Decoding Turbo-Like Codes via Linear Programming

Jon Feldman

David Karger

MIT Laboratory for Computer Science
Cambridge, MA, USA

{jonfeld,karger}@theory.lcs.mit.edu

Turbo Codes

- Introduced in 1993 [Berrou, Glavieux, Thitimajshima].
- Unprecedented error-correcting performance.
- Simple encoder, "belief-propagation" decoder.
- Theoretical understanding limited:
 - Distance properties bad [KU '98, BMMS '02];
 - Analysis for random codes [LMSS '01, DPTRU '02];
 - Decoder unpredictable (may not even converge!).
- Related: low-density parity-check codes, expander codes, expander-based codes, tornado codes, etc.

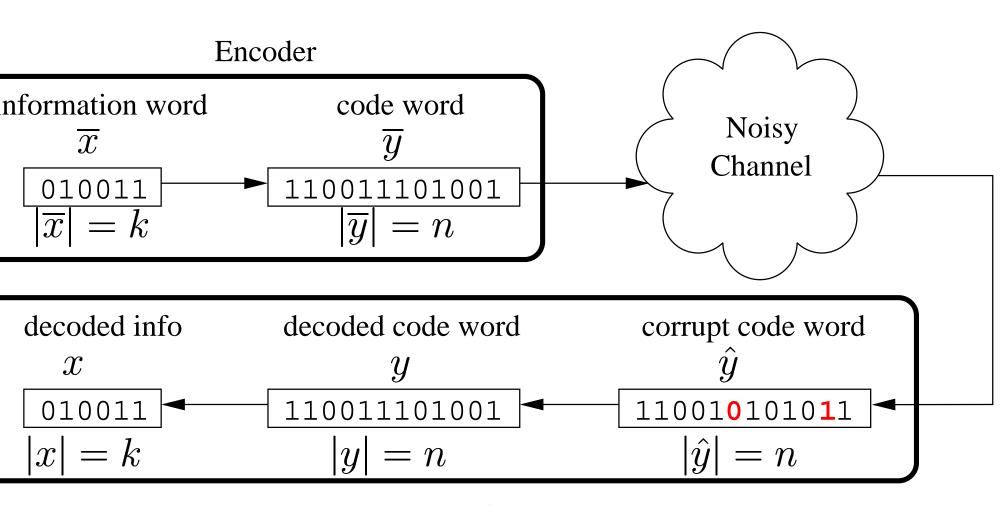
Our contributions

- Polynomial-time decoder using linear programming.
- Decodes any turbo code, other related codes (LDPC).
- Exact characterization of error patterns that cause decoding failure (not known for BP).
- Code construction with inverse-poly error bound (also not known for BP).

Outline

- Error correcting codes.
- Using LP relaxation for decoding.
- Turbo Codes (Repeat-Accumulate codes).
- Code construction, error rate bounds.

Binary Error-Correcting Code



Decoder

Each bit flipped indep. w/ prob. p (small constant).

Maximum-Likelihood Decoding

Given: Corrupt code word \hat{y} .

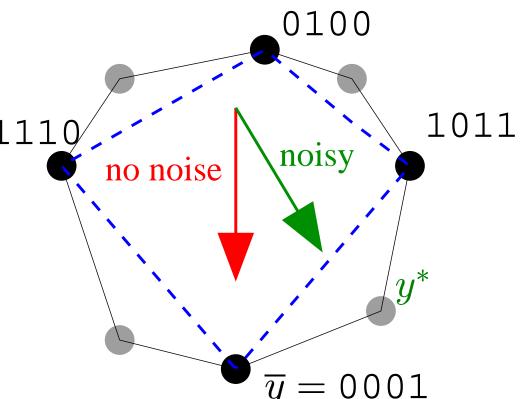
Find: Code word y such that Hamming distance

 $\Delta(\hat{y}, y)$ is minimized.

- Integer/Linear Programming formulation:
 - Code $C \subset \{0, 1\}^n$.
 - Variables $y_t \in \{0, 1\}$ for each code bit.
 - Polytope $P \subset \mathbb{R}^n$ s.t. $P \cap \{0,1\}^n = C$.
 - Integer Program: Minimize $\Delta_{\ell}(\hat{y}, y)$ s.t. $y \in P$.
 - Relaxation: $0 \le y_t \le 1$.

