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Abstract

We study the problem of using a multicast network code to transmit information securely in the pres-
ence of a “wire-tap” adversary who can eavesdrop on a bounded number of network edges. We establish
a close connection between secure linear network coding and a new variant of the secret sharing problem,
which we callfiltered secret sharingUsing this connection, we establish new trade-offs between security,
capacity, and bandwidth of secure linear network coding schemes. Our positive results show that by giving
up a small amount of capacity, it is possible to dramatically reduce the bandwidth requirements of secure
linear network coding. Our negative results show that within the framework we consider, unless capacity
is relaxed, the bandwidth requirements can be prohibitively high.

1 Introduction

Networks that carry information are now ubiquitous, and so the problem of using them efficiently is critical.
One of the most exciting new ideas of the last few years in the theoretical study of information networks is
network coding This line of research (e.g., [20, 14, 22, 23, 12], see also [21]), introduced by Ahlsatede

al. [1], differs from traditional work on routing in networks in the following way. A packet sent through a
network consists of routing information and data. Traditionally, routers manipulate the routing information,
and just pass along the data. In network coding, we allow the routers to manipulate the data, i.e. we allow the
network to do computation on the data. It has been shown [1, 23, 14] that by doing so, we can increase the
effective capacity of the network. Network coding has been suggested as a practical tool for use in content
distribution networks over the Internet [13, 24], as well as for wireless networks [7, 29].

In a traditional multicast situation with a single source and multiple destinations, the amount of informa-
tion that can be transmitted from the soukct a particular destinatioty is equal to the minimum cut;
between the source and destination. If we allow coding at the routers, we obtain the surprising result that
we cansimultaneouslyransmitn. = min; x; symbols of information t@verydestination [23]. Furthermore,
given a network, we can construct such a network code in polynomial time [18]. In contrast, there are simple
examples of networks in which this is not possible with traditional routing [15].

As any user of the Internet is painfully aware, it is imperative to consider security issues in any network
scenario. To that end, several researchers have considered security issues in network coding. The problem
of making a linear network code secure was first studied by Cai & Yeung [5], who considered a “wire-tap”
adversary that can look at a bounded number of network edges. Jain [19] also considers this model, and
gives more precise security conditions in certain case<ttdb [16] consider the related problem of network
coding in the presence ofByzantine attackewho can modify data sent from a node in the network.

*A preliminary version of this work [11] appeared as an invited presentation at Allerton 2004.
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In this paper we study secure multicast network coding against a wire-tap adversary where perfect (information-

theoretic) security is required. We abstract away the network topology and reduce the problem of information-
theoretically secure linear network coding to a new variant of secret sharing, which witeedt secret
sharingand believe to be of independent interest. Informally, while in classical threshold secret sharing se-
curity is maintained against an adversary who receives at lmo$the n shares, in filtered secret sharing

the adversary receives at masamong a set ofV > n fixed linear combinations of alt shares In other

words, the shares of the secret are passed through someflxedv linear filter, and thett out of V of these
combinations are given to the adversary. This filtered secret sharing problem is investigated using techniques
from secret sharing and from classical coding theory.

1.1 Motivation For Our Work Making a system secure always comes at a cost. For example, if one uses
cryptography, one pays a cost in computation time. In network coding, the cost is that less information can
be transmitted in each time step. More precisely we will study trade-offs betsesmity, bandwidth and
capacityin linear multicast network coding schemes. We will later define each of these terms more precisely,
but give an informal definition hereSecurityis characterized by how many edges an adversary can observe
without obtaining any information about the message in the network. Information is transmitted as elements
of a finite fieldF,. The logarithm of the field size is the edgandwidth or how much information (in bits)
needs to travel through an edge in one step. In many applications, an edge will have a physical upper limit
on bandwidth; this will force us to make the bandwidth of our code small. For security, random symbols
will be transmitted along with the information symbols; we measure#pacityof the network code as the
number of information symbols transmitted in each step. The overall goal is to operate at a capacity close
to the minimum cut value = min; x; and be secure against an adversary who can view many edges, under
possibly limited edge bandwidth.

Cai & Yeung [5] considered one particular setting of security, bandwidth and capacity. Specifically, if
is the minimum cut value in the underlying network 8fedges, and < n is the bound on the number of
edges available to the adversary, they demonstrate the existence of a scheme with aapdcag long as
the edge bandwidth is greater thiag (],:f) This result has two main drawbacks: (i) the construction of the
scheme takeé,j) steps, and (ii) the bandwidth requirement is prohibitive for ldgrgBsote that in the absence
of security considerations the bandwidth requirement is at most the logarithm of the number of terminals in
the network, and hence is at mosg NV [23, 18].

