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Abstract

We study the problem of using a multicast network code to transmit information securely in the pres-
ence of a “wire-tap” adversary who can eavesdrop on a bounded number of network edges. We establish
a close connection between secure linear network coding and a new variant of the secret sharing problem,
which we callfiltered secret sharing. Using this connection, we establish new trade-offs between security,
capacity, and bandwidth of secure linear network coding schemes. Our positive results show that by giving
up a small amount of capacity, it is possible to dramatically reduce the bandwidth requirements of secure
linear network coding. Our negative results show that within the framework we consider, unless capacity
is relaxed, the bandwidth requirements can be prohibitively high.

1 Introduction

Networks that carry information are now ubiquitous, and so the problem of using them efficiently is critical.
One of the most exciting new ideas of the last few years in the theoretical study of information networks is
network coding. This line of research (e.g., [20, 14, 22, 23, 12], see also [21]), introduced by Ahlswedeet
al. [1], differs from traditional work on routing in networks in the following way. A packet sent through a
network consists of routing information and data. Traditionally, routers manipulate the routing information,
and just pass along the data. In network coding, we allow the routers to manipulate the data, i.e. we allow the
network to do computation on the data. It has been shown [1, 23, 14] that by doing so, we can increase the
effective capacity of the network. Network coding has been suggested as a practical tool for use in content
distribution networks over the Internet [13, 24], as well as for wireless networks [7, 29].

In a traditional multicast situation with a single source and multiple destinations, the amount of informa-
tion that can be transmitted from the sources to a particular destinationti is equal to the minimum cutκi

between the source and destination. If we allow coding at the routers, we obtain the surprising result that
we cansimultaneouslytransmitn = mini κi symbols of information toeverydestination [23]. Furthermore,
given a network, we can construct such a network code in polynomial time [18]. In contrast, there are simple
examples of networks in which this is not possible with traditional routing [15].

As any user of the Internet is painfully aware, it is imperative to consider security issues in any network
scenario. To that end, several researchers have considered security issues in network coding. The problem
of making a linear network code secure was first studied by Cai & Yeung [5], who considered a “wire-tap”
adversary that can look at a bounded number of network edges. Jain [19] also considers this model, and
gives more precise security conditions in certain cases. Hoet al. [16] consider the related problem of network
coding in the presence of aByzantine attackerwho can modify data sent from a node in the network.
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†J. Feldman was supported by an NSF Postdoctoral Research Fellowship DMS-0303407.
‡T. Malkin was partially supported by NSF Early Career Development (CAREER) Grant CCF-0347839.
§R. Servedio was partially supported by NSF Early Career Development (CAREER) Grant CCF-0347282.
¶C. Stein was partially supported by NSF Grant DMI-9970063.



In this paper we study secure multicast network coding against a wire-tap adversary where perfect (information-
theoretic) security is required. We abstract away the network topology and reduce the problem of information-
theoretically secure linear network coding to a new variant of secret sharing, which we callfiltered secret
sharingand believe to be of independent interest. Informally, while in classical threshold secret sharing se-
curity is maintained against an adversary who receives at mostk of the n shares, in filtered secret sharing
the adversary receives at mostk among a set ofN ≥ n fixed linear combinations of alln shares. In other
words, the shares of the secret are passed through some fixedn-by-N linear filter, and thenk out ofN of these
combinations are given to the adversary. This filtered secret sharing problem is investigated using techniques
from secret sharing and from classical coding theory.

1.1 Motivation For Our Work Making a system secure always comes at a cost. For example, if one uses
cryptography, one pays a cost in computation time. In network coding, the cost is that less information can
be transmitted in each time step. More precisely we will study trade-offs betweensecurity, bandwidth and
capacityin linear multicast network coding schemes. We will later define each of these terms more precisely,
but give an informal definition here.Securityis characterized by how many edges an adversary can observe
without obtaining any information about the message in the network. Information is transmitted as elements
of a finite fieldFq. The logarithm of the field size is the edgebandwidth, or how much information (in bits)
needs to travel through an edge in one step. In many applications, an edge will have a physical upper limit
on bandwidth; this will force us to make the bandwidth of our code small. For security, random symbols
will be transmitted along with the information symbols; we measure thecapacityof the network code as the
number of information symbols transmitted in each step. The overall goal is to operate at a capacity close
to the minimum cut valuen = mini κi and be secure against an adversary who can view many edges, under
possibly limited edge bandwidth.

Cai & Yeung [5] considered one particular setting of security, bandwidth and capacity. Specifically, ifn
is the minimum cut value in the underlying network ofN edges, andk < n is the bound on the number of
edges available to the adversary, they demonstrate the existence of a scheme with capacityn − k as long as
the edge bandwidth is greater thanlog

(
N
k

)
. This result has two main drawbacks: (i) the construction of the

scheme takes
(
N
k

)
steps, and (ii) the bandwidth requirement is prohibitive for largek. Note that in the absence

of security considerations the bandwidth requirement is at most the logarithm of the number of terminals in
the network, and hence is at mostlog N [23, 18].

1.2 Our Results We exhibit new trade-offs between security, bandwidth and capacity of secure linear net-
work coding schemes. We give positive results on achievable parameters that are more powerful than those
previously known. We also give new negative results showing that filtered secret sharing is unsolvable in
certain cases.

