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Abstract. We present a semantic-preserving unstaging translation of cross-stage persistent multi-
staged programs into context calculus. This unstaging translation enables static analysis by 1)
unstaging the source program, 2) analyzing the unstaged program using the conventional static
analysis techniques, and 3) projecting the analysis result back to the source language. Static
analysis of multi-staged programs is challenging. The basic assumptions of conventional static
analyses are no longer guaranteed, since a program text is a first-class citizen in multi-staged
programs. We focus on cross-stage persistent multi-staged programs. Unlike Lisp-like multi-staged
programs, cross-stage persistent multi-staged programs allow variables of any stage to be used in all
future stages (cross-stage persistence) and do not allow intentional variable-capturing substitution.
We find that cross-stage persistent multi-staged programs are naturally unstaged to the context
calculus.

1 Introduction

Multi-staged programming is a general principle for code-generation systems, such as macro expansion
[21, 9], partial evaluation [14, 6], program manipulation [1], and runtime code generation [8, 19, 17]. Lisp’s
quasi-quotation [21, 9], MetaOCaml [2] and TemplateHaskell [20] support multi-staged features.

Static analysis of multi-staged programs is challenging. In multi-staged programs, a code template is
a first-class citizen and the program code is no longer statically fixed. Code templates are freely passed
like other values, composed of other code templates, executed when appropriate, and substituted in
other code templates.

Contributions

– We present an unstaging translation and prove that it preserves the small-step operational semantics
by step-by-step simulation. We also present an inverse translation. The target language, the context
calculus [10], is easier to design a static analysis of than the source language.

– Unstaging translation enables static analysis of cross-stage persistent (henceforth, CSP) multi-
staged programs by 1) unstaging the source program, 2) analyzing the unstaged program using
conventional static analysis techniques, and 3) projecting the analysis result back to the source
language.

– Our translation supports all fundamental CSP multi-staged features: code substitution, code exe-
cution, and cross-stage persistence. This paper omits fixpoint lambda abstractions and references,
as their extensions are rather straightforward.

Notation 1 In the examples throughout this paper, we write box e and unbox e for <e> and ~e in
MetaML (CSP), and ‘e and ,e in Lisp’s quasi-qutation system, respectively.

1.1 Difference in Cross-Stage Persistent and Lisp-Like Multi-Staged Languages

Main difference between CSP and Lisp-like multi-staged language is variable scoping. A variable of CSP
multi-staged language is used at all future stages [23], while a variable of Lisp is used only at the same
stage. For example,

(λx.box x) 0
CSP−→ box 0 (λx.box x) 0

Lisp−→ box x



In CSP multi-staged language (on the left) x in box is bound to λx, but in Lisp-like multi-staged
language (on the right) x in box is not bound to λx. CSP multi-staged language supports only capture-
avoiding substitution. On the other hand, Lisp supports both variable-capturing and capture-avoiding
substitution. For example,

(λy.(box (λx.(unbox y)))) (box x)
CSP−→ (box (λx′.(unbox (box x))))
CSP−→ (box (λx′.x))

(λy.(box (λx.(unbox y)))) (box x)
Lisp−→ (box (λx.(unbox (box x))))
Lisp−→ (box (λx.x))

1.2 Target Language

This difference in variable scoping fundamentally influences the way of unstaging translation. We unstage
CSP multi-staged programs into a context calculus, while Choi et al. [4] unstaged Lisp-like multi-staged
programs into a record calculus.

Record calculus is well suited as the target language for unstaging Lisp-like multi-staged programs.
Since variables are bound to a specific stage, Choi et al. maintained environments for each stage and
pass the appropriate one to the unbox expression. For example,

box (λx.(unbox (box x))) 7→ λρ′.λx.((λρ.ρ·x) {x = x}) −→ λρ′.λx.x

In the original program (in the leftmost), x is bound to λx through unbox and box. After unstaged (in
the middle), x is translated to x which is connected to λx through the record {x = x}; x is eventually
bound to λx (in the rightmost).

