The Complexity of Clerkship Scheduling

Jonathan Feldman
Computer Science Honors Thesis
Dartmouth College
June, 1997

Professor Clifford Stein, Advisor
Department of Computer Science
Dartmouth College

Abstract

Medica students must complete a clerkship program in their fourth year. Individua
students have preferences for the clerkshipsto which they are assigned. However, individual
hospitals also have capacities on how many students may be assigned to each clerkship. The
problem of scheduling medical studentsto clerkshipsisformalized. The problem isthen placed in
atheoretical framework, and the most general case of Clerkship Scheduling is proven NP-hard. A
detailed approximation algorithm is given, and an implementation of this algorithm is discussed
and tested.

PCS-TR97-316

Introduction

In the fourth year of medical school, every student must complete a clerkship program in
severa different areas of medicine. Each clerkship isfor adifferent specialty of medicine, and
each is offered at different times and locations. Additionally, hospitals can only accommodate a
certain number of students for each clerkship. Students select their choices of assignments;, some
are granted, some are not. Ideally, the agorithm to schedul e these students would maximize their
satisfaction, and still obey the capacities that the hospitals set forth.

In the past, Dartmouth Medical School (DMS) has used a system where students are
assigned random numbers, and given preference based on those numbers. When a student's
number came up, they selected a schedule based on what was available. Students were also
allowed to trade with each other afterwards.

DMSis currently in the process of automating their system. Each student will be allowed
to quantify his or her satisfaction with certain clerkships by entering them into a database. They
are dlotted a certain number of points, and they distribute these points among specific
assgnments. Additionally, the students specify whether time and/or location are important to
them. The system tries to assign specific choices with the highest happiness values, granting time
and/or location if either is specified asimportant. For the rest of the assignments, it picks random
students, and tries to make switches between schedules that have a small impact on the satisfaction.

Essentially, the system DM S isimplementing now is an automation of the process used in
past years. While this may make the process easier for the students and the hospitals, it will not
necessarily produce better results. The problem isrich in complexity, and needs to be analyzed in
apure theoretical fashion. By understanding the structure of the complexity, perhaps we can make
an algorithm that will not only run efficiently, but also increase student satisfaction. We would
also like to befair to al students; we do not want to rely on random numbers to determine
preference.

This paper discusses the complexity of clerkship scheduling; we do not attempt to solve
the specific problem of student scheduling at DM, but rather we abstract clerkship scheduling to a
combinatorial scheduling problem. A system that is specific to one medica school could be
designed using the ideas from this abstraction. We rigorously define the most general problem,
proveit to be NP-hard, and provide an approximation algorithm that produces excellent results. An
implementation of this algorithm is also described, and its performance is tested and analyzed.

It isdivided into four sections:

*Section A focuses on placing the central problem of clerkship scheduling in atheoretical
framework. General clerkship scheduling is strictly defined using set notation. Subproblems are
either solved by polynomial-time algorithms or proven NP-hard.

*Section B discusses how to come up with an approximation algorithm for general
clerkship scheduling, as defined in section A. Upper bounds on student happiness are defined,
proven and analyzed. A genera methodology is given for using these upper bounds to produce a
schedule, using exponential-time algorithms as examples.

*Section C defines and analyzes the Flatten agorithm, a polynomial-time approximation
algorithm for genera clerkship scheduling that uses the methodol ogy described in section B.

*Section D describes an implementation of the Flatten algorithm, and discussesits
performance in terms of the upper bounds described in section B, for instances that would occur in
practice. Essentidly, thisisan implementation of the Flatten algorithm. However, this
implementation also considers one issue specific to DM S concerning a block structure of clerkship
assignments imposed on each student.

Source code may be found at: http://www.dartmouth.edu/~jonfeld.

A. Complexity of Subproblems

How do we quantify student satisfaction in ageneral way? Some students may want
specific clerkships, timesand locations. Others may want to be in a certain location at a certain
time, or at a certain location for a certain clerkship. Maybe some students have seniority over
others. Maybe some students get precedence for certain clerkships due to special ability or
training.

In all of these cases, we can express student satisfaction by assigning a discrete value to the
overall happiness a certain assignment will produce. These values can be represented by an array
of numbers, measuring happiness for each particular assignment to a clerkship, time and location.
Hospital capacities can be similarly described, by an array of values representing how many
students are allowed to be scheduled to a particular clerkship, time and location.

In this section, we will concentrate on solving the problem of using the valuesin these
arraysto come up with a schedule that assigns each student to each clerkship at a unique time, and
obeys the hospital capacities. The means by which these values are produced can be |eft as a
policy decision for the medical schools.

We can think of a schedule as a collection of assignments, where each assignment isa
particular student, clerkship, time and location. To have alegal schedule for al students, each
student must be scheduled to each clerkship exactly once. Additionally, students may not have
time conflicts, so no more than one clerkship can be scheduled for a specific student and time.
Finally, the collection of these assignments may not violate the capacity constraints of the hospital,
S0 no more than the capacity may be scheduled at a specific clerkship, time and location.

Notation And Definitions

To talk about instances of clerkship scheduling abstractly, | will use the following notation
and definitions:

Terms

*A spot is a specific clerkship, time and location to which students are schedul ed.

*An assignment is a placement of a particular student into a particular spot.

*The capacity of aspot isthe maximum number of assignments allowed to that spot.

*A clerkship/time assignment is a potential assignment of a particular student to a clerkship
and atime, at some arbitrary location.

*A scheduleis a set of assignments for all students.

*An individual scheduleis a set of assignments for one student.

*An individual optimal schedule for a specific student is the individual schedule with the
highest total happiness value that assigns the student to each clerkship at unique times (with or
without unique locations), ignoring capacities.

*The unique location constraint is the requirement that each assignment for a particular
student be to a unique location.

Setsand variables
* N = set of all possible students.
o | = set of all possible times.
» J=set of all possible clerkships.
L = set of all possible locations.
e S=setof al spots=1xJIxL.
* A =set of all possible assignments=N x| x IX L.
* ¢(S) = capacity of spot s, where seS.
Cijl = capacity of spot (i, |, I).

* h(a) = happiness with assignment a, where a<A.
hnijl = happiness with assignment (n, i, J,).

Instances

*An instance of clerkship scheduling will be described by the sizes of the setsN, |, Jand L,
surrounded by brackets. For example, {IN| =5, |I| = 10, |J| = 10, |L| = 1} represents an
instance with 5 students, 10 time slots per clerkship, 10 clerkships, and one location per
clerkship/time assignment.

*The general problem is{|N| arbitrary, |I| arbitrary, |J| arbitrary, |L| arbitrary}, without the
unique location constraint.

Formal Definition of the general problem:

Clerkship Scheduling

Given:

*Set of spotsS=1xJIx L, wherel, Jand L are sets containing possible times, clerkships, and
locations, each of arbitrary size;

*V SeS, capacity c(s).

*Set of students N, of arbitrary size;

*Set of possible assgnments A =N x I x IX L;

*Va<A, happiness h(a).

Question:
Find Hmax, the maximum happiness over all legal schedules, where
* A legal scheduleisaset of assignmentsA' c A sit.

a) V student/clerkship pairs (n,j) < (N x J) 3 exactly oneacA' s.t. a agrees with
that pair in both nand j,

b) V student/time pairs (n,i)<(N x 1) 3 no morethan onea<A' s.t. that a agrees
with that pair in both n and i, and

€V seS, 3 nomorethan c(s) a<A' s.t. sagreeswith aini, j and I.
» The happiness of aschedule H(A") =) h(a).

acA'

Al Finding the Individual Optimal Schedule

The problem of finding the individual optimal schedule for one student with only one
location per clerkship can be smply reduced to aweighted bipartite matching problem. The basic
ideaisto make avertex for each clerkship, avertex for each time, and transform the happiness
values to weighted edges between clerkship and time vertices.