We first show that by giving up a little bit of capacity (namely, sendingn−Θ(k) symbols instead ofn−k),
we can efficiently construct a scheme that is secure with high probability, where the required bandwidth is
only Θ(log N), independent ofk. This bound is superior to the bound oflog

(
N
k

)
in most cases, and allows

a trade-off between capacity and field size. For very largek = Θ(N), our bandwidth requirement becomes
Θ(1), independent of bothN andk.

Our negative result gives further support to our approach of giving up capacity in order to achieve security
with a small bandwidth. We show that if one insists upon sendingn−k message symbols, then there are cases
where the bandwidth must be almost as large asΘ(

√
k log N). (We give more precise statements of both our

positive and negative results later in the paper.)

1.3 TechniquesAs mentioned above, we reduce the secure network coding problem to a variant of secret
sharing, which we call filtered secret sharing. We then show that filtered secret sharing is actually equivalent
to a certain generalized (classical) code construction problem. More precisely, we study the problem of
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designing a code that has large distance from a given code. Within this framework, we derive positive results
using methods similar to those used in a proof of the Gilbert-Varshamov bound (see [17]), and negative results
using a bound [9] on the covering radius [8] that linear codes can achieve.

Our method for constructing a secure network code has a nice feature that makes it more useful when the
network code is fixed (in hardware, say). If we are given a network and a network code, we can make this
code securewithout changing the network code, but only by applying a linear transformation to the input. Our
ability to do this follows from a linear algebraic approach to network coding which actually abstracts away
the network topology, along the lines of [20].

1.4 Organization of the paper Section 3 describes filtered secret sharing. Our main positive and negative
results on filtered secret sharing are given in Section 3.3. Section 4 introduces the network coding model,
exhibits a reduction from secure network coding to filtered secret sharing, and states our main positive and
negative results for secure network coding (these results follow immediately from the results of Section 3.3
using the reduction).

In Sections 5 through 8 we prove the results of Section 3.3. Section 5 gives basic results on filtered
secret sharing, and a characterization of linear solutions. In Section 6, we prove that filtered secret sharing is
equivalent to a generalized (error-correcting) code construction problem. Finally, in Sections 7 and 8, we give
our positive and negative results, respectively.

2 Preliminaries

2.1 Notation Throughout the paper all vectorsv are row vectors unless otherwise indicated, and we write
vT to denote the corresponding column vector. Ifv is ann-dimensional row vector andw is anm-dimensional
row vector we write(v, w) to denote the(n+m)-dimensional row vector obtained by concatenatingv andw.
We use[n] to denote the set{1, . . . , n}. Givenx ∈ FN

q , theball of radiusd aroundx is the set of all vectors
in FN

q which differ fromx in at mostd coordinates. We writeVolq(d, N) to denote the number of vectors in
this ball.

2.2 Information-theoretic security against ak-threshold adversary We define a general “threshold” se-
curity condition that we use for both secret-sharing and secure network coding. Suppose we have some
information source that produces arbitraryx ∈ Ft

q. Let f(x, r) be a functionf : Ft
q × F`

q → FN
q , where we

think of the inputr ∈ F`
q as random. ForI ⊆ [N ], we writefI(x, r) ∈ F|I|

q to denote the vectorf(x, r)
restricted to the indices inI.

For I ⊆ [N ], we say thatf is secure againstI if for all x, x′ ∈ Ft
q, we have that the random variables

fI(x, r) andfI(x′, r) are identically distributed (here the randomness in each case is over the uniform choice
of r from F`

q). We say thatf is secure against ak-threshold adversaryif f is secure againstI for all I ⊆ [N ]
with |I| ≤ k. In other words, for any adversary who has access to at mostk indices off(x, r), the view of the
adversary is independent of the informationx.

3 Filtered Secret Sharing

3.1 Secret SharingInformally, a secret sharing scheme allows a dealer to share a secret ton parties, such
that any set of at leastl parties can reconstruct the secret from their shares, but any adversary controlling at
mostk parties cannot gain any information about the secret from their shares.1 The vast majority of studied
schemes arelinear, namely the secret is viewed as an element in a finite field, and the shares are constructed
by applying a linear transformation to the secret and some random field elements. The main measure of
efficiency for secret sharing schemes is the total size of the shares, though computational efficiency of the

1While more general access structures are possible, we focus here on the most commonly studied threshold secret sharing case.

3



secret generation and reconstruction is also often required.
Secret sharing schemes were first introduced in [3, 25], who gave linear schemes withl = k + 1. Secret

sharing schemes for anyk < l ≤ n are introduced in [4], who call themramp schemes, and consider longer
secrets consisting ofl − k (rather than one) field elements.

Of particular interest to us is the case ofl = n, namely alln shares allow reconstruction of the secret, but
any set of up tok shares give no information about the secret. We focus on this case when introducing the
generalized notion of filtered secret sharing below, since this is the case needed for our secure network coding
application. Filtered secret sharing can be similarly defined for the more general case.

Since their introduction, secret sharing schemes were extensively studied, and found a variety of appli-
cations, e.g., for general secure computation [2, 6, 10]. We refer the reader to [26, 27, 28] for surveys and
further references.