1.2 Our Results We exhibit new trade-offs between security, bandwidth and capacity of secure linear net-
work coding schemes. We give positive results on achievable parameters that are more powerful than those
previously known. We also give new negative results showing that filtered secret sharing is unsolvable in
certain cases.

We first show that by giving up a little bit of capacity (namely, sendirgo (k) symbols instead of — k),
we can efficiently construct a scheme that is secure with high probability, where the required bandwidth is
only O(log N), independent ok. This bound is superior to the boundlof (],Z) in most cases, and allows
a trade-off between capacity and field size. For very ldrge ©(NV), our bandwidth requirement becomes
©(1), independent of bothV andk.

Our negative result gives further support to our approach of giving up capacity in order to achieve security
with a small bandwidth. We show that if one insists upon sending: message symbols, then there are cases
where the bandwidth must be almost as larg®&g’k log N). (We give more precise statements of both our
positive and negative results later in the paper.)

1.3 TechniquesAs mentioned above, we reduce the secure network coding problem to a variant of secret
sharing, which we call filtered secret sharing. We then show that filtered secret sharing is actually equivalent
to a certain generalized (classical) code construction problem. More precisely, we study the problem of



designing a code that has large distance from a given code. Within this framework, we derive positive results
using methods similar to those used in a proof of the Gilbert-Varshamov bound (see [17]), and negative results
using a bound [9] on the covering radius [8] that linear codes can achieve.

Our method for constructing a secure network code has a nice feature that makes it more useful when the
network code is fixed (in hardware, say). If we are given a network and a network code, we can make this
code securwithout changing the network codaut only by applying a linear transformation to the input. Our
ability to do this follows from a linear algebraic approach to network coding which actually abstracts away
the network topology, along the lines of [20].

1.4 Organization of the paper Section 3 describes filtered secret sharing. Our main positive and negative
results on filtered secret sharing are given in Section 3.3. Section 4 introduces the network coding model,
exhibits a reduction from secure network coding to filtered secret sharing, and states our main positive and
negative results for secure network coding (these results follow immediately from the results of Section 3.3
using the reduction).

In Sections 5 through 8 we prove the results of Section 3.3. Section 5 gives basic results on filtered
secret sharing, and a characterization of linear solutions. In Section 6, we prove that filtered secret sharing is
equivalent to a generalized (error-correcting) code construction problem. Finally, in Sections 7 and 8, we give
our positive and negative results, respectively.

2 Preliminaries

2.1 Notation Throughout the paper all vectorsare row vectors unless otherwise indicated, and we write
v” to denote the corresponding column vector: i§ ann-dimensional row vector and is anm-dimensional
row vector we writg(v, w) to denote thén + m)-dimensional row vector obtained by concatenatiraduw.

We use[n] to denote the seftl, ..., n}. Givenz € F), theball of radiusd aroundz is the set of all vectors

in IFéV which differ fromz in at mostd coordinates. We writ&ol,(d, N) to denote the number of vectors in

this ball.

2.2 Information-theoretic security against ak-threshold adversary We define a general “threshold” se-
curity condition that we use for both secret-sharing and secure network coding. Suppose we have some
information source that produces arbitrarye Ff] Let f(x,r) be a functionf : Ff] X ]Ffl — JFf]V where we

think of the inputr € F’ as random. Foi C [N], we write f;(z,7) € IE‘L,” to denote the vectof (z, )
restricted to the indices ih.

For I C [N], we say thatf is secure agains{ if for all z,2’ € Iﬁ‘g we have that the random variables
fr(z,r)andfr (2, r) are identically distributed (here the randomness in each case is over the uniform choice
of r from Fg). We say thalf is secure against &-threshold adversarif f is secure againdtforall I C [N]
with |I| < k. In other words, for any adversary who has access to at imoslices off (z, ), the view of the
adversary is independent of the informatian

3 Filtered Secret Sharing

3.1 Secret SharingInformally, a secret sharing scheme allows a dealer to share a searpatties, such

that any set of at leastparties can reconstruct the secret from their shares, but any adversary controlling at
mostk parties cannot gain any information about the secret from their shaFae.vast majority of studied
schemes arknear, namely the secret is viewed as an element in a finite field, and the shares are constructed
by applying a linear transformation to the secret and some random field elements. The main measure of
efficiency for secret sharing schemes is the total size of the shares, though computational efficiency of the

While more general access structures are possible, we focus here on the most commonly studied threshold secret sharing case.



secret generation and reconstruction is also often required.

Secret sharing schemes were first introduced in [3, 25], who gave linear schemés=with- 1. Secret
sharing schemes for atly< [ < n are introduced in [4], who call themamp schemesand consider longer
secrets consisting éf— k (rather than one) field elements.

Of particular interest to us is the caselef n, namely alln shares allow reconstruction of the secret, but
any set of up td: shares give no information about the secret. We focus on this case when introducing the
generalized notion of filtered secret sharing below, since this is the case needed for our secure network coding
application. Filtered secret sharing can be similarly defined for the more general case.

