Learning mixtures of product distributions

Jon Feldman* Ryan O’Donnell’
Industrial Engineering and Operations Research School of Mathematics
Columbia University Institute for Advanced Study
jonfeld@ieor.columbia.edu odonnell@ias.edu

Rocco A. Servedio
Department of Computer Science
Columbia University
rocco@cs.columbia.edu

Abstract
In this paper we give:

e A poly(n) time algorithm for learning a mixture of any constant number of product distri-
butions over the n-dimensional Boolean cube {0, 1}"™. Previous polynomial time algorithms
could only learn a mixture of two product distributions over {0, 1}". We also give evidence
that no algorithm can learn a mixture of a superconstant number of product distributions
over {0,1}" in poly(n) time.

e A poly(n) time algorithm for learning a mixture of any constant number of axis-aligned
Gaussians in R™ (the Gaussians need not be spherical). Our algorithm constructs a highly
accurate approximation to the unknown mixture of Gaussians and, unlike previous algo-
rithms, makes no assumptions about the minimum separation between the centers of the
Gaussians.

We obtain both results via a new poly(n) time algorithm which, given samples from a
mixture Z of any constant number of product distributions over R”, outputs a list of candidate
“descriptions” at least one of which is an accurate description of Z.

*Supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship

TThis material is based upon work supported in part by the National Science Foundation under agreement No.
CCR-0324906. Any opinions, findings and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the National Science Foundation.

1 Introduction

In this paper we study mizture distributions. Given distributions X1, ... X*

over R™ and weights
7l ..., 7% with 3 7% = 1, the mixture distribution Z is given by first selecting i with probability 7’
and then drawing a sample from X*. Mixture distributions arise in many practical scientific situa-
tions; indeed, as observed in the first sentence of [22], “Finite mixture distributions have been used
as models throughout the history of modern statistics.” As early as 1886 the Canadian astronomer
S. Newcomb considered models based on mixtures of Gaussians [17], and in 1894 the mathematical
biologist K. Pearson considered decomposing such mixtures by studying their moments [18].

Our work addresses the natural problem of learning mixtures of distributions. In this problem
one is given a class C of distributions over R™ and random data sampled from an unknown mixture
of k distributions from C. The goal is to output a hypothesis mixture of k distributions from C
which is very close to the unknown mixture, according to some distance measure. We will make a
more precise statement of the problem in Section 2.

In this paper we learn mixtures of product distributions over R™; i.e., the classes C will consist of
distributions X? whose n coordinates are mutually independent. There are many natural examples
of such distributions, and indeed two of the mixture-learning problems most frequently studied in
the clustering and learning theory communities — mixtures of product distributions over {0, 1}"
and mixtures of axis-aligned n-dimensional Gaussians fall into this category.

1.1 Our Results

The cornerstone of our learning algorithms is an efficient procedure MixX-A-LOT which takes as
input samples from an unknown mixture of a constant number of product distributions and, roughly
speaking, tries to output accurate estimates for all of the mizing weights 7 and coordinate means
,u§ = E[X;] More precisely, MIX-A-LOT outputs a list of poly(n/e) many candidate descriptions
{7}, {,&;}), and we prove that with high probability at least one of the candidate descriptions is
parametrically accurate; i.e. for this candidate, all 7#%’s are e-close to the true 7%’s and all /lj-’s are
e-close to the true ué-’s. (Actually, the guarantee is slightly weaker than this; see the statement of
Theorem 1.)

We use algorithm MIx-A-LOT to obtain two new learning results: (i) learning mixtures of
product distributions over the Boolean cube, and (ii) learning mixtures of axis-aligned Gaussians.

A product distribution X’ over the Boolean cube is completely specified by its coordinate means
,u; As a consequence, when learning mixtures of these distributions the candidates output by MIX-
A-LoT can be interpreted as true hypothesis distributions. After running Mix-A-LOT we pass the
resulting hypothesis distributions through a maximum likelihood algorithm, and we show that this
algorithm selects a very accurate hypothesis with high probability. Thus we give a polynomial time
algorithm for learning the mixture of any constant number of product distributions over {0,1}".

Next we consider the case when the unknown distribution Z is a mixture of axis-aligned n-
dimensional Gaussians. Knowing the means of Gaussians is not enough to specify them; however,
knowing the means and variances is enough. By running Mix-A-LOT twice, once on Z and once on
Z?, we get good approximations to the mixing weights, means, and second moments, from which we
can get good estimates of the variances. Again we can convert these parametric descriptions into
true hypothesis distributions, pass them through a maximum likelihood algorithm, and come up
with a single hypothesis mixture of Gaussians which is very close to Z. Thus we give a polynomial
time algorithm for learning the mixture of any constant number of axis-aligned Gaussians in R".

We note that in this case our algorithm is not strongly polynomial; the running time depends
polynomially on the magnitude of the Gaussians’ means and variances.

1.2 Comparison with Previous Work

There is a vast body of previous statistical work dealing with the general problem of analyzing
mixture data — see [16, 20, 22] for surveys. To a large degree this work has been concerned with
trying to find the best mixture model (in terms of likelihood) which explains a given data sample.
Unfortunately it is well known that in the much-studied case of mixtures of Gaussians, there is
no analytic solution to this problem. Further, the most popular heuristic for trying to find the
best model — the EM algorithm of Dempster, Laird, and Rubin [9] — can be shown to run in
exponential time in the worst case.

Recently there has been renewed algorithmic interest in the problem of learning mixtures of
Gaussians from the point of view of clustering. In this framework, given samples drawn from a
mixture of “well-separated” Gaussians, the goal is to classify each point in the sample according
to which Gaussian it came from. (Note that there must be some separation requirements on
the Gaussians for this goal to make sense.) Once the points have been clustered one can easily
estimate the means and variances of each cluster. Dasgupta [7] gave an efficient algorithm to learn
a mixture of spherical Gaussians under a strong separation requirement; this was later improved by
Dasgupta and Schulman [8] who reduced the separation required between the Gaussians. Arora and
Kannan [1] generalized these results to non-spherical Gaussians. Finally, Vempala and Wang [23]
gave an alternate algorithm for spherical Gaussians that requires even less separation.

In our result for mixtures of Gaussians we do not make any minimum separation assumptions
on the Gaussians. In this case one cannot hope to solve the clustering problem. Instead, we
solve the natural “PAC-style” unsupervised learning problem of constructing a hypothesis mixture
of Gaussians which is very close to the true distribution in KL divergence or in total variation
distance. (When the Gaussians are separated, the hypothesis our algorithm constructs can easily
be used to cluster.)

There are several differences in the running time of our algorithm versus earlier algorithms for
mixtures of Gaussians. Our running time bound is nP°%¥(¥) whereas previous algorithms run in time
poly(k) or k*. (As described below, there is evidence to suggest that for our definition of learning
as opposed to clustering it may be very difficult to learn mixtures of k = w(1) product distributions
in poly(n) time.) On the other hand, the running time of our algorithm does not depend on the
magnitude of the smallest mixing weight, in contrast to several of the algorithms mentioned above.

Many researchers have also studied PAC-style learning of mixture distributions over the Boolean
cube {0,1}". Kearns et al. [15] gave an efficient algorithm for learning the restricted class of
mixtures of Hamming balls; these are product distributions in which all the coordinate means
,u;‘. are either p or 1 — p for some p fixed over all mixture components. More recently, Freund
and Mansour [11] and also Cryan et al. [6] gave efficient algorithms for learning a mixture of two
probability distributions over {0, 1}", leaving the cases k > 2 as open problems. Our algorithm for
solving this problem runs in time nP°Y(*) which is polynomial only if k is constant. However, we
give a reduction from a notorious open question in computational learning theory to the problem of
learning a mixture of any superconstant number of product distributions over {0, 1}". Thus solving
this problem for any k& = w(1) would require a major breakthrough.

1.3 Outline of This Paper

We begin in Section 2 by formally defining our learning model. In Section 3 we give a description
of the algorithm MI1X-A-LOT and state the theorem proving its correctness. In Section 4, we show
how to convert parametric descriptions of mixtures of product distributions into true mixture dis-
tributions, in such a way that parametrically accurate descriptions become distributions with close
KL divergence to the target distribution. Then in Section 5 we describe how a maximum-likelihood
procedure can find an accurate distribution (one with good KL divergence or variation distance)
among the list of converted candidate distributions, one of which is guaranteed to have good KL
divergence. In Section 6 we formally state our two main results: polynomial-time algorithms for
learning mixtures of any constant number of product distributions over the Boolean cube, and mix-
tures of any constant number of axis-aligned Gaussians. Finally, in Section 7 we give our reduction
from a notorious open question in learning theory — learning w(1)-size decision trees from uniform
random examples — to the problem of learning mixtures of & = w(1) product distributions over
{0,1}™. In Section 8 we discuss the generality of our methods and directions for further research.

2 Learning Preliminaries

Our unsupervised learning framework is inspired by the Probably Approximately Correct model of
learning probability distributions which was proposed by Kearns et al. [15]. In this framework the
learning algorithm is given access to samples drawn from the target distribution Z to be learned,
and the learning algorithm must (with high probability) output an accurate approximation Z’ of
the target distribution Z.

To make this definition precise, we must specify some notion of the distance between two
probability distributions. Following [15], we use the Kullback-Leibler (KL) divergence (also known
as the relative entropy) as our distance measure. The KL divergence between Z and Z' is defined
to be

KL(Z||Z) = / Z(x) n(Z(2)/Z ()

T

where here we have identified the distributions with their pdfs. (In the case of discrete distributions
the integral may be viewed as a sum.) While the KL divergence is not in fact a metric, it is a
stringent and commonly used measure of the distance between probability distributions. Further,
it has nice properties with respect to the maximum-likelihood algorithms. It is known (see [5]) that
for all distributions Z, Z/,

|1z — Z'|

0< L < KL(Z||Z),

~ 4(In2)?
where | -||1 denotes total variation distance, so that if the KL divergence is small, so is the variation
distance.
We make the following formal definition:

Definition 1 Let D be a class of probability distributions. An efficient (proper) learning algorithm
for D is an algorithm which, given €, > 0 and samples drawn from any distribution Zi € D, runs
in poly(n, %, %) time and outputs a representation of a distribution Z' € D such that KL(Z||Z") < €

with probability at least 1 — 4.

Throughout the remainder of the paper we write Z to denote an unknown target mixture
of n-dimensional product distributions X!, ..., X* with mixing weights 7!,..., 7", where k is an
arbitrary constant. We also write i to denote E[X].

3 The Algorithm Mix-A-LoT

In this section we give a poly(n/e) time algorithm MIX-A-LOT which, given samples from Z,
outputs a list of candidates ({#',..., 7%}, {al,..., ik}). We show that with high probability, at
least one of these candidates is an additive e-accurate approximation to each of the k true mixing
weights 7!, ..., 7" and to each of the true expectations ,u; = E[X;] for which the corresponding
mixing weight 7 is not too small. The algorithm assumes only that the values | u;| are bounded
and that E[Z;Z;/] can be estimated efficiently for each j # j’ (we make this precise below).

3.1 Tools for the algorithm: approximating and guessing

Definition 2 Let X be a distribution over R. We say that X is (e, d)-samplable if there is an
algorithm A which, given access to draws from X, runs for X(e, d) steps and outputs (with probability
at least 1 — & over the draws from X) a quantity ji satisfying | — E[X]| <.

Being A(e, §)-samplable is a mild condition; it is easily seen from standard large deviation bounds
that any distribution X with support bounded in [—M, M] is poly(M, %, log %)—samplable.

Our algorithm makes empirical estimates of the means of various A(e, d)-samplable distributions.
In the analysis of our algorithm we will assume that all such estimates are indeed within the desired
+e¢ error range. This is without loss of rigor since if the algorithm makes 71" estimates as above, we
can make all of the estimates using ¢’ = /T, and thus with probability at least 1 — ¢ all estimates
will be within the desired range. This incurs a multiplicative log(7'/d) factor toward the overall
running time of the algorithm.

In describing our algorithm, we will frequently speak of guessing an unknown value a € R to
within additive error e, where « lies in the range [~ K, K|. For simplicity we assume that K/2¢
is an integer. When we say “Guess a to within € and then do procedure P,” we really mean “Do
procedure P exactly K/e+1 times, using values — K, — K +2¢, —K +4e,...,—2¢,0,2¢,..., K —2¢, K
for a.” Thus guessing « to within +e incurs a multiplicative (K /e + 1) factor toward the running
time of procedure P.