Weighted Bipartite Matching:

An undirected bipartite graph isagraph G(V,E) whose vertices can be partitioned into two digoint
subsets V1 and V2 sit. V edges{u,v} <E, ucVi1andveV2.

Given an undirected bipartite graph G(V,E) and V e<E, aweight w(e), find the matching with the
maximum weight, where amatching isa set of edgesE' c E st. V verticesv<V, a most onee<E

isincident to v, and the weight of the matching = 2 w(e).

eckE'

Algorithm Al: Find an individual optimal schedule using Bipartite Weighted Matching:

Given: *N, I, J, L, sets of students, times, clerkships and locations.
*N|=1, |L]=1.
*A = set of al possible assignments=N x| x Jx L.
*S=set of al possible spots=1xJx L.
*hnij| = happiness with assignment (n, i, j, I).

Return:*A'cA, where A" isan individual optimal schedule.

Using the valuesin hyjj1, we construct an instance of bipartite weighted matching:

VjeJ, make avertex x in V1 (x1, X2, ... X|J). Viel, make avertex y in V2(y1, y2,
y|I|)- Create acomplete bipartite graph by placing an edge from each vertex in V1 to each vertex in
V2, setting w(j,i) = hijj1 + k, where w(j,i) = the weight of an undirected edge {xj, yi} andkisa
constant > 0.

The capacities cjj| can beignored, since we are only scheduling one student to their
individual optimal schedule.

Vi

Proof of the Correctness of Algorithm A1l:

LemmaAll: |E|< ||, where E' isthe set of edges found by the maximum weight matching.
Proof: Assume |E'| > |J], so there are > |J| edges in the matching. Every edge has to connect V1 to
V2, and edges cannot share vertices, there must be more than |J| verticesin V1. Thereareonly |J|
verticesin V1, therefore the assumption isfalse.

Lemma Al1.2: [E'| = |J|.

Proof: Assume [E'| < |[J], so there are < |J| edges in the matching. There must exist avertex u<Vi1
that is not on an edge in the matching, since [V1| = |J. There must also exist avertex vin V2 that is
not on an edge in the matching, since |I| > |J|, and therefore [V 2| > [V 1]. If we add edge {u,v} to the
matching (it must exist, since the graph is complete), the weight of the matching will increase by at
least the constant k, hence the original matching was not of maximum weight, which isfalse, and
therefore the assumption isfalse.

It followsthat [E'| = [J.

Lemma A1.3: If A" = the set of all assignments (1,i,j,1) st. {X], yi} <E', then A"isalega
schedule.
Proof: A' meetsthe three criteriafor being alegal schedule:

«Vfixed], 3 exactly one (1,i,j,1) <« A". Thisistrue because [E'| = |J|, so every Xj is
included in exactly one edge{xj', yi} < E', and therefore Vfixed j, assignment (1,i,j,1)
isthe one and only assignment included in A"

*Vfixedi, 3 <onej for which assignment (1,i,j,1) < A'. Thisistrue because
V{Xj,yi} « E, only (1,i,j,1) « A',and al yj are included in no more than one edge,
since edges cannot share vertices.

*Capacities are ignored.

The weight of the matching corresponds to the happiness of the students, so a higher
weight matching will yield a schedule with a higher total happiness. Since the maximum weight
matching E' will awaysyield alega schedule A', the maximum weight matching will yield the
legal schedule A’ with maximum happiness Hmax. Therefore H(A") = Hmax.

0

A2 Location As The Third Dimension

What if we add locations? Happiness values are now specific to al possible
clerkship/time/location assignments. How does this complicate the problem of finding the best
schedule for one student?

It makes a big difference if students are required to go to a unique location for every
assignment. If thisisrequired, finding the optimal solution for one student is much more difficult,
and is actually NP-hard with respect to |I|,|J] and |L|. Thisis clear with areduction from 3-
Dimensiona Matching:

Reduction A2: Reduction from 3DM to {|N| = 1. |I| arbitrary, |J] arbitrary, |L| arbitrary} . with the
unique location constraint.

Black box for one student with unique locations: :

Assume the existence of a black box that when given a set of happiness values hpjj|, returns A', a
legal schedule (with unique times and locations), maximizing H(A"), the total happiness. Again,
the capacities are ignored, because [N| = 1.

*Three Dimensional Matching(3DM) [1]

Digoint sets X,Y,Z, all with exactly g elements. M isaset of triples(x,y,z) « X XY xZ. DoesM
contain amatching; Does 3 M' ¢ M sit. [M'| = g and no two elements of M' agree in any
coordinate?

Reduce a generd instance of 3DM to a specific instance for the black box:
Set|l|==L] =q.
*V triples (x,y,2) M, set hixyz = k, where k is a constant > O.
*V triples (x,y,2) €M, set hixyz = 0.
*Feed the happiness values into the black box and find the schedule A' with
happiness H(A") = Hmax.

Proof of Reduction AZ2:

Lemma A2.1: Hmax = kq iff M contains a matching.
Proof:
a) If Hmax = kq, then M contains a matching.
Every legal schedule has exactly |J| assignments (1,i,j,1). Vi,j,I hnjji= Oor
hniji= k. [=q, soif H(A") = kq, that means Vi j,| s.t. (L,i,j,1)cA", hnijl = k. If hnjj| =k,
(X,y,2) « M; therefore Vi j,| sit. (1,i,j,1) A", (i,j,])<M. A lega schedule has unique clerkships,
times and locations (with the unique location constraint) for all assignments, so Va:A', ais
unique in every coordinate.

3 M'c M st. |M'| = g, and no two elements of M' agree in any coordinate, since Vi,j,l|
st. (1,i,j,1)eA", (i,j,]) M, and |A'| = |9 = 9. Therefore, M contains a matching.

b) If M contains a matching, then Hmax = kq.
If 3 amatchingin M, then 3 M' ¢ M st. [M’| = g and no two elements of M' agree in any

coordinate. Let set of assignments A" < A consist of all assignments (1,x,y,2) s.t. (X,y,2)<M".
V(x,y,2)eM, hixyz = k, therefore H(A") = k |A"].

A" includes a different assignment for every unique (x,y,z) cM', and no two el ements of
M’ agree in any coordinate. [M'|=q=|J], therefore, A" includes |J| assignments that are uniquein
every coordinate. It follows that |A"| = |J, and that A" isalegal schedule, since A" includes |J|
assignments, unigue in every time, clerkship, and location. H(A") = k|A"| = k|J| = kg. Therefore
Hmax = kg.
Consider dl lega schedules BCA:

*|B| = |[J], since every clerkship must assigned exactly once.

*H(B) < k}J), since Va<A, h(a) = 0or h(a) = k.

Hmax represents the total happiness value H(B) for some legal schedule BCA, therefore
Hmax < k|J|. ¥ = 9, so Hmax < kg. Hmax = kq, therefore Hmax = kqg.

0

A3 Lifting The Unique Location Restriction

Without the unique location restriction the problem for one student is much easier. Itis
essentially no different than having only one location, since every student will be happiest in the
best location for each clerkship/time assignment. We simply have to isolate the best |ocation for
each clerkship/time assignment, and use bipartite weighted matching on those location
assignments.

