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Abstract

Graph rewriting has numerous applications, such as software engineering and biology tech-

niques. This technique is theoretically based on pushouts and pullbacks, which are involved

with given categories. This paper deals with the definition of pushout and pullback, and their

properties.

1 Introduction

Descriptions of biological systems are largely involved with graph rewriting techniques, and it has

been used shortly after its invention. Formally, a graph rewriting system usually consists of a set

of graph rewriting rules of the form L→ R, with L being called pattern graph and R being called

replacement graph. A graph rewriting rule is applied to L, by searching for an occurrence of the

pattern graph and by replacing the found occurrence by an instance of the replacement graph, and

finally we get R. [2]

There are several approaches to deal with graph rewritings, and the most well-known technique

is the algebraic approach, which is based on category theory. The algebraic approach is divided

into some substructures - one is called the double-pushout approaches(DPO) and the other is called

the single-pushout approach(SPO).

This paper deals with the pushouts and pullbacks, the basic of above two approaches, and will not

cover two approaches in detail. We first give some basic preliminaries in order to understand what

pushouts and pullbacks are and definitions of them. Then we give some properties to understand

the essense of two categorical structures. We note that contents of this paper is largely based on

[1].

Overview In section 2, we first give some preliminaries for understanding pushouts and pullbacks,

including the basics of category theories. And we give formal definitions and universal properties

of pushouts and pullbacks in section 3. We also give some properties of pushouts and pullbacks in

section 4, for a better understanding of them.

2 Preliminaries

In this section, we give some preliminaries for understanding pushouts and pullbacks. We assume

that readers have a general knowledge of following concepts:
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• R-modules, module homomorphisms and isomorphisms

• Kernels and cokernels of modules

• Exact sequences and short exact sequences

2.1 Categories

First of all, we define basic notions of category.

Definition 1 (category). A category C consists of three ingredients: a class obj(C) of ob-

jects, a set of morphisms Hom(A,B) for every ordered pair (A,B) of objects, and composition

Hom(A,B)×Hom(B,C)→ Hom(A,C), denoted by

(f, g) 7→ gf,

for every ordered triple A,B,C of objects. (We write f : A→ B instead of f ∈ Hom(A,B).) These

ingredients are subject to the following axioms:

• the Hom sets are pairwise disjoint; that is, each f ∈ Hom(A,B) has a unique domain A and

a unique target B;

• for each object A, there is an identity morphism 1A ∈ Hom(A,A) such that f1A = f and

1Af = f for all f : A 7→ B;

• composition is associative: given morphisms

f : A→ B, g : B → C, h : C → D,

we get h(gf) = (hg)f.

We now introduce RMod, which is the category of all right R-modules. This category is the

basis of pushouts and pullbacks, which will be defined later.

Definition 2 (left R-modules). The category RMod of all left R-modules (where R is a ring) has

as its objects all left R-modules, as its morphisms all R-homomorphisms, and as its composition

the usual composition of functions. We denote the sets Hom(A,B) in RMod by

HomR(A,B).

We conclude this subsection by defining subcategory, in order to define isomorphisms, functors,

and universal properties in later subsections.

Definition 3 (subcategory). A category S is a subcategory of a category C if they satisfy follow-

ings:

• obj(S) ⊆ obj(C)
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• HomS(A,B) ⊆ HomC(A,B) for all A,B ∈ S.

If HomS(A,B) = HomC(A,B), S is called a full subcategory of a category C.

2.2 Functors

In this section, we give the definition of functors of categories.

Definition 4 (functor). If C and D are categories, then a covariant functor F : C → D consists

of the following functions:

F : obj(C) → obj(D)

F : HomC(A,B) → HomD(F (A), F (B)), (A,B ∈ C)

satisfying

• F (1A) = 1A for all A ∈ C

• F (gf) = F (g)F (f) for all f ∈ HomC(A,B), g ∈ HomC(B,C).

If F (gf) = F (f)F (g) for all f ∈ HomC(A,B), g ∈ HomC(B,C), then F is called a contravariant

functor.

Definition 5 (isomorphism of functors). A morphism f : A → B in a category Cis an isomor-

phism if there exists a morphism g : B → A in Cwith gf = 1A and fg = 1B.

The morphism g is called the inverse of f .

2.3 Universal Objects

In this section, we give the definitions of initial and terminal objects. Existence of universal object

is one of significant properties of a given category.

Definition 6 (universal object). U ∈ C is called the initial object(universally repelling object) in

C if |HomC(U,A)| = 1 for all A ∈ C. U ∈ C is called the terminal object (universally attracting

object) in C if |HomC(A,U)| = 1 for all A ∈ C. Both initial object and terminal object are called

the universal object.

Following lemma explains the uniqueness of universal object in a given category. Note that

uniqueness does not mean existence - universal object may not exist in some categories.

