
Using Many Machines to Handle an Enormous
Error-Correcting Code

Jon Feldman

Google, Inc.
1440 Broadway, 21st Floor.

New York, NY, 10025
jonfeld@google.com

Abstract— We investigate the problem of using many machines
to represent, encode and decode an error-correcting code with an
extremely large block length. Standard algorithms for encoding
and decoding run into problems when scaled to a block length
that does not allow random access to the data. We apply the
massive computing infrastructure at Google together with the
MapReduce programming abstraction to encode and decode a
Tornado code over the erasure channel.

I. INTRODUCTION

New advances in error-correcting codes are making it possi-
ble to achieve nearly optimal tradeoffs between rate and error-
correcting performance, with simple and efficient encoding
and decoding algorithms. For example, Tornado codes [1] offer
essentially optimal performance in the erasure channel, with
linear-time encoding and decoding algorithms. Guruswami and
Indyk [2] give a class of linear-time encodable and decodable
near-MDS codes over channels with errors. Turbo codes [3]
are practical codes that operate over noisy channels, and
achieve superb performance with very simple encoding and
decoding schemes.

When these schemes are scaled up to extremely large block
lengths, however, new challenges arise. Suppose we had a
very large data file—say a terabyte (

�����
bytes)—that we need

to store on some faulty medium. We would like to encode
this file using an error-correcting code without breaking it up
into pieces, thus taking advantage of its large size for better
error-correcting performance. At this size, it is impossible
even to write down a generator matrix, let alone use it for
encoding. Thus an LDPC code [4] or a Reed-Solomon code [5]
is basically out of the question. Even linear-time schemes
like Tornado codes suffer the problem of needing fast random
access to information or code bits, which at this size is quite
inefficient; indeed a data file of this size cannot fit into the
memory (or even the disk) of a commodity machine by today’s
standards.

For extremely large block lengths, we need encoding and
decoding algorithms that use only a few “passes” over the
data, and preferably each pass can be performed in parallel
using multiple machines. Such large-scale operations require a
computing framework that can handle massively parallel algo-
rithms, dealing with issues like fault-tolerance, task scheduling
and inter-machine communication.

Google’s computing infrastructure, coupled with their im-
plementation of the MapReduce programming model [6] pro-
vides such framework. In this preliminary report, we explore
the application of this infrastructure to the problem of encod-
ing and decoding a very large Tornado code. We give some
background on both Tornado codes and MapReduce, then go
into detail about how encoding and decoding are performed.
Our experimental work is ongoing, and will be summarized
in a subsequent report.

II. BACKGROUND

A. MapReduce

MapReduce is a powerful programming abstraction for per-
forming operations over large data sets[6]. The user provides
a map function and a reduce function; the map function pro-
cesses the input, producing a set of (key, value) pairs that are
passed to the reduce function grouped by key. These functions
are executed in parallel (as appropriate) over the large data set,
hiding details like load-balancing, fault-tolerance, and inter-
process communication. The implementation of MapReduce
at Google can routinely handle many terabytes of data at
one time, running over thousands of commodity machines.
The simple interface allows the user to define new processes
efficiently, and automates all the complexities of parallelization
and scaling that arise when handling large amounts of data
over many machines.

For the purposes of running a MapReduce, we regard our
input data file as a set of records. The user-defined map
function takes as input one of these records, and outputs a set
of (key, value) pairs. (The form and purpose of these pairs is
up to the user.) The user-defined reduce function takes as input
a key � and set � of values, and produces arbitrary output.
When the user executes the MapReduce, the map function
is executed on every record, producing a large set of these
(key, value) pairs (repeats are allowed). For each key � that is
output by the map phase, all the values from pairs with key �
are gathered into a set � (this is handled automatically by the
MapReduce library), and the reduce function is run on ( � , � ),
producing whatever output the user defines. For more details
on how these phases are implemented over multiple machines,
we refer the reader to [6].



This simple abstraction is capable of some very powerful
operations on large data sets. For example, suppose we had
a set of web pages, and we would like to build an index of
reverse-links; that is, we would like to be able to quickly look
up which web pages point to a particular web page. For this
task, we write the map function to take as input the contents
and address of a web page. When processing page � , for each
link to a page � it encounters, the map function emits the
pair ( � , � ). The MapReduce library will then pass pairs of
the form ( � , � ) to the reduce function, where � is the set of
all pages that point to page � . The reduce function can then
simply output this pair (or perhaps process it somehow for
faster lookup).

B. Tornado Codes

A Tornado code [1] is defined by a set of � bipartite graphs�����	�
�
�
����
, where � is some small constant.1 Each graph

���
has � � “message” nodes, and � � “check” nodes. We enforce
that the number of message nodes in each graph is equal to
the number of check nodes of the previous graph; that is,� ��� � ����� for all ������� � . For a message node � , let� � �"! be the neighborhood set of � ; similarly let

�#�%$ ! be the
neighborhood set of a check node

$
.