Since their introduction, secret sharing schemes were extensively studied, and found a variety of appli-
cations, e.g., for general secure computation [2, 6, 10]. We refer the reader to [26, 27, 28] for surveys and
further references.

3.2 Filtered Secret SharingWe introduce the following generalization of the basic secret-sharing problem
described above. Here the adversary gets her shares through some fixed linear “filter;” i.e., instead of having
access to at mogt shares, she receives at mésamong a fixed set aV > n linear combination®f all n

shares.

Definition 1 Filtered Secret Sharing. The input consists of a prime powgra number of shares, a “filter”
lengthN > n, ann-by-N full-rank filter matrix V" over elements iff, and a threshold: < n. The problem
is to find a numbef, an “information length”t < n, and a functionS : IFg X Ff} — Fg such that the function
S(z,r)V (which isF}, x Iﬁ‘g — ]FfZV ) is information-theoretically secure againstkathreshold adversary.
Moreover, for any giveny = S(z, r), the informationz must be uniquely and efficiently recoverable frpm

Note that classical threshold secret sharing as described in Section 3.1 is the special case wheré/tie filter
then-by-n identity matrix.

In solutions to filtered secret sharing it is desirable for the information lengthbe large. It is straight-
forward to show that no solutioft, ¢, S) exists to filtered secret sharing unless n — k (see Appendix A).
Cai and Yeung [5] implicitly show that a solution always exists with n — k, as long ag > (],:f)

3.3 Our Results on Filtered Secret SharingOur main results about filtered secret sharing are the following
two theorems. (As will be clear later, we actually achieve more general results; here we highlight particular
cases of interest.)

Our first theorem shows that by reducing the information length (comparegd to — k), it is possible to
solve the filtered secret sharing problem with a much smaller field size requirement:

Theorem 1 Let (¢, n, N, V, k) be an arbitrary instance of filtered secret sharing as in Definition 1. 4

n — ok witho > 1 andg = Nmﬁ), then there exists a poli)-time randomized algorithm that outputs
(with high probability) a solutior{¢, t, S) with £ = ok and a linear functionS : F}, x Ffl — Fp.

A more precise characterization of our boundgoan be found in the discussion of Section 7.1. We
also note that for the cage= ©(XV), the bound ony above can be replaced lpy= 29(5), a constant
independent ofV.

Our second theorem shows that if we insist on the information lenigéing as large as — &, then for a
wide range of parameters filtered secret sharing is not possible with a linear fuSatigess the field size
is very large:

Theorem 2 For all sufficiently largeN and all constant® < ¢ < 1, there exist values, n with k = O (n?),

k < n < N, such that for any; < NOWFk/1ogk) there is ann-by-N full rank filter matrix V' overF, such
that the filtered secret sharing instangg n, N, V, k) has no solutior{/, ¢, S) witht = n — k and S linear.



4 Network Coding

4.1 The Network Coding Model An instance of thanulticast network codingroblem consists of a di-
rected acyclic graplir = (V, E¢), a source nodeg, a setl of sink nodes, a message lengthand a
field F,. The edges ofs are used to transmit information through the graph; each edge carries one element of
IF, per time step. (Timing issues within the network are not considered in this model; the information travels
across the entire network in one “time step.”) Thendwidthof an edge idog g, i.e., the number of bits
carried by the edge in each time step.

A solution to the multicast network coding problem is a scheme whereby an arbitrary message vector
m € Fy, which originates at the source nosig, is communicated over this network so that each sink can
recover the entire vectan. More precisely, a solution consists of a collection B8f;| many functionsf,, ),
one for each edge, v) in E¢, with the following properties: (i) For each edge, v) the symbol transmitted
over(u, v) is the value off,, ,, applied to the symbols that are available at nod# v is the source, the entire
message vectan is available; otherwise the symbols transmitted on edges) into nodeu are available.
(i) For each sink node in T there must be some functigfy which, if applied to the symbols received at
nodev, yields the original messaga.

In alinear network code, each of the functions described above is a linear function. Thus a linear solution
to the network coding problem is given by a list of vectovée] ) .c g, describing which linear combination of
the originaln messages is transmitted on each edge (the symibp! m is carried on edge). Condition (i)
above implies that for all edgés, v), whereu # s¢, the symbolv|u, v] - m may be computed as a linear
combination of the symbole[w, u] - m carried on edge&w, u) into nodeu.

It is now well-known that given an instance of the multicast linear network coding probleny wit[7¢; |,
a solution exists if and only if the minimum cut between the source and each sink is of size at[lda3];
moreover, efficient algorithms are known for constructing feasible solutions [18].