3.2 Filtered Secret SharingWe introduce the following generalization of the basic secret-sharing problem
described above. Here the adversary gets her shares through some fixed linear “filter;” i.e., instead of having
access to at mostk shares, she receives at mostk among a fixed set ofN > n linear combinationsof all n
shares.

Definition 1 Filtered Secret Sharing.The input consists of a prime powerq, a number of sharesn, a “filter”
lengthN ≥ n, ann-by-N full-rank filter matrixV over elements inFq and a thresholdk < n. The problem
is to find a number̀, an “information length”t ≤ n, and a functionS : Ft

q ×F`
q → Fn

q such that the function
S(x, r)V (which is Ft

q × F`
q → FN

q ) is information-theoretically secure against ak-threshold adversary.
Moreover, for any giveny = S(x, r), the informationx must be uniquely and efficiently recoverable fromy.

Note that classical threshold secret sharing as described in Section 3.1 is the special case where the filterV is
then-by-n identity matrix.

In solutions to filtered secret sharing it is desirable for the information lengtht to be large. It is straight-
forward to show that no solution(t, `, S) exists to filtered secret sharing unlesst ≤ n− k (see Appendix A).
Cai and Yeung [5] implicitly show that a solution always exists witht = n− k, as long asq >

(
N
k

)
.

3.3 Our Results on Filtered Secret SharingOur main results about filtered secret sharing are the following
two theorems. (As will be clear later, we actually achieve more general results; here we highlight particular
cases of interest.)

Our first theorem shows that by reducing the information length (compared tot = n− k), it is possible to
solve the filtered secret sharing problem with a much smaller field size requirement:

Theorem 1 Let (q, n,N, V, k) be an arbitrary instance of filtered secret sharing as in Definition 1. Ift ≤
n − σk with σ > 1 andq = NΩ( 1

σ−1
), then there exists a poly(N )-time randomized algorithm that outputs

(with high probability) a solution(`, t, S) with ` = σk and a linear functionS : Ft
q × F`

q → Fn
q .

A more precise characterization of our bound onq can be found in the discussion of Section 7.1. We

also note that for the casek = Θ(N), the bound onq above can be replaced byq = 2Ω( 1
σ−1

), a constant
independent ofN .

Our second theorem shows that if we insist on the information lengtht being as large asn− k, then for a
wide range of parameters filtered secret sharing is not possible with a linear functionS unless the field sizeq
is very large:

Theorem 2 For all sufficiently largeN and all constants0 < ξ < 1, there exist valuesk, n with k = Θ(nξ),
k < n ≤ N , such that for anyq ≤ NO(

√
k/ log k), there is ann-by-N full rank filter matrixV overFq such

that the filtered secret sharing instance(q, n,N, V, k) has no solution(`, t, S) with t = n− k andS linear.
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4 Network Coding

4.1 The Network Coding Model An instance of themulticast network codingproblem consists of a di-
rected acyclic graphG = (VG, EG), a source nodesG, a setTG of sink nodes, a message lengthn, and a
field Fq. The edges ofG are used to transmit information through the graph; each edge carries one element of
Fq per time step. (Timing issues within the network are not considered in this model; the information travels
across the entire network in one “time step.”) Thebandwidthof an edge islog q, i.e., the number of bits
carried by the edge in each time step.

A solution to the multicast network coding problem is a scheme whereby an arbitrary message vector
m ∈ Fn

q , which originates at the source nodesG, is communicated over this network so that each sink can
recover the entire vectorm. More precisely, a solution consists of a collection of|EG| many functionsf(u,v),
one for each edge(u, v) in EG, with the following properties: (i) For each edge(u, v) the symbol transmitted
over(u, v) is the value off(u,v) applied to the symbols that are available at nodeu. If u is the source, the entire
message vectorm is available; otherwise the symbols transmitted on edges(w, u) into nodeu are available.
(ii) For each sink nodev in TG there must be some functionfv which, if applied to the symbols received at
nodev, yields the original messagem.

In a linear network code, each of the functions described above is a linear function. Thus a linear solution
to the network coding problem is given by a list of vectors(v[e])e∈EG

describing which linear combination of
the originaln messages is transmitted on each edge (the symbolv[e] ·m is carried on edgee). Condition (i)
above implies that for all edges(u, v), whereu 6= sG, the symbolv[u, v] ·m may be computed as a linear
combination of the symbolsv[w, u] ·m carried on edges(w, u) into nodeu.

It is now well-known that given an instance of the multicast linear network coding problem withq ≥ |TG|,
a solution exists if and only if the minimum cut between the source and each sink is of size at leastn [1, 23];
moreover, efficient algorithms are known for constructing feasible solutions [18].

4.2 Security Against a Wire-Tap Adversary. A computationally unbounded “wire-tap” adversary against
a network code has access to the symbols which are transmitted over some unknown set of at mostk edges
of the network. Additionally, the adversary has full knowledge of the network code itself and of whatever
protocol we use for security. We would like to transmit some informationx ∈ Ft

q, wheret ≤ n, over the
network in a way that is information-theoretically secure against this adversary.