Algorithm A3: Polynomial time algorithm for {|N| = 1, |I| arbitrary, |J] arbitrary, |L | arbitrary},
without the unique location restriction.

Given: *N, I, J, L, sets of students, times, clerkships and locations.
olNl: 1
*A = set of al possibleassignments=N x| x Ix L.
*S = set of all possiblespots=1x Jx L.
*Cij| = capacity of spot (i, |, I).
*hnij| = happiness with assignment (n, i, j, I).

Return:*A'cA, where A" is an individual optimal schedule.

sLet A1cA = dl assignments (n,ij,1) s.t. hnijl = Méf((h“ii'); A1 isthe set of |I||J]

location assignments with the highest happiness values V fixed i .
*Use A1 asthe complete assignment set in an instance of finding an
individual optimal schedule for one location, as described in (Al).

*Schedule A' ¢ A1 < A isreturned by the instance described in (A1).

Proof of Correctness of Algorithm A3:

Lemma A3.1: A'isthe optimal schedule V assignmentsa<A1.
Proof: The matching reduction described in (A1) finds the optimal schedule for instances with
only one location per clerkship/time assignment. Thisinstance described by A1 has only one

location per clerkship/time assignment, therefore A'isoptimal V assignmentsacA1.

Lemma A3.2: The optimal schedule A’ Va<A1 isaso optima V acA
Proof by contradiction:

Assume 3 optimal schedule B c A s.t. H(B) > H(A"). Create anew schedule B'cA1
whose assignments all agree with assignmentsin B inbothi andj. H(B") > H(B), since A1 isthe

set of |I||J] location assignments with the highest happiness values V fixedi,j. A'isthe optimal
schedule V a<A1 (A3.1), therefore H(A") > H(B') > H(B), and our assumption is false.

0
A4 Multiple Students As The Next Dimension

So far the problems have been restricted to one student, but the real complexity of clerkship
scheduling occurs when there an arbitrary number of students. In fact, the number of students will
be the largest variable in practice, since the number of clerkships, times and locations will usually
all be fixed. For problems with one student, we could ignore the capacities, but now the capacities
congtrain the individua student. To find the optimal solution, we have to resolve complex
rel ationships between student preferences and capacities.

The most general case of clerkship scheduling | will consider is{|N| arbitrary, |I| arbitrary,
N arbitrary, |L| arbitrary}, without the requirement of going to a unique location for every
assignment. The happiness values are now specific to four dimensions: n,i,j andl. The capacm&
are specific to three dimensions: i,j and | . The general problem is NP- hard even when |J| =
and/or all capacities= 1. To prove it NP-hard, we again reduce from 3DM:

Reduction A4: Reduction from 3DM to {|N| arbitrary, |I| arbitrary, |J| arbitrary, |L| arbitrary} .
without the unigue location restriction:

Black box for one student with unique locations:
Assume the existence of a black box that when given A, a set of assignments, happiness values
hnijl and capacities cjj| returns A', alegal schedule, where H(A") = Hmax.

Three Dimensional Matching(3DM)
Digoint sets X,Y,Z, al with exactly g elements. Sisaset of triples (x,y,z) (X XY x Z). Does S

contain amatching; Does 3 ScSst. |[S| = g and no two elements of S agree in any coordinate?

Reduce a general instance of 3DM to a specific instance for the black box:

SaaN=|1=J=L = q

VYV (X,Y,2)eS, set hxy]_z = k.

*V (X,y,2) ¢S, set hxy]_z =0.

«Set al capacitiescjj| = 1

*Feed A, the happiness val ues hnjj| and capacities cjj| into the black box
and find the best schedule A'.

Proof of Reduction A4:

To prove the reduction, we must show that H(A'") = kq iff S contains a matching
a) If H(A") = kq, then S contains a matching.

All hnjjl = 0, except those for j = 1. So, the weight of an individual student’ s schedule
depends compfetely on when and where they are assigned for j = 1.

Lemma A4.1: If H(A") = kq, then there are q occurrences of aj = 1 assignment (an assignment
to clerkship 1 for some student n, timei, location 1), al of which don’'t agreein any n, i or j, and
al have hnjj| = k.

Proof: The only possible happiness values for aj = 1 assignment are k and 0. Therefore, if H(A")
= kq, then 3 exactly g occurrences of aj = 1 assignment with hnjj| = k. None of these g
assignments will agreeinany i or |, since al cjj| = 1. Furthermore, these g assignments will all be
for different students (and therefore won't agree in any n), since each student has exactly onej =1
assignment, and there are g students.

If H(A") = kg, then there are g occurrences of aj = 1 assignment, all of which don’t agree
inany n, i or |, al with happiness k, as shown above. If hpj1] = K, then (n,i,)cS. So, the
existence of a schedule with H(A") = kq suggests the existence of g membersof S, all of which
don't agreeinany n,i or |. Therefore, S contains a matching.

b) If S contains a matching, H(A") = kq

A4.2 Lemma: If S containsamatching, each student has uniquei and | for which they can be
assigned to] = 1 with hpj1l = k.

Proof: If S containsamatching, thereis asubset of g membersof S, al of which don't agreein
any x,y or z. V (X,y,2) S, hni1] = k. Therefore, there are g happinessvaluesfor j = 1, al with a
uniquen,iandl, al =k. Thereare q students, so each one has uniquei and | for which they can
be assigned to j = 1 with happiness k.

A4.3 Lemma: If S contains a matching, H(A") > kaq.

Proof: Put al g of thej = 1 assignments described above into anew schedule BCA . B islega
forj =1, withH(B) 2 kq, sincecjji =1 V i, |, and (A4.2) holds. All other assignmentsin B are
included arbitrarily; that is, each student's scheduleisfilledinfor al j > 1in any lega
combination. Retaining the legality of B ispossible, since al students can use every possible
clerkship/time assignment for j > 1 (there are q possible locations for every clerkship/time
assignment, and only g students).

Schedule BCA islegal, with H(B) > kq, therefore the maximum happiness schedule H(A") > ka.

A4.4 Lemma: H(A") < kq.
Proof: Assume 3 alegal schedule B with H > kq. Sinceall hpjj| are either k or O, there must be
> g scheduled assgnments am | with hn| | = k. All such weights occur when j = 1, so there must

be > qassignmentsto = IS cannot be the case, since there are only q students, and all have
exactly one assignment tOj l Therefore the assumption isfalse, and H(A'") < ka.

H(A") > kg and H(A") < kq, therefore H(A") = kq.
0

B. Using an Upper Bound To Approximate

Thus the general problem is NP complete. Thisis not good news to medical school
administrators, because it means they will probably never be able to satisfy as many students as
they theoretically could. However, dl isnot lost. A good approximation algorithm could yield
excellent results. To find an approximation algorithm, we need to know what heuristics we can
use to smplify the problem, and how we can measure the success of these heuristics in theory and
in practice.

B1 An Upper Bound

How can we measure the success of an approximation? We want to see how close an
algorithm gets to the optimal happiness Hmax. For example, if the algorithm produces H =

g(Hmax), it is measured by the coefficient g- In general, we call this coefficient p.
Unfortunately, we cannot find the optimal schedule, so we don't know the value of Hmax with
which to calculate p. We need an upper bound on Hmax that is as small as possible to get the
truest values of p.

B1 The upper bound U.