To encode a binary information word & of length � � , we
place a message bit on each of the � � message nodes of

� �
.

Each check node in
� �

computes a “check bit” by adding
together (mod 2) all the message bits in its neighborhood.
These � � � �(' check bits are passed on the next graph

� ' ,
which uses them to compute its �)' check bits in the same
manner. This continues for all � “layers,” and the overall
(systematic) code is the concatenation of the original � �
message bits, as well as the * � � � check bits computed by
the graphs.

The decoding algorithm processes the graphs in the reverse
order, first trying to compute the missing message bits of

�+�
using the (possibly incomplete) � � check bits of

��
. It then

tries to compute the missing message bits of
� �,���

using the
(again, possibly incomplete) � �,�(� � � � bits computed by the
previous layer, and so on until the first layer

� �
is reached.

Thus, the basic decoding task is to compute as many missing
message bits as possible of a graph

� �
using a set of available

check bits of
� �

.
This basic decoding task is accomplished via the following

simple algorithm, as given in [1]: “Given the value of a check
bit and all but one of the message bits on which it depends,
set the missing message bit to be the xor of the check bit and
its known message bits.” This algorithm is applied repeatedly
until no check bits satisfy this condition.

The key component of Tornado codes is how the graphs
�-�

are chosen. If they are chosen randomly according to a good
degree distribution, then they can approach the capacity of
the erasure channel. Specifically, each graph has an associated
pair

�/. � ��0 � ! where
. � ��0 �21�324

, and 5 is the maximum degree

1Here we do not have a final block code on the last encoding layer, as is
the case with the “theoretical” Tornado codes in [1]. The codes we use are
more in line with the “practical” codes defined in [1], Section V.

of the graph
��

. The value
. �6 represents the probability that

a message node in
� �

has degree
$
, and

0 �6 is the same for
check nodes. In [1] they give both theoretical results proving
that there exist degree distributions that approach capacity,
as well as useful techniques for constructing good degree
distributions in practice. In this report, we simply treat the
degree distributions as given.

To actually choose the random graph with � � message nodes
and � � check nodes, we first apply the degree distribution to
both sides of the graph, creating the right number of “edge
slots” on each node. Then, a random permutation is chosen to
match the edge slots on the two sides of the graph.2

III. HANDLING AN ENORMOUS TORNADO CODE

Code Construction and Representation. To make the code
truly scalable, we should not necessarily expect to have
random access to the representation of the code. So, we need
to think about how to represent the code compactly, while
preserving the global structure that gives it its error-correcting
ability.

In the case of Tornado Codes, we need to be able to rep-
resent the bipartite graphs that separate the different layers of
the code. Both the encoding and decoding processes will need
to perform neighborhood queries in this graph. Specifically,
given an index � of a node, we need to have fast access to
the indices of the nodes in

�#�%$ ! . Based only on the degree
distribution and the index � , we can easily calculate the degree
of the given node � , as well as the indices of the “edge slots”
associated with that node. Additionally, given the index of an
“edge slot” on the opposite side of the graph, we can derive the
index of the node to which it is connected. Thus, we need only
have quick access to the permutation, as well as the inverse
of the permutation, chosen for this graph.

Specifically, we would like a truly random permutation 798: � �
�	�
�;� �=<?>@ : � �
�
�	�;� �A< where
�

is the number of edges in
the graph. In practice, we pick a pseudo-random permutation
given by an access oracle, that can, for any index � , quickly
find 7 � �"! and 7

��� � �"! . Ideally, the oracle should be fast and
memory efficient. There is tight connection between pseudo-
random permutations and private-key block cryptosystems [7].
A block cipher with block size � is essentially a permutation
mapping � -bit strings (messages) to � -bit strings (ciphertext).
Using a standard block cipher such as DES [8] with block
size � � BDCFEHG ' ��I should yield a good random-looking
permutation.

We assume that our unencoded information & is broken up
into equal-sized chunks & � , and that each one is tagged with its
index � . These chunks are consistent with the way the Google
File System [9] stores data. Using chunks rather than bits also
ensures a minimal overhead in carrying around the index � .
For the purposes of encoding and decoding, we can think
of each chunk as a logical “bit,” since the only operations
we will perform on the chunks will be to xor two of them

2This may create multiedges, but these can be thrown out without a
problem [1].



together. Thus for the remainder of the section, when we refer
to message and check bits, we are implicitly referring to larger
chunks of data.

Encoding. Encoding a Tornado code requires � executions
of a MapReduce, where � is the number of graphs in the
code. Typically the first graph

� �
is significantly larger than

the others, so the encoding time will typically be dominated
by a single MapReduce over the original data file. The total
number of map and reduce operations on a single graph

�-�
is

proportional to the number of edges in
���

.
Specifically, for each layer

� �
of the Tornado code in order,

we run a MapReduce on the � � message bits of
��

in order
to compute the � � check bits. The map function takes one
tagged message bit

� � � & � ! as input, and outputs the pair
�F$ � & � !

for each
$ 1 � � � ! . The reduce function runs on a pair of the

form
�%$ � : & � < � ����� 6�� ! : it computes the xor of all the bits in� �%$ ! , and outputs a pair

�%$ ��� 6 ! , where
� 6 �
	 � ����� 6�� & � .