Our approach (introduced by Cai & Yeung [5]) is to use multicast linear network coding as described
above, where we choose a random vectorr ∈ F`

q at the source nodesG, and let the messagem be some
function of r and the informationx. Then, a formal security requirement can be defined as follows. If we
regard the length-|EG| sequence of symbols carried over all the edges in the network as being the output of a
functionf(x, r) : Ft

q × F`
q → FN

q of the informationx and the randomr chosen at the source, we would like
this function to be secure against ak-threshold adversary.

Note that we have weakened our goal of sendingn symbols to sendingt ≤ n symbols for the purposes of
achieving security. Thecapacityof the secure network code ist, the dimension of the information vectorx.
Our main goal in this work is to balance the capacityt against the adversarial thresholdk, and the required
edge bandwidthlog q.

4.3 From Filtered Secret Sharing to Secure Network CodingWe can reduce the problem of constructing
a secure linear network code with min-cutn, capacityt, field sizeq and thresholdk to the filtered secret
sharing problem, as follows.2 Given an instance(G = (V,E), sG, TG, n, q) of the multicast linear network
coding problem, we first solve the original network coding problem (ignoring the security condition; i.e.,

2This reduction is implicit in the work of Cai & Yeung [5], although they do not explicitly give a secret sharing abstraction. They
also suggest altering the network code itself by applying a linear transformation to the coding vectors, rather than the input as we
suggest here. The two methods can be shown to be equivalent.
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k = 0) using the known polynomial-time algorithm. Now letN = |E|, and letV be ann-by-N matrix where
the columns ofV are the vectors(vT [e])e∈E from the solution to the network coding problem. Solve the
filtered secret sharing problem onV (using the parametersn, q, k) to obtain a functionS : Ft

q × F`
q → Fn

q .
Use this function to encode(x, r) at the source, wherex ∈ Ft

q is the information, andr ∈ F`
q is chosen

randomly. Clearly this will satisfy thek-threshold security condition on the network code, by the guaranteed
properties ofS. For feasibility, note that the vectorsv[e] entering each terminal spanFn

q , by the feasibility of
the original network code. Hence, each terminal can solve a system of equations to obtainS(x, r), and use
the recoverability condition onS to obtainx.

We note that this reduction also has the advantage of being able to make an existing network code secure:
if a network code has already been built (in hardware, say), then one can make it secure (at the expense of
some capacity, of course) by sendingS(x, r) through the network instead ofx.

4.4 Our Main Secure Network Coding ResultsCombining the reduction from Section 4.3 with the results
of Section 3.3 gives our main results on secure network coding.

The following positive result, which follows from Theorem 1, shows that we can achieve very low band-
width in secure network coding at the expense of a small loss of capacity:

Theorem 3 Let G be a graph withN edges, a source nodesG, and a setTG of sink nodes such that the
minimum-cut between the source and any sink is at leastn. Let k be a threshold wherek < n. Then for

anyσ > 1, as long as the desired bandwidthlog q satisfiesq ≥ max{NΩ( 1
σ−1

), |TG|}, there exists a feasible
linear network coding scheme with capacityt = n − σk and bandwidthlog q which is secure against ak-
threshold wire-tap adversary. (And there is a randomizedpoly(N)-time algorithm that, given (G,sG,TG,k),
outputs such a scheme with high probability.)

This result enables us to trade off a capacity ofn − σk against a field size requirement ofNΩ( 1
σ−1

). (The
requirementq ≥ |TG|, which also exists in Cai & Yeung [5], comes from the algorithm to construct the
network code [18].) Note thatσ need not be close to 1; for example takingσ = 3 allows a field size as low as
(roughly)

√
N at a capacity ofn− 3k.

For a negative result, if we consider Theorem 2, we see that there are instances of filtered secret sharing

whent = n− k andq ≤ NO(
√

k/ log k) that have no linear solutions. This implies that if we demand capacity

t = n−k with field sizeq ≤ NO(
√

k/ log k), then we cannot achieve security with this method. It is reasonable
to conjecture in such a case that either there is no secure solution, or we need to take network topology into
consideration to construct our secure code from scratch (rather than alter a given network code), perhaps using
methods along the lines of Jain [19].

5 Necessary and Sufficient Conditions for Filtered Secret Sharing

The remainder of the paper is devoted to proving Theorems 1 and 2. In this section we derive necessary
and sufficient independence conditions for linear functionsS(x, r) to be secure solutions to the filtered secret
sharing problem. One direction (sufficiency) of the main theorem in this section (Theorem 6) is implicit
in work of Cai & Yeung [5]. We offer a simpler presentation, a small generalization, and a proof that the
condition given is also necessary. The proofs of the theorems in this section can be found in Appendix B.

We assume that we are solving an instance(q, n,N, V, k) of filtered secret sharing where in the solution
(`, t, S), the functionS : Ft

q ×F`
q → Fn

q must be linear. SinceS is linear we can write it asS(x, r) = (x, r)T
with T a(t+`)-by-n matrix, so we use the notation(`, t, T ) to refer to a linear filtered secret sharing solution.

Lemma 4 Without loss of generality, the rows ofT are linearly independent.