Why Not Record Calculus Choi et al.’s unstaging translation [4] of Lisp-like multi-staged programs
does not apply directly to CSP multi-staged programs. For example,

(λx.box x) 0

��

� // (λx. (λρ.ρ·x)) 0

��
box 0

� // (λρ.0) 6= (λρ.ρ·x) box x
�oo

In general, cross-stage persistence is a fundamental obstacle for record calculus as the target language.
For details, consider the example:

box (λy.(unbox ((λx.box x) box y))) −→ box (λy.(unbox (box (box y))))

−→ box (λy.(box y)))

Why Context Calculus The context calculus is the target language for our unstaing translation of
the CSP multi-staged programs. Variable-capturing substitution is the key feature of context calculus
used in the translation.

box
(
λx.unbox (box x)

)
� ,,

6= (λh.box (λx.unbox h)) (box x)

capture-avoiding
substitution

oo

variable-capturing
substitutionoo

box
(
λx′.unbox (box x)

)
In the above example, box x should be dragged outside of the enclosing box (see § 3 for details). Variable
x is originally bound to λx (in the upper-left), but it becomes unbound after dragged outside of box



(in the right). Without variable-capturing substitution, x cannot be re-bound to λx. See the difference
between two left expressions.

Unstaging a CSP multi-staged program in this manner does not introduce additional complexity
to the source program. Turing-Church thesis appeals that we can unstage it to pure lambda calculus,
but it will introduce huge additional complexity. Thus, the unstaging translation would be unusable in
analyzing programs. We will present an example of static analysis of context calculus in § 1.4.

1.3 Problem

For example, consider the following staged program e.

p := 0
s := box 0 (* indexed as u1 *)
while cond do

p := p+ 2
s := box (p+ unbox s) (* indexed as u2 *)

done

run s

During the evaluation, s was originally assigned to box 0. After iterations, s becomes box 2 + 0 and
then box 4 + 2 + 0. After the loop, s have code templates as follows:

{box S | (S → 0 | 2N + S)}

In order to analyze run s by conventional analysis techniques, analysis result for s should be con-
cretized to code values first. It is unrealizable, however, since s has infinitely many code values in its
concretization. Thus, it is necessary to find a way to detour this infinite concretization.

1.4 Our Solution

To analyze the staged program e, we first unstage e into e.

p := 0
s := λu1.0
while cond do

p := p+ 2
s := δH.λu2.(p+H ())� (s);

done

s ()

The context calculus introduces variable-capturing version δ and � of lambda abstraction and applica-
tion, respectively. For example, (δX.λx.X)� (λy.x) evaluates to λx.λy.x. Variable x used at the right
subexpression is captured by the lambda abstraction at the left subexpression, which is not a behavior
of lambda abstraction and application (see § 2.2).

Now we consider the collecting semantics JeK, JeK as concrete semantics, and concrete projection π.

– JeK: Collecting semantics JeK of variables have values such as:

p has 0, 2, 4, · · ·
s has box 0, box (2 + 0), box (4 + 2 + 0), · · ·
run s has 0, 2, 6, · · ·



– JeK: Collecting semantics JeK of variables have closure values such as:

p has 〈0,∅〉, 〈2,∅〉, 〈4,∅〉, · · ·
s has 〈λu1.0,∅〉,

〈λu2.(p1 +H ()), {p1 7→ 2, H 7→ λu1.0}〉,
〈λu2.(p2 + (λu2.(p1 +H ())) ()), {p2 7→ 4, p1 7→ 2, H 7→ λu1.0}〉,
· · ·

u1 has 〈(),∅〉
u2 has 〈(),∅〉
H has 〈λu1.0,∅〉,

〈λu2.(p1 +H ()), {p1 7→ 2, H 7→ λu1.0}〉,
〈λu2.(p2 + (λu2.(p1 +H ())) ()), {p2 7→ 4, p1 7→ 2, H 7→ λu1.0}〉,
· · ·

s () has 〈0,∅〉, 〈2,∅〉, 〈6,∅〉, · · ·

– π: Projection π is safe if it forgets extra bindings introduced in the target language and projects
closure value to code expression whose unbox expression’s code are those projected from the envi-
ronment.

Now we consider the abstract semantics JêK, JêK, and π̂.