3.2 The idea of the algorithm

In this subsection we give an intuitive description of algorithm Mix-A-LOT to highlight the main
ideas. The actual algorithm and proof of correctness are given later.

Algorithm Mi1x-A-LOT is given access to draws from the mixture Z. We assume that each ,ué-
satisfies |u§| < fimax and that each random variable Z;Z; is A(€,d)-samplable for 1 < j < j" < n.

The first step of the algorithm is to guess each mixing weight 7!, ..., 7% to within +ey. This
incurs a factor of (1/ €wts)” toward the overall runtime. For our intuitive description of the algorithm,
we henceforth assume that each guess is exactly correct and that each ¢ > 0.

The next step is to estimate the correlation of the j and j' coordinates, corr(j, j') := E[Z;Z],
for all pairs (j, j') with 1 < j < j’ < n. Since each distribution Z;Z;: is (e, §)-samplable, we can
obtain estimates accurate to within additive error +€patrix in time poly(n) - A(€matrix, 9). For our
intuitive description we henceforth assume that each estimated value is exactly correct.

Observe that since X; and Xé., are independent, we have

k k

k
corr(j,j') = B[Z;Z;] =Y mEBXiX)] = #'BXYEXE] =Y wlplp.
i=1 i=1 =1

4
<" guessed

Matrix M of i%’s

solved for estimated
Figure 1: The full rank case. We solve for the unknown ﬂ; in M.

Let us define
i = Vil
and write
fj = (5,05, iij) € RY.
We thus have
corr(j,§') = fij - i+
where - denotes the dot product in R¥. Hence we assume that MIx-A-LoT has all the pairwise
dot products fi; - i for j # j'.

It remains for MIX-A-LOT to obtain each ;. Since MIX-A-LOT has each 7 and since each
m > 0, it suffices to obtain each fi%. Let M denote the k x n matrix whose (i,j) entry is the
unknown fi%, i.e., the jth column of M is ;. Observe that MIX-A-LoT has all of the off-diagonal
entries in M " M, since these are the quantities fij - figr for j # j'.

We first describe how MIix-A-LOT can obtain all of the entries of M using the off-diagonal
entries of M "M, assuming that M has full rank. We will later show how to remove the rank
assumption. Assuming M has full rank, there exists some set of k£ columns of M which are linearly
independent, say J = {j1,...,Jjk} C [n]. Algorithm MIX-A-LOT guesses the set J and guesses the

vectors fij,, ..., fij, to within additive error £epatrix in each coordinate. Note that the former guess
incurs a multiplicative time factor of (z) < nk. Since each value /1;- is in the range [—fimax, fmax),

the latter guesses incur a multiplicative time factor of (gmax/ ematrix)kZ. As usual for this intuitive
discussion, we assume that each guessed vector fij,,..., i, is in fact exactly correct.

Let M be the k x k matrix given by the J-columns of M, and let M 7 be the k x (n — k) matrix
given by deleting the J-columns of M. MixX-A-LOT now has the entries of M, and must compute
the remaining unknowns, M. Since MIX-A-LoOT has all the off-diagonal entries of M TM, it has
all of the values of B = M}M J- (See Figure 1.) But the columns of M are linearly independent, so
M is invertible and hence Mix-A-LOT can compute M}—— = BM;I in poly(n) time. Mix-A-LoT
now has all the entries of M 7, all the entries of M, and the weights 7, s0 it is done.

We now turn to the case in which M does not have full rank; say rank(M) = k — ¢. Algorithm
Mix-A-LOT guesses this value ¢ (this incurs a multiplicative time factor of k+1). Since rank(M) =
k — t, there must exist ¢ orthonormal vectors ug_¢y1,...,ux € R” which are orthogonal to all
columns of M. (This unnatural indexing will be natural when we give the actual algorithm.)
Algorithm Mix-A-LOT guesses these t vectors to within error d¢p,¢rix in each coordinate; this
incurs a multiplicative time factor of at most (1/ ematrix)k2. As usual, we assume for the intuitive

discussion that each of these guesses is exactly correct. Adjoin these vectors as columns to M,
forming M’. The matrix M’ has full rank, and M1x-A-LOT knows all the off-diagonal elements of
(M')TM’ (i.e. all the pairwise dot products of M’’s columns), since all of the new dot products
which involve new columns are simply 0. Thus we can run the algorithm for the full-rank case, and
again can compute all of the ﬂ;’s.

Combining all of the multiplicative running time factors from above, the total running time of

the algorithm is poly(nk, A €matrixs 0), (Mmax/€matrix)k2, (1/ewts)k).

To make this intuitive algorithm rigorous, we need to understand how the errors in our estimates
and guesses affect the accuracy of our results when we solve for each /2;- and each ,u; Since we
only have approximate values to work with, an aspect of our approach is to use the “essential”
rank of M (as measured by its small singular values) instead of its true rank. By working with this
essential rank, we can prevent approximation errors from blowing up when we solve the necessary
linear systems.

We now state our main result about algorithm MIix-A-LoT. The actual algorithm and proof
of correctness are given in Appendices A and B.

Our main theorem describing the performance of Mix-A-LoOT is the following;:

Theorem 1 Let Z be a mizture of product distributions X, ..., XF with mizing weights ©', ..., x*

where each M;’ = E[Xg] satisfies |,u3| < tmax and Z;Zj is A(e,d)-samplable for all j # j'. For

3/2 . ..
anY €wts, Emeans, Eminwt = POLy(€, 1/n, 1/ pmax) where Ewts < emeansem/inwt/umax, with probability 1 — 0
algorithm MIX-A-LOT outputs a list of guesses ({7'}, {fi5}) such that at least one guess satisfies
the following:

1. |7 — 7| < ewts for alli=1...k; and
2. |ﬂ; — ,u3| < €means for all i,j such that ™ > €minwt-

The algorithm runs in time

(M1 [°C - X ((€/ o) © V). 6)

The proof of Theorem 1 involves a detailed analysis of the singular values of M; see Appendix B.

Remark 1. Note that Theorem 1 guarantees accurate estimation of u;'- only for those i such that
is not too small. It is easy to see that such a condition on 7 is unavoidable since if 7 is extremely
small than a reasonable size sample from Z will contain no draws from X¢ and thus will give no
information about ,u; Note that if 7 is extremely small then it should be possible to ignore X* and
still obtain an accurate approximation for the overall mixture Z; we make this intuition precise in
the following sections.

Remark 2. It is easily seen that algorithm Mi1X-A-LoOT in fact requires only pairwise independence
rather than full independence between the coordinates Xé- of each component distribution X°.

4 Bridging the Gap from Mix-A-LoT to Maximum Likelihood

In this section we set up two applications of the algorithm Mix-A-LOT: mixtures of product
distributions over {0, 1}", and mixtures of n-dimensional axis-aligned Gaussians.

We first note that to use algorithm Mix-A-LOT we must show that the pairwise products of
the coordinates of Z are A(e, §)-samplable. We do this separately for both cases below.

Once Mix-A-LOT has been run, we have a list of settings of distribution parameters, at least
one of which is accurate. To solve the learning problem, we must first convert each such setting
of parameters to an actual mixture of explicit distributions; then we must select one of these
candidate mixtures which has small KL divergence from the target distribution. A maximum
likelihood algorithm can do this latter step provided that a technical condition holds, namely all
candidate mixtures must have pdfs which are bounded above and below (we make this more precise
in Section 5).

Thus, to bridge the gap between algorithm MIX-A-LOT and the maximum likelihood algorithm,
we need a conversion procedure which has three properties: (i) each candidate parameter setting
is converted to an actual mixture distribution; (ii) any accurate setting of parameters is converted
into a mixture distribution whose KL divergence from the target is small; (iii) each distribution
which the procedure generates has a bounded pdf. In the rest of this section we describe such
procedures for mixtures of product distributions over {0, 1}" and mixtures of Gaussians.

4.1 Mixtures of product distributions over {0, 1}"

We now treat the case in which each X' is a product distribution over {0,1}", and so Z is a mixture
of product distributions over the Boolean cube. Note that in this case Z is completely specified by
the mixing weights 7¢ and the expectations M; = E[X;]

We first observe that each distribution Z;Z; is a distribution over {0,1} and hence is (e, 6)-
samplable with A(e, d) = poly(%, log %) Thus we can apply Theorem 1 with pmax = 1 and A(e,d) =
poly(%, log %) and obtain a list of guesses at least one of which is a good parametric estimate for
the 7"’s and p%’s of Z.

The necessary conversion procedure described above is simple but technical. Here we state a
theorem describing the result of executing the conversion procedure on the output list generated
by Mix-A-LoT. The conversion procedure is described in Appendix C.2 and the proof of Theorem

2 is given in Appendix C.3.

Theorem 2 Let Z be any unknown mizture of k product distributions over {0,1}". There is a
(n/e)O) . log § time algorithm which, given samples from Z, outputs a list of (n/€)°*) many
miztures of product distributions over {0,1}" with the property that with probability 1 — 0,

o cvery distribution Z' in the list satisfies (e/6n)" < Z'(z) <1 for all x € {0,1}", and

e some distribution Z* in the list satisfies KL(Z||Z*) < e.

4.2 Mixtures of axis-aligned Gaussians

Now we treat the case in which Z is a mixture of axis-aligned Gaussians X!, ..., X* over R". This
continuous setting is somewhat more complicated than the previous discrete setting; we begin by
defining some useful notation. As usual we write ué- to denote E[X}], and we now write (a§)2 to
denote Var[Xé-].

If we expect to learn Z, we will need its component parameters to be reasonable; for example,
if the variance in some dimension of a Gaussian in the mixture is not polynomially bounded, then
we would not expect to get an accurate estimate of that Gaussian’s mean in polynomial time. This
motivates the following definition:

Definition 3 We say that X is a d-dimensional (fmax, 02, 02y)-bounded Gaussian if X is a

d-dimensional axis-aligned Gaussian with the property that each of its one-dimensional coordinate
2 2 }

. . 2
Gaussians X; has mean jij € [~ pmax, Hmax| and variance (07)° € [07:, Tmax

2 02.x)-bounded Gaus-
sians Xl,...,Xk', where ,umax,alznax > 1 and O'IQHin < 1, and L will denote fimaxOmax/0min- Note
that Z is completely specified by the values 7, ,ué-, and (0;)2. Our learning algorithm for Gaus-
sians will have a running time that depends polynomially on L; thus, the algorithm is not strongly
polynomial.

Finally, in dealing with Gaussians we will need to define M = M (0) satisfying

Throughout this section Z will be a mixture of n-dimensional (fmax, 0>

/ X(z)dx < 0, |z| X (z)dx < 0, and / 22X (z)dx < 0
ol > M jal>M ja|>M

for all one-dimensional (Umax, 02,02,)-bounded Gaussians X. This can be achieved with M =
poly(L, 5).

4.2.1 Estimating means and variances. Algorithm MIix-A-LOT outputs parametric esti-
mates of mixing weights and means. For Gaussians, we additionally need estimates of variances.
To achieve this, we run Mix-A-LOT a second time on the random variable Z? (i.e. we simply square
the value of each coordinate of each draw from Z). This gives us estimates of the mixing weights
(again) and also the second moments, from which we can recover good estimates of the variances.
Having run Mix-A-LOT twice, we essentially take the “cross-product” of the two output lists to
obtain a list of candidates, each with mixing weights, means and variances. Proposition 20 (in
Appendix D.1) explains this process precisely, and proves that at least one candidate in this new
list has (with high probability) good estimates of all the parameters of Z.

4.2.2 Samplability of Gaussians. We will use algorithm M1X-A-LOT to obtain a list of para-
metric estimates of Z. Each estimate must contain both the means and variances of each component
Gaussian. Therefore, we must show that the random variables Z;Z; are (e, §)-samplable, and also
that the random variables Z?Z?, are \(e, d)-samplable. We do this in the following theorem, proved
in Appendix D.2:

2 02)-bounded
Gaussians. Then both the random variable W := Z1Z and the random variable W? are poly(L, %, log %)—
samplable.

