Allerton, 2003

Jon Feldman
jonfeld@ieor.columbia.edu
Columbia University

David Karger
karger@theory.lcs.mit.edu
MIT

Martin Wainwright
wainwrig@eecs.berkeley.edu
UC Berkeley

- Linear Programming (LP):
 - Finding a solution to a set of linear inequalities that optimizes a linear objective function.
- Integer Linear Programming (ILP):
 - LP where variables constrained to be integers.
- LP Relaxation:
 - Using an LP to find a good (approximate) solution to an ILP.
- LP Decoding:
 - LP relaxation for the Maximum-Likelihood (ML) decoding problem.

- Previous work on specific code families/constructions:
 - Turbo codes [FK, FOCS '02] [EH, A '03] [F '03].
 - LDPC codes [FKW, CISS '03] [F '03].
 - New iterative algs. [FKW, Allerton '02] [F '03].
- This paper: general treatment of LP decoding, for any binary code, memoryless channel (BSC, AWGN).
 - *Proper* polytope (ML certificate).
 - LP pseudocodeword.
 - Fractional Distance.
 - Symmetric polytope (linear codes).

Maximum-Likelihood (ML) Decoding

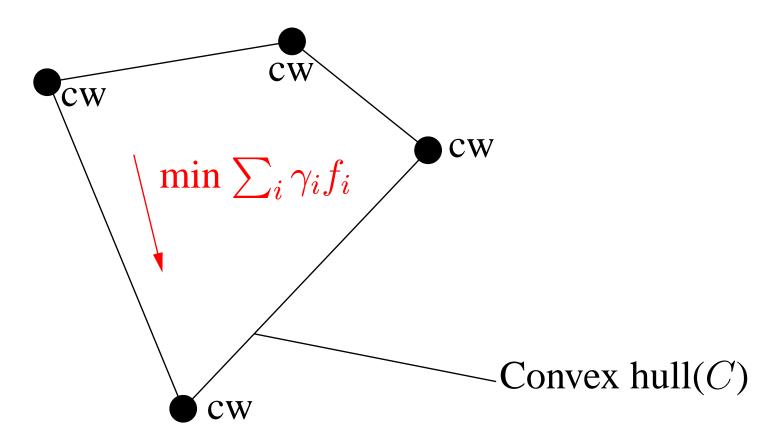
• Log-likelihood ratio (LLR) γ_i of y_i as a cost function:

$$\gamma_i = \ln \left(\frac{\Pr[\hat{y}_i \mid y_i = 0]}{\Pr[\hat{y}_i \mid y_i = 1]} \right)$$

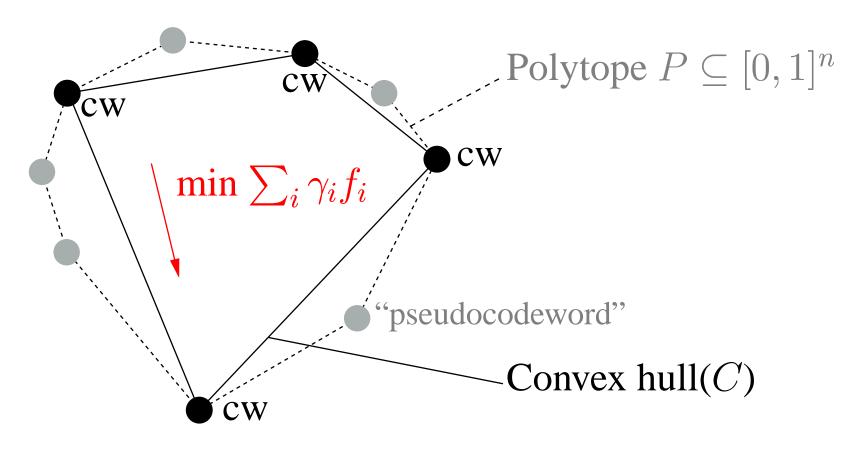
- $-\gamma_i > 0 \implies y_i$ more likely 0
- $-\gamma_i < 0 \implies y_i$ more likely 1
- For any binary-input memoryless channel:

ML DECODING: Given LLRs
$$\{\gamma_i, \dots, \gamma_n\}$$
, find $y \in C$ such that $\sum_i \gamma_i y_i$ is minimized.