– ˆJeK: Suppose we abstract relationships among code values in terms of a regular term grammar. For
example, below grammar means that only one unbox hole in the code value indexed as u2 is plugged
by the code value indexed as u1:

S → u2(u1)

– ˆJeK: As an example analysis we use the style of set-based analysis because it is easy to convey what’s
going on in analysis. Any static analysis can be employed in our framework. For the translated
program, we get following result:

Xp ⊇ {0, 2, 4, · · · }(= 2N)
Xs ⊇ {λu1.0, λu2.(p+H ())}
Xu1 ⊇ {()}
Xu2 ⊇ {()}
XH ⊇ {λu1.0, λu2.(p+H ())}

X(H ()) ⊇ A set generated by (V1 → 0 | p+ V1)
X(s ()) ⊇ A set generated by (V2 → 0 | p+ V1)

– π̂: Lastly, abstract projection π̂ generates a regular term grammar from the analysis result of a
context program. And π̂ also forgets extra bindings as π do. For the example, we get following
results:  Xp ⊇ {0, 2, 4, · · · }

Xs ⊇ {λu1.0, λu2.(p+H ())}
X(s ()) ⊇ A set generated by (V2 → 0 | p+ V1)

π̂7−→


p has 0, 2, 4, · · ·

s has

{
S2 → u2(S3)
S3 → u1 | u2(S3)

run s has values generated by (V → 0 | p+ V )

Note that S3 → u1 | u2(S3) can be inferred from the set-based analysis result of XH .

1.5 Comparisons

While Choi et al.’s static analysis framework [4] is for Lisp-like multi-staged programs, we focus on the
different multi-staging semantics: CPS multi-staged programs. As shown in § 1.1, the two multi-staging



(APPS)
e1

n−→ e′1

e1 e2
n−→ e′1 e2

e
n−→ e′

vn e
n−→ vn e′ (λx.e0) v0

0−→ [x 7→ v0]e0

(ABSS) e
n+1−→ e′

λx.e
n+1−→ λx.e′

(BOXS) e
n+1−→ e′

box e
n−→ box e′

(UNBS) e
n−→ e′

unbox e
n+1−→ unbox e′ unbox

(
box v1

) 1−→ v1

(RUNS) e
n−→ e′

run e
n−→ run e′ run

(
box v1

) 0−→ v1

Fig. 1. Operational Semantics of λS

semantics are totally different. Choi et al. unstaged Lisp-like multi-staged programs to a record calculus,
while we unstage CSP multi-staged programs to a context calculus. Two translations differ in the way
of passing environments of each stage. In unstaging translation of Lisp-like multi-staged calculus, an
environment at each stage does not depend on environmemts of any other stages. On the other hand,
in unstaging translation of CSP multi-staged calculus, environments of each stage sometimes should be
joined to satisfy the cross-stage persistence. Our translation and theirs both simulate source programs
and introduce admin reductions.

Inoue and Taha’s erasure theorem [13] works only for call-by-name program. For call-by-value multi-
staged progras, the eraser transformation fails to preserve the semantics. In addition, it would be hard
to extend the erasure for call-by-value with imperative features. The eraser changes the evaluation order
in call-by-value case.

1.6 Organization

Section 2 defines both the CSP multi-staged calculus λS and the context calculus λC . Section 3 defines
the unstaging translation and proves its soundness. Section 4 presents the sound static analysis, based
on the projection. Section 5 presents related works. Section 6 concludes.

2 Languages

2.1 Cross-Stage Persistent Multi-Staged Calculus λS

CSP multi-staged calculus λS is a call-by-value λ-calculus with staging constructs whose variables are
cross-stage persistent.