We can find one student’ s optimal schedule in polynomial time, if we ignore the capacities,
and all the other students (A3). So, if we find the optimal schedule for each student individually,
and schedule them in the general problem, this schedule will be made up entirely of optimal
schedules. Unfortunately, this schedule is not always legal in the general problem due to capacity
constraints. However, the total happiness of this schedule is a nice upper bound for the optimal
schedule by which we can judge the success of our approximation algorithms. We will call this
upper bound U.

sLet A=NxIxJIxL,theset of al possible assgnmentsin an instance of the general problem.
sLet O bethe set of al individua optimal schedules found by ignoring the capacities (A3).
sLet A" be the solution to the general problem, so H(A") = Hmax.

LetU= Y H(Q,).
0,0

The following lemmawill show that U is an upper bound for Hmax:

B1.1 Lemma: V instances of the genera problem, Hmax < U.
Proof: Assume Hmax > U. Therefore, Hmax > ZH(On). Divide A" into |N| distinct subsets

0,€0

O'k, where O'k = {anjjl<A": n=k}. These subsets represent the individual schedules for the

10

solution A'. D H(O,) = H(A") = Hmax, since{O'1 U 02, U...U O'|N|} = A"

O ,eA
Therefore: > H(O,) > Y H(O,). Itfollowsthat 3 some g for which H(O'g) > H(Og), where
0,0 O ,eA

Og< O. However, Oisthe set of all individual optimal schedules, therefore H(O'g) < H(Og). We
have a contradiction, therefore our assumption isfalse.

0

How close is U to the true Hmax? In some cases, U = Hmax:

B1.2 Lemma: 3 aninstance of the general problem for which U = Hmax.
Proof: Consider a case where al cjj| = [N|. Schedule every student to O, their individual optimal
schedule. Thisscheduleislegal, since every spot can hold every student and still be at or under
capacity. Hmax = > H(Q,) = U.

0,€0

0

In(Bl.2),weseeacasewhereHL = 1. However, thisratio could be as bad as |N|:

max

B1.3 Lemma: 3 aninstance of the general problem for which HL =|N]|.

Proof: Consider the following case:

*All cjj| = |NJ, except c111 =1.

*All hnjj| =0, except Vn, hn111 = k.

U= Z H(O,) =K|N|, since all students’ optimal scheduleswill include their only non-

0,€0
zero happinessvalue at an111. However, Hmax =Kk, since c111 = 1, and only one student can
actually be scheduled to their only non-zero happiness value.
U KIN| _

So U isnot consistently close to Hmax; U can be equa to Hmax, and U can be
significantly larger than Hmax. However, in practice, U is till useful. It takes an extreme
example to make U significantly larger than Hmax, one that has alot of high happiness valuesin
spots with small capacities.

B2 Methodically Rescheduling From The Upper Bound

What heuristics can we use? Our fina schedule hasto get every student into every
clerkship, and it must obey the capacity constraints, so our approximation must yield alegal
schedule. In addition, we want to get as close to the upper bounds as we can. Instead of
searching within the legal schedules, we will start with one of the upper bounds, and work our
way down until we find alegal schedule.

What if we start with the upper bound U? To get a schedule with total happinessof U is
simple; al we haveto dois schedule al studentsto their individual optimal schedule, whichisa

12

polynomial time problem, as shownin (A3). Thisscheduleis not necessarily legal, so to work
our way down to alega schedule, we have to methodically reschedule the students, trying to keep
the happiness up while still working towards alegal schedule.

We will first look at a solution to the general problem that finds the optimal schedulein
exponential time, but illustrates the concept of using the upper bound as a starting point:

Algorithm B2.1: Exponentia time algorithm to solve the general problem:

Given: N, I, J, L, sets of students, times, clerkships and locations.
*A = set of al possible assignments=N x | x Jx L.
*S=set of al possible spots=1xJx L.

*Cij| = capacity of spot (i, |, I).
*hnij| = happiness with assignment (n, i, j, I).

Return:*An optimal legal schedule.

*Vn, set A°n =the set of all subsets A'cA s.t. A’ schedules student n to exactly |J| different
clerkships, al at unique times; A°n isthe set of al legal individual schedules for student n.
sLetset P= (A1 X A°2 X A°3X ... X A°IN|-1 X A°N)) ; Pisthe set of all possible combinations of
legal individual schedules.

*VpeP, letqp) = (A1 U A2 U ... U AN), wherep= (A1, A2, ... A|N))- Each q(p) represents
the total schedule including all the individua schedulesin p.

*Letset Q={q(p) : p<P}.

*Return q' = ?gg% nggg H(q), the legal schedule in Q with the highest happiness value.

Running Time of Algorithm B2.1:

Thisalgorithm is obvioudly exponential, since it must ook at every possible combination
of every possible schedule for al |N| students, and test for legality.

V' n, Contstruct A°n:
Find al legal individual schedulesfor al students O(|N||L[[]")

«Construct P,Q: o(|L[1nIN|
V< Q, test for legality o(ILit)NI
Total time needed: oL HINI

Algorithm B2.1 takes an exponential amount of time because it looks at every possible
combination of schedules. We can improve upon this method by constructing solutions greedily;
we sort the individual schedules before we combine them. When we combine them, we will test
them for legality. We will construct complete schedules in descending order of happiness, so we
can stop after finding our first legal schedule. Thuswe will find an optimal schedule with a greedy
algorithm:

Algorithm B2.2: Pseudocode for a greedy algorithm to find a solution to the general problem

Given and Return values; sasme asB2.1

13

For al studentsn < |N|
let A'nk = the schedule in A°n with the kth highest happiness value.
let rp = 1, where rp = the current schedule for student n being considered.

Begin Loop:
Let B' = empty schedule, therefore H(B') =0
Let changed student =0

[* Thefollowing loop tries every schedule where exactly one rp increases by one,
and the schedule with the highest happiness value is kept. */

For student k = 1 to |N|
Consider schedule B = (A'1rq U A'2rp U ... A'k(rk+1) - U A'|N|r|N|)
If H(B) > H(B'), thenlet B' = B
changed_student = k

Increase rchanged _student by 1

Loop until B'isalega schedule
Output B'

Proof that Algorithm B2.2 gives an optimal solution:

By contradiction: assume B'isnot optimal. Therefore 3 alegal schedule D' st. H(D') >
H(B'). Thealgorithm found B' asthefirst legal schedule. Therefore, all schedules that include
individual schedulesfor any student n with higher happiness values than the individual schedule
for student nincluded in B' must not be legal, or else the algorithm would have chosen it earlier in
theloop. So, D' must consist entirely of individual schedules with happiness values greater than
or equal to the individual schedulesincluded in B'. Therefore H(D') < H(B'), and our assumption
isfase.

0

In the worst case, Algorithm B2.2 will still be exponential. Thisis clear, since there might
be only afew possible combinations of legal schedules, all of which have low happiness values;
the algorithm would then have to consider most of the combinations of schedules before finding a
legal one. Again, more bad news for the medical school administrator.

Algorithm B2.2 is based on starting with a schedule that is not necessarily legal, but has
a happiness value equal to the upper bound U. It proceeds by using a heuristic to change that
schedule until itislegal. We can use this general concept, but employ a polynomial time heuristic,
so we will be able to find good solutions quickly, with happiness values close to the upper
bounds.

C. The Flatten Algorithm

We now introduce an approximation agorithm based on the concept of methodically
rescheduling from the upper bound (B2). First, some background is given concerning the theory
behind the algorithm (C1). Then, pseudocode for the Flatten algorithm is given, along with a
proof of correctness and an analysis of the running time (C2). We then provide some theory
behind the tightness of an instance of scheduling, a phenomenon that seems to affect the running
time of the algorithm, as well as the happiness of the schedule it produces (C3). Findly, we
explore the limitations of the Flatten algorithm, and provide some possible solutions for getting
around these limitations (C4).