This lemma also implies that wlog, we have` ≤ n− t. In fact by the following we may assume` = n− t:
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Lemma 5 If there is a solution(`, t, T ) with ` < n− t, then there is a solution with̀= n− t.

We henceforth assumeT is an invertiblen-by-n matrix. LettingM=T−1, the main theorem of this section is:

Theorem 6 The functionS(x, r) = (x, r)T = (x, r)M−1 gives a secure solution(`, t = n − `, S) to the
filtered secret sharing problem(q, n,N, V, k) if and only if any set consisting of

(a) at mostk linearly independent columns ofV , and
(b) any number of vectors from the firstn− ` columns ofM

is linearly independent.

5.1 The Existence of a Secure Matrix.We say that a matrixM which meets the conditions of Theorem 6
is secure. Implicit in the work of Cai & Yeung [5] is a proof that a secure matrixM exists with` = k, as long
as the field sizeq satisfiesq >

(|EG|
k

)
. In the application to network coding, having an alphabet of this size

may well be a prohibitive bandwidth requirement for certain networks. Moreover, the algorithm they give in
their proof for finding a secure matrixM takes at least

(|EG|
k

)
time steps.

6 Equivalence to a Coding Problem

In this section we show that finding a secure matrixM meeting the independence conditions of Theorem 6
is equivalent to finding a linear error-correcting code with certain generalized distance properties. Roughly
speaking, the code we are looking for must have all its codewords far away from any word in a linear subspace
defined by the matrixV . In Sections 7 and 8 we will use this equivalence to establish upper and lower bounds
on the field size required to find secure solutions to filtered secret sharing.

6.1 Preliminaries. In an instance of filtered secret sharing, then-by-N matrix V is presumed to be full
rank. LetA be an(N −n)×N generator matrix for the null space ofV . (Equivalently,A is the parity-check
matrix if V is regarded as a generator for a code.)

We will henceforth use the notationM to mean the firstn − ` columns of the invertible square matrix
“M ” in Theorem 6. With this new notation, a matrixM is secure3 iff

MxT + V wT 6= 0 for all x ∈ Fn−`
q , w ∈ FN

q s.t.x 6= 0, |w| ≤ k. (1)

We define a notion of “distance” between two matrices that is (roughly) the minimum distance between
two vectors in the span of their rows. More precisely, for anα× n matrixP and aβ × n matrixQ, we define

δ(P,Q) ≡ min
x∈Fα

q ,y∈Fβ
q ,y 6=0

∆(xP, yQ),

where∆ is the Hamming distance. Note the slight asymmetry in the treatment ofP andQ, namely thatx can
be0α but y cannot be0β ; this makes the minimum distance of the code generated byQ an upper bound on
δ(P,Q).

6.2 Main Theorem. Now we present our main theorem relating the above notion of distance to the existence
of a secure matrixM :

Theorem 7 There exists a securen× (n− `) matrixM if and only if there exists an(t = n− `)×N matrix
B with δ(A,B) > k, whereA is the generator matrix for the null space ofV .

3Since the security of “M ” (as in Theorem 6) depends only on its firstn− ` columns, we may extend a matrixM from (1) to be
square and invertible using an arbitrary extension ofM to a basis, as suggested in [5].
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Proof: Suppose there is somen − ` × N matrix B with δ(A,B) > k. Let M = V BT . Note thatB must
have rankn− `, since otherwise it could not haveδ(A,B) > 0.

Becauseδ(A,B) > k, andA generates the null space ofV , we have that∆(yT , BT xT ) > k for all
x ∈ Fn−`

q , x 6= 0 andy : V yT = 0. Therefore,V (BT xT + wT ) 6= 0 for all x ∈ Fn−`
q , x 6= 0 andw ∈ FN

q

where|w| ≤ k. This impliesV BT xT + V wT = MxT + V wT 6= 0 for all suchx,w, which are exactly the
security conditions in (1).

For the other direction, if we suppose there is a secureM , we constructB as follows. For each column
Mi of M , let theith column ofBT be an arbitrary member of the coset{y ∈ FN

q : V y = Mi}. Note that we
again haveM = V BT .

SinceM is secure, we haveMx + V w 6= 0 for all x 6= 0, |w| ≤ k (from (1)), and soV (BT x + w) 6= 0
for all suchx,w. Thus for ally : V y = 0, andx 6= 0, we have∆(BT x, y) > k. This impliesδ(A,B) > k.

6.3 A Generalized Coding Problem.Having proved Theorem 7, we now turn to the following problem:

Span Distance Problem:Given anα-by-N matrix A with rankα, whose entries
belong toFq, find aβ-by-N matrixB overFq such thatδ(A,B) > k.

We can regard this question as a generalization of the classical code construction problem: if{xB}
x∈Fβ

q

is regarded as a code, then every non-zero codeword must have good distance not only from the all-zeros
codeword, but also from every other word generated byA.

In the following sections, we consider the span distance problem abstractly. When we apply this problem
to Theorem 7, we haveα = N − n andβ = n − `. Settingσ ≥ 1 such that̀ = σk, we are now interested
in the case of the span distance problem wherek = N−α−β

σ . In the application to network coding, the value
k(σ− 1) measures the amount of capacity we are willing to give up in order to reduce the field size necessary
to achieve security.