Syntax Let x range over the set of variables and i range over the set of constants. The set ExprS of
expressions e of CSP multi-staged language is defined as follows:

e ::= i | x | λx.e | e e | box e | unbox e | run e

Expressions consist of constants, variables, abstractions, applications, boxes, unboxes, and runs. A box

promotes the stage and generates a code template, while an unbox demotes the stage and escapes
from a code template to be replace with another code template. A run expression executes a code
template. Unlike Lisp-like multi-staged calculus, CSP multi-staged calculus admits the lift operator
by lift e =def (λx.box x) e.



e1
C−→ e′1

e1 e2
C−→ e′1 e2

e
C−→ e′

v e
C−→ v e′ (λx.e) v

C−→ {v/x}e

e1
C−→ e′1

e1 �ν e2
C−→ e′1 �ν e2

e
C−→ e′

v �ν e
C−→ v �ν e′ (δX.e)�ν v

C−→ (e[Xν/X])[v/X]

Fig. 2. Operational Semantics of λC

Operational Semantics Figure 1 provides a small-step call-by-value operational semantics. Judgment
e

n−→ e′ means e is reduced to e′ at stage n. Values are defined for every stage as follows:

Value0S v0 ::= i | x | λx.e0 | box v1
ValuenS(n ≥ 1) vn ::= i | x | λx.vn | vn vn

| box vn+1 | unbox vn−1(n ≥ 2) | run vn

Each n-stage value is not reduced at stage n. A value at stage n is also a value at stage n+ 1:

ValuenS ⊆ Valuen+1
S

Atomic reductions are carried out only in (APPS)3, (UNBS)2 and (RUNS)2. Both (APPS)3 and (RUNS)2
are applied at stage 0, but (UNBS)2 is applied at stage 1. Rule (RUNS)2 executes the code template.
Rule (UNBS)2 is similar to (RUNS)2, but unbox expression is replaced with the code template v1 and
immediately frozen. See our technical report [3] for the formal definition of the substitution rules.

2.2 Context Calculus λC

The context calculus λC is a call-by-value λ-calculus with first-class contexts. The target language
λC is based on Hashimoto and Ohori [10], and restricts its semantics to call-by-value reductions. The
context calculus has variable substitution for usual lambda abstractions and hole-filling substitution for
hole-filling abstractions as follows:

(λh.λx.h) x −→ λy.x (δH.λx.H)� x −→ λx.x

Syntax Let x range over the set Var of variables, X range over the set of hole variables, ν range over
the set of renamers, and i range over the set of constants. The set ExprC of expressions e of the context
calculus is defined as follows:

e ::= i | x | λx.e | e e | Xν | δX.e | e�ν e

Hole abstraction δX.e binds the hole X in e, and e �ν e is a hole-filling application. Renamer ν =
{y1/x1, · · · , yn/xn} is a partial function from Var to Var. The renamer can easily be extended to a
total function by letting ν(x) = x for all x /∈ dom(ν). See [10] for more details.

Operational Semantics Figure 2 provides a small-step call-by-value operational semantics. Judgment

e
C−→ e′ means that e is reduced to e′. An expression is a value if and only if it is neither an application

nor a hole filling application:

ValueC v ::= i | x | X | λx.e | δX.e

By {v/x}e we mean the variable substitution of x for v in e and by e[v/X] we mean the hole substitution
of X for v in e. See [3, 10] for the formal definition of ν and substitution. In a hole filling application
e1 �ν e2, e2’s free variables that belong to dom(ν) become bound in e1 �ν e2. For example,

{y/x}(e�{w/x} x) = ({y/x}e)�{w/x} x
6= ({y/x}e)�{w/x} y



the variable x is not substituted for y, since x is bound to the renamer {w/x}. During evaluation, a
hole filling application (δX.e1)�ν e2, the free variables in e2 is at first renamed by the renamer ν and
next renamed again by the renamer ν′ associated with X in e1. For example,

(δX.λx.X{x/y})�{y/z} z −→ λx.x (δX.λx.X{})�{} z −→ λx.z

In the left expression, bound variable z is renamed to x during the hole filling application, and is
re-bound to λx. In the right expression, on the other hand, z remains free.

3 Translation

We present the unstaging translation from CSP multi-staged calculus λS to the context calculus λC .
Our unstaging translation is related to the translation of closed codes by Davies and Pfenning [7] and
the translation of Lisp-like multi-staged programs by Choi et al. [4].

