A Noise-Adaptive Algorithm for First-Order Reed-Muller Decoding

Jon Feldman Matteo Frigo Ibrahim Abou-Faycal
jonfeld@mit.edu athena@vanu.com iaboufay@mit.edu

M.I.T. Vanu, Inc.
CCK demodulation

- Demodulation: bottleneck in software 802.11b implementation.

- Standard optimal demodulator based on Fast Walsh-Hadamard transform (FHT);
 - Software radios cannot take advantage of parallelism.

- Majority-logic demodulators [Reed ’54, Massey ’63] efficient but suboptimal.

- Our *Hybrid* algorithm:
 - almost as fast as majority-logic;
 - “almost as optimal” as FHT.
Running Time Comparison

- Running time (implicitly) SNR-dependent
 - OK for software radios.
Hybrid algorithm very close to optimal FHT.
Performance Comparison (closer look)

CCK Demodulation

- Negligible loss of performance (≤ 0.2 dB).

J. Feldman, VTC, 9/26/02 – p.5/14
Outline

- CCK modulation / demodulation.
- Majority logic decoding.
- The hybrid algorithm.
- Generalization to first-order Reed-Muller (FORM) codes:
 - H_e: Error rate of Hybrid algorithm.
 - O_e: Error rate of ML decoder (FHT).

\[H_e \leq O_e + e^{\Omega(n)} \]
CCK modulation

• **Info:** 4 “complex bits:”

\[\phi = (\phi_0, \phi_1, \phi_2, \phi_3) \quad (\phi_i \in Q, \quad Q = \{1, i, -1, -i\}) \]

• **Transmit:** \(x(\phi) = (x_0, \ldots, x_7) \), where*:

\[
\begin{align*}
 x_0 &= \phi_3 & x_4 &= \phi_3 \phi_2 \\
 x_1 &= \phi_3 \phi_0 & x_5 &= \phi_3 \phi_2 \phi_0 \\
 x_2 &= \phi_3 \phi_1 & x_6 &= \phi_3 \phi_2 \phi_1 \\
 x_3 &= \phi_3 \phi_1 \phi_0 & x_7 &= \phi_3 \phi_2 \phi_1 \phi_0
\end{align*}
\]

• **Receive:** \((y_0, \ldots, y_7), y_i = x_i + N_i(0, \sigma^2)\)

• (* In real system, \(x_1\) and \(x_4\) negated.)
CCK demodulators

- **Maximum-Likelihood** decoding: find ϕ^{max} where

$$
\phi^{\text{max}} = \max_{\phi \in \mathbb{Q}} |x(\phi) \cdot y|, \quad (Q = \{1, i, -1, -i\}).
$$

- Can be computed via Fast Hadamard Transform (FHT).
- FHT not fast enough for software radio.

- **Majority-Logic** [Reed ’54, Massey ’63] decoding:
 - Extract “votes” for each information symbol.
 - Tally votes, majority rules for each symbol.
 - Use for CCK: [van Nee ’96, Paterson/Jones ’98].
Majority-Logic Decoding for CCK

\[
x_0 = \phi_3 \quad x_4 = \phi_3 \phi_2 \\
x_1 = \phi_3 \quad \phi_0 \quad x_5 = \phi_3 \phi_2 \phi_0 \\
x_2 = \phi_3 \phi_1 \quad x_6 = \phi_3 \phi_2 \phi_1 \\
x_3 = \phi_3 \phi_1 \phi_0 \quad x_7 = \phi_3 \phi_2 \phi_1 \phi_0
\]

- Example: \(x_3 x_2^* = (\phi_3 \phi_1 \phi_0)(\phi_3 \phi_1)^* = \phi_3 \phi_1 \phi_0 \phi_3 \phi_1^* = \phi_0 \)

- This makes \(y_3 y_2^* \) a “vote” for \(\phi_0 \):

\[
E[y_3 y_2^*] = E[(x_3 + N_3)(x_2 + N_2)^*] \\
= E[(x_3 + N_3)] E[(x_2^* + N_2^*)] \\
= x_3 x_2^* \\
= \phi_0
\]

- Four independent votes for \(\phi_0 \): \(y_1 y_0^*, y_3 y_2^*, y_5 y_4^*, y_7 y_6^* \)
Tallying “Soft” Votes

- Suppose $\phi_0 = 1$.
- Four votes:

 $$v_1 = y_1y_0^* \quad v_2 = y_3y_2^*$$

 $$v_3 = y_5y_4^* \quad v_4 = y_7y_6^*.$$

- “Estimate” $\bar{\phi}_0$:

 $$\bar{\phi}_0 = \sum_{i=1}^{4} v_i$$

 $$\approx 4\phi_0$$

 $$= 4$$

- Set ϕ_0 to “closest” point in $\{4, 4i, -4, -4i\}$.
The Hybrid Algorithm

- Set “threshold angle” θ.
 \[\theta = \tan^{-1}(2/3) \]
- Compute est. $\bar{\phi}_0, \bar{\phi}_1, \bar{\phi}_2$.
- Find closest $\phi_i \in Q$ for each estimate:
 \[\phi_i = \arg \min_{\phi \in Q} |\angle(\phi) - \angle(\bar{\phi}_i)|. \]
- If $|\angle(\bar{\phi}_i) - \angle(\phi_i)| > \theta$ for any $i \in \{0, 1, 2\}$, run FHT.
- Otherwise, compute ϕ_3 from ϕ_0, ϕ_1, ϕ_2.
General FORM Codes

- Definition of $FORM_q(k, p)$:
 - Information word $c \in \mathbb{Z}_q^k$.
 - Polynomial $P(x) = c^T x$, where $x \in \{0, \ldots, p - 1\}^k$ for some $p \leq q$.
 - Codeword: Evaluate $P(x) \mod q$ for all possible values of x. Code length $n = p^k$.

- Classic Reed-Muller codes: $p = 2$.
- Hadamard Codes: $FORM_2(k, 2)$.
- CCK: isomorphic to $FORM_4(3, 2)$.

- Generalized version of hybrid algorithm works for any FORM code.
Coding Theorem for AWGN Channel

- H_e: Error rate of Hybrid algorithm.
- O_e: Error rate of ML decoder (FHT).
- Theorem: For all $0 < \alpha < 1$, $0 < t < 1$,

$$H_e \leq O_e + \exp(-A_1 n) + \exp(-A_2 n).$$

$$A_1 = \frac{(1 - \alpha)^2 \sin^2(2\pi/q - \theta)}{8\sigma^2}$$

$$A_2 = \frac{1}{2} \left(\frac{t\alpha \sin(2\pi/q - \theta)}{\sigma^2} - \ln \left(\frac{t \arccos(-t)}{(1 - t^2)^{3/2}} + \frac{1}{1 - t^2} \right) \right)$$

- Example: $q = 4$ (QPSK), $\theta = \tan^{-1}(2/3)$, SNR > 4 dB,

$$H_e \leq O_e + 2^{1-n/10}.$$
Conclusion

- Hybrid algorithm for CCK:
 - Provides “near-optimal” decoding,
 - Runs at a fraction of the running time,
 - Allows software implementation of 802.11b.

- For any FORM code:

\[H_e \leq O_e + exp(-\Omega(n)). \]