Proposition 3 Let Z = (Zy,Z2) be a mizture of k two-dimensional (pmax, 0>

4.2.3 The conversion procedure. Once again, we must provide a conversion procedure as
described earlier. As before the necessary conversion procedure is simple but technical. Here we
state the analogous theorem to Theorem 2 for mixtures of Gaussians; the conversion procedure is
described in Appendix D.3 and the proof of Theorem 4 is given in Appendix D.4.

Theorem 4 Let Z be any unknown mizture of k (fmax, 02, O oax) -bounded Gaussians. Let M =

M (poly(1/n,1/L,€)). There is a (Ln/e)O*") . log 3 time algorithm which, given samples from
2

thax)-bounded Gaussians with the

Z outputs a list of (Ln/e)o(ks) many miztures of (fmax, 0>

min: 7
property that with probability 1 — 9,

o cvery distribution Z' in the list satisfies exp(—poly(n,L,1/e)) < Z'(z) < poly(L)"™ for all
x € [-M,M]", and
e some distribution Z* in the list satisfies KL(Z||Z*) < e.

Note that Theorem 4 guarantees that Z’'(z) has bounded mass only on the range [—M, M|,
whereas the support of Z goes beyond this range. This issue is addressed in the proof of Theorem 7,
where we put together Theorem 4 and the ML procedure.

8

5 Identifying a Good Distribution Using Maximum Likelihood

Theorems 2 and 4 each give us a list of distributions at least one of which is close to the target
distribution we are trying to learn. Now we must identify some distribution in the list which is
close to the target. In this section we give a simple maximum likelihood algorithm which helps us
accomplish this. This is a standard situation (see e.g. Section 4.6 of [11]) and we emphasize that
the ideas behind Theorem 5 below are not new. However, we were unable to find in the literature
a clear statement of the exact result which we need, so for completeness we give our own statement
and proof below.

Let P be a target distribution over some space X. Let O be a set of hypothesis distributions
such that at least one Q* € Q has KL(P||Q*) < e. The following algorithm will be used to find a
distribution QML € Q which is close to P: Draw a set S of samples from the distribution P. For
each Q € Q, compute the log-likelihood

AQ) =D (~1ogQ(x)).

TES

Now output the distribution QMY € Q such that A(Q) is minimum. This is known as the
Maximum Likelihood (ML) Algorithm since it outputs the distribution in Q which maximizes

arg maxqeg [[e5 Q).
We prove Theorem 5 in Appendix E:

Theorem 5 Let 3, a, € > 0 be such that a < B. Let Q be a set of hypothesis distributions for some
distribution P over the space X such that at least one Q* € Q has KL(P||Q*) < e. Suppose also
that o < Q(z) < B for all Q € Q and all x such that P(x) > 0.

Run the ML algorithm on Q using a set S of independent samples from P, where S = m. Then,
with probability 1 — &, where

6 < (IQ+1)-exp <_2mm>’

the algorithm outputs some distribution QMY € Q which has KL(P||QMY) < 4e.

6 The Main Learning Results

It is now easy for us to give our first main learning result, for learning mixtures of product distri-
butions over the Boolean cube:

Theorem 6 Let Z be any unknown mizture of k product distributions over {0,1}". There is a
(n/e)o(kB) . log% time algorithm which, given samples from Z and any €,0 > 0 as inputs, outputs
a mizture Z' of k product distributions over {0,1}" which with probability at least 1 — & satisfies
KL(Z||Z) <.

Proof: Run the algorithm described in Theorem 2. With probability 1 — § this produces a list
of T = (n/e)°*) hypothesis distributions, one of which has KL divergence at most ¢ from Z and
all of which put weight at least (¢/6n)™ on every point in {0,1}". Now run the ML algorithm
with a = (¢/6n)", B = 1, and m = poly(n, 1/e) In(T/§). By Theorem 5, with probability at least
1— ¢ it outputs a hypothesis with KL divergence at most 4¢ from Z. Thus with overall probability
1 — 26 we get a hypothesis with KL. divergence at most 4e from Z, and the total running time is
(n/e)P*) .1og(1/5). Replacing € by €/4 and § by §/2 we are done. []

A little more work is required for our second main result, on learning mixtures of Gaussians.

Theorem 7 Let Z be any unknown mizture of k n-dimensional (fmax, crfnin, 02,..)-bounded Gaus-
stans. There is a (Ln/e)o(ks) -log% time algorithm which, given samples from Z and any €,0 > 0
as inputs, outputs a mizture Z' of k ((max, 02,:,; O2ax)-bounded) Gaussians which with probability
at least 1 — & satisfies KL(Z||Z') < e.

Proof: Run the algorithm given by Theorem 4. With probability 1 — ¢ this produces a list of
T = (Ln/e)o(ks) -log% hypothesis distributions, one of which, Z*, has KL divergence at most e
from Z and all of which have their pdfs bounded between exp(—poly(n, L, 1/¢)) and poly(L)" for
all x € [—-M, M]".

We now consider Zj;, the M-truncated version of Z; this is simply the distribution obtained by
restricting the support of Z to be [~ M, M]" and scaling so that Zj; is a distribution. We prove
the following proposition in Appendix F:

Proposition 8 Let P and Q be any miztures of n-dimensional (fimax, 02 02ay) -bounded Gaus-

min’ ¥ max
sians. Let Pyr denote the M -truncated version of P, where M is chosen as in Theorem 4. Then

we have |[KL(Py||Q) — KL(P||Q)| < 4e 4+ 2¢ - KL(P||Q).

This proposition implies that KL(Zy;||Z*) < 7e.

Now run the ML algorithm with m = poly(n, L, 1/¢)log(M/d) on this list of hypothesis dis-
tributions using Zy; as the target distribution. (We can obtain draws from Zj; using rejection
sampling from Z; with probability 1 — ¢ this incurs only a negligible increase in the time required
to obtain m draws.) Note that running the algorithm with Z,; as the target distribution lets us
assert that all hypothesis distributions have pdfs bounded above and below on the support of the
target distribution, as is required by Theorem 5. (In contrast, since the support of Z is all of R",
we cannot guarantee that our hypothesis distributions have pdf bounds on the support of Z.) By
Theorem 5, with probability at least 1 — § the ML algorithm outputs a hypothesis ZM"“ which
satisfies KL(Zy||ZMY) < 28e.

It remains only to bound KL(Z||ZM%). By Proposition 8 we have

KL(Z||ZM") < 28¢ + 4¢ + 2¢KL(Z||ZM")

which implies that KL(Z||ZM%) < 33e. The running time of the overall algorithm is (Ln/e)o(k3) log 3
and the theorem is proved. |

7 Hardness of Learning Mixtures of Product Distributions

In this section we give evidence that the class of mixtures of k(n) product distributions over the
Boolean cube may be hard to learn in polynomial time for any k(n) = w(1).

Before describing our results, we recall some standard terminology about Boolean decision trees.
Recall that a decision tree is a rooted binary tree in which each internal node has two children and
is labeled with a variable and each leaf is labeled with a bit b € {—1,+1}. A decision tree T
computes a Boolean function f : {0,1}" — {—1,1} in the obvious way: on input = € {0,1}", if
variable x; is at the root of T" we go to either the left or right subtree depending on whether z; is
0 or 1. Continue in this fashion until reaching a bit leaf; the value of this bit is f(z).

Our main result in this section is the following theorem proved in Appendix G:

Theorem 9 For any function k(n), if there is a poly(n) time algorithm which learns a mizture
of k(n) product distributions over {0,1}™, then there is a poly(n) time uniform distribution PAC
learning algorithm which learns the class of all k(n)-leaf decision trees.

10

We note that after years of intensive research, no poly(n) time uniform distribution PAC learning
algorithm is known which can learn k(n)-leaf decision trees for any k(n) = w(1); indeed, such an
algorithm would be a major breakthrough in computational learning theory.! The fastest algorithms
to date [10, 2] can learn k(n)-leaf decision trees under the uniform distribution in time n'°8 %0,

&8 Conclusions

We have shown how to learn mixtures of product distributions over {0, 1}" and axis-aligned Gaus-
sians in polynomial time. The methods we use are quite general; we believe that they can be used
to learn mixtures of many other types of multivariate product distributions which are definable
in terms of their moments. (Of course, other technical conditions must hold, such as requiring
samplability.) For example, one should be able to adapt our methods to learn mixtures of products
of exponential distributions or beta distributions.

It is natural to ask if our methods can be improved to learn mixtures of distributions which are
not necessarily product distributions on R”. In particular, is it possible to learn non-axis-aligned
Gaussians efficiently in our model? Note that our techniques only require that that the coordinate
distributions be pairwise independent.

Finally, one may ask if it is possible to improve the efficiency of our learning algorithms — can
the running times be reduced to no(kz), to nP®) | or even n@Uogk)?

References

[1] S. Arora and R. Kannan. Learning mixtures of arbitrary Gaussians. In Proceedings of the 33rd
Symposium on Theory of Computing, pages 247-257, 2001.

[2] A. Blum. Rank-r decision trees are a subclass of r-decision lists. Information Processing
Letters, 42(4):183-185, 1992.

[3] A. Blum. Learning a function of r relevant variables (open problem). In Proceedings of the
16th Annual Conference on Learning Theory and 7th Kernel Workshop, pages 731-733, 2003.

[4] A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, and S. Rudich. Weakly learning
DNF and characterizing statistical query learning using Fourier analysis. In Proceedings of the
Twenty-Sizth Annual Symposium on Theory of Computing, pages 253—-262, 1994.

[5] T. Cover and J. Thomas. Elements of Information Theory. Wiley, 1991.

[6] M. Cryan, L. Goldberg, and P. Goldberg. Evolutionary trees can be learned in polynomial
time in the two state general Markov model. SIAM Journal on Computing, 31(2):375 397,
2002.

[7] S. Dasgupta. Learning mixtures of gaussians. In Proceedings of the 40th Annual Symposium
on Foundations of Computer Science, pages 634—644, 1999.

[8] S. Dasgupta and L. Schulman. A Two-round Variant of EM for Gaussian Mixtures. In
Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, pages 143-151,
2000.

! Avrim Blum has offered a $1000 prize for solving a subproblem of the k(n) = n case and a $500 prize for a
subproblem of the k(n) = logn case; see [3].

11

[9] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. J. Royal Statistics Soc. Ser. B, 39:1-38, 1977.

[10] A. Ehrenfeucht and D. Haussler. Learning decision trees from random examples. Information
and Computation, 82(3):231-246, 1989.

[11] Y. Freund and Y. Mansour. Estimating a mixture of two product distributions. In Proceedings
of the Twelfth Annual Conference on Computational Learning Theory, pages 183-192, 1999.

[12] S. Goreinov, E. Tyrtyshnikov, and N. Zamarashkin. A theory of pseudoskeleton approxima-
tions. Linear Algebra and its Applications, 261:1-21, 1997.

[13] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58:13-30, 1963.

[14] M. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM,
45(6):983 1006, 1998.

[15] M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. Schapire, and L. Sellie. On the learnability of
discrete distributions. In Proceedings of the Twenty-Siaxth Symposium on Theory of Computing,
pages 273-282, 1994.

[16] B. Lindsay. Mizture models: theory, geometry and applications. Institute for Mathematical
Statistics, 1995.

[17] S. Newcomb. A generalized theory of the combination of observations so as to obtain the best
result. Amer. J. Math., 8:343-366, 1886.

[18] K. Pearson. Contribution to the mathematical theory of evolution. Phil. Trans. Roy. Soc. A,
185:71-110, 1894.

[19] A. Ray. Personal communication, 2003.

[20] R. A. Redner and H. F. Walker. Mixture densities, maximum likelihood and the EM algorithm.
SIAM Review, 26:195-202, 1984.

[21] M. Seeger. Bayesian Gaussian Process Models: PAC-Bayesian Generalization Error Bounds
and Sparse Approximations. PhD thesis.

[22] D.M. Titterington, A.F.M. Smith, and U.E. Makov. Statistical analysis of finite mizture
distributions. Wiley & Sons, 1985.

[23] S. Vempala and G. Wang. A spectral algorithm for learning mixtures of distributions. In
Proceedings of the 43rd Annual Symposium on Foundations of Computer Science, pages 113—
122, 2002.