7 A Positive Result: giving up information length to save on field size

The main theorem in this section gives a bound on the probability that a random code will solve the relevant
case of the span distance problem:

Theorem 8 LetA be an arbitraryα-by-N matrix with rankα overFq, and letB be a randomβ-by-N matrix
overFq. Letk, σ be such thatk = N−α−β

σ , whereσ ≥ 1. Then we haveδ(A,B) > k with probability at least
1− PBAD, wherePBAD = q−σkVolq(k, N).

Proof: The argument follows along the same lines as the classical argument that random linear codes meet the
Gilbert-Varshamov bound (see [17]). LetBAD be the set of words inFN

q with distance at mostk from some
linear combination of the rows ofA. Using the bound|BAD| ≤ qαVolq(k, N), we have that for a particular

x1 ∈ Fβ
q , the probability (over choices ofB) thatx1B ∈ BAD is at mostq

αVolq(k,N)
qN . Applying a union bound

overx1 ∈ Fβ
q , we have the probability of somex1B being inBAD is at mostPBAD ≤ qα+β−NVolq(k, N) =

q−σkVolq(k, N).

7.1 Applying Theorem 8. Here we show that Theorem 8 allows us to use fields of quite modest size and
still achieve a good probability bound in Theorem 8. It is easy to see thatVolq(k, N) =

∑k
i=0(q − 1)i

(
N
i

)
.

We consider two different ranges of values fork (these arek = o(N) andk = Θ(N)) and use different upper
bounds onVolq(k,N) in these two cases. We use the following facts in the bounds.
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Fact 9 [17] For any q ≥ 2, if 0 < k < (1− 1/q)N , then

(a) the largest term in the sum
∑k

i=0(q − 1)i
(
N
i

)
is thei = k term,

(b) log Volq(k,N)
log q = (Hq(k/N)± o(1))N, whereHq(δ) = δ logq(q − 1)− δ logq δ − (1− δ) logq(1− δ).

We first consider the casek = o(N). In this case, from Fact 9(a), it follows thatVolq(k, N) ≤ (k +

1)qkNk, and so we have that the probability1 − PBAD is positive as long asq > (k + 1)
1

(σ−1)k · N
1

σ−1 .
To obtain a high probability result such asPBAD < N−c for some constantc > 0, it suffices to takeq >

(k + 1)
1

(σ−1)k ·N
1+c/k
σ−1 . This establishes Theorem 1.

Our lower bounds onq are easily seen to be much less restrictive than theq >
(
N
k

)
lower bound of Cai

& Yeung, at the cost of only a small loss in capacity (number of information symbols we can transmit). As
one example, if we takeσ = 2 then we achieve capacityn− 2k (as opposed to Cai & Yeung’sn− k), but we
require only that the field sizeq be (roughly) at leastN1+c/k which is close toN for moderatek and small
constantc. (Of course, even smaller lower bounds onq can be achieved by takingσ > 2.) Thus, ifk satisfies
bothk = ω(1) andk = o(N), we lose only a(1− o(1)) factor in capacity while obtaining a superpolynomial
savings in field size.

We now consider the casek = Θ(N), and show that here we can achieve even more dramatic savings in
field size. Takingk = δN whereδ = Θ(1) is some constant and plugging Fact 9(b) into Theorem 8, we have
thatPBAD ≤ q−σδNqN(Hq(δ)+o(1)). It is easy to see that in general,Hq(δ) < δ + 1

log q , and thus (b) above

implies thatPBAD < q(−δ(σ−1)/2+o(1))N provided thatδ(σ− 1)/2 > 1/ log q, i.e.q > 22/(δ(σ−1)). Sinceδ is

a fixed constant independent ofN, the field size lower bound is2Ω( 1
σ−1

) which is independent ofN .

8 A Negative Result: Maximum information length can require large field size

The main result in this section is the following theorem:

Theorem 10 Letα = N − log N
log q −

log Volq(k,N)
log q + 2 log N + log q + log ln q. If α, β satisfy

k + β < N − α =
log N

log q
+

log Volq(k, N)
log q

− 2 log N − log q − log ln q (2)

then there is anα×N matrixA overFq such that there is noβ×N matrixB overFq for whichδ(A,B) > k.

In words, this theorem says that for certain values ofα andβ, if q is too small then there exists anα×N
matrix A over Fq for which the span distance problem cannot be solved if we takek = N − α − β. This
translates into the existence of instances of filtered secret sharing that are unsolvable with linear functionsS.
In the network coding application, takingk = N − α− β corresponds to takingσ = 1; this means that if we
do not give up some capacity then there does not exist a secure matrixM unless the field sizeq is quite large.

8.1 Establishing Theorem 10: using a code with good covering radius.To establish Theorem 10, we
need to find a full-rankα-by-N matrix A which is such that for all full-rankβ-by-N matricesB, there is a
pointx1B, x1 6= 0 and a pointx2A where∆(x1B, x2A) ≤ k = N − α− β.