Maximum-Likelihood (ML) Decoding

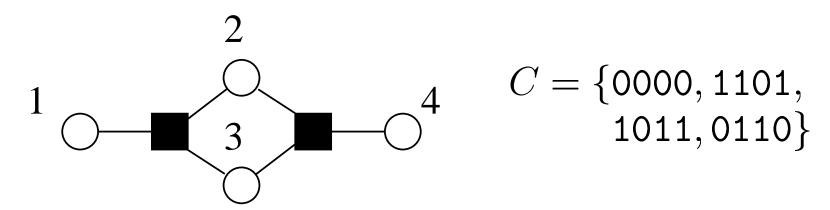


- $CH(C) = convex hull of codewords; CH(C) \subseteq [0, 1]^n$.
- ML Decoding: Minimize $\sum_{i} \gamma_{i} f_{i}$ s.t. $f \in CH(C)$.
- Problem: CH(C) is too complex (not poly-size).



- "Proper" relaxation polytope $P: P \cap \{0,1\}^n = C$.
- Alg: Solve LP. If f^* integral, output f^* , else "error."
- *ML certificate* property

LP Decoder Example



• Define polytope P on variables $\{f_1, f_2, f_3, f_4\}$:

$$f_1 \le f_2 + f_3 \qquad f_2 \le f_3 + f_4 \qquad 0 \le f_1 \le 1$$

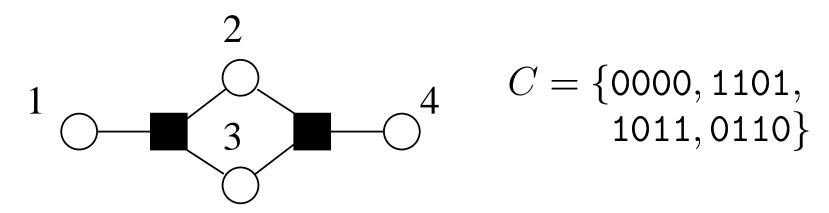
$$f_2 \le f_1 + f_3 \qquad f_3 \le f_2 + f_4 \qquad 0 \le f_2 \le 1$$

$$f_3 \le f_1 + f_2 \qquad f_4 \le f_2 + f_3 \qquad 0 \le f_3 \le 1$$

$$f_1 + f_2 + f_3 \le 2 \qquad f_2 + f_3 + f_4 \le 2 \qquad 0 \le f_4 \le 1$$

• Is P proper (does $P \cap \{0,1\}^n = C$)?

LP Decoder Example



Polytope:

$$f_1 \le f_2 + f_3 \qquad f_2 \le f_3 + f_4 \qquad 0 \le f_1 \le 1$$

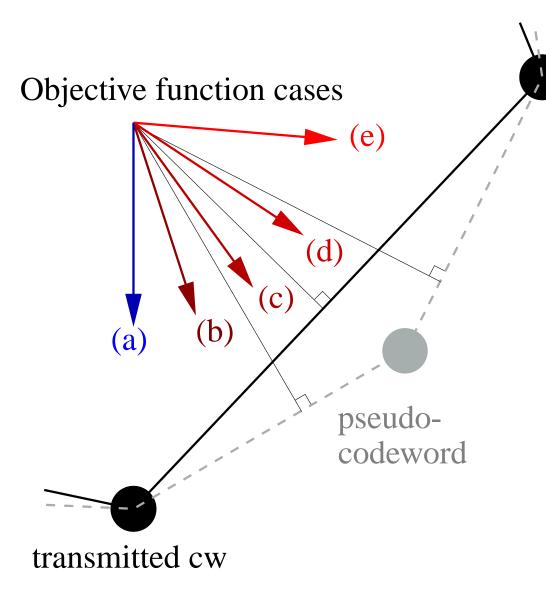
$$f_2 \le f_1 + f_3 \qquad f_3 \le f_2 + f_4 \qquad 0 \le f_2 \le 1$$

$$f_3 \le f_1 + f_2 \qquad f_4 \le f_2 + f_3 \qquad 0 \le f_3 \le 1$$

$$f_1 + f_2 + f_3 \le 2 \qquad f_2 + f_3 + f_4 \le 2 \qquad 0 \le f_4 \le 1$$

• Vertices: $\{0000, 1101, 1011, 0110, 1\frac{1}{2}\frac{1}{2}0, 0\frac{1}{2}\frac{1}{2}1\}$