A Algorithm Mix-A-LoT

Algorithm Mix-A-LOT has access to samples from the mixture Z and takes as input parameters
Ewtss Emeans; Eminwt < 1, fhmax > 1 where:

® cyis 1s the desired accuracy for each mixing weight 7*;

12

® €neans 1S the desired accuracy for those ,u;’s which have 7 > eminwt;

3/2
® Cyis < emeanseminwt/:umax; and

® [max > 1 and \u;| < fmax for all j # j'.

Algorithm Mix-A-Lor:

1.

Theorem 1: Let Z be a mizture of product distributions X', ..., X* with mizing weights 7', ...,

Make guesses for the mixing weights #',...,#* €[0,1] to within “+eyis. If s of
the weights are guessed to be smaller than €pinwt — €wts,» €liminate them and
treat k as k — s in what follows.

. Make empirical estimates corr(j,j') for all correlations corr(j, ;') = E[Z;Z;]

=[ij - fiy for j# j' to within fematrix-

. Let M be the k xn matrix of unknowns (M;;) = (ﬂ;), and guess an integer

0 <t <k (the essential rank-deficiency of M).

. Guess t vectors tg_¢i1,--., U € [~1,1]F to within +epaprix in each coordinate and

augment)M with these as columns, forming M’.

. Guess a subset of exactly k column indices of M’; write these indices as

J =JUJ', where J corresponds to columns from the original matrix M and J’
corresponds to augmented columns. Make guesses {ﬁj i€ [kl,j € J} for the
entries of M in columns J to within +te€patix (where each guess covers the
range [—[hmax,Mmax)). Let]\7"7 denote the matrix of guesses for all the
columns in J. (See Figure 2.)

. Let J denote the columns of M other than .J, and let Mj denote the matrix

~

of remaining unknowns formed by these columns. Let B be the matrix with
rows indexed by J and columns indexed by J whose (j,j') entry is the Aestimate
corr(j,j') of fj-py if j'€J or is 0 if j'€ J'. Using the entries of B and
J/W\& (all of which are known), solve the system M}]/\/[\& — B to obtain
estimates [for the entries of Mj; (which are the unknown fi%’s), thus
producing estimates ﬁ; for all entries of M. (If the matrix]/\4\\’7 is
singular, simply abandon the current guess.)

. From the estimated values [}, compute the estimates [:ﬁ;/\/ﬁ'l for all 7,j.

(Note that 7' is never 0 since €minwt > €wts-)

. Output the guesses {7‘} and {ﬂ;}

Our main theorem describing the performance of Mix-A-LoOT is the following:

k

where each uj = E[XE] satisfies |u§| < pmax and Z;Zj is N(e,0)-samplable for all j # j'. Let

3/2 . 1/2
Ewts €means; €minwt < 1 < Umax be such that ews < emeanseminwt/ﬂmax- Let € = €means€ t/2’ let

minw

T = €/(12u?naxk5/2(kn + 1)), and let ematrix = €77. With probability 1 — § algorithm Mix-A-LoOT
outputs a list of guesses ({7'}, {ﬂ;}) such that at least one guess satisfies the following:

1. |7 — 7 < ewts for alli=1...k; and

13

t columns

Uk—t 15 - -+ 5 Uk
n columns of M which augment M
7 S PR il |
. |
|
k rows]| : : !
of M : . :
: : |
: : :
~1 J J' |
/‘Lk ------ /_Aﬁ /r/_\?__ K
columns of J k columns of J

n —+ t columns of M’

Figure 2: A depiction of the matrix used by Mix-A-LoT. For ease of illustration the columns J
of M are depicted as being the rightmost columns of M, and the columns J’ from the augmenting
columns g_¢41, ..., U are depicted as being the leftmost of those columns.

2. |/l§ — /‘3| < €means for all i,j such that ™ > €minwt-

The algorithm runs in time

O(k?) -
<ﬂ) A ((GmeanSGminwt/(nlu“maX))O(k)’6) . < :) .

€meansEminwt Ewts

B Proof of Theorem 1

The proof of Theorem 1 requires several concepts and facts from linear algebra. We review these
in Section B.1 and give the proof of Theorem 1 in Section B.2.

B.1 Linear algebra preliminaries

Let A = (ai;) be any k x n real matrix. Let o1 > --- > o}, > 0 be the singular values of A, and let
u1,...,ux be the corresponding left singular vectors of A (i.e. the columns of U where A = UXV).
Recall that

e the vectors ui,...,u; form an orthonormal basis for R¥:
— T o T
- z||2=1 - z||2=1 .

e 0] = max |z" All2 and o} = min lz" All2

The Frobenius norm ||Ar of a k x n matrix A is defined as ||A[r = /37, ;(Ai ;)% Recall that

or(A) equals the Frobenius norm distance from the k& x n matrix A to the nearest rank-deficient
matrix A, i.e.

or(A) = min |A-— AHF
rank(A)<k

14

The spectral norm ||Allz of a k x n matrix A is [[All2 = max), =1 [[Az[. It is well known that

|All2 = o1 and ||A||F = y/0? + -+ 4+ 0}; note that this implies ||Al]2 < ||A| F.
We will several times use the following proposition which we prove in Appendix B.3:

Prop081t10n 10 Let A be a kxn real matrix with ak A > €. Then there exists a subset of columns

C [n] with |J| = k such that ox(Ay) > €/\/k(n —k

The quantity oy (A) is useful in bounding the perturbation in the solution of a perturbed linear
system. We will also use several times the following theorem which we prove in Appendix B.4:

Theorem 11 Let A be a nonsingular k X k matriz, b be a k-dimensional vector, and x the solution
to Az = b. Suppose A’ is a k x k matriz such that each entry of A — A’ is at most €matrix i
magnitude, where k*epatrix < 0k(A). Let b be a k-dimensional vector satisfying |[b —b'||so < €rns
and let ' be the solution to A'x’ =V'. Then we have

6Inatrixk'5/2H$||oo + Erhsk‘l/Q
Ok (A) — Ematrixk?

In particular, if K > max{||z|ls0, 1} and ematrixk? < or(A)/2, then

lz = 2"lle <

€matrix T €rhs

z— || <4K°PK
o=/ < -

B.2 Proof of Theorem 1

Proof: First we analyze the running time of Mix-A-LOT. As described in Section 3.2, the overall
runtime of this algorithm is easily seen to be poly(n*, A(ematrix; 9), (umax/elnatrix)k2, (1/€wts)®) Since
we have that epatrix = (emeanseminwt/nkumax)o(k), this gives the claimed time bound.

Now we prove correctness by showing that some guess has the claimed properties.

In Step 1 there will be some accurate guess for the mixing weights 71, ..., #"* such that |7 —7?| <
ewts for all 7. For this guess, note that in the second part of Step 1 the algorithm will not eliminate
any product distribution X’ whose mixing weight 7! is at least €minwi. Since we make no claim
about the accuracy of ﬂ; for those i which have 7 < €minwt, We can ignore those i’s and assume
for the rest of this proof that 7 > epinwt and ¢ > €minwt — Ewts > 0 for all 7.

Since each Z;Z;: is A(e,d)-samplable, by the discussion in Section 3.1 we can assume that all
empirical estimates in Step 2 will be accurate to within d€patrix-

To analyze Steps 3-6 we must consider various cases depending on the singular values of M. In
each case we will show that the estimates produced for all ,&;'-’S are accurate to within an additive €.

Case 1: 01(M) < é. Since o1(M) is at least as large as the magnitude of the largest entry of M,
in this case we have |ﬂ;| < € for all 7,7. In Step 3 the algorithm will guess ¢ = k and in Step 4 the
algorithm will guess @1, ..., 4y to be exactly the standard basis vectors in RF (as long as 1/ematrix
is an integer, which we may take to be the case without loss of generality). In Step 5 the algorithm
will guess J = J’ to be {d1,...,u;} and consequently]\//7"7 will be the k x k identity matrix. In
Step 6 the matrix B will have all entries 0 so the algorithm will produce the estimate z% = 0 for
each fi}. But | ,&;\ < € for all ¢, j, so these estimates are correct to within an additive €, as desired.

Case 2a: 01(M) > ¢ and o;(M) > €matrix/7- In this case, in Step 3 the algorithm will guess ¢ = 0
and Step 4 will be vacuous. Since oi(M) > €matrix/T, by Proposition 10 there must exist some

15

set of k columns J = J such that ox(My) > ematrix/7T/k(n — k) + 1. In Step 5 the algorithm
will guess these columns and will guess their entries to within additive error f€patrix (note that
each true entry lies in [—fmax, fmax))- TO analyze the estimates ﬂ; obtained in Step 6 we use

Theorem 11. We have fipax > max{||fij| s, 1}, and by the definition of 7 we have Ematrink? <
(1/2)€ematrix/ T/ k(n — k) + 1 < 0,(M7)/2. Hence by the second part of the theorem, the additive
error in the estimates ,&3- produced in Step 6 is at most

4]{}5/2/_Lmax €matrix T €Ematrix _ 8k5/2 /k(n _ k) + 1 fmaxT < €,

€matrix/TV k(n — k) + 1

as desired (the last inequality follows easily from the definition of 7).

Case 2b: 01(M) > € and o;(M) < €matrix/7- This is the last and most complicated case. Since
in this case o1(M) > € and op(M) < ér%~1 (by definition of epatrix), it follows that there must be
some 0 < t < k such that

O M
k—t+1(M) <r (1)

Ok—t (M)

If we take the largest such value ¢ we must in addition have

op—t(M) > al(M)Tk_t_l > erft=l S grh-l = €matrix/T- (2)
In Step 3 the algorithm will guess this t. Let ug—¢41, ..., ug be the left singular vectors of M corre-
sponding to its smallest ¢ singular values. In Step 4 the algorithm will make guesses 4g_¢11, ..., Uk
for each of these vectors which are accurate to within epatrix in each coordinate. Let M’ denote
the matrix M with the true singular vectors uyg_t11,...,ur adjoined as columns. We have the

following proposition which we prove in Appendix B.5:

Proposition 12 Let M be a k x n matriz and let ug_¢i1,...,u; and M’ be as described above.
Then we have

op(M') > min{1, oy (M)}, (3)
and for allk —t+ 1 < £ < k and for all columns fi1, ... s of M we have

| - we| < op—py1(M). (4)

Applying Proposition 10 (noting that M’ may have up to n + k columns), we may conclude that
there is some subset J of M"’s columns with || = k such that

op(M%) > op(M')/VEkn + 1 > min{l, o5_+(M)}/Vkn + 1. (5)
By (3) and (2) we have that og(M’) > €patrix/T, S0 we also have
O'k(M‘lj) > 6ma‘crix/T\/ kn + 1. (6)

Write J = J U J' where J are the columns from M and .J’ are the columns from the augmented
ug’s. In Step 5, there will be a correct guess for 7 and accurate guesses ﬂ; for alli € [k] and j € J

to within fepatrix Of the true values g; Note that the accurately guessed entries of M 7 are all
within +eyatrix Of the true entries M Z7

Let J be the columns of M other than J and let B be the true matrix M}:M "7 Consider
any row Bj, j € J, whose columns (entries) are indexed by indices j/ € J. For indices j' €
J we have B;j = [ij - fij; hence the estimate B%i = corr(7,;5') in Step 6 of the algorithm is

16

accurate to within +epatrix. For indices j' € J' we have |Bj /| = |fij - uj| < op_441(M) by (4).
Hence the estimate Ej,j/ = 0 is accurate to within +o;_¢+1(M). Thus we conclude that for
every row j € J, ||Bj — Bjlloc < max{ematrix, 0k—t+1(M)} < €matrix + TOk—t(M), where the last
step uses (1). As before we use Theorem 11 to bound the error of the estimates 4 obtained
in Step 6. As in the analysis in Case 2a, fmax > max{||fij| s, 1}, and the definition of 7 gives
ematrixk? < (1/2)€matrix/TVhn + 1 < 03,(M’;)/2 (where the last inequality uses (6)). Hence by the
last part of Theorem 11 the additive error of the estimates is at most

€matrix T €matrix + Tak—t(M) 2€matrix + TOk—¢ (M)

4k5/2 max = 4k5/2 max
s ox (M) : ox (M)
(M
< 4 |2rvEn 14 20D g

or(M’;)

where the inequality uses (6).

