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Abstract — We show that for low-density parity-
check (LDPC) codes with sufficient expansion, the
Linear Programming (LP) Decoder corrects a constant
fraction of errors.

I. Introduction

The Linear Programming (LP) Decoder [2, 3, 4, 6] pro-
vides an alternative to message-passing decoding that is more
amenable to finite-length analysis. The pseudocodewords for
an LP decoder are the vertices of a linear polytope whose con-
straints depend on the structure of the code, and they unify
many known notions of pseudocodewords for various codes
and decoders (see [2]). For the case of LDPC codes, Koet-
ter and Vontobel [7, 8] described these LP pseudocodewords
as “graph covers,” and established a connection to the pseu-
docodewords of the message-passing “min-sum” algorithm.

In this paper, we show that LDPC codes using LP decoders
can correct up to a constant fraction of error, which implies
WER ≤ e−Ω(n) in the BSC. This is the first proof that LP
decoding has an inverse-exponential WER on a constant rate
code. As far as we are aware, no such bound is known for
message-passing decoders such as min-sum and sum-product
(belief propagation) on finite-length LDPC codes.

Our main theorem is given below, where a Tanner graph
G is a (k, ∆)-expander if for all sets S of variable nodes where
|S| ≤ k, at least ∆|S| check nodes are incident to S:

Theorem 1 Let C be a low-density parity-check code with
length n and rate at least 1−m/n described by a Tanner graph
G with n variable nodes, m check nodes, and regular left degree
c. Suppose G is an (αn, δc)-expander, where δ > 2/3 + 1/(3c)
and δc is an integer. Then the LP decoder succeeds, as long
at most 3δ−2

2δ−1
(αn− 1) bits are flipped by the channel.

This result matches Sipser and Spielman [9] for the case δ =
3/4. Random Tanner graphs will meet the conditions of this
theorem with high probability, and recent work by Capalbo et
al. [1] gives efficient deterministic constructions of such graphs.

II. Using a Dual Witness to Prove Success

We use the LP decoder from [6], which decodes any LDPC
code described by a bipartite Tanner graph G = (V ∪ C, E),
where codewords are settings of bits yi to nodes i ∈ V s.t.
the neighborhood N(j) of every check j ∈ C has even parity.
For each code bit i, let γi = +1/−1 if a 0/1 is received. We
assume that the codeword 0n is sent, an assumption that can
be made without loss of generality (see [5]).
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The decoder in [6] solves a particular LP relaxation of the
ML decoding problem. If the solution y is integral (in {0, 1}n),
it must be the ML codeword, and so it is output; otherwise
the decoder declares an error. Decoding succeeds if 0n is the
unique optimal LP solution. To prove decoding success, it
suffices to exhibit a dual witness: a solution to the dual LP
with value zero. This notion leads to the following proposition,
in which the dual variables play the role of edge weights:

Proposition 2 A setting of weights τij to every edge (i, j) ∈
E is feasible if (i) for all checks j ∈ C and distinct i, i′ ∈ N(j),
we have τij + τi′j ≥ 0, and (ii) for all nodes i ∈ V , we have∑

j∈N(i)
τij < γi. If there is a feasible setting of edge weights,

then LP decoding succeeds.

To prove Theorem 1, we apply expansion to a portion of
the graph around where errors occur. This allows us to set
edge weights τij to satisfy the conditions of Proposition 2. The
construction goes through as long as the number of errors in
the channel is at most 3δ−2

2δ−1
(αn− 1).

III. Conclusions
Our “dual witness” technique applies to any LP decoder, and
it would be interesting to see it used in different settings. A
full version with proofs can be found in the technical report [5].
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