Linear Programming Relaxation

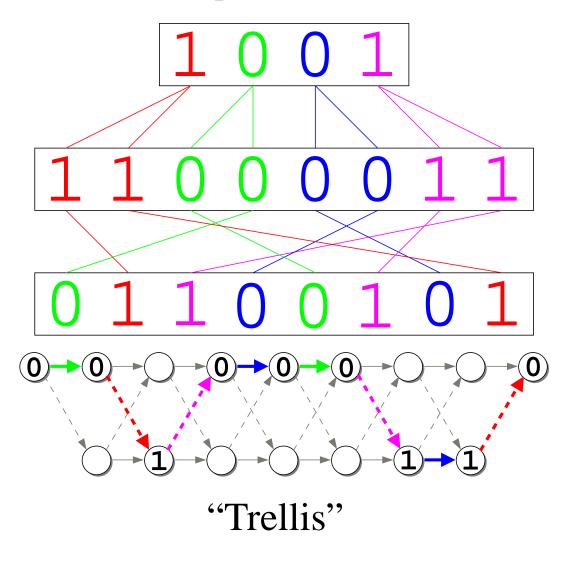
- Algorithm: Solve LP. If y^* integral, output y^* , else "error."
- ML certificate property: all outputs are ML code words.
- How do we measure the quality of a relaxation?
 - Want low word error rate (WER) := $Pr_{\text{noise}}[y \neq \overline{y}]$.



- LP: Min $\Delta_{\ell}(\hat{y}, y)$: $y \in P$.
- 1011 No noise: \overline{y} optimal.
 - Noise: perturbation of objective function.
 - Design relaxation where only large perturbations cause word error.

Repeat-Accumulate Codes

[Divsalar, Jin, McEliece, 1998]



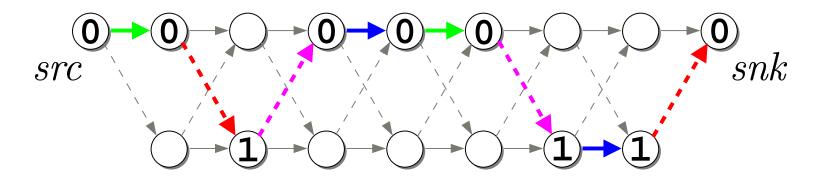
Information (word \overline{x})

Repeat

Permute

Accumulate (node labels make code word \overline{y})

Repeat-Accumulate Linear Program



- Code words \iff agreeable paths.
 - RALP: "flow-like" LP to find the min-cost agreeable path.
 - Flow \bar{f} : integral unit flow along path taken by encoder.
 - If \bar{f} is the min-cost agreeable flow \Longrightarrow decoding success.
- *Tanner graph*: Model of the code. Edge costs: -1 for each bit flipped in the channel, +1 for each bit not flipped.
- Promenade: Closed circuit of the Tanner graph G.

Using Promenades for Error Bounds

Theorem 1: RALP decodes correctly iff there is no negative-cost promenade in G.

- Analogous theorem holds for any "turbo-like" code or LDPC code, with a generalization of "promenade."
- For rate-1/2 RA codes: If G has large girth \Longrightarrow promenades large \Longrightarrow negative cost promenades rare.
- Erdös (or [BMMS '02]): Hamiltonian 3-regular graph with girth $\log n$.

Theorem 2: For any
$$\epsilon>0$$
, as long as $p<2^{-4(\epsilon+(\log 24)/2)}$, WER $\leq n^{-\epsilon}$.

Extensions

- Connections to iterative methods [FKW, (Allerton '02)]:
 - Iterative "tree-reweighted max-product" tries to solve dual of our LP.
 - Subgradient method for solving LP very similar to standard belief propagation.
- Generic LP for any low-density parity-check code (incl. all turbo-like codes).
 - Connections to "min-sum" belief-propagation algorithm.
 - Lifting procedure to approach ML decoding.
- Tighter analysis of promenade distribution.
- Other "memoryless" channels (e.g. AWGN).

Future Work

- New constructions and WER bounds:
 - Lower rate turbo codes (rate-1/3 RA).
 - Conjecture: \exists rate-1/k RA code s.t. WER $\leq 2^{-n^{\epsilon}}$.
 - Other LDPC codes (expander codes, irregular LDPC codes, etc.)?
- Faster algorithm for solving agreeable flow / decoding LPs?
- Deeper connections to belief-propagation?
- LP decoding of other code families, channel models?