We now have two cases depending on the value of min{1, ox_+(M)}. If o—+(M) < 1 then by
(5) we have 7oy ¢(M)/ox(M";) < 7vkn + 1 and hence (7) is at most 12k%2 s ™V/En + 1 which
is easily seen to be at most € by the definition of 7. On the other hand, if o;_;(M) > 1 then by (5)
we have vVkn + 1 > 1/03,(M’;) and hence

1ok t(M)/or(M7) < Topo(M)VEn + 1 < TpmaxVnvVkn + 1

where the last (crude) inequality holds since o_(M) < 01(M) = || M||2 < ||M || which is at most
Vknpimax since each of the kn entries of M is at most pimax in magnitude. We thus have that (7)
is at most

4552 iynax [27\/1m F 1+ Thmax VERVER + 1| < 45Y 2 ftrnax |27 ftamax (k. + 1)] < &

as desired, where the last inequality follows from our definition of 7.

We have now completed all the cases and shown that in every case, the algorithm produces
estimates ﬁ; at the end of Step 6 that are accurate to within an additive €.

Finally we consider Step 7 of the algorithm. We have guesses for all 7 which are accurate to
within +eyts and we have guesses for all [Lé accurate to within +€. Since the function g(z,y) = y//z
satisfies

0 3/2 0 1/2
sup ‘3—9(90,11)‘ = fimax /2600, and sup ‘gg(w,y)‘ < 1epltn
wekminwtyl} T we[eminwtvl] y
yE[—Hmax,#max] yE[_#mam#max]

the Mean Value Theorem implies that in Step 7 we obtain guesses /:L;- for all ,u;- which are accurate

to within additive error ,)
3/2 ~ 1/2
6VVtS'umaX/26111invvt + 6/6minwt'

By the definition of € and the fact that eyt < emeansef’rﬁwt /Pmax, both summands are at most

€means/2 and the proof is complete. |

B.3 Proof of Proposition 10

Recall Proposition 10:

17

Proposition 10: Let A be a k x n real matriz with oi(A) > €. Then there exists a subset of
columns J C [n] with |J| = k such that ox(Ay) > €¢//k(n — k) + 1.

(We note that a much weaker version of Proposition 10 follows easily from the Cauchy-Binet
theorem, which states that the squared volume of A equals the sum of the squared volumes of A’s
k x k submatrices.)

Our proof of Proposition 10 uses the following result due to Goreinov et al. [12]. For complete-
ness we give their simple proof below.

Theorem 13 [12] Let M be a k x n real matriz with orthonormal rows. Then there is a k x k

submatriz My which has o, (My) > 1/y/k(n — k) + 1.

Proof: For a k£ x k matrix @ let Vol(Q) denote Hle 0;(Q). Without loss of generality we may
assume that the k x k£ submatrix P of M which has maximum volume over all k£ x k submatrices
is obtained by taking columns 1,..., &k of M. Since Vol(Q) = |det(Q)|, it follows that the k& x k
submatrix of maximum volume in the matrix

M=P'M=[IT]

is the identity matrix located in columns 1,..., k. This implies that \Mm| < 1 for all 7, j; for if

|]\;[”| > 1 then by swapping columns 7 and j the first £ columns would give a submatrix whose

volume is greater than 1. Hence each entry of the k x (n — k) matrix 7" has magnitude at most 1,

and we have
1

o (P)

= 1(P™Y) = o1 (M) = | M2 < \/IT13 + 713 < \JITI3 + 1 < V(n — k) + L

where the first equality is a standard fact, the second holds since the rows of M are orthonormal,
and the first inequality follows from the definition of || M||2. This proves the theorem taking My = P.
|

Proof of Proposition 10: By the singular value decomposition we have A = UXV where U
is a k X k matrix with orthonormal columns, ¥ is a £ x k diagonal matrix with diagonal entries
01,...,0k, and V is a k x n matrix with orthonormal rows. Let V; be the k x k& submatrix of V

whose existence is asserted by Theorem 13, so ox(Vy) > 1//k(n — k) + 1. We have o4(U) = 1
(since the rows of U are orthonormal) and oy (X) = oy, so

or(UEVy) > oy (U)og(X)o(Vy) > ok /VE(n — k) +1

where the inequality holds since o0, (PQ) > o (P)oi(Q) for any kxk matrices P, @ (this is easily seen
from the variational characterization o (P) = min|g = [|Pz||.) The theorem follows by observing
that UX V7 is the k x k submatrix of A whose columns are in J. []

B.4 Proof of Theorem 11
Recall Theorem 11:

Theorem 11: Let A be a nonsingular k X k matriz, b be a k-dimensional vector, and x the solution
to Az = b. Suppose A’ is a k x k matriz such that each entry of A — A’ is at most €matrix i
magnitude, where k?*epnatrix < ox(A). Let b be a k-dimensional vector satisfying ||b — b'||co < €rhs
and let ' be the solution to A'x’ = V. Then we have

/ 6rnatrixk5/2H$||oo + Erhskl/2
[z — 2l[oc < 3
Ok (A) - ema,trixk

18

Theorem 11 follows directly from the following theorem by comparing the Lo and Ly, norms.

Theorem 14 Let A be a nonsingular k x k matriz, b be a k-dimensional vector, and x the solution
to Az = b. Suppose A’ is a kxk matriz satisfying ||A—A||p < €1 < ox(A). Let V' be a k-dimensional
vector satisfying ||b — b'||2 < ez and let 2’ be the solution to A'x’ =1b'. Then

, e1]|zll2 + €
— < — = =,
Iz =2 < or(A) — e1

Proof of Theorem 14: We first note that since ||[A — A'||p < €1 < o}, we have rank(A’") = k so
the vector z’ is well defined.
Let E=A—A"and n=0b—10. We have
t = A=AV 4+ =ATTAY + AT =T -A'E)d + Ay
= o —A7'Ed + A7y,
Consequently we have
lz —a'lla = [|AT Bz’ — A7 hy|l2
AT ||z + | A7 0]l
A7 2| Ell2ll2"ll2 + 1A~ 2 l1mll2
A= (BN F |2]2 + [1n]l2)
1A 2 (erll2"ll2 + e2) -

Since ||[A7Y|o = 01(A7) = 1/0%(A) we have

VAN VAR VAN VAN

1 1
!/ / /

= |2 < ——— (e||r']j2 +€2) < €1|lr — ' ||2 + €1]|x||2 + €2

Iz~ all2 < oy (alle’lz +e2) < s (erlle = 'lls +ealelz +)
from which the theorem follows. |
B.5 Proof of Proposition 12
Recall Proposition 12:
Proposition 12: Let M be a k X n matriz with columns fi1, ..., in. Let up_s11,...,u be the left
singular vectors corresponding to the smallest singular values og_¢41,-..,0% of M. Let M' be M
with the vectors uk_ty1, - .., u adjoined as columns. Then

o (M) > min{1,op_4(M)},
and for all k —t+ 1 < £ <k and for all columns fi1, ...k, of M we have
| - ug] < g1 (M).

Proof: Recall that the singular value decomposition gives us M = UXV where U is a k X k
matrix with orthonormal columns wq,...,ux; X is a k x k diagonal matrix with diagonal elements
01> --->0 >0;and V is a k X n matrix with orthonormal rows. It follows that for any vector
r € R¥ we have

loT M2 = 022 Tur)? + -+ oF (@)2

19

Let R denote the k x t matrix whose columns are ug 441, ..., ux, S0 we have M’ = [M R]. It
is easily verified that the left singular vectors of R are simply ug_¢41,...,ur, while the singular
values of R are all 1. Consequently we have

" RI* = (& up—141)* + - + (2" up)?
for any z € R*.
Now recall the variational characterization of ox(M’), namely (M) = miny = [|z7 M’|.

Since ||z T M'|| = \/[|=T M|]2 + ||z T R||?, we have

op(M') = ”II|1|iIl1 \/U%(xTu1)2 4ot o2 (aTug)? + (2 Tup—p1)? + -+ + (2 Tug)2 (8)
x||l=
Since u1, ..., us form an orthonormal basis for R¥ we have that (z7u1)? + -+ (zTux)? = 1 for

all ||z]| = 1. If we let ap = (2 Tup_¢41)% + -+ + (2 Tug)?, then the quantity inside the square root
of (8) is at least o2_,(1 — a;) + ay. This proves the first inequality of the proposition.

For the second inequality, we observe that fi; - uy = uzU Yv; where v; is the j-th column of V.
Since U is orthonormal and ¥,y = oy, we thus have

lug USvj| = |ogvej| < o0 < op—41

where the first inequality holds since the rows of V' are orthonormal and hence each entry of V
must be at most 1 in magnitude. |

C Processing candidate mixtures of {0,1} product distributions

In this section we consider Z to be an unknown mixture of product distributions over {0,1}". Our
goal is to prove Theorem 2, which allows us to take a list of candidates output by Mix-A-LoT,
and convert it into a list of candidates that meets the conditions of the ML procedure.

C.1 Some useful propositions

Here we give some useful elementary propositions which will be used in the proofs of Theorem 2
and its supporting claims.

Proposition 15 Let P and Q be discrete probability distributions satisfying |P — Qllco < € and
Q > a. Then KL(P||Q) < ¢/a.

Proof: Using the elementary inequality |Ina — Inb| < 1n|if1$|b} which holds for all a,b € [0, 1], we

have KL(P[|Q) = X cqupp(p) P(2) (InP(z) —In Q(z)) < X P () smmpmamy < €/ u

Proposition 16 Let P and Q denote distributions over {0,1} with means p and q respectively.
Suppose |p—q| <e. Let 0 < a < 1/2. Let Q' denote another distribution over {0,1} with mean ¢/,
where

« if g <
¢d={1—-a if¢g>1—a
q 0.W.

Then, KL(P||Q') < max{e/a,2a}.

20

Proof: Suppose |p—¢'| > |p—q|. Then, ¢ # ¢ and so either ¢ = «, or ¢ = 1 — a. In the first case,
q > q,and so p < ¢ < ¢ = a. In the second case, ¢ < ¢q, and so p > ¢ > ¢ = 1 — a. Therefore,
at least one of the following hold: (i) [p — ¢'| < € or (ii) ¢ = a and p < ¢, or (iii)) ¢ =1 -«
and p > ¢. In (i), since Q" has weight at least a on both 0 and 1, we have by Proposition 15,
KL(P||Q') < ¢/a. In (ii) and (iii), we have KL(P||Q') <In = < 2a. []

Proposition 17 Suppose P1,..., Py and Qu,...,Q, are distributions satisfying KL(P;||Q;) < ¢
for alli. Then KL(Py x -+ X Pp||Q1 X - x Q) < >0 €.

Proof: We prove the case n = 2:

KL(P1 x P2||Q1 x Q2) = //P1)Pa(y g g;gQ(())dxdy
P1($) Pz(y)
= Pi(z)Paf dxd Pi(dxd
//) y*// ! " Qay) Y
~ [PaKL®i|Qudy + [Pr(a)KLP|Qa)ds
< €1+ €.
The general case follows by induction. |

Proposition 18 Suppose ©t, ..., 7%, A1, ..., ~¥ are mizing weights satisfying Sl =39 =1,
[Tt — | < € for all i, and v* > €3 for alli. Let T = {i : ™ > e3}. Suppose P',... . P* and
Ql,...,QF are distributions where KL(P!||Q?) < € for all i € T. Then, letting P denote the
w-mizture of the P'’s and Q the y-mizture of the Q'’s, for any e4 > €1 we have

€1

KL(P||Q) < € + kes - max KL(P||Q') + kegIn % + .
i €2 €4 — €1

Proof:
1P ; PZ
KLPlQ) — [(Zw P in & 2 o
/ Z P In - - Q’ (by the log-sum inequality [5])
= ;WZ/ Pi111@+Piln:—z>
- ZwiKL(Pi\|Qi)+Zwiln:—:
— <z7riKL(Pi||Qi)> + [D AKLEPYQY) | + > mZ—:. (9)

i€T igT

IN

For the first term of (9), we have

d AKLPYQ) < e

€T

21

For the second term of (9), we have

Y mKLPQ) < ke - max{KL(P'||Q")}.
ieT ’
For the third term of (9), letting 7’ = {i € Z : 7 > ¢}, we have
oot R ot
Zﬂlln—i:Zﬂlln—i—i—Zﬂlln—i. (10)
i T e T ier v
For the first sum in (10) we have

ot €
Z 7' In — < kesIn “
iz Y €2

Since ' > 7’ — ¢; for all 4, we have that for all i € 7/

i
T €4 €1
= > =1+ .
Y €4 — €1 €4 — €]

Hence for the second sum in (10), we have

. i .
Zmnlgzm(H g)S o
v €4 — €1 €4 — €1

1€L’ 1€L’

Putting all the bounds together the proof is done. |

C.2 Processing the candidates

The following theorem defines a process that converts a single estimate for the 7#’s and pé-’s of Z to
a mixture of product distributions over the cube that has minimum mass on every point in {0, 1}",
as required by the ML procedure. In addition, it guarantees that if the parametric estimate was
accurate (close to the true parameters of Z), then the process outputs a distribution with small KL
divergence relative to Z. This will be a key step in the proof of Theorem 2.