These pairs are then used as the input message bits to the
next layer of the Tornado code.3

Decoding. As in conventional decoding of Tornado codes, we
decode one layer at a time, from

� �
to
� �

. For each layer, we
attempt to reconstruct as many of the missing message bits as
possible using the known check bits.

Whereas encoding required only one MapReduce per layer,
decoding requires multiple MapReduces per layer. Each
MapReduce pass represents a single decoding iteration, where
all check nodes are tested for the condition that their neigh-
borhood is missing only one message bit (and if so, that bit
is computed).

Our decoder (detailed below) will maintain a set � of
newly-discovered message bits, as well as a set � of partially-
known check bit neighborhoods. We initialize � as the set of
known message bits, and � as the set of known check bits.
Each MapReduce will run a map phase on � that essentially
mimics the encoding process, and then a reduce phase on both
� and the output of the map phase in order to discover new
values of message bits. These newly discovered bits are then
set as the new set � , and the process is repeated.

————————

Initialization: Let  be the set of initially known information
bits, and � be the set of initially known check bits. Set � �: � � � & � ! < � ��� , and set � � : �%$ � � �%$ ! ��� 6 ! < 6 ��� .
Repeat until � ��� :
1) Run the map function on � : For each

� � � & � !
1
� , output�%$ � � � � & � ! ! for all

$ 1 � � � ! .
2) Run the reduce function on the output of the map function
joined with � . Thus, the reduce function will run on the
partially-computed check bits as well as the new message bits
computed in the previous iteration.

3Note that the reduce operation is associative and commutative with respect
to the data portion of its output. This property enables a significant savings
of time, using the Combiner operation of MapReduce [6].

More formally, fix a particular check bit
$
. Let � be the

set of values
� � � & � ! output by the map function with key

$
,

and let ��� �#�%$ ! be the set of indices � present in � . The
inputs to the reduce function for check bit

$
are
�F$ � ��! from

the map function and
�%$ ��� ��� 6 ! from � , where

� � � �F$ ! , and� 6 � 	 � ��� & � .
Note that the algorithm maintains the invariant � � � .

Note also that
�

and
� 6 may be missing if they were not

present in � (i.e., the check
$

was not known initially).
The reduce function has three cases:
� If
�

and
� 6 are missing, or if � ��� : Do nothing.� If � ��� � �"! �

: Set
�$#6 ��� 6"% � 	 � ��& & � ! , set

�'# ����� � ,
and output

�%$ �(� # ��� #6 ! into � # .� If � �)� � � � � : Let * be the index of the message bit in�+� � . Set &-, �.� 6/% � 	 � ��& & � ! , and output
� * � &0, ! into

� # .
3) Remove duplicates from � # , and store it as decoded data.
Set � � � # and � � � # .

————————

Upon completion of this procedure, the known message bits
are contained in the original set � of bits recovered from the
channel, as well as the message bits � # that we recovered
during the execution of the algorithm.

IV. CONCLUSION

We have briefly summarized the application of the Google
computing infrastructure to the problem of representing, en-
coding and decoding a large Tornado code over the erasure
channel, using many machines. Our experiments are ongoing,
and will be given in a subsequent report. It would be interest-
ing to see if other types of error-correcting codes like Turbo
codes could also be scaled to large block lengths using these
sorts of techniques.

The author acknowledges Martin Pál for helpful discussions.

REFERENCES

[1] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, “Efficient
erasure correcting codes,” IEEE Trans. on Information Theory, pp. 569–
584, February 2001.

[2] V. Guruswami and P. Indyk, “Near-optimal linear time codes for unique
decoding and new list decodable codes over smaller alphabets,” in Proc.
Symposium on the Theory of Computation (STOC), 2002.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-
correcting coding and decoding: turbo-codes,” Proc. IEEE International
Conf. on Comm. (ICC), pp. 1064–1070, May 1993.

[4] R. Gallager, “Low-density parity-check codes,” IRE Trans. Inform. The-
ory, vol. IT-8, pp. 21–28, Jan. 1962.

[5] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting
Codes. North-Holland, 1981.

[6] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in Proc. of the Sixth Symposium on Operating System
Design and Implementation (OSDI), San Francisco, CA, December 2004.

[7] M. Luby and C. Rackoff, “Pseudo-random permutation generators and
cryptographic composition,” in Proc. Symposium on the Theory of Com-
putation (STOC), 1986.

[8] “DES, the digital encryption standard. See:
en.wikipedia.org/wiki/Data Encryption Standard.”

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
in Proc. 19th ACM Symposium on Operating Systems Principles, Lake
George, NY, October 2003.