For the caseβ = 1, this is exactly a question of constructing a codeA with smallcovering radius. The
covering radius [8] of a code is the minimum valued such that the union of the spheres of radiusd around
the points in the code cover the entire spaceFn

q . SupposeA had covering radius of at mostN − α − β.
Then, no matter whatB is (B is a single vector, sinceβ = 1), it has distance at mostN − α − β to some
point x2A. Now supposeA has covering radiusd > N − α − β. Then there is some vectorB where
∆(B, x2A) > N − α − β for all x2. Moreover, any scalar multiple ofB will also have distance at least
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d from anyx2A (to see this, note that if∆(aB, x2A) < d, then∆((1/a)aB, (1/a)(x2A)) < d, and so
∆(B, ((1/a)x2)A) < d, a contradiction).

Thus forβ = 1, a construction ofA with covering radius of at mostN −α−β is necessary and sufficient
for a negative result. Additionally, forβ > 1, showing that there exists anα × N matrix A with covering
radius at mostN − α− β is sufficient for a negative result.

Cohen and Frankl [9] gave upper bounds on the covering radius of linear codes overFq. Their analysis
can be used to obtain the following result4, which then implies Theorem 10:

Theorem 11 For any value1 ≤ d ≤ N, there is aD-dimensional linear code overFq with block lengthN
(i.e. a vector subspace ofFN

q ) which has covering radius at mostd, where

D ≡ N − log N

log q
− log Volq(d, N)

log q
+ 2 log N + log q + log ln q.

8.2 Applying Theorem 10. We give one example here of how Theorem 10 can be applied, and this example
establishes Theorem 2. Other interesting examples are possible, but we omit them for space reasons.

Let τ be any constant satisfying0 < τ < 1/2. Let c = N τ , let k = γc2 log N (we will specifyγ shortly)
and letq = N c. By Fact 9(a), we can get a fairly good lower bound onVolq(k, N) just by considering the

last term of the sum. We haveVolq(k, N) ≥ (q− 1)k
(
N
k

)
≥ (q/2)k

(
N
k

)k
. We thus have thatlog Volq(k,N)

log q ≥
k+ −1+k log N−k log k

log q . Plugging the above parameter settings fork andq into Equation (2) (but not substituting
in yet for c), we have that Equation (2) is satisfied if

γc2 log N + β <
1
c

+ γc2 log N +
−1 + γc2 log2 N − γc2 log N log(γc2 log N)

c log N

−2 log N − c log N − log(c lnN).

This inequality is equivalent to

β <
1
c
− 1

c log N
+ γc log N − γc log(γc2 log N)− (c + 2) log N − log(c lnN).

Now sincec = N τ , it can be verified that takingγ = 2
1−2τ (a fixed constant since0 < τ < 1/2 is a fixed

constant) makes the right-hand side of this last inequality at least(c−3) log N (for sufficiently largeN ), soβ
can be any value smaller than this bound. This example shows that for a wide range of values ofk the lower
bound on field size required for secure linear filtered secret sharing, if no capacity is given up, can be as large
asNΩ(

√
k/ log k). It is interesting to contrast this lower bound with the upper bound of

(
N
k

)
of Cai & Yeung.

9 Future Work

Several interesting directions for future research suggest themselves. Are there other application areas where
the notion of filtered secret sharing will be useful? Are there other variants of secret sharing besides filtered
secret sharing which are useful for secure network coding?

Within the arena of network coding, there are many promising avenues for future work. The results
of Jain [19] are obtained by exploiting the topology of the network in question, while our techniques are
independent of the topology. Can stronger results be obtained by combining the two approaches? Another
natural question is whether network codes for information transmission problems other than multicast can
be made secure using our techniques. Finally, it is also of interest to consider secure network coding in a
framework where only statistical security or security against computationally bounded adversaries is required,
as opposed to the information-theoretic security criterion of this paper.

4The expression forD in Theorem 11 is slightly different from the result stated in [9]. Their analysis implicitly assumes thatq is
independent ofN , but this need not hold for us. We give a complete derivation of Theorem 11 in the full version of the paper.
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[16] T. Ho, B. Leong, R. Koetter, M. Ḿedard, M. Effros, and D. R. Karger. Byzantine modification de-
tection in multicast networks using randomized network coding. InIEEE International Symposium on
Information Theory (ISIT 2004), June 2004.

[17] W. C. Huffman and V. Pless.Fundamentals of Error Correcting Codes. Cambridge University Press,
2003.

[18] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and L. Tolhuizen. Polynomial time
algorithms for multicast network code construction. Submitted to IEEE Transactions on Information
Theory, July 2003.

[19] K. Jain. Security based on network topology against the wiretapping attack.IEEE Wireless Communi-
cations, pages 68–71, February 2004.
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Appendix

A A lower bound on information length

Theorem 12 Any instance of filtered secret sharing requirest ≤ n− k.

Proof: (Sketch) By the fact that the filter matrixV is full rank, there must be a full-rankn-by-n submatrixV ′

of V . Let V ′′ be a submatrix ofk columns fromV ′, and suppose the adversary has access toa = S(x, r)V ′′.
The set of vectorsA = {y ∈ Fn

q : yV ′′ = a} that could have been the secret vectorS(x, r) has cardinality
exactlyqn−k, sinceV ′′ has full rank.