Theorem 19 There is a simple efficient procedure A which takes values €means and 7', ﬂ; as inputs
and outputs a mizture Z of k product distributions over {0,1}" with mizing weights * and means
1 satisfying

o Y F 7 =1, and
® Qcybe *— 671;1/6221115 < Z(I) <1 forall x € {0, l}n

Furthermore, suppose Z is a mizture of k product distributions on {0,1}" with mizing weights

b ..., 7" and means u}, and that the following are satisfied:

o fori=1...k we have |r* — 7| < eys, and

e for all i,j such that ™ > €ninwt we have \,ug — [‘;‘ < €means-

22

Then Z will satisfy ‘
KL(Z| |Z) < 77cube(6meanSa Ewts eminwt)a

where
_ 1/2 1 1/3
ncube(emeanSa Ewts; eminwt) =n- (2€means) + kéminwtn (In2 + 5 In + €wts:
€means
Proof: We construct a mixture Z of product distributions Z!,...,Z* by defining new mixing

weights 7’ and expectations ,u; The procedure A is defined as follows:

1. Let « = e}I{eQans. For all 7, j, set

a if 4 < a
fj=9 1-a if g >1 -«
Iy 0.W.

2. Foralli=1,...,k let
i . if T > ewts
™= ep ~4
Ewts I T < €wts

Now let s be such that s Zle i’ = 1, and take 7* = sit’.

Consider a particular ué- and u; where i is such that 7 > epinwt. Let P and Q denote

the distributions over {0,1} with means ,u;'- and ;23-, respectively. By Proposition 16, we have
KL(P||Q) < max{eémeans/a, 2a} = 2ell% . Each Z7 and Z' is the product of n such simple distri-
butions over {0,1}. Therefore, by Proposition 17, we have KL(Z'||Z) < n - (2€Iln/3ans) for all ¢ with
g 2 €minwt-

We clearly have Z(x) < 1 for all z. By construction, we also have Z(x) > o for all z € {0,1}",
and hence Z(z) > acupe := o™ for all z. It follows that for all i = 1,..., k we have

oL) 1 1
KL(Z||Z') < H(Z'") +In — < n(In2+In—).
« «

Our goal is to apply Proposition 18 to bound KL(ZHZ); to satisfy the conditions of Proposition
18 we must upper bound |7? — /| and lower bound 7 for all i. We now do this.

If 7' > €wts then we have 7' = 7% so |7° — 7| < ewts. On the other hand, if 7% < eyt then it
must be the case that 7 < 2ey¢5 S0 we again have |7° — 7| < €yts. Since Zle =1 it follows that

k
w1
1=1

< Kewts (11)

and thus i
Z 7TZ € [1 — kéwts, 1 + kewts]-
i=1

By definition of s this gives

c [1 1]
S s .
1+ kewts 1 — kewts

23

Multiplying inequality (11) by s and recalling that s Ele it = 1, and eys < 1/(2k), we obtain

ke
|1 — 5] < skegwts < _ twts < 2ke€gts.
1 — kfwts

Thus, we have

A L [A
< ewts + |7 — 7
= ewts +|(1 — 8)i’|
< ewts + 2kewts| 7
< ewts + 2kewts;

certainly, this gives |7Ti — 7'ri| < 3kewts. To lower bound 7, we note that since 7 > eys for all i, we

have

PR > s > Ewts > Ewts.
1 + kEWtS 1 + kéwts 2

We are now ready to apply Proposition 18 with the following parameter settings:

. . . 1/2, 1/2
€1 = 3k€tha €2 = 6wts/2a €3 = €minwty; €4 = €ygy E=T (2€means)-

Proposition 18 implies:

. 1 1
KL(Z||Z) < n- (261111/3&“) + keminwtn <ln2 + = In > +

2 €means

1/2

k 1/21 6W/ts 3k‘fwts

wts 11 /2 + 1/2 .
Ewts Ets — SKEwts

Considering the terms of the expression in brackets above, we have that

1/2
/21 i:kelmln 2 113

— < e
wts eth/Q wts E}N/ti 2 wts
and -)
Ewt 1/2 1/3
% < 6k6w/ts < Eew/ts‘
Ets — SFeEwts
Hence
; 1/2 1 1/3
KL(Z||Z) < n- (2¢;gns) + E€minwtn | In2 + = In + €y
2 €means

24

C.3 Proof of Theorem 2

With all the tools of the previous sections, we are now ready to prove Theorem 2:

Theorem 2: Let Z be any unknown mizture of k product distributions over {0,1}". There is a
(n/ﬁ)o(k3) . log% time algorithm which, given samples from Z, outputs a list of (n/e)o(kB) many
miztures of product distributions over {0,1}" with the property that with probability 1 — 0,

o cvery distribution Z' in the list satisfies (e/6n)" < Z/'(z) <1 for all x € {0,1}", and

e some distribution Z* in the list satisfies KL(Z||Z*) < e.

. . 2 2
Proof: Let ¢,06 > 0 be given. Run MIX-A-LOT with €means = 367, €minwt = 55,7 €wts =

€°/1000k?n°, and pmax = 1 (note that ey < emeanseiﬁwt /Pmax as required by Theorem 1). This
takes time (n/e)o(kg) log(1/d). We get as output (n/e)o(kg) many candidate parameter settings
({7}, {#5}) with the guarantee that with probability 1 —d at least one of the settings satisfies

e for i =1...k we have |7° — 7| < €y, and
e for all 4,5 such that 7 > epinwt we have | ,ué- - g;| < €means-

We now pass all of these settings through Theorem 19. It follows that the resulting distributions
each satisfy e&/ﬁam = (e/6n)" < Z'(z) < 1 for all z € {0,1}", and one can check that with our
setting of parameters ncupe < €, so that one of the resulting distributions Z* satisfies KL(Z||Z*) < e.
|

D Processing candidate mixtures of Gaussians

In this section, we will prove theorems necessary to use algorithm Mix-A-LOT on mixtures of
Gaussians, and to apply MIX-A-LOT to learn mixtures of Gaussians.

Throughout this section Z will be a mixture of n-dimensional (imax, 02, 0245)-bounded Gaus-
sians X!, ..., X* where Lmax; afnax >1 and afnin <1, and L will denote pimaxOmax/Tmin-

D.1 Using Mix-A-LOT on both means and variances

In this section we show how to use Mix-A-LOT twice to obtain a list of parametric estimates of Z,
one of which is accurate for all the parameters of Z:

Proposition 20 Let Z be a mizture of n-dimensional (fimax, Omins Omax) -bounded Gaussians X!, ,Xk
with mizing weights w, ..., 7", means ,u} and variances (a§)2. Then there is an algorithm running

n time

(- >0<’“> <numaxam>o““3) os (1)
. _— . Og —
Ewts €means€minwt)

O(k)
which, with probability at least 10, outputs a list of (ﬁ) . <W$ many guesses

€means€vars€minwt

{7}, {ﬂ;}, {(&;)2}) such that at least one guess satisfies the following:

%)
)O(k

1. |7 — 7' < ewts for alli=1...k; and

2. |ﬂ; — ,u;| < €means and |(6§-)2 — (U§)2| < €vars ‘= 2€means for all i,7 such that ™ > eminwt.

25

Proof: Run the algorithm Mix-A-LOT with the random variable Z, taking the parameter “6” to
be 0/2. By Proposition 3 (proved in the next subsection) this takes at most the claimed running
time. Mi1xX-A-LOT outputs a list List1 of candidates for the mixing weights and expectations, List1
=[..., (7, ﬂ;), ...], which with probability at least 1 — ¢/2 has a “good” entry which satisfies

1. |7 = 7| < €yts for all i = 1...k; and
2. |ﬂ; — ,u3| < €means for all 7, j such that 7 > eninwt.

Define (s;'-)2 = E[(X;)Q] = (03'-)2 + (M;)Q Run the algorithm Mix-A-LoOT again on the squared
random variable Z2, with “Umay” = 02, + 12, and “6” = §/2. By Proposition 3, this again takes
at most the claimed running time. This time M1X-A-LOT outputs a list List2 of candidates for the
mixing weights (again) and second moments, List2 = [..., <7Qr’, (59)2),...], which with probability

J
at least 1 — 0/2 has a “good” entry which satisfies
1. |72r1 — 7| < eyt for all i = 1...k; and

2. |(§§)2 — (52)2\ < €means for all 7, j such that 7 > eninwt.

We now form the “cross product” of the two lists. (Again, this can be done in the claimed
running time.) Specifically, for each candidate (7, ﬂ;) in Listl, we create a new candidate using
every possible candidate (7, (8%)%) in List2 by forming (7%, if, (6%)% := (8%)* — fi’}) (we discard 7).
Note that when we have the “good” candidate from List1l matched with the “good” candidate from
List2, the resulting candidate indeed satisfies all of the conclusions of the theorem (the error in
(67

j)2 is at most €means + €means = Evars from the triangle inequality).]

D.2 Proof of Proposition 3: Samplability
Recall Proposition 3:

Proposition 3: Let Z = (Z1,Z2) be a mizture of k two-dimensional (Hmax, T2, Toax)-bounded
1

Gaussians. Then both the random variable W := Z1Z and the random variable W? are poly(L, <, log %)—
samplable.

Proof: We shall prove the proposition for W?; the proof for W is similar but slightly simpler.
Let the mixing weights be !, ... 7% and suppose that Z; is a mixture of le-, ey X? forj =1,2.
Let s = E[W2].
Recall the quantity M = M () and take C = M* = poly(L/0). Let W2 denote the random
variable W2 conditioned on the event [W?| < C. Observe that

Pr[W?2 > C] = Pr[W? > M*| < Pr[|Z;] > M| + Pr[|Zs| > M] < 26, (12)

using the fact that Z; and Zg are (fimax, 02 O 2ax)-bPounded Gaussians and the definition of M.

We shall show that [E[WZ2] — s| < ¢/2. Our sampling algorithm for W? will be to sample
from W% using rejection sampling and to compute and output the empirical mean of W% Since
the random variable W% is bounded in the range [—C,C], by the Hoeffding bound if we take
poly(C'/e,log(1/5)) = poly(L/ed,log(1/5)) samples from W2 then with probability 1 — & the em-
pirical mean of W2 will be within €/2 of the true mean E[W%]. (Technically, we must also note
that since @ is much smaller than 1 we can do rejection sampling with very little slowdown.) Thus
it remains to show that indeed |E[(W¢)?] — s| < €/2.

26

Observe that E[(W)2 = Y8 7E[(W¢)? | i is chosen] and s = Y. | 7/E[W? | i is chosen].
Thus by convexity it is sufficient to prove |E[(X})2(X4)? | (X4)?(X%)? < O] -E[(X})%(X5)?]] < ¢/2
for all ¢ = 1...k. For simplicity we now write X; = Xé- for j = 1,2. Recall that X; and X5 are

2

one-dimensional (fmax; 02,;,,s O2ax)-bounded Gaussians.

Let p(w) be the pdf for the random variable (X;)?(X2)?. Note that

‘/|w|>c wp(w)dw

— / / 1{x%x%ZC}l‘%$%Xl(%1)X2(I2)d$1dl‘2
x1 Jxo

S / / (1{|x1|201/4}+1{|x2|201/4})x%x%Xl(xl)Xg(xg)dxldmg
x1 Jxa

= / :L‘%Xg(a?g)dl‘g/ I%Xl(l'l)dl'l
T2

|1 |>M

+/ x%Xl(xl)dxl/ I%Xg(xg)dxz
@ 2| > M

= E[(XQ)Q]/| ‘>Mx%X1(I1)d$1

FEI(X))?] / 22X, (22)ds

lza|>M

< 217 </| |>M»”U%X1(I1)d$1+/| ‘>MI§X2(»”U2)CZ932>
1|2 M T2|2

< 4012, (13)

using the definitions of M and L.