4.2 Security Against a Wire-Tap Adversary. A computationally unbounded “wire-tap” adversary against

a network code has access to the symbols which are transmitted over some unknown set okatdgest

of the network. Additionally, the adversary has full knowledge of the network code itself and of whatever
protocol we use for security. We would like to transmit some information F?, wheret < n, over the
network in a way that is information-theoretically secure against this adversary.

Our approach (introduced by Cai & Yeung [5]) is to use multicast linear network coding as described
above, where we choose a random veectar IFf; at the source nodeg, and let the messaga be some
function of r and the informatiornz. Then, a formal security requirement can be defined as follows. If we
regard the length& | sequence of symbols carried over all the edges in the network as being the output of a
function f(xz,r) : F}, x Ff; — Ff]\’ of the informationz and the random chosen at the source, we would like
this function to be secure againstdhreshold adversary.

Note that we have weakened our goal of sendirsymbols to sending < n symbols for the purposes of
achieving security. Theapacityof the secure network codedsthe dimension of the information vector
Our main goal in this work is to balance the capacipgainst the adversarial threshdidand the required
edge bandwidthog q.

4.3 From Filtered Secret Sharing to Secure Network CodingWe can reduce the problem of constructing

a secure linear network code with min-out capacityt, field sizeq and threshold: to the filtered secret
sharing problem, as follows.Given an instanc¢G = (V, E), sq, Ta,n, q) of the multicast linear network
coding problem, we first solve the original network coding problem (ignoring the security condition; i.e.,

2This reduction is implicit in the work of Cai & Yeung [5], although they do not explicitly give a secret sharing abstraction. They
also suggest altering the network code itself by applying a linear transformation to the coding vectors, rather than the input as we
suggest here. The two methods can be shown to be equivalent.



k = 0) using the known polynomial-time algorithm. Now I8t = | E|, and letV’ be ann-by-N matrix where
the columns ofi” are the vectorgv’[e]).c from the solution to the network coding problem. Solve the
filtered secret sharing problem &n (using the parameters, ¢, k) to obtain a functiort : IFZ X Fg — Fy.
Use this function to encoder, r) at the source, where € IFZ is the information, and & Ff} is chosen
randomly. Clearly this will satisfy thé-threshold security condition on the network code, by the guaranteed
properties ofS. For feasibility, note that the vectorge] entering each terminal spdt§, by the feasibility of
the original network code. Hence, each terminal can solve a system of equations toSgbtain and use
the recoverability condition of to obtainz.

We note that this reduction also has the advantage of being able to make an existing network code secure:
if a network code has already been built (in hardware, say), then one can make it secure (at the expense of
some capacity, of course) by sendifigc, ) through the network instead of

4.4 Our Main Secure Network Coding ResultsCombining the reduction from Section 4.3 with the results
of Section 3.3 gives our main results on secure network coding.

The following positive result, which follows from Theorem 1, shows that we can achieve very low band-
width in secure network coding at the expense of a small loss of capacity:

Theorem 3 Let G be a graph withV edges, a source nodg;, and a setl; of sink nodes such that the
minimum-cut between the source and any sink is at leadtet k£ be a threshold wheré < n. Then for
anyo > 1, as long as the desired bandwidtby ¢ satisfies; > max{NQ(ﬁ), |T:|}, there exists a feasible
linear network coding scheme with capacity- n — ok and bandwidthog ¢ which is secure against &-
threshold wire-tap adversary. (And there is a randomigety (/V)-time algorithm that, given,sq¢,1¢.,k),
outputs such a scheme with high probability.)

This result enables us to trade off a capacitywof ok against a field size requirementb’fg(ﬁ). (The
requirementy > |T¢|, which also exists in Cai & Yeung [5], comes from the algorithm to construct the
network code [18].) Note that need not be close to 1; for example taking= 3 allows a field size as low as
(roughly)+/N at a capacity of, — 3k.

For a negative result, if we consider Theorem 2, we see that there are instances of filtered secret sharing
whent = n — k andg < NO(Vk/1ogk) that have no linear solutions. This implies that if we demand capacity

t = n—k with field sizeg < NO(VF/1ogk) then we cannot achieve security with this method. It is reasonable

to conjecture in such a case that either there is no secure solution, or we need to take network topology into
consideration to construct our secure code from scratch (rather than alter a given network code), perhaps using
methods along the lines of Jain [19].

5 Necessary and Sufficient Conditions for Filtered Secret Sharing

The remainder of the paper is devoted to proving Theorems 1 and 2. In this section we derive necessary
and sufficient independence conditions for linear functisits, ) to be secure solutions to the filtered secret
sharing problem. One direction (sufficiency) of the main theorem in this section (Theorem 6) is implicit
in work of Cai & Yeung [5]. We offer a simpler presentation, a small generalization, and a proof that the
condition given is also necessary. The proofs of the theorems in this section can be found in Appendix B.