Basically, we unstage a box into lambda abstraction as follows:

box 1 7→ λu.1

and a run (and also a unbox) into a lambda application with a dummy expression () as follows:

run (box 1) 7→ (λu.1) ()

unbox (box 1) 7→ (λu.1) ()

Before unstaging unbox, however, we translate unbox in the continuation passing style. In well-
formed expressions, an unbox always occurs in a box, and the unbox evaluates its subexpression if it
demotes to the stage 0. Recall that we translate a box expression into a lambda abstraction, and any
subexpression inside the lambda abstraction is not reduced before the enclosing lambda abstraction in
the call-by-value semantics. So we have to pull out the subexpression outside of the enclosing box by
putting it into the continuation as follows:

box (· · · unbox e · · · )
7→ (λh.box (· · · unbox h · · · )) e

At the same time, we have to re-bind bound variables in the subexpression pulled out. If an unboxed
expression has bound variables, they become unbound in the subexpression pulled out from the enclosing
box. In the example below,

box (λx.unbox (box x)) 7→ (λh.box (λx.unbox h)) (box x)

while the variable x was bound, it becomes unbound after translation. The translated image of the
above example behaves differently than expected as follows:

(λh.box (λx.unbox h)) (box x) 6−→ box (λx.unbox (box x))

−→ box (λy.unbox (box x))

Therefore, we translate unbox expressions to a hole abstraction and a hole-filling application to
preserve bound variables. Hole-filling application ‘passes’ bound variables so that bound variables in
unbox expressions are preserved as follows:

box (· · · unbox e · · · )
7→ (δH.box (· · · unbox H · · · ))� e

For example, we can safely translate the above example as follows:

box (λx.unbox (box x)) 7→ (δH.box (λx.unbox H{x/w}))�{w/x} (box x)

−→ box (λx.unbox (box x))



In the above example, {w/x} associated with � is a renamer which means that x is bound variable in
(box x). Renamer {x/w} associated with H means that x might be bound to the λx. In these renamers,
w is an interface variable and it bridges between the lambda binding λx and the bound variable x.
Hole-filling applications pass bound variables through renamers and interface variables. See [10] for
more details.

We should carefully determine the renamers associated with hole abstractions and hole-filling appli-
cations. Consider the following two similar λS expressions and their translation images:

box (λx.unbox (box x)) 7→ (δH.box (λx.unbox H{x/w}))�{w/x} (box x)

λx.box (unbox (box x)) 7→ λx.(δH.box (unbox H{ }))�{ } (box x)

In the first example, the variable x is not directed bound to λx, so we have to bind it with renamers.
However, in the second example, the variable x is already directly bound to λx, so we must not bind it
with renamers. In order to determine the correct renamers, we have to find which bound variables in
unboxed expressions become free variables after translation.

3.1 Translation Rules

Figure 3 presents the inference rule of unstaging translation. Judgment R ` e 7→ (e,K) means that
under an environment stack R, an expression e of λS is translated into an expression e of λC with a
continuation stack K. Our translation rules are similar to [4] except the rule (TVAR) and (TUNB) and the
definitions of environment and continuation (counterpart of context of [4]).

As opposed to Choi et al. [4], a variable remains as is to support cross-stage persistence. In λS ,
variables of any stage is allowed to be used in any other stages, that is, behavior of variables are not
restricted by staging constructs. Thus, the translated image of the variable is the same with the original
variable. For example,

(λx.box x) 0

��

� // (λx.λu.x) 0

��
box 0

� // λu.0

Another big difference between [4] and our translation is that in (TUNB) the last (rightmost) environ-
ment rn is accumulated with the right before environment rn−1, while [4] discards the last environment
rn. The newly generated environment (rn−1; rn)1 is, once again, accumulated with the right before en-
vironment rn−2 when we meet another unbox as the translation goes further inside e. The accumulation
is intended to correctly determine the renamers for each unbox expression. If a variable is once defined,
it should be visible for all lower stages in the translation. For example, consider the translation of the
following program (note that we write x1 x2 for an arbitrary expression including the variables x1 and

x2, for the simplicity):

box (λx1.(box (λx2.(unbox (unbox x1 x2 )))))