By recoverability, we have some functionI : Fn
q → Ft

q that maps secret vectorsS(x, r) ∈ Fn
q to informa-

tion vectorsx ∈ Ft
q. For this functionS to be secure against the adversary just described, it must be the case

that for allx ∈ Ft
q, we haveI(y) = x for somey ∈ A. It follows thatqt ≤ qn−k, since|A| = qn−k.

B Proofs for Section 5

Lemma 4Without loss of generality, the rows ofT are linearly independent.

Proof: If T has a set of linearly dependent rows that includes a row among the firstt, then (x, r)M =
(x′, r′)M for somer, r′, x, x′ s.t. x 6= x′. This violates the unique recoverability condition onS. Otherwise,
if T has a set of linearly dependent rows all of which are among the last`, then removing one of those rows
and setting̀ ′ := `− 1 does not change the distribution ofS(x, r) over randomr for anyx.

Lemma 5 If there is a solution(`, t, T ) with ` < n− t, then there is a solution with̀= n− t.

Proof: Take the solution(`, t, xT ) (wlog, T has l.i. rows) and addn − ` − t l.i. rows to the end ofT to
obtain an invertible square matrixT ′. Setting`′ = n− t, we have a new solution that still satisfies the security
condition. For recoverability, note that sinceT ′ is invertible, the full vector(x, r) can be obtained from a
given vector(x, r)T ′.

Theorem 6 The functionS(x, r) = (x, r)T = (x, r)M−1 gives a secure solution(`, t = n − `, S) to the
filtered secret sharing problem(q, n,N, V, k) if and only if any set consisting of

(a) at mostk linearly independent columns ofV , and
(b) any number of vectors from the firstn− ` columns ofM

is linearly independent.

Proof: We first show that the encoding is secure if the independence condition is met. Suppose that the
adversary has access toSI(x, r), whereI ⊆ [N ] is arbitrary andk′ = |I| ≤ k. Let V be an-by-k′ submatrix
of V consisting of the columns indexed byI. We may assume thatV has rankk′, since otherwise the adversary
could drop an index and not lose any information. Note that what the adversary sees is the length-k′ vector
a = SI(x, r) = (x, r)M−1V .

For a particular “guess” at the information̂x, and the observed vectora, let R(x̂,a) be the set of all
possible random vectorŝr such thata = SI(x̂, r̂). It is easily shown that the functionS is secure if for all
x′, x′′ ∈ Fn−`

q , we have|R(x′,a)| = |R(x′′,a)|.
Given an information vector̂x ∈ Ft=n−`

q , the setR(x̂,a) has one member for every solution to the system

of n− ` + k′ equations inn unknowns described bŷyV
′ = (x̂,a), whereŷ ∈ Fn

q is unknown, andV
′
is the

n by (n − ` + k′) coefficient matrixV
′ =

[
In−`

0

∣∣∣∣ M−1V

]
. Now suppose thatV

′
has full rank; then, for
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all (a, x̂) pairs on the right hand side, the system of equations has exactly the same number of solutions. It
follows thatR(x′,a) = R(x′′,a) for all distinct information vectorsx′, x′′, and thus the encoding is secure.

To prove thatV
′

has full rank, we consider the matrixMV
′

(recall thatM has full rank by definition).
This matrixMV

′
has its firstn − ` columns matching the firstn − ` columns ofM , and the lastk columns

are the matrixMM−1V = V . Thus, if the conditions onM in the theorem hold, the matrixMV
′

has full
rank for all possible choices ofV , and thus the encoding is secure.

For the other direction, suppose the independence condition is not met. This means that there is some
nontrivial linear combination of some l.i. set of atk′ ≤ k columns ofV that equals some nontrivial linear
combination of the firstt = n − ` (l.i.) columns ofM . If we defineV as the submatrix consisting of those
k′ columns, andV

′
in terms ofV andM as above, then this is equivalent to saying thatMV

′
is not full rank,

and thusV
′
is not full rank, sinceM is full rank by assumption. We may conclude thatV

′(z1, z2)T = 0 for
somez1 ∈ Fn−`

q , z2 ∈ Fk′
q . Also, we know thatz1 6= 0 andz2 6= 0 by looking at the structure ofV

′
(using

the fact thatIn−`, V andM are all full rank). So, we have

[
In−`

0

]
zT
1 + M−1V zT

2 = 0.

Fix some information vectorx ∈ Fn−`
q and random vectorr ∈ F`

q. Let a = (x, r)M−1V be the vector of
observed symbols on the edgesI. Sincea is the result of a possible choice ofr, we have thatR(x,a) > 0.

Note thata · z2 = (x, r)M−1V zT
2 = −(x, r)

[
In−`

0

]
zT
1 = −x · z1. In fact, the relationa · z2 = −x · z1 holds

for any pair of possible information vectorsx and observed vectorsa which satisfyR(x,a) > 0.
Let x′ = x + ei wherei is an index such that(z1)i 6= 0. Thus we have thatx′ · z1 6= x · z1 = −a · z2.

We conclude thata is not a possible observed vector forx′, and thusR(x′,a) = 0. We have demonstrated an
a, x, x′ whereR(x,a) 6= R(x′, a). This implies that the distributions givenx andx′ are different, and so the
functionS is not secure.
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