We assume that we are solving an instaqge:, N, V, k) of filtered secret sharing where in the solution
(4,t,S), the functionS : I, x Fg — [Fy must be linear. Sinc# is linear we can write itas(z,r) = (z,7)T
with T" a (t 4 ¢)-by-n matrix, so we use the notatigf, ¢, T") to refer to a linear filtered secret sharing solution.

Lemma 4 Without loss of generality, the rows Dfare linearly independent.

This lemma also implies that wlog, we hafiel n —t. In fact by the following we may assunde= n —¢:



Lemma 5 If there is a solution(¢,¢,T") with ¢ < n — ¢, then there is a solution with= n — t.
We henceforth assuni@is an invertiblen-by-n matrix. Letting)/=T"1, the main theorem of this section is:

Theorem 6 The functionS(z,r) = (z,r)T = (z,r)M~! gives a secure solutiof?,t = n — ¢, S) to the
filtered secret sharing problef, n, N, V, k) if and only if any set consisting of

(a) at mostk linearly independent columns &f, and

(b) any number of vectors from the first— ¢ columns ofM/
is linearly independent.

5.1 The Existence of a Secure Matrix.We say that a matrig/ which meets the conditions of Theorem 6

is secure Implicit in the work of Cai & Yeung [5] is a proof that a secure matkik exists with¢ = &, as long

as the field sizg satisfiesy > ('b;f‘). In the application to network coding, having an alphabet of this size
may well be a prohibitive bandwidth requirement for certain networks. Moreover, the algorithm they give in
their proof for finding a secure matrix takes at Ieas((””;f') time steps.

6 Equivalence to a Coding Problem

In this section we show that finding a secure mafrixmeeting the independence conditions of Theorem 6

is equivalent to finding a linear error-correcting code with certain generalized distance properties. Roughly
speaking, the code we are looking for must have all its codewords far away from any word in a linear subspace
defined by the matri¥’. In Sections 7 and 8 we will use this equivalence to establish upper and lower bounds
on the field size required to find secure solutions to filtered secret sharing.

6.1 Preliminaries. In an instance of filtered secret sharing, théy-N matrix V' is presumed to be full
rank. LetA be an(N — n) x N generator matrix for the null space Bt (Equivalently,A is the parity-check
matrix if V' is regarded as a generator for a code.)

We will henceforth use the notatialf to mean the firsth — ¢ columns of the invertible square matrix
“M" in Theorem 6. With this new notation, a matri{ is securé iff

Mz" +Vw” #£0forallz € Fy %, w e FY s.tw #0, |w| < k. (1)

We define a notion of “distance” between two matrices that is (roughly) the minimum distance between
two vectors in the span of their rows. More precisely, fonar n matrix P and a8 x n matrix (), we define

SP,Q)=  min  A@PyQ),
z€lFg,yeFy,y7#0

whereA is the Hamming distance. Note the slight asymmetry in the treatmdntofd(Q, namely that: can
be 0% buty cannot be)?; this makes the minimum distance of the code generate@ hy upper bound on

o(P, Q).

6.2 Main Theorem. Now we present our main theorem relating the above notion of distance to the existence
of a secure matrix/:

Theorem 7 There exists a securex (n — ¢) matrix M if and only if there exists aft = n — ¢) x N matrix
B with §(A, B) > k, whereA is the generator matrix for the null space 6t

3Since the security of}/” (as in Theorem 6) depends only on its first- ¢ columns, we may extend a matth{ from (1) to be
square and invertible using an arbitrary extensionbfo a basis, as suggested in [5].



Proof: Suppose there is some— ¢ x N matrix B with §(A, B) > k. Let M = V BT, Note thatB must
have rank: — ¢, since otherwise it could not havéA, B) > 0.

BecauseS(4, B) > k, and A generates the null space bf we have thatA(y?, BTzT) > k for all
T € IFZ‘_K, x # 0andy : VyT =o0. Therefore,V(BTxT + wT) # 0forall x € Fg_é, x # 0andw € Ff]\[
where|w| < k. This impliesV BT 2T + Vw! = MzT + Vw? # 0 for all suchz, w, which are exactly the
security conditions in (1).

For the other direction, if we suppose there is a sedureve constructB as follows. For each column
M; of M, let theith column of BT be an arbitrary member of the codet ]FéV : Vy = M,;}. Note that we
again have\l = VBT,

SinceM is secure, we havé/x + Vw # 0 for all = # 0, |w| < k (from (1)), and s0/ (BT x + w) # 0
for all suchz, w. Thus for ally : Vy = 0, andzx # 0, we haveA(BT'z,y) > k. This impliess(A, B) > k. &

6.3 A Generalized Coding Problem.Having proved Theorem 7, we now turn to the following problem:

Span Distance Problem:Given ana-by-N matrix A with rank «;, whose entries
belong toF,, find a5-by-N matrix B overF, such that (A, B) > k.