The above program is unstaged as follows:(
δH1.λu1.λx1.((δH2.λu2.λx2.(H

ν−1
2

2 ()))�ν2 (H
ν−1
1

1 ()))
)
�ν1 x1 x2

where ν1 = {w1/x1, w0/x2} and ν2 = {w0/x2}. Note that ν1 is not {w0/x1} but {w1/x1, w0/x2}. Recall
that the variables x1 and x2 that are occurred freely in x1 x2 should be bound again to λx1 and λx2
after the hole filling applications. While x2 is eventually put back into H1 and again into H2, ν1 should
have the entry for x2 since x2 is bound at H1. Note that the renamer ν2(= {w0/x2}) binds x2 at H1 as
well as the lambda abstraction λx2 binds x2 at H2.

1 We write (r1; r2) for concatenation of two lists r1 and r2



Definitions
Environment r ::= ⊥ | r;x
Environment Stack R ::= r | R, r

Continuation κ ::= (δH.[·])�ν e | (δH.κ)�ν e
Continuation Stack K ::= ⊥ | K,κ

Translation

(TCON) R ` i 7→ (i,⊥) (TVAR) R ` x 7→ (x,⊥)

(TABS)
R, (rn;x) ` e 7→ (e,K)

R, rn ` λx.e 7→ (λx.e,K)

(TAPP)
R ` e1 7→ (e1,K1) R ` e2 7→ (e2,K2)

R ` e1 e2 7→ (e1 e2,K1 ./ K2)

(TBOX)
R,⊥ ` e 7→ (e, (K,κ)) new u

R ` box e 7→ (κ[λu.e],K)

R,⊥ ` e 7→ (e,⊥) new u

R ` box e 7→ (λu.e,⊥)

(TUNB)

R, (rn−1; rn) ` e 7→ (e,K)
rn = xk; · · · ;x0 ν = {wk/xk, · · · , w0/x0} new H

R, rn−1, rn ` unbox e 7→ (Hν−1

(), (K, ((δH.[·])�ν e)))

(TRUN)
R ` e 7→ (e,K) new h

R ` run e 7→ (let h = e in h (),K)

Renamer Inverse
{y1/x1, · · · , yn/xn}−1 = {x1/y1, · · · , xn/yn}

Continuation Stack Merge

⊥ ./ K = K
K ./ ⊥ = K

(K1, κ1) ./ (K2, κ2) = (K1 ./ K2), (κ1[κ2])

Fig. 3. Translation from λS to λC



Definitions

Hole Environment H ∈ HoleVar
fin−→ ExprC

Translation

(ICON) H ` i� i (IVAR) H ` x� x

(IABS)
H ` e� e

H ` λx.e� λx.e
(IAPP)

H ` ei � ei e2 6= ()

H ` e1 e2 � e1 e2

(ICTX)
H ∪ {H : e′} ` e� e

H ` (δH.e)�ν e′ � e
(IBOX)

H ` e� e

H ` λu.e� box e

(IUNB)
H ` H(H) � e

H ` H () � unbox e
(IRUN)

H ` e� e

H ` let H = e in (H ()) � run e

Continuation Cumulation Operator

⊥ = ∅ (K,κ) = K ∪ κ
[·] = ∅ (δH.κ)�ν e = κ ∪ {H : e}

Fig. 4. Inverse Translation from λC to λS

Also, the definitions of environment and continuation are slightly different: environment is a list of
variables instead of a record, and continuation consists of a hole variable and a hole filling application
instead of the usual variable and application.

Without loss of generality, we assume that for any expression e of λS , all bound variables in e are
distinct. If variables are duplicated in a reduction, we systematically rename the duplicated variables
to fresh variables. See [3] for more details.

3.2 Semantics Preservation

We prove our translation is semantics-preserving. Given a program, its translated image by the trans-
lation rules in Fig. 3 preserves the semantics of the original program. We prove that not only the final
value but also all reduction steps are preserved.

For stating the reduction preservation property, we first introduce the administrative reduction [4,
18].