14

C1l Introduction

The Flatten algorithm begins with the upper bound U, and schedules students to each of
their individual optimal schedules. If thisscheduleislegal, the agorithm isdone. If itisnot legal,
it “flattens’ the schedule by rescheduling students from spots that are over-capacity, until there
exist no such spots.

This seems easy in theory, but it isfar from trivial to come up with agood way to do this
methodically, so that the algorithm finds alegal schedule in areasonable amount of time. We need
aheuristic to reschedul e students away from individual over-capacity spots, and into other spots.
This heuristic must reduce the over-capacity spotsto capacity, maintain as high a happiness as
possible, and eliminate more and more options to switch asit progresses, so it may approach a
legal schedule.

| have found such a heuristic based on the concept in B2.2 of using happiness rankings of
schedules specific to each student. The Flatten algorithm uses happiness rankings of location
assignments, specific to each student/clerkship/time.

C2 The Heuristic

Flattening the schedule is the heuristc that enables us to move students away from over-
capacity spots. The Algorithm first searches for the most over-capacity spot. When an over-
capacity spot is selected, exactly as many students are rescheduled from that spot as are needed to
make that spot obey its capacity. The students selected to be rescheduled are the ones for whom
moving them would cause the least reduction in happiness value. When students are selected to be
rescheduled, they are never allowed to return to that spot.

How do we reschedul e the sel ected students, and force them never to return to spots from
which they are rescheduled? Consider the algorithm described in (A3) that found an individual
optimal schedule for one student with multiple locations. The problem reduced to an instance of
finding an individual optimal schedule for one location (A1) by including only thelocation

assignments to clerkship j, timei, with the highest happinessvalues V fixedi,j. Infact, we can
create an instance of (A1) using any location assignments we choose, and (A1) will return the
optimal schedule among those location assignments.

In the Flatten Algorithm, for each clerkship/time assignment, we will maintain the sorted
happiness values for each location, and use an array of global variables keep track of which
location rank the algorithm is currently considering for each student/clerkship/time; at the
beginning of the algorithm, these global variables are all set to 1, since the algorithm begins by
scheduling each student to an individual optimal schedule. Each time a student is selected to be
rescheduled, we increase the location rank variable for that spot by 1, and create an instance of
(A1) using the location assignments referred to by the values in the location rank variables.

Thus the selected students are rescheduled from the over-capacity spot, and are forced
never to return to that spot again. The agorithm proceeds by finding a new over-capacity spot,
and repeating the whole process. As students are restricted further and further by having their
location rank variables increased, the schedule is forced towards legality.

For convenience, since we will not be using formal set notation to explain the flatten
algorithm, we will use the constants N,I,J,L to denote the size of setsN,I,J,L.

C2.1 Pseudocode for the Flatten Algorithm

Given: N = number of students, | = number of time sots,
J=number of clerkships, L = number of locations.
hnijl = happiness with assignment (n,i,j,l)

Cij| = capacity of slot (i,j,l)

Return: A lega schedule A’

15

Function: Sort_Student_Happiness
For al studentsn
For all clerkship/time assignmentsi,j
1 *sort hnj jl in descending order, and store the original locations of
each assignment into a separate array locnjjr. hnj jr Now represents
the rth highest happiness value for student n, time 1 and clerkshipj.
2 eset all ranknjj = 1, where rankpjj = the current rank being considered

for student n, timei and clerkship j.

Function: Match(student n)
3 *Create an instance of finding an individual optimal schedule for one location (A1):

Values needed for instances of (A1): SetsN,1,J,L, hpijl.
sLet N ={n}
eLet | ={1,23....1}
sLetd ={1,23....0
eLet L =the set of all |00nij(ranknij) Vij ; thelocations of the current
ranks begin considered for student n, timei, clerkship .

*Let hni jI = hnij(ranknij)

4: *Return the schedule M returned by (A1).

Flatten Algorithm

5: *Call Sort_Student_Happiness

6: «Vn, Cal Match(n), and add each returned schedule M to the complete

schedule A', initializing atij| = number of students scheduled
totimei, clerkshipj, location .

7 Loop Until A" obeys all the capacity constraints

8: *Find aspot (i,j,|) where atjj| - cjj| > 0. Thisspot is over-capacity.

o For each student n scheduled at spot (i,j,1):

10: «Store current individual scheduleinto O, an array of original schedules.
11: sIncrease ranknjj by 1.

12: *Call Match on student n.

13: «Store returned individual schedule M into D, an array of schedules.

14: *Sort D and corresponding O by H(o) - H(d), the difference between

the happiness value of the new schedule and the happiness value of the old
schedule, where 0O and d<D.

15: For the first ¢jj| schedulesin D: (with the ¢jj| lowest differences in happiness)

16: *Remove original schedule O from A, decreasing atjj| by 1 for all
assignments 0O

17: *Add new schedule D to A', increasing atjj| by 1 for all
assignmentsd<D

18: For the remaining schedulesin D:

19: *Decrease ranknjj by 1.

20: Return A’

The Flatten algorithm will not always find alegal scheduleif one exists. At line 11, We
increase the value of ranknjj by 1. If ranknjj = L, we would not be able to increase this value and
maintain a meaningful value. We say that the student has reached an empty rank for this
clerkship/time assignment. We will discussin great detail the situations under which empty ranks
occur, aswell as solutions to get around them, in section (C4). However, if no students reach
any empty ranks, and the flatten algorithm as listed above finds a schedule, we can prove that this
scheduleislegal:

Lemma C2.2: If no students reach empty ranks, then A', returned by the Flatten algorithm, isa
legal schedule.

Proof:

*Every individual schedule added to A’ during the course of the algorithm, at lines 6 and 17, has
been returned by the Match function. The Match function returns only individual optimal
schedules, which are legal.

*All students are initially scheduled to A’ exactly once at line 6, and every time astudent is
removed from A' a line 16, they areimmediately placed back into A’ at line 17. Therefore, when
the algorithm terminates, all students are scheduled in A" exactly once.

*Since al students are scheduled in A" exactly once, and every individual schedule added during
the course of the algorithmislegal, A' contains exactly one legal individual schedule for each
student.

sLine 7 isthe start of aloop that does not terminate until A" obeys all the capacity constraints.
Since A’ contains exactly one legal schedule for each student, and it obeys al the capacity
constraints, A' isalegal schedule.

0

C2.3 Running Time of the Flatten Algorithm

*Function: Sort_Student_Happiness
Loop NIJtimes, sorting L items
time: NIJLIgL
Total time: NIJLIgL

| >J, sotime=O(NIZLIgL)

*Function: Match(student n)
Transform 1J happiness values into an instance of bipartite weighted matching
time: 1J
Run a bipartite weighted matching, #Vertices= | + J, #Edges=1J
time: (I + J)1J
Total time: 13+ 1J(1 + J).
| >J, sotime=0(3)

*Hatten Algorithm

«Call Sort_Student_Happiness O(NIZ2LIgL)
«Call Match on every student O(NI3)
«Add returned schedulesto A’ for every student O(NI2L)

(each schedulesizelJL, | > J)
eLoop until A'islegal; let P = #of iterations
«Find an over-capacity spot O(PI2L)

16

17

(1L spots,| > J)
For each student scheduled at that spot (<N)
«Store current schedule O(PNI2L)
(each schedulesize lJL, | > J)
«Call Match on each student O(PNI3)
«Store returned schedule O(PNI2L)
(each schedulesizelJL, | > J)
*Sort schedules O(PNIgN)
(<N schedules)
Remove and add schedules O(PNI2L)

(£ N schedules, each schedule size 1L, | > J)

TOTAL =O(PNI3 +PNI2L + NI2LIgL + PNIgN)
= O(P(NI3 + NIZL + NIgN) + NIZLIgL)

Since N islarge compared to I,Jand L, it isimportant to look at the degree of N
independent of 1,Jand L in the analysis of the running time. PNIgN represents the most significant
term of the total running time, so we can say that the algorithm runsin O(PNIgN). But, even
though I,Jand L will be small compared to N, they will still be significantly sized numbers. | will
discuss running time in practice when | describe testing of the implementation in section D.