We can regard this question as a generalization of the classical code construction proleR '&Fﬁ
is regarded as a code, then every non-zero codeword must have good distance not only from the all-zeros
codeword, but also from every other word generatediby

In the following sections, we consider the span distance problem abstractly. When we apply this problem
to Theorem 7, we have = N — n and = n — £. Settingoc > 1 such that = ok, we are now interested
in the case of the span distance problem wliete N%"ﬁ In the application to network coding, the value
k(o — 1) measures the amount of capacity we are willing to give up in order to reduce the field size necessary
to achieve security.

7 A Positive Result: giving up information length to save on field size

The main theorem in this section gives a bound on the probability that a random code will solve the relevant
case of the span distance problem:

Theorem 8 Let A be an arbitrarya-by-N matrix with ranka overF,, and letB be a randonms-by-N matrix
overF,. Letk, o be such that = N*Ta*ﬁ wheres > 1. Then we havé(A, B) > k with probability at least
1 — Pgap, wherePgap = ¢~ *Vol,(k, N).

Proof: The argument follows along the same lines as the classical argument that random linear codes meet the
Gilbert-Varshamov bound (see [17]). LBAD be the set of words ilﬁf]\’ with distance at most from some
linear combination of the rows of. Using the boundBAD| < ¢“Vol,(k, N), we have that for a particular

T € Iﬁ‘g the probability (over choices @) thatx1 B € BAD is at most%w. Applying a union bound

overx, € Fg, we have the probability of somg B being inBAD is at mostPg 4p < q‘”B—NVolq(k, N) =
g °*Vol,(k, N). [ |

7.1 Applying Theorem 8. Here we show that Theorem 8 allows us to use fields of quite modest size and
still achieve a good probability bound in Theorem 8. It is easy to seéVibigtk, N) = Zfzo(q — 1)’(]2[)

We consider two different ranges of values fofthese aré = o(/N) andk = ©(NV)) and use different upper
bounds oriVol, (k, V) in these two cases. We use the following facts in the bounds.



Fact9 [17]Foranyq > 2,if0 < k < (1 —1/q)N, then
(@) the largest term in the sult_ (¢ — 1)*(%) is thei = & term,

(b) ©eYola®N) _ (F (k/N) + o(1))N, whereH,(8) = 6log,(q — 1) — dlog, 6 — (1 — §) log,(1 — ).

log q

We first consider the case = o(N). In this case, from Fact 9(a), it follows th&bl,(k, N) (k +

1)¢"*N* and so we have that the probability- Pgp is positive as long ag > (k + 1)@-DF % N1,
To obtaln a high probablllty result such &g 4p < N~ ¢ for some constant > 0, it suffices to takey >

(k+1)@-DF E LN T =5 . This establishes Theorem 1.

Our lower bounds ol are easily seen to be much less restrictive thanjthe (],X) lower bound of Cai
& Yeung, at the cost of only a small loss in capacity (humber of information symbols we can transmit). As
one example, if we take = 2 then we achieve capacity— 2k (as opposed to Cai & Yeungis— k), but we
require only that the field size be (roughly) at leasiv+</* which is close taV for moderate: and small
constant. (Of course, even smaller lower boundsgoan be achieved by taking > 2.) Thus, ifk satisfies
bothk = w(1) andk = o(IV), we lose only &1 — o(1)) factor in capacity while obtaining a superpolynomial
savings in field size.

We now consider the cage= ©(/NV), and show that here we can achieve even more dramatic savings in
field size. Takingt = N whered = O(1) is some constant and plugging Fact 9(b) into Theorem 8, we have
that Pgap < ¢ 7N ¢N(Ha(0)+o(1) |t is easy to see that in generdl,(§) < § + eq» and thus (b) above

implies thatPg 4p < ¢(~9(=1)/2+(1)N provided that (o —1)/2 > 1/ log g, i.e.q > 22/((=1) Sinces is
1
a fixed constant independent &t the field size lower bound &(7=7) which is independent aV.

8 A Negative Result: Maximum information length can require large field size
The main result in this section is the following theorem:

Theorem 10 Leta = N — lﬁ)gg];[ - logvl?)lgqgk,N) + 2log N +log g + logInq. If a, 3 satisfy

log N log Vol,(k, N)
+
log q log q

k+8<N-a= —2log N —logq —loglng 2

then there is amv x N matrix A overlF, such that there is ng x NV matrix B overF, for whiché(A, B) > k.

In words, this theorem says that for certain values @hdg, if ¢ is too small then there exists anx N
matrix A overIF, for which the span distance problem cannot be solved if we kake N — o« — 3. This
translates into the existence of instances of filtered secret sharing that are unsolvable with linear fdnctions
In the network coding application, takikg= N — o — (3 corresponds to taking = 1; this means that if we
do not give up some capacity then there does not exist a secure hatntess the field sizgis quite large.