Let n = 1/(1 — Pr[(X1)?(X2)? > C]) — 1, so 7 < 30 using the same argument as in (12). Note
that the pdf pc(w) for the random variable (X1)?(X3)? conditioned on |(X1)?(X3)?| < C' is given
by

_{ A+mp(w) if [w| <C,
po(w) = { 0 if [w] > C.

Let t = E[(X1)%(X2)?); finally, we can show that |E[(X1)?(X2)? | (X1)%(X2)? < C] —t| < €/2, as
desired:

B[(X,)2(X2)? | (X1)%(Xa)? < O] —] = /R wpo(w) — /R wp(w)’

— |a+n) /|w|<c wp(w) — /w|<c“’p(w) - /|w>cwp<w>

= |y /|w|<c wp(w) — /MZC wp(w)
< nt+60 < (30)poly(L) + 0,

once more using the definition of M (note: C' > M). Choosing 6 = poly(e/L), we get that this is
bounded by €/2; consequently M = poly(L/e) and the sampling time is as claimed. []

27

D.3 Processing the candidates

In this section we define a process (similar to the one for product distributions over {0, 1}") that
converts a single estimate for the 7'’s, ,ué-’s and O';-’S of Z to a mixture of Gaussians that has bounded
mass on every point in [—M, M|", as required by the ML procedure. It also guarantees that if the
parametric estimates are accurate (close to the true values for the unknown Z), then the process
outputs a distribution with small KL divergence relative to Z.

We begin by stating some basic facts about the KL divergence of two Gaussians, the first of
which can be found in, e.g., [21]:

Fact 21 Let P, Q each be a one-dimensional normal distribution with means and variances up, op
and pq,oq respectively. Then we have

1, (94 (wp—pQ)*+op — ot
KL(P(|Q) = ;In (U—Q) + P9

2
20Q
An easy consequence is:

Corollary 22 Let P,Q be one-dimensional Gaussians as above and suppose that |up — pq| <

2 2 2 2
€meanss |0p — O'Q| < €vars; and op > 0. Then

KL(PHQ) < Gvars + G?neans _'_ 6VaI‘S .

=53 2
2O—min 2(Umin - GVHTS)
Proof: We have)
2
U_;Q < O min 2_ €vars =1+ 6\12ars
Op O min min
which implies
2
1 In UfQ < €vars
2 | =5 2
2 op 2050
The bound easily follows observing that 0(2;2 > UIan — €vars- |

We now give the main theorem of the section:

Theorem 23 There is a simple efficient procedure A which takes values fri,ﬂ;‘.,ﬁj and M as in-

puts and outputs a true mizture Z of k (Pamaxs 02, 02 0x) -bounded Gaussians with mizing weights
=1 k

T, ..., 7" satisfying
o Zle 7t =1, and
® Qgauss < Z(l') < /Bgauss Jor all x € [_Mv M]n7

where

[1 < —2M?
« = — - X _—
e Y T W=

Furthermore, suppose Z is a mizture of (fimax, crfnin, 02 .)-bounded Gaussians with miring weights
b ..., 7*, means 1. and variances (a;-)2 and that the following are satisfied:

)] Buauss = 1/(V 20"

o fori=1...k we have |r* — 7| < ey, and

28

o for all i,j such that ™ > epinwt we have |,u; - g;| < €means and |(cr§-)2 — (&;)2| < €vars;

then Z will satisfy .
KL(Z| ‘ Z) < Ngauss (Gmeans, €Evars Ewtsy 6minwt)a

where) . 2
€ € +e€ o + 2
Mgauss = 10 (2 Vgrs T 2 meQanS = > + keminwt 'n |:max2—iumax:| + 6\1;v/t§
Umin (Umin - Evars) Umin
Proof: We construct a mixture Z of product distributions Z',...,Z* by defining new mixing

weights 7, expectations ,u;, and variances (c'ré-)? The procedure A is defined as follows:

1. For all 4, j, set .
4 —phmax if ﬂ; < —Mmax
,u; = Hmax if /l; > Umax
15 0.W.

2. For all i, 5 let

Omin if g, < Omin
d;- =< Omax Iif 0% > Omax
ot 0.W.

3. Foralli=1,...,k let . .
i T > e
Ewts 1 T < €wts
Let s be such that s Zle it = 1. Take 7' = sit’. (Note that this definition of 7 is identical
to what was done in the proof of Theorem 19 for product distributions over {0, 1}".)

Consider some particular ,u;'- and ,u; and aj- and é;- where 7 is such that 7° > €ninwt, S0 we have
|,u§- —ﬂ§-| < €means and |(U§-)2 — (6*;-)2| < €yars. Since |,u3| < lmax, by the definition of ,u; we have that
| ,ué- — ,u;\ < €means, and likewise that |(a§-)2 — (d;)Q\ < €yars. Let P and Q be the one-dimensional
Gaussians with means w; and i and variances o} and ¢} respectively. By Corollary 22, we have

2

Evars € + €vars
KL P < means .
(||Q) B 2012111n " 2(0-121'1in - €Vars)

Each Z¢ is the product of n such Gaussians. Therefore, by Proposition 17, we have for all 4,

L. 2
KL(ZZHZZ) <n < Evars + €means T 6vars)) .

2 2
2O-min 2(O-min — Evars

Recalling our bounds on d; and ;23'-, we have

Zz(i) < 1/(\/%O'min)n = ﬁgauss

for all 2 € [—M, M], and hence the same lower bound holds for Z(z). Similarly, using the fact that
M > pimax we have that

—2M2 n

7)] ‘= Ogauss

1
—_— . eX
V2T O max p< Ufnin

29

Z'(z) > [

for all z € [—~M, M]"™ and similarly this upper bound also holds for Z(z). We also have that for all
i
2 2
KL 2) < n | Toe s |
O in
which follows from Fact 21 and Proposition 17.

Our goal is to apply Proposition 18 to bound KL(Z||Z). By the same argument as Theorem 19,
we have that |7 — 7| < 3kewts and 7 > €y45/2 for all i = 1,..., k. We apply Proposition 18 with
the following parameters (note that the first four are exactly as in Theorem 19, only the value of €
is different):

1/2 € 62 +€vars
€1 = 3kewts; €2 = €wts/2; €3 = €minwt] €4 = €ys; €E=TN (28 (o, .
3 / I} ’ wts)? 20min Q(Uminffvars)

Proposition 18 now gives us:

62

i . . 2 2 2
KL(Z”Z) <n (€vars 4 _means + €vars) + keminwt - [M] + 61/3

2 2 wts*
2o-min 2(O-min evars) o

min

D.4 Proof of Theorem 4
Recall Theorem 4:

o ax)-bounded Gaussians. Let

M = M(poly(1/n,1/L,€)). There is a (Ln/e)O**) ‘log § time algorithm which, given samples from
2

max

Theorem 4: Let Z be any unknown mizture of k (fimax, 02, 02

Z outputs a list of (Ln/€)°* ") many miztures of (pumax, 02, 02,0)-bounded Gaussians with the

min’
property that with probability 1 — &,

o cvery distribution Z' in the list satisfies exp(—poly(n,L,1/e)) < Z'(z) < poly(L)"™ for all
x € [—-M,M]", and

e some distribution Z* in the list satisfies KL(Z||Z*) < e.

3
Proof: Let ¢, > 0 be given. Run MIiX-A-LOT with €yeans = 6102%1“, €vars = 2€means, Cminwt =
2 3,6
it and ey = —min Note that ey < € /2 /Pmax as required
3kn(0-r2nax+2iu‘12nax) wts 120k2n31u‘max(Ur2nax+2:ux2nax)2 ’ wts meanstminwt max

by Theorem 1. This takes time (Ln/e)O*°) . log 3. We get as output a list of (Ln/e)°* ") many
candidate parameter settings ({7, {ﬂ;}, {(6;)2}> with the guarantee that with probability 1 — 4§ at
least one of the settings satisfies

e for i =1...k we have |7° — 7| < €y, and
e for all 7, j such that 7% > eninwt we have |,u; — g;| < €means and |(cr;'-)2 — (&;)2| < €yars-

We now pass all of these settings through Theorem 23 with M chosen as stated. Note that M =
poly(n, L,1/¢). It follows that the resulting distributions satisfy exp(—poly(n,L,1/¢)) < Z'(z) <
poly(L)™ for all z € [~ M, M]™, and one can check that under our setting of parameters we obtain
Tgauss < €, 50 one of the resulting distributions Z* satisfies KL(Z||Z*) < e. []

30

E Proof of Theorem 5: Maximum Likelihood

Before proving Theorem 5 we give some preliminaries. Let P and Q be arbitrary distributions over
some space X. We can rewrite the KL divergence between P and Q as

KL(P(|Q) — ~H(P)~ [P()log Qo) (14)

rzeX

where H(P) = — [_\ P(x)logP(x) is the entropy of P.

Consider the random variable —log Q(z), where z is a sample from the distribution P. Us-
ing (14), we can express the expectation of this variable in terms of the KL-divergence:

Ecep[—logQ(z)] = KL(P||Q)+ H(P). (15)

Recall that when the ML algorithm runs on a list Q of distributions, it uses a set S of indepen-
dent samples from P, where m = |S|. For each distribution Q € Q, the algorithm computes

AQ) =D (~1ogQ(x)).

€S

So, by (15), we have that the expected “score” of distribution Q is the following:
Es[A(Q)] = m(H(P)+KL(P[|Q)). (16)
We recall the theorem of Hoeffding [13]:

Theorem 24 (Hoeffding) Let x1,...,x, be independent bounded random variables such that each
x; falls into the interval |a,b] with probability one. Let X =" | x;. Then for any t > 0 we have

Pr[X — E[X] >t] < e /7= gnd Pr[X — E[X] < —t] < e 2/,

Now we can prove Theorem 5:

Theorem 5 Let 3, o, € > 0 be such that o < 3. Let Q be a set of hypothesis distributions for some
distribution P over the space X such that at least one Q* € Q has KL(P||Q*) < €. Suppose also
that a < Q(z) < 8 for all Q € Q and all x such that P(z) > 0.

Run the ML-algorithm on Q using a set S of independent samples from P, where S = m. Then,
with probability 1 — &, where

2
5o (1) e (—amT).
log? (/)
the algorithm outputs some distribution QMY € Q which has KL(P||QML) < 4e.

Proof: Call a distribution Q € Q good if KL(P||QMY) < 4e, and bad otherwise. Note that by
assumption, we have at least one good distribution in Q.

The probability ¢ that the algorithm fails to output some good distribution is at most the
probability that either some bad distribution Q has A(Q) < m(H (P)+ 3¢) or the good distribution
Q* has A(Q*) > m(H(P) + 2¢). Thus, by a union bound, we have

§ < |Q|-Pr[A(Q) < m(H(P) + 3e) | KL(P||Q) > 4e] + Pr[A(Q*) > m(H(P) + 2¢)] (17)

31

For each bad Q € Q which has KL(P||Q) > 4¢, we have

Pr[A(Q) <m(H(P)+3¢)] = Pr[A(Q) < m(H(P)+ 4e) — em)]
< PrA(Q) < m(H(P) + KL(P[|Q)) — em)] (18)
_ PyA(Q) < Es[AQ)] - em] (19)
< o (o) -

Equation (18) follows from the bound on the KL-divergence, equation (19) follows from (16), and
equation (20) follows from the Hoeffding bound (Theorem 24).
Following the same logic for Q* where KL(P||Q*) < ¢, we get

PAQY) > m(H(P) +20)] = PrAQ") > m(H(P)+)+ me]
< PrlA(QF) > m(H(P)+ KL(P||Q")) + me]
= PriA(Q") = Es[A(Q7)] + me]
2
< o (“ama). 1)
The theorem follows from plugging equations (20) and (21) into equation (17). []

F Truncated versus untruncated mixtures of Gaussians

Definition 4 Let X be a distribution over R™. The M-truncated version of X is the distribu-
tion Xy obtained by restricting the support of X to be [—M, M|™ and scaling so that Xy is a
distribution. More precisely, for © € R™ we have

(0 il M,
Xar(@) = { X(z) if 2o < M

where ¢ =1/ (fxe[—M,M]n X(m)) is chosen so that [Xp(z) = 1.

