
∑

i

γifi ≤
∑

i

γiyi

}

,

where the cost vector γ = γ(ỹ) is a function of the received word ỹ. (Note that this definition is
conservative, in that it includes the case of multiple LP optima as decoding failure.) Rewriting
equation (5), we have that for all codewords y,

WERy =
∑

ỹ∈BAD(y)

Pr[ ỹ | y ]. (6)

As a particular case, for the codeword 0n, we have WER0n =
∑

ỹ∈BAD(0n) Pr[ ỹ | 0n ].
We now show that the space Σn of possible received vectors can be partitioned into pairs

(ỹ, ỹ0) such that Pr[ ỹ | y ] = Pr[ ỹ0 | 0n ], and ỹ ∈ BAD(y) if and only if ỹ0 ∈ BAD(0n).
This partition, along with equation (6), gives WERy = WER0n . The partition is performed
according to the symmetry of the channel. Fix some received vector ỹ. Define ỹ0 as follows:
let ỹ0

i = ỹi if yi = 0, and ỹ0
i = ỹ′

i if y = 1, where ỹ′
i is the symbol symmetric to ỹi in the

channel. (See Section 1.1 for details on symmetry.) Note that this operation is its own inverse
and therefore gives a valid partition of Σn into pairs.

First,we show that Pr[ ỹ | y ] = Pr[ ỹ0 | 0n ]. From the channel being memoryless, we have

Pr[ ỹ | y ] =
n

∏

i=1

Pr[ỹi | yi] =
∏

i:yi=0

Pr[ỹ0
i | 0]

∏

i:yi=1

Pr[ỹi | 1] (7a)

=
∏

i:yi=0

Pr[ỹ0
i | 0]

∏

i:yi=1

Pr[ỹ′
i | 0] (7b)

=
∏

i:yi=0

Pr[ỹ0
i | 0]

∏

i:yi=1

Pr[ỹ0
i | 0] (7c)

= Pr[ ỹ0 | 0n ]

Equations (7a) and (7c) follow from the definition of ỹ0, whereas equation (7b) follows from
the symmetry of the channel (equations (1) and (2)). Now it remains to show that ỹ ∈ BAD(y)
if and only if ỹ0 ∈ BAD(0n). Let γ be the cost vector when ỹ is received, and let γ0 be the cost
vector when ỹ0 is received, as defined in equation (3). Suppose yi = 0. Then, ỹi = ỹ0

i , and so
γi = γ0

i . Now suppose yi = 1; then ỹ0
i = ỹ′

i, and so

γ0
i = log

(

Pr[ỹ′
i | yi = 0]

Pr[ỹ′
i | yi = 1]

)

= log

(

Pr[ỹi | yi = 1]

Pr[ỹi | yi = 0]

)

= −γi.

This follows from the symmetry of the channel (equations (1) and (2)). We conclude that

γi = γ0
i if yi = 0, and γi = −γ0

i if yi = 1. (8)

Fix some point f ∈ P and consider the relative point f [y]. We claim that the difference in
cost between f and y is the same as the difference in cost between f [y] and 0n. In particular,
we reason as follows:

∑

i

γifi −
∑

i

γiyi =
∑

i:yi=0

γif
[y]
i −

∑

i:yi=1

γif
[y]
i (9a)

=
∑

i:yi=0

γ0
i f

[y]
i +

∑

i:yi=1

γ0
i f

[y]
i (9b)

=
∑

i

γ0
i f

[y]
i −

∑

i

γ0
i 0i. (9c)



Equation (9a) follows from the definition of f [y], and equation (9b) follows from equation (8).
Now suppose ỹ ∈ BAD(y), and so by the definition of BAD there is some f ∈ P , where

f 6= y, such that
∑

i γifi−
∑

i γiyi ≤ 0. By equation (9c), we have that
∑

i γ
0
i f

[y]
i −

∑

i γ
0
i 0

n
i ≤

0. Because P is C-symmetric, f [y] ∈ P , and by the fact that f 6= y, we have that f [y] 6= 0n.
Therefore ỹ0 ∈ BAD(0n). A symmetric argument shows that if ỹ0 ∈ BAD(0n) then ỹ ∈
BAD(y).

Since the all-zeros codeword has zero cost, the all-zeros assumption gives the following
corollary to Theorem 3:

Corollary 8. Under the all-zeros assumption, for any binary linear code C over any binary-
input memoryless symmetric channel, the LP decoder using the C-symmetric polytope P will
fail if and only if there is some non-zero point in P with cost less than or equal to zero.

3.3 Fractional Distance of Symmetric Polytopes. The (classical) distance of a binary linear
code is equal to the minimum weight of a non-zero codeword. This fact is very important when
analyzing the distance of linear codes. It turns out that we can make a similar simplifying
assumption when we analyze fractional distance. We refer the reader to [5] for a proof of the
following:

Theorem 9. The fractional distance of a C-symmetric polytope P for a binary linear code C is
equal to the minimum weight of a non-zero vertex of P .

In contrast to the classical distance, the fractional distance of a C-symmetric polytope P for
a binary linear code C can be computed efficiently. This can be used to bound the worst-case
performance of LP decoding for a particular code and polytope. Since the fractional distance
is a lower bound on the real distance, we thus have an efficient algorithm to give a non-trivial
lower bound on the distance of a binary linear code. We refer the reader to [8, 5] for the details
of this algorithm.

4 Conclusion
In this paper we outlined the basic technique of LP decoding. We derived general success
conditions for an LP decoder, and showed that any decoder using a proper polytope has the ML
certificate property. The fractional distance of a polytope was defined in this general setting,
and it was shown that LP decoders correct a number of errors up to half the fractional distance.
Furthermore, for binary linear codes, we established symmetry conditions for the polytope that
allow for the all-zeros assumption, and regarding fractional distance as fractional weight. It is
our hope that this paper will be a good starting point for the design and analysis of LP decoders.

There are many open questions in the area of LP decoding (for a full discussion, see [5]).
Most importantly, we would like to see code constructions that take advantage of the simple
characterization of pseudocodewords offered by the LP decoder. Analytic performance bounds
using LP decoders have been proved for rate-1/2 repeat-accumulate codes [6, 4] and LDPC
codes [8]. It is important to prove bounds for more complex turbo codes, as well as improve
the bounds for LDPC codes (which are not yet close to the observed performance [5] of LP
decoders in this case).

Given a specific proper polytope for an LP decoder, we can employ a number of different
known techniques to tighten the polytope [18, 20, 16, 17], thereby obtaining an improved
decoder (at the expense of additional computation). We discussed this idea somewhat in [5],
but have yet to use it to strengthen our analytic performance bounds.



Finally, it would be interesting to look at codes over non-binary alphabets, and over non-
memoryless channels. We could model a non-binary code in an LP by using several 0 − 1
variables as indicators of a symbol taking on a particular value. Alternatively, we could map
the code to a binary code, and use an LP relaxation for the binary code. It would be interesting
to see if anything is gained by by representing the larger alphabet explicitly.
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