How bigis P? The size of P will vary according to how many times we need to flatten a
spot before we find alegal schedule. P = the number of iterations of the flattening loop, which
beginsat line 7. At each iteration of the flattening loop, we permanently increase the value of at
least one ranknjj. Each ranknjj can only take on L different values, corresponding to the L
possible locations for each clerkship/time assignment. So, we can only permanently increase the
value of at least oneranknjj NIJL times. Therefore P<NIJL. Sincel,Jand L aresmall, P =
O(N).

Therefore, the theoretical running time of the Flatten algorithm = O(N2IgN).

The actual running time of the algorithm is highly dependent upon P, which is not an input
value, but rather aresult of how many times we need to flatten spots until we reach alegal
schedule. Additionally, every time we flatten a spot, we reduce the happiness of the schedule. If
we never have to flatten a spot, P could equal 0. We have shown above that P < NIJL.

How can we determine the number of times we need to flatten spots from the input values?
Through experimentation with the implementation in section D, | will show arelationship between
the tightness of the instance, as defined in (C3), and the happiness and running time of the
schedule returned by the flatten algorithm.

C3 The Tightness of an Instance

We introduce the concept of the tightness of an instance; how many available dotsthere are
compared to how many are needed. Formally,

Definition C3.1: The Tightness of an Instance:

2 X 26

1<i<|l1<j <3|l

INI|J]

*Thetightness, T, of instance { N[,|I[,|J],|L [} , (with capacities cjj|) =

18

If T <1, there are fewer avail able assignments than needed assignments; therefore there
are no possible legal schedules. When T > 1, there could be alegal schedule, but not necessarily;

Lemma C3.2: 3 Instances of clerkship schedulingwhere T > 1, but 3 no legal schedules.
Proof: Every student must be scheduled to every clerkship. Therefore, if 3 alegal schedule,

then Vj, >) C,=IN|. Consider aninstance of clerkship scheduling where:

1<i<|l|1<I<|L

* > Y.Cy=IN|-1; thesum of the capacities of the spots for clerkship 1is |N| - 1.

1<i<|a<i<]L|

« > > Y.C, =INHI, thesum of the capacities of all other spotsis NJ}J].

1<i<|l| 2<j<|d] <I<iL
> 2 2C

ijl
1<i<|1]1<] <|I[1<I <L] — |N||J|+|N|_1:1+ INl_l_
INI[J| INI[J| INI[J|
However, forj =1,) Y C,;=IN|- 1. Therefore, 3 nolegal schedules.

1<i<|a<I<IL|

Inthisinstance, T =

Therefore, T > 1.

0

Lemma C3.2 points out that even though the total number of available spotsis larger than
the spots needed, there must till be a sufficient number of available spots for each clerkship. Now
consder instanceswhere |I| = |J]. Since every student must be scheduled to each clerkship at a
unique time, and |J=|1|, every student must also be scheduled to each time. Asin A5.2 for
clerkships, If such an instance had fewer than |[N| available spots for any time, it would also have
no legal schedules.

Is having enough available spots for every clerkship, and enough available spots for every
time asufficient condition to claim that 3 alegal schedule? No, infactitisnot:

Lemma C3.3: 3 aninstance of clerkship scheduling for which

oT>1,
Vi, z ZCmZ"\'L and
1<i<|l]a<l<|L]
Vi, > Y.C;=IN| but 3 nolegal schedules.
1<j<|I|a<I<|L]
Proof:
Consider the following instance:
f=1=IN[=3
oll_l:l
i=1 2 3
” : j=11]1|1 :
*The capacities are represented by the following chart, Jol3l0 fig c3.4
3/2|0|2

19

where the rows represent clerkships, the columns represent time dots, and an entry in the table
represents cjj1, the capacity of clerkshipj, timesloti. Weseethat vj, Y, > C;>IN|, and Vi,

1<i<|a<I<IL|

il
chjl

Z ZCUIE |N| T= 1<i<|11<j<|I|1=<I L — E Therefore T > 1.
1<j<|I|<I<|L| |N||J| 9

*Weclamthat 3 nolegal schedule for thisinstance. Proof by counterexample: Assume 3 alegal
schedule. All 3 students must be assigned to clerkship 1, at sometimeslot. Since Cj11 =1 for dl
3timedotsi, each student must be assigned to adifferent time dot for clerkship 1. Therefore,
some student n must be assigned to clerkship 1, time slot 2. Student n must also be
assigned to clerkship 2, at sometime slot. ¢121 = 0and ¢c321 =0, so student n must be
assigned to clerkship 2, time slot 2. The two assignments in boldface violate the
requirement that all student assignments be to unique time dots. Therefore, our assumptionis
false.

0

C4 Limitations

Thereis no guarantee that the Flatten algorithm will come up with alegal schedule if one
exists. Consider the following situation, which I will refer to as a student reaching an empty rank:

C4.1 One example of an Empty Rank:

*Some student n has been reschedul ed from over-capacity spots a number of times, in particular
from locations within clerkship 3, time 5.

*After awhile, the algorithm decides to flatten clerkship 3, time 5, location 8. It beginsto
reschedul e students when it comes across student n.

*The algorithm sees that ranknjj = L, where rankpjj = student n'srank for clerkship j,timei.. This
means that during the previous Iterations of the algorithm, student n has been rescheduled to each
location assignment within that clerkship/time

*Student n cannot be rescheduled anywhere for that clerkship/time; they have reached an empty
rank. at clerkshipj, timei.

To get around an empty rank, we can instruct the algorithm to do the following:

C4.2 Method to get around an empty rank:
If spot (i,j,I) is being flattened, and for some student n, ranknjj = L, and student n isinstructed to

increase ranknjj by 1,
Let K = alarge constant; K > IJL(M&}X(hnm)).
L],
+Call Match on student n, but set the weight of the edge { x;, yi} = -K.

The matching will choose an alternate schedule that doesn't include an assignment to
clerkshipj, timei. What if an empty rank occurs anumber of times for some student n? The
algorithm may eventually reach a situation where student n cannot be legally rescheduled at all from
aparticular spot (i,j,1) using the student’s values in rankpjj. | will refer to this situation as a dead
end:

20

C4.3: An Example of a Dead End:

*Some student n reaches an empty rank for clerkship 3, time 5.

*Student n is rescheduled a number of times, and reaches a number of empty ranks, especially for
clerkship 3.

*The algorithm decides to flatten clerkship 3, time 4, location 2.

*The algorithm tries to reschedul e student n, and sees that student n has an empty rank for
clerkship 3, time 4. So, it setsthe weight to -K, and attempts a matching.

*But, student n has reached an empty rank at al clerkship 3 assignments, and the maximum weight
matching just leaves out clerkship 3 from the matching to avoid the -K weight, and therefore
returns an illegal schedule; this student has reached a dead end.