LP Decoding Success Conditions



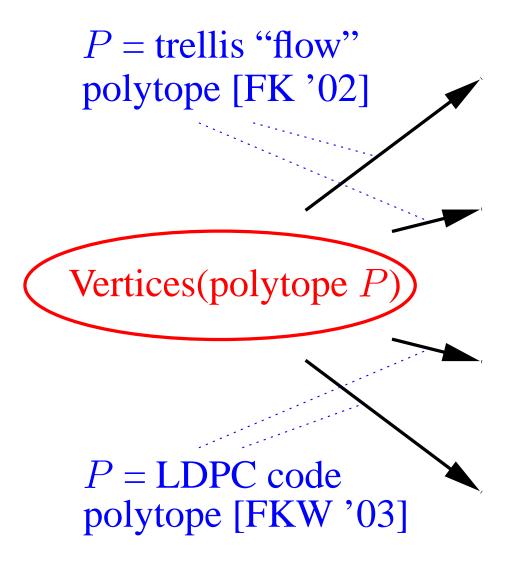
some other cw

- (a) No noise
- (b) Both succeed
- (c) ML succeed, LP fail
- (d) Both fail, detected
- (e) Both fail, undetected

LP Pseudocodewords

- In general, pseudocodewords are the set of possible results of a sub-optimal decoder:
 - PCWs ⊃ codewords;
 - Algorithm finds min-cost PCW;
 - WER = Pr[transmitted cw = min-cost PCW].
- Example: It. decoding in the BEC [Di et. al, '02].
 - PCWs = "stopping sets" ⊃ codewords;
 - Iterative decoding finds min-cost stopping set.
- LP Decoding:
 - PCWs = polytope vertices ⊃ codewords
 - LP Decoder find min-cost polytope vertex.

Unifying Other Known PCWs



Tail-biting trellis PCWs [FKMT '01]

Rate-1/2 RA code promenades [EH '03]

BEC stopping sets [DPRTU '02]

PCWs of graph covers [KV '03]

Using PCWs for Performance Bounds

• Turbo code polytope [FK '02, F '03]:

Theorem: In {BSC, AWGN}, for any $\alpha > 0$, if $\{p, \sigma^2\} < f(\alpha)$, then WER $\leq n^{-\alpha}$.

- Bounds improved by [EH, Allerton '03].
- LDPC code polytope [FKW, CISS '03]: For any graph G with girth g, left-degree $\geq d_{\ell}$:

Theorem: LP decoding corrects $(d_{\ell}-1)^{\lceil g/4\rceil-1}$ errors (adversarial).

- With log-girth, can correct $\Omega(n^{1-\epsilon})$ errors.

Fractional Distance

- Another way to define (classical) distance d:
 - $d = \min l_1$ dist. between two integral vertices of P.
- Fractional distance:
 - $d_{frac} = \min l_1$ distance between an integral vertex and any other vertex of P.
 - Lower bound on classical distance: $d_{frac} \leq d$.

Theorem: In the binary symmetric channel, LP decoders can correct up to $\lceil d_{frac}/2 \rceil - 1$ errors.

• Linear codes: Given facets of P, fractional distance can be computed efficiently.

Symmetric Polytopes for Linear Codes

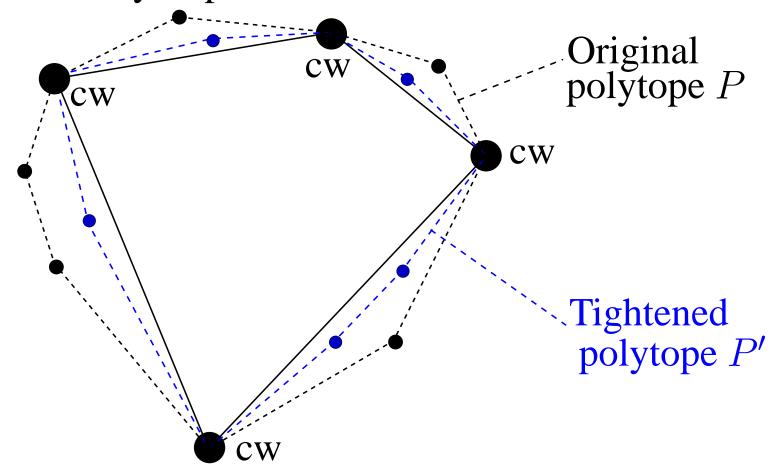
- ML decoding:
 - If C is linear, may assume 0^n is transmitted.
 - Simplifies analysis, notation.
 - Min-distance = min-weight.
- Same assumption can be made for iterative algorithms, since pseudocodewords obey "symmetry."
- LP Decoding:

Definition: Polytope P is C-symmetric if, for all $f \in P$ and $y \in C$, we have $f^{[y]} \in P$ (where $f_i^{[y]} = |y_i - f_i|$).