8.1 Establishing Theorem 10: using a code with good covering radiusio establish Theorem 10, we
need to find a full-rankev-by-N matrix A which is such that for all full-rani-by-N matricesB, there is a
pointz, B, 1 # 0 and a pointco A whereA(z1 B, 22A) < k=N —a — f3.

For the case¢y = 1, this is exactly a question of constructing a cotlevith small covering radius The
covering radius [8] of a code is the minimum valdeuch that the union of the spheres of radiusround
the points in the code cover the entire spége SupposeA had covering radius of at most — a — 3.
Then, no matter whaB is (B is a single vector, sincg = 1), it has distance at mos{ — « — (3 to some
point z9 A. Now supposeA has covering radiug > N — a — 3. Then there is some vectd? where
A(B,z2A) > N — a — 3 for all z5. Moreover, any scalar multiple a8 will also have distance at least



d from anyz2 A (to see this, note that if\(aB,z2A4) < d, thenA((1/a)aB,(1/a)(z24)) < d, and so
A(B,((1/a)xs)A) < d, a contradiction).

Thus for3 = 1, a construction ofd with covering radius of at mosY — o — 3 is hecessary and sufficient
for a negative result. Additionally, fas > 1, showing that there exists anx N matrix A with covering
radius at mostV — « — 3 is sufficient for a negative result.

Cohen and Frankl [9] gave upper bounds on the covering radius of linear codeB,ovdreir analysis
can be used to obtain the following redulvhich then implies Theorem 10:

Theorem 11 For any valuel < d < N, there is aD-dimensional linear code ovéf, with block length/V
(i.e. a vector subspace Eflv) which has covering radius at mogtwhere

log N log Vol,(d, N)
log q log q

8.2 Applying Theorem 10. We give one example here of how Theorem 10 can be applied, and this example

establishes Theorem 2. Other interesting examples are possible, but we omit them for space reasons.
Let 7 be any constant satisfying< 7 < 1/2. Letc = N7, letk = ~c?log N (we will specify~ shortly)

and letg = N°. By Fact 9(a), we can get a fairly good lower bound\asi,(k, V) just by considering the

last term of the sum. We havél, (k, N) > (¢ — 1)*(}) > (¢/2)% (¥ ) We thus have th gvﬁgék 2 >

4 —HHgE R kosk Plugging the above parameter settingsifandy into Equation (2) (but not substituting
in yet for ¢), we have that Equation (2) is satisfied if

D=N — + 2log N + log q + logIng.

—1 +yc?log? N — ~c?log N log(vyc?log N)
clog N

1
v2logN + 6 < E+’ycglogN+
—2log N — clog N — log(cln N).

This inequality is equivalent to

1 1
B < ¢ ClogN + ~velog N — yelog(ye?log N) — (¢ + 2)log N — log(cln N).
Now sincec = N7, it can be verified that taking = - (a fixed constant sincé < 7 < 1/2 is a fixed

constant) makes the right-hand side of this last mequallty at(easB) log N (for sufficiently largeN), sos

can be any value smaller than this bound. This example shows that for a wide range of vélules lafwer

bound on field size required for secure linear filtered secret sharing, if no capacity is given up, can be as large
asN®(VF/legk) |t js interesting to contrast this lower bound with the upper boun@dgfof Cai & Yeung.

9 Future Work

Several interesting directions for future research suggest themselves. Are there other application areas where
the notion of filtered secret sharing will be useful? Are there other variants of secret sharing besides filtered
secret sharing which are useful for secure network coding?

Within the arena of network coding, there are many promising avenues for future work. The results
of Jain [19] are obtained by exploiting the topology of the network in question, while our technigues are
independent of the topology. Can stronger results be obtained by combining the two approaches? Another
natural question is whether network codes for information transmission problems other than multicast can
be made secure using our techniques. Finally, it is also of interest to consider secure network coding in a
framework where only statistical security or security against computationally bounded adversaries is required,
as opposed to the information-theoretic security criterion of this paper.

“The expression fob in Theorem 11 is slightly different from the result stated in [9]. Their analysis implicitly assumesg ithat
independent ofV, but this need not hold for us. We give a complete derivation of Theorem 11 in the full version of the paper.
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Appendix

A Alower bound on information length

Theorem 12 Any instance of filtered secret sharing requites n — k.

Proof: (Sketch) By the fact that the filter matrix is full rank, there must be a full-rank-by-n submatrixt’’
of V. Let V" be a submatrix o columns froml’’, and suppose the adversary has access+aS(x,r)V".
The set of vectorsl = {y € Fy : yV” = a} that could have been the secret veci¢r, r) has cardinality
exactlyg™*, sincelV’” has full rank.