What should the algorithm do with a student in the case of adead end? A dead end can be
okay if there are enough students at that spot that can be rescheduled to flatten the spot. But, if
there are more students that have reached this “dead end” than the capacity for the spot, the
algorithm cannot proceed, since it will be unable to flatten the spot.

Can we do anything about this situation when it occurs? We can’t avoid it without
fundamentally changing the algorithm, but we can “clean up” afterwards, by putting the dumped
students back into the open spotsin the schedule.

How could there be any open spots in the schedule? Every time a student reaches an empty
rank for a clerkship/time assignment, it means every spot for that clerkship/time has been flattened.
After aspot isflattened, it isleft exactly at capacity. If astudent is dumped, they have reached
enough empty ranks to leave them unable to be scheduled. How could this student possibly be
rescheduled, if they have reached so many empty ranks?

After aspot isflattened, it won't necessarily stay at capacity:

Lemma C4.4: Flattened spots do not necessarily stay at capacity:

*Consider some student n who is scheduled to a spot s1 that is flattened.

*Student n remains at s1 after it isflattened, since student n is among the students who produce the
lowest ¢c(s1) happiness values when rescheduled, where ¢(s1) = the capacity of spot s1.

*Spot s1 isnow exactly at capacity, since it has just been flattened.

oL ater in the algorithm, a different spot s is flattened; student n is aso scheduled at sp.

*Student n is rescheduled from s, since rescheduling student n produces a higher happiness value
than rescheduling c(sp) other students, where c(s2) = the capacity of spot sp.

*The new schedule for student n does not include s1, therefore s1 js now under-capacity.

We take advantage of this phenomenon by removing students that have reached a dead end,
and rescheduling these students after the al the spots are all flattened:

C4.5. A method to Dump students when they reach a dead end:
During the algorithm, if some spot (i,j,|) is being flattened, and x students scheduled at spot (i,j,|)
have reached a dead end, where x > cjj|,
*Arbitrarily pick (x-cjj|) of the students that have reached a dead end, and dump them; teke
them out of the permanent schedule A', and do not reschedul e them.
Flatten spot (i,j,1) normally, rescheduling the students that have not reached a dead end.
*Proceed with the algorithm, and do not require dumped students to be scheduled when
determining the legality of A'.

Dumped students will be ignored for the rest of the algorithm, since students are
rescheduled only when they are scheduled in spots to be flattened. Dumped students are not
scheduled anywhere, so they will never be put back into A'.

21

We can build the methods described C4.2 and C4.5 into the flatten algorithm, thus
allowing the algorithm to handle more cases.

To build C4.2 into the algorithm, we replace line 11 with the following conditional statement:

o For each student n scheduled at spot (i,j,1):
10: *Store current individual scheduleinto O, an array of original schedules.
11: If ranknpjj <L

sIncrease ranknjj by 1.

Else

oLet hnij(ranknij) =-K, whereK > IJL(I\i/ljalx(hn”.I)).
12: *Call Match on student n.
13: *Store returned individual schedule M into D, an array of schedules.

For C4.5, wereplace line 17, also with a simple conditional statement:

15: For the first cjj| schedulesin D: (with the cjj| lowest differences in happiness)
16: *Remove original schedule O from A, decreasing atjj| by 1 for all
assignments 0O
17: If H(D) > 0
*Add new schedule D to A', increasing tjj| by 1 for all
assignmentsde<D
Else
sL et boolean array Dumped[n] = TRUE.
18: For the remaining schedulesin D:
19: *Decrease ranknjj by 1.

Now we must reschedul e the dumped students into open spots created by the phenomenon
described in C4.4. The problem of rescheduling the dumped studentsis equivalent to an instance
of the general problem, since there are an arbitrary number of students, student/spot-specific
happiness values, and spot-specific capacities.

We could recurse on the flatten algorithm. However, we must be sure that dumped
students are not scheduled to the spots that are already at capacity from the first pass. So, V
dumped students n, and spots (i ,j,1) that are at capacity, we let hpjj| = -K, asin (C4.2). When the
number of dumped students is small enough, an algorithm that finds the optimal legal solution,
such as B2.2 or B2.3, may be the best choice.

D. An Implementation of the Flatten Algorithm

| have implemented the flatten algorithm in away that would be useful in practice to
schedule medical studentsto clerkships at Dartmouth Medical School (DMS). The program is
caled Clerk, and it iswritten in C++. Clerk isadirect implementation of the Flatten algorithm,
with one modification based on arestriction on student schedules imposed by Dartmouth Medical
School (D1). Clerk also implements the strategy explained in (C4.5) to dump students when they
reach a dead end (D1.3).

D1 Modifications of the Flatten Algorithm

DMS has arequirement that student schedules be in ablock structure, defined as the following:

D1.1 The DMS Block Structurel

*There are 3 blocks; each containing 3 clerkships, for atotal of 9 clerkships.

*In each block, one clerkship hastime length 2, and the other two clerkships have time length 1.
*The clerkshipsin each block must be scheduled together.

*Within each block, the clerkship with time length two must be scheduled first or last.

*The 3 blocks can be scheduled in any order.

The Block structure has a profound effect on the legality of individual schedules.
However, the only part of the flatten algorithm that needs to be changed to accommodate the block
structure is the Match function. The Match function outputs the optimal lega individua schedule;
thisimplementation's Match function does the same thing, but obeys the block structure. The
flattening process itsalf remains the same.

In (C2) we saw how to control the location ranks for each clerkship/time assignment, and
use instances of (A1) on certain location assignments. We do the same thing with the Match
procedure for the block structure, since the unique location restriction still does not apply. The
difference comes in performing the actual bipartite weighted matching, because the block structure
forces us to choose only certain sets of assignments.

In this implementation we use a brute force method, and bypass (A1) atogether, since the
constants are quite small. So, given one location assignment for each clerkship/time, wetry every
possible individual schedule among those that are legal. How many possibilities are there?

D1.2 The number of individual schedules that obey the block structure

*Let A,B,C represent the three clerkshipsin one of the three blocks, where A is of length 2, and B

and C are both of length 1.

*There are 4 possible clerkship configurations for this block, since A must come first or last:
ABC, ACB, BCA, CBA

*There are 3 blocks, so given the order of the blocks, there are 43 clerkship configurations.

sLet X,Y,Z represent the three blocks. There are 6 possible orders of the three blocks:
XYZ, XZY,YXZ,YZX,ZXY,ZYX

+S0, the number of possible legal schedules = 6(43) = 384.

L ooping through each possibility in the block structure would require 384 happiness
calculations. If wetried asimilar brute force method for 9 clerkships and 9 time slots without the
block structure, there we would need 9! = 362,880 happiness calculations. Even if we use
bipartite weighted matching, asin (A1), on 9 clerkships and 9 time dlots, the time needed is on the
order of (#vertices)(#edges) = 9(81) = 729.

We see from this analysis that to find an individual optimal schedule with the block
structure imposed, it is more work to use an instance of bipartite weighted matching than to use a
brute force method. So the Match function implemented in Clerk simply tries every possibility,
and returnsthe legal individual schedule with the highest total happiness.

D1.3 Dumping Students

Clerk also implements the strategy explained in C4.5 to dump students when they reach a
dead end. After the Flatten algorithm is complete, Clerk reschedul es the dumped students:

L oop through each dumped student n in an arbitrary order:
* Vi] find the location assignment | for which hpjj| is maximum, and cjj| - atjj| > 0.
*Call Match on those location assignments, asin zCZ)
Update values of atjj|.