Definition 1 (Admin Reduction). Administrative reduction of an expression is a congruence closure
of the following rule:

(λu.e)()
A−→ {()/u}e

We write e
A∗

−→ e′ for the reflexive, transitive closure of
A−→. We write e

C;A∗

−→ e′ for the reduction
C−→

followed by zero or more reductions
A−→ until no more reduction

A−→ is possible.
Using the administrative reduction, we finally state the simulation theorem of the semantics preser-

vation. See [3] for the complete proof of Theorem 1.

Theorem 1 (Simulation). Let e, e′ ∈ ExprS and e
0−→ e′. Let ∅ ` e 7→ (e,⊥) and ∅ ` e′ 7→ (e′,⊥).

Then e
C;A∗

−→ e′. Furthermore, If e ∈ Value0S then e ∈ ValueC.

3.3 Inverse Translation

Figure 4 presents an inverse translation from λC to λS . We almost identically adopt the inverse trans-
lation of Choi et al. [4] The inverse translation judgment H ` e � e means that a λC expression e



is translated back to a λS expression e under hole environment H. A hole environment is designed to
restore dragged unbox subexpressions. Rule (IUNB) uses the hole environment, while rule (ICTX) stores
dragged unbox subexpression in the hole environment. Note that only one hole environment sufficient
for inverse translation as opposed to the forward translation since all hole variables are fresh.

By inverse translation we mean that if we translate a λS expression to λC expression, and then
inversed it back to λS , then the result is the same with the input. Together with Theorem 1, Theorem 2
means that λS is simulated by λC .

e
0 // e′ =⇒

e_

��

e′

e
C;A∗

// e′
_

OO

Theorem 2 (Inverse Translation). Let e be a λS expression and R be an environment stack. If
R ` e 7→ (e,K) then K ` e� e.

4 Analysis

4.1 Static Analysis of the Context Calculus

We present a set-based analysis [12, 11] on the context calculus, as shown in § 1.4. In fact, variable-
capturing substitution in the context calculus does not complicate during the set-based analysis, since all
variables are assumed to be distinct from each other. We add a new rule for constructing set constraints
of the hole-filling application, which is similar to that of the usual lambda application. See [3] for details.

4.2 Projection

We analyze the translated programs and project the analysis result back to the source language. In
terms of abstract interpretation framework, this procedure results in a sound static analysis. Choi et
al. [4] presented Theorem 3 for sound projection in the static analysis framework for Lisp-like multi-
staged programs via unstaging translation. Since the condition is language-independent, it also applies
to our framework.

Theorem 3 (Sound Projection). Let e and e be, respectively, a staged program and its translated

unstaged version. If JeK v πJeK and α ◦ π ◦ γ v π̂ then αJeK v π̂ ˆJeK.

5 Related Work

Translation For comparisons to Choi et al. [4] and Inoue and Taha [13], see § 1.5. Davies and Pfenning
[7] presented a translation between implicit and explicit modal lambda calculus. The translation makes
the evaluation order explicit. However, their staged calculus does not support open code templates.

Hashimoto and Ohori [10] presented a typed context calculus, our target language. To design a type
system for the context calculus, they introduced renamers for hole variables and hole-filling applications.

Analysis In terms of Cousot and Cousot’s abstract interpretation framework [5], we presented a static
analysis framework by which a sound static analysis of CSP multi-staged language is derived from
that of context calculus. Static analysis of multi-staged calculus was not widely studied. Kamin et
al. [15] presented an interleaving analysis of multi-staged calculus which is both static and dynamic.
Our analysis via translation is completely static.

Taha presented a type system for CSP multi-staged language [24], but it has a problem on open
code templates. To solve this, Taha introduced a type system based on environment classifiers [22] to
loose a restriction on closed codes. On the other hand, Kim et al. presented a polymorphic type system
for Lisp-like multi-staged languages [16].



6 Conclusion

We present the unstaging translation and prove that it preserves the small-step operational semantics by
step-by-step simulation. This unstaging translation enables static analysis by 1) unstaging the source
program, 2) analyzing the unstaged program using conventional static analysis techniques, and 3)
projecting the analysis result back to the source language. Our translation supports all fundamental
CSP multi-staged features: code substitution, code execution, and cross-stage persistence.
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