By recoverability, we have some functidn Fy — IFfI that maps secret vectof§z, r) € Iy to informa-
tion vectorsr € IFZ. For this functionS to be secure against the adversary just described, it must be the case
that for allz € F!, we havel (y) = « for somey € A. It follows thatq® < ¢"~*, since|A| = ¢"*. u

B Proofs for Section 5

Lemma 4 Without loss of generality, the rows Bfare linearly independent.

Proof: If T has a set of linearly dependent rows that includes a row among the, fiteén (x, )M =
(z',r")M for somer,r’, x, 2’ s.t. z # 2/. This violates the unique recoverability condition 8nOtherwise,

if T has a set of linearly dependent rows all of which are among thé,l&stn removing one of those rows
and setting’ := ¢ — 1 does not change the distribution 8fz, r) over randonmr for any z. |

Lemma 5If there is a solution(¢, t, T') with £ < n — ¢, then there is a solution with=n — ¢.

Proof: Take the solutior{?,t,zT) (wlog, T has l.i. rows) and add — ¢ — ¢ L.i. rows to the end off" to
obtain an invertible square matriX. Setting?’ = n —t, we have a new solution that still satisfies the security
condition. For recoverability, note that sin@& is invertible, the full vector(z, r) can be obtained from a
given vector(x, r)T". [ |

Theorem 6 The functionS(x,r) = (z,r)T = (x,r)M~! gives a secure solutioft,t = n — ¢, S) to the
filtered secret sharing problef, n, N, V, k) if and only if any set consisting of

(a) at mostk linearly independent columns &f, and

(b) any number of vectors from the first- ¢ columns ofM/
is linearly independent.

Proof: We first show that the encoding is secure if the independence condition is met. Suppose that the
adversary has access$p(x, ), wherel C [N]is arbitrary and:’ = |I| < k. LetV be an-by-k’ submatrix
of V consisting of the columns indexed byWe may assume that has ranki’, since otherwise the adversary
could drop an index and not lose any information. Note that what the adversary sees is thé/leegtor
a=S(z,r) = (x,r) M~ V.

For a particular “guess” at the informatian and the observed vecter, let R(z,a) be the set of all
possible random vectorssuch thata = S;(z,7). It is easily shown that the functiofi is secure if for all
o', 2" € Fi~t, we havelR(2/,a)| = |R(z”, a)|.

Given an information vectoi € Fg:”—f, the setR(z, a) has one member for every solution to the system
of n — £ + k' equations im unknowns described byl = (2,a), wherey € Iy is unknown, and’’ is the
Iy

n by (n — ¢ + k) coefficient matrixV’ = [ 0

M—lv} . Now suppose tha’ has full rank: then, for
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all (a, z) pairs on the right hand side, the system of equations has exactly the same number of solutions. It
follows thatR(z’,a) = R(z”,a) for all distinct information vectors’, 2", and thus the encoding is secure.

To prove thafl”’ has full rank, we consider the matrix V' (recall thatM has full rank by definition).

This matrix M V' has its first, — ¢ columns matching the first — ¢ columns ofM, and the last columns
are the matrix\/ M~V = V. Thus, if the conditions o/ in the theorem hold, the matrix/V" has full
rank for all possible choices df, and thus the encoding is secure.

For the other direction, suppose the independence condition is not met. This means that there is some
nontrivial linear combination of some l.i. set of &t < k columns ofV/ that equals some nontrivial linear
combination of the first = n — ¢ (1.i.) columns of M. If we defineV as the submatrix consisting of those
k' columns, and”’ in terms ofV and M as above, then this is equivalent to saying thélt” is not full rank,
and thusV”’ is not full rank, sinceM is full rank by assumption. We may conclude tWé(zl, 29)T = 0 for
somez; € Fg—g, z9 € IF’; Also, we know that; # 0 andz; # 0 by looking at the structure ar’ (using

0
Fix some information vector € IFZ;—Z and random vectar € Ff; Leta = (x,r)M 1V be the vector of
observed symbols on the edgesSincea is the result of a possible choice afwe have thaf(x,a) > 0.

the fact thatl,,_,, V and M are all full rank). So, we hav%ln_é} 2+ MV =o.

Note thata - zo = (z,7)M V2l = —(z,7) {I"OE I = —z- 2. Infact, the relatiom - zo = —x - 2, holds

for any pair of possible information vectarsand observed vectoeswhich satisfyR(x, a) > 0.

Letz’ = z + e; wherei is an index such that); # 0. Thus we have that’ - 21 # x - 21 = —a - 2.
We conclude thaa is not a possible observed vector fdr and thusk(2’, a) = 0. We have demonstrated an
a,z,x’ whereR(z,a) # R(«’,a). This implies that the distributions givenandz’ are different, and so the
function S is not secure. |
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