22

23

D2 Performance

We can measure the performance of Clerk using the happiness of the output schedule, and
the upper bound U, from section (B1). Clerk outputs a schedule, A', and it also calculates the
total happiness of that schedule, H(A"). U iseasy to calculate, because the algorithm begins by
scheduling the students so that their happiness equals U. So, when Clerk stops running, it outputs
H(A) .

U

areport containing H(A"), U, and p, where p = ; p represents the happiness of the

schedule as afraction of the upper bound.

Thereis aclose relationship between p and T, where T is the tightness of the instance,
which we explore through experimentation with Clerk. Recall that the tightness of an instance, T,

PIPIEPIeT

isdefined as:. == KJEJK'SL (A5). T compares the number of available spots to the number

of spots needed. When T<1, there exist no legal schedules, since there are fewer spots available
than spots needed. When T > 1, there could be alegal schedule, but not necessarily, as proven in
(A5.2) and (A5.3).

We can design our test datato be similar to data that would appear in practice. Students
would be given afixed amount of points to distribute arbitrarily among different assignments,
indicating their preference for combinations of clerkship, time and location. We simulate thiswith
the following procedure:

For each student n,
L oop until the point total has reached the fixed allocation:
*Choose a random assignment (n,i,j,I).
*Place a random happiness value hpjj| on that assignment, and
increase the point total by hnjjl.

As an experimental tool to get acleaner value for T, we can fix the capacities of the spots:

If Vij.l, Gijl = CAP, where CAPisafixed value, T = 'JLf\ICJAP) _ 'L(CNAF’)_

24

Experiment D2.1: p asafunction of T, with constant |,J,L and fixed capacities.
*Hold I,Jand L constant.

*ViJ,l, cij| = fixed value CAP, as defined above.

*Run Clerk, changing the values of N and CAP for each trial.

Student Happiness as a Function of
the Tightness of the Instance

0.95
0.9
0.85

0.8
p 0.75

0.7

0.65

0.6

fig d2.1
We see from these data that p is afunction of the tightness of the schedule. We can also get
an idea of the values of p Clerk can produce. Even for scheduleswhere T = 1, Clerk usually

produces values for p around % and never lessthan % When T = 1.2, Clerk produces values

for p above .85.

The running time of Clerk depends greatly on the number of students:

Experiment D2.2: The running time as a function of N, with constant I,J,L, cijjl.
eHold I,J,L constant;

*Vijl, cijl = CAP, where CAPis a constant;

*Run Clerk, changing the value of N for each trial.

Running Time as a function of N

Running Time (Seconds)

Number of students, N

When N increases, more students need to be scheduled, and rescheduled, which increases
the running time. When all other input values remain constant, the tightness also increasesas N
increases, and this may also effect the running time. So, we should also look at the running time
when the tightness stays constant.

25

Experiment D2.2: The running time as a function of N, with constant |,J,L, and constant
tightnessT.

*Hold 1,J.L constant;

*Run Clerk, changing the value of N for each trial, while holding the tightness T constant,

where T = &NAP) by setting CAP = %

25 T

=12
J=8
L=2 H
20 A T=125 g B
) _ LT " H
S CAP= —
3 " ']
A 5T B &
= g o=
= | |
ERR . I -
=
@
; i
0 : : : :
0 50 100 150 200

Number of Students, N

We see from this graph that when T is held constant, the running time seemsto be alinear
function of N.

In practice, T indicates how many spots are available compared to how many are needed.
Thiswill probably remain a consistent value, since no student would be completely denied a
program, and hospitals are not going to offer many more opportunities than are needed. So, the
running time of Clerk can be easily predicted from the number of students to be scheduled.

We have shown above that Clerk produces values of p that are smaller for tighter
schedules. Isthis dueto alimitation of the algorithm, or isit due to the upper bound U being less
reliable for tighter instances? The upper bound U isindependent of thetightness T, sincethe
individua optimal schedulesignore the capacities. However, the true optimal schedule for all
students must certainly depend on T, since fewer spots are available per student. Thus we can

speculate that the smaller values of p are due to the fact that U is aless reliable measure of the true
optimal schedule for instanceswhen T is close to 1, and not due to alimitation of the algorithm.

Clerk performs very well for scheduling medical students; it giveslegal scheduleswith
high happiness valuesin areasonable time. The performance of Clerk suggests that the Flatten
algorithm would perform very well in practice.

26

Conclusion

Clerkship Scheduling is afour-dimensiona weighted scheduling problem. Students(N),
times(1), clerkships(J) and locations(L) make up these four dimensions. Different requirements are
imposed on each dimension to produce alegal schedule. It isinteresting to see how these
requirements differ, and how these dimensions depend on one another. A legal schedule must
schedule each student to each clerkship. So, alegal schedule must be completein (NxJ); every
member of (NxJ) must be covered exactly once. A legal schedule must not schedule any student to
more than onetime. So, alegal schedule must be uniquein (NxI); every member of (NxI) may be
covered at most once. Finally, alegal schedule must obey the capacity constraints. So, alegal
schedule has a capacity in (IxJXL); every member of (IxJxL) may be covered at most afixed
amount. These dimensional relationships make Clerkship Scheduling aproblem rich in
complexity. We have shown that Clerkship Scheduling can solve 3-Dimensional Matching, which
isan NP-hard problem.

Asamethod of approximation, the Flatten algorithm is a useful way to produce legal
schedules without enumerating every possibility. It begins by finding each student's individual
optimal schedule, thus obeying the requirement that a schedule be complete in (NxJ), and uniquein
(NxI). The flatten algorithm continues by changing the schedule to the point where it obeysthe
capacities of (IxJxL), while maintaining as high a happiness as possible. We have shown an
implementation of the Flatten algorithm that performs very well on test data. The Flatten algorihm
obeys all the restrictions of Clerkship scheduling, and still produces legal schedules with high
happiness values in a reasonable amount of time.

There are many open questions that we did not address. At DM, spots can have
minimums, and one of the clerkships also has prerequisites; that is, students must complete two
specific clerkships before going on this clerkship. In general, how would the complexity of
clerkship scheduling be affected by spot minimums and precedence constraints? If I, J, and L are
constant, isthere apolynomial time algorithm to solve the general problem? We discussed how we
may be able to predict whether or not there exists alegal schedule by the tightness of the schedule,
but in general, how can we determine if there exists alegal schedule from the input values? For the
Flatten algorithm, what isthe best way to reschedule dumped students? Additionaly, istherea
more rigorous analysis of the performance of the Flatten agorithm in terms of the true optimal ?

27

28

Notes

1) Theactua block system used at DMSis dightly different than the one implemented in Clerk;
Three blocks are used, but the third block only has two clerkships, both of size 2. To implement
this change, one would make afew simple modifications to the Match procedure. DM S medical
student scheduling also has specia cases for staggered schedules, where students take a clerkship
at the end of the third year.

Bibliography

[1] Garey, Michadl R. and David S. Johnson [1979], “ Computers and Intractability, a Guide to the
Theory of NP-Completeness’, W.H. Freeman and co., New Y ork.

[2] Lawler, E. L.[1976], “Combinatorial Optimization: Networks and Matroids,” Holt, Rinehart
and Winston, New Y ork.

[3] Pinedo, Michael [1995], "Scheduling: Theory, Algorithms, and Systems,” Prentice Hall,
Englewood Cliffs, New Jersey.

[4] Stroustrup, Bjarne [1991], "The C++ Programming Language,” AT&T Bell Laboritories,
Murray Hill, New Jersey. Addison-Wesley, New Y ork.

