LP Decoding Corrects a Constant Fraction of Errors

$Jon Feldman^1$	Tal Malkin	Rocco A. Servedio	Cliff Stein^2	Martin J. Wainwright ³
Dept. of IEOR	Dept. of CS	Dept. of CS	Dept. of IEOR	Dept. of EECS
Columbia Univ.	Columbia Univ.	Columbia Univ.	Columbia Univ.	UC Berkeley
New York, NY	New York, NY	New York, NY	New York, NY	Berkeley, CA
$\{ jonfeld@ieor, \}$	<pre>tal@cs, rocco@cs,</pre>	<pre>cliff@ieor}.columbia.</pre>	edu, wainwr	ig@eecs.berkeley.edu

Abstract — We show that for low-density paritycheck (LDPC) codes with sufficient expansion, the *Linear Programming (LP) Decoder* corrects a constant fraction of errors.

I. INTRODUCTION

The Linear Programming (LP) Decoder [2, 3, 4, 6] provides an alternative to message-passing decoding that is more amenable to finite-length analysis. The pseudocodewords for an LP decoder are the vertices of a linear polytope whose constraints depend on the structure of the code, and they unify many known notions of pseudocodewords for various codes and decoders (see [2]). For the case of LDPC codes, Koetter and Vontobel [7, 8] described these LP pseudocodewords as "graph covers," and established a connection to the pseudocodewords of the message-passing "min-sum" algorithm.

In this paper, we show that LDPC codes using LP decoders can correct up to a constant fraction of error, which implies WER $\leq e^{-\Omega(n)}$ in the BSC. This is the first proof that LP decoding has an inverse-exponential WER on a constant rate code. As far as we are aware, no such bound is known for message-passing decoders such as min-sum and sum-product (belief propagation) on finite-length LDPC codes.

Our main theorem is given below, where a Tanner graph G is a (k, Δ) -expander if for all sets S of variable nodes where $|S| \leq k$, at least $\Delta |S|$ check nodes are incident to S:

Theorem 1 Let C be a low-density parity-check code with length n and rate at least 1-m/n described by a Tanner graph G with n variable nodes, m check nodes, and regular left degree c. Suppose G is an $(\alpha n, \delta c)$ -expander, where $\delta > 2/3 + 1/(3c)$ and δc is an integer. Then the LP decoder succeeds, as long at most $\frac{3\delta-2}{2\lambda-1}(\alpha n-1)$ bits are flipped by the channel.

This result matches Sipser and Spielman [9] for the case $\delta = 3/4$. Random Tanner graphs will meet the conditions of this theorem with high probability, and recent work by Capalbo *et al.* [1] gives efficient deterministic constructions of such graphs.

II. USING A DUAL WITNESS TO PROVE SUCCESS

We use the LP decoder from [6], which decodes any LDPC code described by a bipartite Tanner graph $G = (V \cup C, E)$, where codewords are settings of bits y_i to nodes $i \in V$ s.t. the neighborhood N(j) of every check $j \in C$ has even parity. For each code bit i, let $\gamma_i = +1/-1$ if a 0/1 is received. We assume that the codeword 0^n is sent, an assumption that can be made without loss of generality (see [5]).

The decoder in [6] solves a particular LP relaxation of the ML decoding problem. If the solution y is integral (in $\{0, 1\}^n$), it must be the ML codeword, and so it is output; otherwise the decoder declares an error. Decoding succeeds if 0^n is the unique optimal LP solution. To prove decoding success, it suffices to exhibit a **dual witness**: a solution to the dual LP with value zero. This notion leads to the following proposition, in which the dual variables play the role of edge weights:

Proposition 2 A setting of weights τ_{ij} to every edge $(i, j) \in E$ is feasible if (i) for all checks $j \in C$ and distinct $i, i' \in N(j)$, we have $\tau_{ij} + \tau_{i'j} \geq 0$, and (ii) for all nodes $i \in V$, we have $\sum_{j \in N(i)} \tau_{ij} < \gamma_i$. If there is a feasible setting of edge weights, then LP decoding succeeds.

To prove Theorem 1, we apply expansion to a portion of the graph around where errors occur. This allows us to set edge weights τ_{ij} to satisfy the conditions of Proposition 2. The construction goes through as long as the number of errors in the channel is at most $\frac{3\delta-2}{2\delta-1}(\alpha n-1)$.

III. CONCLUSIONS

Our "dual witness" technique applies to any LP decoder, and it would be interesting to see it used in different settings. A full version with proofs can be found in the technical report [5].

Acknowledgments We would like to thank G. David Forney Jr., David Karger, Ralf Koetter and Pascal Vontobel for helpful discussions.

References

- M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson. Randomness conductors and constant-degree expansion beyond the degree/2 barrier. In Proc. 34th ACM Symposium on the Theory of Computing, pages 659–668, 2002.
- [2] J. Feldman. Decoding Error-Correcting Codes via Linear Programming. PhD thesis, MIT, 2003.
- [3] J. Feldman, D. R. Karger, and M. J. Wainwright. LP decoding. In Proc. 41st Annual Allerton Conference on Communication, Control, and Computing, October 2003.
- [4] J. Feldman and David R. Karger. Decoding turbo-like codes via linear programming. Proc. 43rd annual IEEE Symposium on Foundations of Computer Science (FOCS), November 2002.
- [5] J. Feldman, T. Malkin, R. A. Servedio, C. Stein, and M. J. Wainwright. LP decoding corrects a constant fraction of errors. Technical Report TR-2003-08, Computational Optimization Research Center, Columbia University, 2003.
- [6] J. Feldman, M. J. Wainwright, and D. R. Karger. Using linear programming to decode linear codes. 37th annual Conference on Information Sciences and Systems (CISS '03), 2003.
- [7] R. Koetter. Personal communication, 2002.
- [8] R. Koetter and P. O. Vontobel. Graph-covers and iterative decoding of finite length codes. In Proc. 3rd International Symposium on Turbo Codes, September 2003.
- [9] M. Sipser and D. Spielman. Expander codes. *IEEE Transac*tions on Information Theory, 42(6):1710–1722, 1996.

 $^{^1 \}mathrm{Supported}$ by an NSF Mathematical Sciences Postdoctoral Research Fellowship.

 $^{^2 \}rm Research$ partially supported by NSF Grant DMI-9970063 and an Alfred P. Sloan Foundation Fellowship.

 $^{^3\}mathrm{Research}$ partially supported by NSF grant IIS-9988642, ARO MURI DAA19-02-1-0383.