Theorem: If polytope P is proper and C-symmetric, then WER of LP decoder using P is independent of the transmitted codeword.

Tightening the Relaxation

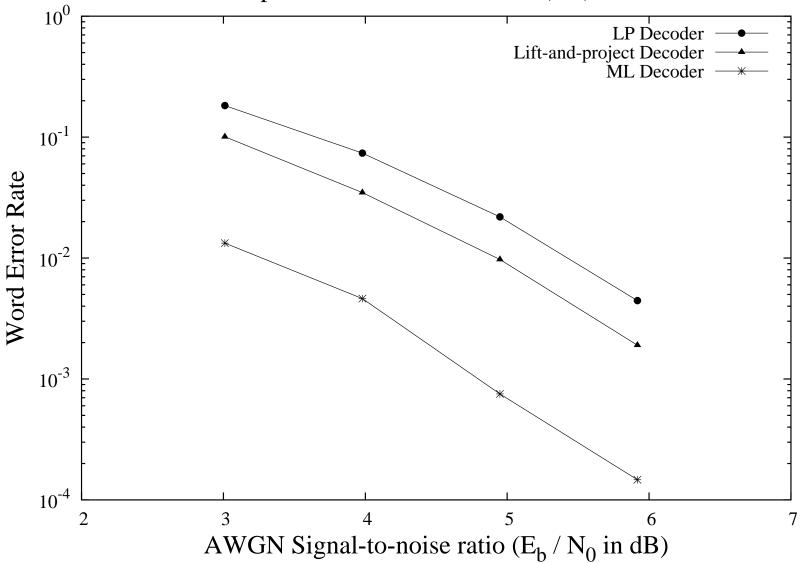
• If constraints are added to the polytope, the decoder can only improve.



Generic tightening techniques [LS '91] [SA '90].

Using Lift-And-Project

WER Comparison: Random Rate-1/4 (3,4) LDPC Code



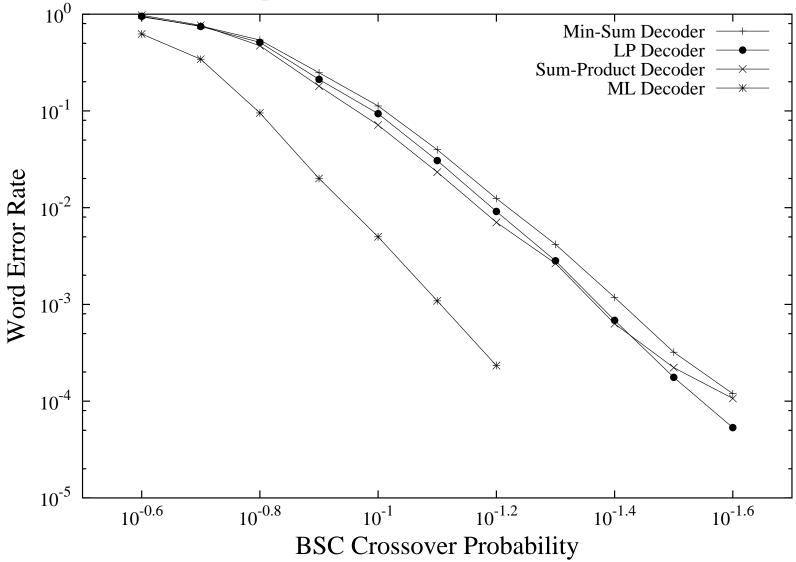
• Length 36, left degree 3, right degree 4.

Future Work

- New PCW-based performance bounds for turbo/LDPC polytopes?
 - Better turbo codes (rate-1/3 RA);
 - Other LDPC codes.
- New (better?) polytopes for turbo/LDPC codes?
- Using "lifting" procedures (generic, specialized) to tighten relaxation?
- Deeper connections to "sum-product" (belief-prop)?
- Improved running time over simplex/ellipsoid algorithm?
- LP decoding of new code families, channel models?

Performance Comparison

WER Comparison: Random Rate-1/4 (3,4) LDPC Code



• Length 60, left degree 3, right degree 4.