In this section we prove Proposition &:

Proposition 8 Let P and Q be any mixtures of n-dimensional (umax,aﬁlin,amax) bounded Gaus-

sians. Let Pyr denote the M -truncated version of P, where M is chosen as in Theorem 4. Then
we have |[KL(Py/]|Q) — KL(P||Q)| < 4e 4+ 2¢ - KL(P||Q).
Proof: We have that Pj;(x) satisfies

(1+0)P(x) if x € [—M, M,
Pu(z) = { 0 if o ¢ [—M, M,

where § > 0 is chosen so that 1+5 fxe[—M M P(z). Using the definition of M we have
/ P(z) = [acg[M, M]" <ZPr[\xj\>M]<n0<e
og[—M,M]"

j=1

where we have used the fact that § < e/n. Consequently we have >1—e¢,50 6 < 2e.

1
1+6

32

We have

KL(Pu[|Q) — KL(P[|Q)]

_ S L+ IP@) 1, P@
| PO G [P@n g

= n xr xr IIP(x)* X HP(I)
= |(t+ohl+o) /ze[M,M]"P()+6/:re[M,M]"P()1 Q(z) /mgz[M,M]n Pl Q(z)

P(z)

P(z)
/:rE[M’,M’]" P@)n Q(z)

1
/xgz[M,M]n P(z)mn Q(z)

< (14+6)In(1+08)+34 +

= 6(1+0)+d|R|+]5],

where R := faze[—M,M]n (z)In ggm% and S := fxg[fM,M}’” P(z)In ggg For succinctness let k denote
KL(P||Q). Note that we have k = R+ S.

Suppose we show that |S| < e. Then since Kk = R + S, we must have |R| < k + ¢, and hence
IKL(Pup||Q) — k| < 0(1 +6) +0(k +€) + € < 4e + 2ex (using 0 < 2e¢), as desired. Thus we can
complete the proof by showing |S| <e.

Let us analyze the integrand of S. Decompose P into its mixture components, i.e. P(z) =

Zle 7' P¥(z), where PL,... P* are n-dimensional (imax, 02, 02y)-bounded Gaussians. Hence

P(z)
S = Z / z)In Q@)

¢—M M]k

We will show that for each i we have | [¢k P ‘(z) In P(x)\ < e. It then follows that |S| < e

since |S| is upper bounded by a convex combination of these quantities.

Let us now analyze the quantity In %. We will show that for any x ¢ [—M, M|, neither P(x)

nor Q(z) can be either “too small” or “too large” as a function of ||x||3; hence
of moderate size. We will prove this for P(x) using the fact that it is a mixture of n-dimensional
(Imax, 025, 02ax)-bounded Gaussians; since this is also true of Q(z), the same bound will hold for
it.

We will show that for all i = 1,...,k and all x € R" we have P*(z) € [t(z),T] where T is
a quantity and t(x) is a function that will both be defined below. Since P(z) = Zle m'P(z) is
a convex combination of the P?(z)’s, the same bound will hold for P(z). Fix any i and consider
the Gaussian P?. Since this Gaussian is axis-aligned, we have Pi(z) = | J ¢;¢j,a]2, (xj) for some

pairs (u1,0%), ..., (ftn, 02) satisfying |p;| < fimax, O' € (0210 Omax]- (Here ¢, 52(2) is the usual pdf

Puo2(T) = \/QI—M exp (7(;3;2“ k) for a one-dimensional Gaussian.) It is easy to see that for any z;,
SR N G S 1 (A P
5 .
27r0max Ur2nln ar2n1n H995 2’/To'min

Hence for all z € R™ we have

33

for all ¢, and so (22) holds true for P(z) as well. As stated earlier, the same argument also shows
that (22) holds for Q(z). We conclude that for any z,

P(z)
In < |Int(z)|+|InT
G| < Mm@+ 7
Pinax [EdlE
= n—g (V2Tomax) — —5—| + nIn(1/v2m0omin)
min min
2
< O (n@m Um‘t“”x“%) .
Recall that we want to show | [¢l M, M]n Pi(x)ln | < e. It clearly suffices to show that

f:cg[—M,M}n Pi(z)|In Pl) | <e. By the above it suffices to show

Q)
2 .
0 (Mgm In "ma"> / Pi(2)|[2]2 < e.
Urnin Omin xe[_M:M]"

x||5 = acxz 23
/M_M’M] 2)lelg = Z /w[o P05 (23)

Fix j; we now bound B . Pi(z)z2. Recall that Pi(z) = Pi(z1)--- P (x,). We have
x@[—M,M] J 1 n

We have

n

Pi(z)z? < / P(z)x?
/xgz[M,M]n ! ; 2€R™:[zg|>M ’

= / PZ(:lc):Ej2 + Z/ PZ(:L")a:]2
zeR™:|x;|>M 4] zeR™:|xy|>M

For the first integral of (24) above we have

/ PZ(:zc)ac]2 = H {/ Pfg(xg)dxg] . / Pé-(xj)x?dxj = / Pé-(xj):c?dxj
zeR™:|x;|>M (4] z€R lx|>M || >M

< 0 (24)
where the inequality is by the definition of M. For the second term of (24) above we have

H2)z] = U(xg)da) ae2dr
Z/weR":xebMP (x)xj - ; [(/ubMPe(o) e) (/ﬂijRP](J) i]>])

t#j

where we have used the fact that for any ¢’ which is neither £ nor j we have

/ P! (zp)dzy = 1.
zyER

Again the definition of M to bound the integral over variable x, in (25) above by 6, we have that
(25) is at most

(n— 1)9/ER P} (x;)aldw; = (0~ 1)0Bp:[a?] = (0 1)0 (Valpl |+ Eps [2])
= (n—1)0((c})* + (15)?)
S (TL o 1)0(12nax + iumax) (26)

34

where the inequality holds since Pé- is a one-dimensional (Umax, 02, 02,)-bounded Gaussian.
Putting all the pieces together, we find that (23) is at most

?’L[Q + (TL - 1)9(0121121)(+ “?nax)] < n29(012rlax + :urgnax)
It follows that |S| < n20(02 . + 12.x) - O(nz% In Zmax): this is at most ¢ since we take 6 to be
2 min min

. . . 2 2
< in and inverse polynomial in n, pig ., 05 ax- |

polynomial in € and o ax

G Proof of Theorem 9

The following claim is used in the proof of Theorem 9:

Claim 25 Let T be a k-leaf decision tree, let b € {—1,1} be a bit, let S = {x € {0,1}" : T(x) = b},
and let Us denote the uniform distribution over S. Then Ug is a mizture of k product distributions.

Proof: We show that Ug is a mixture of ¢ product distributions, where £ is the number of leaves
in 7" which are labeled with bit b. To see this, observe that the k leaves of T" partition {0,1}" into
k disjoint subsets, each consisting of those z € {0,1}"™ which reach the corresponding leaf. For a
leaf at depth d the corresponding subset is of size 2"~% and consists of those € {0,1}" which
satisfy the length-d conjunction defined by the path from the root to that leaf. Thus, choosing a
uniform element of S can be performed by the following process: (i) choose a leaf whose label is b,
where each leaf at depth d is chosen with probability proportional to 1/2%; and then (ii) choose a
uniform random example from the set of examples which satisfy the conjunction corresponding to
that leaf. The uniform distribution over examples which satisfy a given conjunction is easily seen
to be a product distribution X over {0,1}" in which E[X;] € {0,1,1} for all i = 1,...,n. It follows
that the uniform distribution over S is a mixture of ¢ product distributions of this sort. |

Theorem 9: For any function k(n), if there is a poly(n) time algorithm which learns a mizture
of k(n) product distributions over {0,1}", then there is a poly(n) time uniform distribution PAC
learning algorithm which learns the class of all k(n)-leaf decision trees.

Proof: We suppose that we are given access to an oracle EX(T,U) which, at each invocation,
supplies a labeled example (z,7T(x)) € {0,1}" x {0,1} where z is chosen from the uniform distri-
bution U over {0,1}" and 7' is the unknown k(n)-leaf decision tree to be learned. We describe an
efficient algorithm A’ which with probability 1 — § outputs a hypothesis h : {0,1}" — {0, 1} which
satisfies Pry/[h(z) # T(x)] < e. The algorithm A’ uses as a subroutine an algorithm A which learns
a mixture of k(n) product distributions. Let M be the number of examples required by algorithm
A to learn an unknown mixture of k(n) product distributions to accuracy 1 — § and confidence
1-24.
Algorithm A’ works as follows:

1. Determine b € {—1,1} such that with probability 1 — g tree T outputs b on at least 1/3 of
the inputs in {0,1}". Let S denote {z € {0,1}" : T'(x) = b}, and let Us denote the uniform
distribution over S.

2. Run algorithm A using samples from the uniform distribution Ug; simulate Ug by invoking
EX(T,U), and using the only examples with labels T'(x) = b. To be confident that algorithm
A receives at least M examples from Ug, we draw O(M log(1/d)) examples from EX(T,U).
Let D' be the hypothesis which is the output of A.

35

3. Output the hypothesis h : {0,1}" — {—1,1} which is defined as follows: given z, if D'(x) <
55= then h(z) = —b else h(z) = b.

We now verify the algorithm’s correctness. Note first that Step 1 can easily be performed by
making O(log 1) draws from EX(7,U) to obtain an empirical estimate of Pry[7'(z) = b]. Assum-
ing that |S| is indeed at least 2"/3, a simple Chernoff bound shows that O(M log 3) draws from
EX(T,U) suffice to obtain M examples with label b in Step 2 with probability 1 — g. We run A
on examples generated by Ug, which by Claim 25 is a mixture of k product distributions. Con-
sequently, with overall probability at least 1 — § the hypothesis D’ generated in Step 2 satisfies
1D —Uslli < 5.

Now observe that the hypothesis h in Step 3 disagrees with 1" on precisely those z which either
(i) belong to S but have D'(z) < 55=; or (ii) do not belong to S but have D'(z) > z4=. Each

z of type (i) contributes at least 55 toward ||D’ — Us||s since Us(z) > 3= for each = € S. Each
z of type (ii) also incurs at least wi- toward | D' — Us||1. Consequently, since |D' — Usl|; < &,
there are at most €2 points = € {0,1}" on which h is wrong. Thus, we have shown that with
probability at least 1 — J, the hypothesis h is an e-accurate hypothesis for 7" with respect to the

uniform distribution as desired. [|

Remark 1: We note that our reduction to decision tree learning in fact only uses quite restricted
mixtures of product distributions in which (i) the mixture coefficients are proportional to powers
of 2, (ii) the supports of the product distributions in the mixture are mutually disjoint, and (iii)
each product distribution is a uniform distribution over some subcube of {0, 1}" (equivalently, each
product distribution has each E[X;] € {—1,0,1}). Thus, even this restricted class of mixtures of
k(n) product distributions is as hard to learn as k(n)-leaf decision trees.

Remark 2: Known results of Blum et al. [4] imply that the class of k(n)-leaf decision trees
unconditionally cannot be learned under the uniform distribution in time less than n!°25(") in the
model of learning from statistical queries.

A “Statistical Query” learning algorithm is only allowed to obtain statistical estimates (accurate
to within some specified error tolerance) of properties of the distribution over pairs (x, T'(x)), and
does not have access to actual labeled examples (z,T(x)). The algorithm is “charged” more time
for estimates with a higher precision guarantee; this is motivated by the fact that such high-
precision estimates would normally be obtained, given access to random examples, by drawing a
large sample and making an empirical estimate. (See [14] for a detailed description of the Statistical
Query model.)

Note that our algorithm for learning mixtures of product distributions interacts with the data
solely by constructing empirical estimates of probabilities; thus, when this algorithm is used in the
reduction of Theorem 9, the resulting algorithm for learning decision trees is a Statistical Query
algorithm. Thus the results of Blum et al. unconditionally imply that no algorithm with the same

basic approach as our algorithm can learn mixtures of k(n) product distributions in time less than
log k(n)
n .

36