Lemma 7. If the initial object exists, then it is unique up to isomorphism. Similarly, if the termi-

nal object exists, then it is unique up to isomorphism.

Proof. Let U, V be two initial object in C. Then since |HomC(U, V )| = 1 and |HomC(V,U)| = 1,

there exist morphisms f : U → V and g : V → U , and they are the unique morphisms between U

and V . Then it indicates that fg = 1U and gf = 1V since |HomC(U,U)| = 1 and |HomC(V, V )| = 1.
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Now we can conclude that U and V are isomorphic in C. Thus the initial object is unique up to

isomorphism. For a terminal object, we can prove it similarly.

3 Pushouts and Pullbacks

In this section, we define pushouts and pullbacks.

Definition 8 (pushout). Given two morphisms f : A→ B and g : A→ C in a given category C, a

pushout(or fibered sum) is a triple (D,α, β) with βg = αf that satisfies the following universal

property: for every triple (Y, α′, β′) with β′g = α′f , there exists a unique morphism θ : D → Y

making the diagram commute. The pushout is often denoted by B ∪A C.

5.1 Categorical Constructions 223

Definition. Given two morphisms f : A → B and g : A → C in a category
C, a pushout (or fibered sum) is a triple (D, α, β) with βg = α f that is a
solution to the universal mapping problem: for every triple (Y, α′, β ′) with
β ′g = α′g, there exists a unique morphism θ : D → Y making the diagram
commute. The pushout is often denoted by B ∪A C .

A
g !!

f
""

C

B

A
g !!

f
""

C
β

""
β ′

##!
!!

!!
!!

!!
!!

!!

B
α !!

α′
$$"""""""""""""" D θ

%%#
#

#
#

Y

Pushouts are unique to isomorphism when they exist, for they are initial
objects in a suitable category.

Proposition 5.13. The pushout of two maps f : A → B and g : A → C in
RMod exists.

Proof. It is easy to see that

S =
{(

f (a), −g(a)
)

∈ B ⊕ C : a ∈ A
}

is a submodule of B ⊕ C . Define D = (B ⊕ C)/S, define α : B → D by
b '→ (b, 0) + S, define β : C → D by c '→ (0, c) + S; it is easy to see that
βg = α f , for if a ∈ A, then α f a − βga = ( f a, −ga) + S = S. Given
another triple (X, α′, β ′) with β ′g = α′ f , define

θ : D → X by θ : (b, c) + S '→ α′(b) + β ′(c).

We let the reader prove commutativity of the diagram and uniqueness of θ . •

Example 5.14.

(i) If B and C are submodules of a left R-module U , there are inclusions
f : B ∩C → B and g : B ∩C → C . The reader will enjoy proving that
the pushout D exists in RMod and that D is B + C .

(ii) If B and C are subsets of a set U , there are inclusions f : B ∩ C → B
and g : B ∩ C → C . The pushout in Sets is the union B ∪ C .

(iii) If f : A → B is a homomorphism in RMod, then coker f is the pushout

Figure 1: Pushout

Figure 1 represents the diagram of pushout and its universal property. For pullbacks, we just

need to know following definition.

Definition 9 (pullback). pullback is the dual notion of a pushout.

We close this section after proving that the pushout exists in RMod.

Theorem 10. The pushout of two maps f : A→ B and g : A→ C in RMod exists.

Proof. Let S = {(f(a),−g(a)) ∈ B ⊕ C : a ∈ A}, then it is easy to see that S is a submodule of

B⊕C. Now let D = (B⊕C)/S, α : B → D by b 7→ (b, 0)+S, β : C → D by c 7→ (0, c)+S. Then with

simple calculation, we see that βg = αf . Thus for all a ∈ A, we get αfa−βga = (fa,−ga)+S = S.

Now given another triple (X,α′, β′) with β′g = α′f , let θ : D → X by (b, c) + S 7→ α′(b) + β′(c).

Then it is easy to see that θ is unique.

4 Properties

In this section, we give some properties of pushouts(pullbacks). First example is that we can get

the pushout from the inclusion maps.

Proposition 11. If B and C are submodules of a left R-module U , there are inclusions f : B∩C →
B and g : B ∩ C → C. In this case, the pushout D exists in RMod and D = B + C.
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Proof. By Theorem 10, we just need to show that (B ⊕ C)/S is isomorphic to B + C, where

S = {(a,−a) : a ∈ B∩C}. Let φ : (B⊕C)/S → B+C by (b, c)+S 7→ b+c. If (b, c)+S = (b′, c′)+S,

then there exists a′ ∈ B ∩C such that (b, c) = (b′ + a, c′ − a). Then we get b+ c = b′ + a+ c′ − a =

b′ + c′, which means that φ is well-defined. For injectivity, if b + c = b′ + c′ in B + C, we define

a′ = b′− b. Then it is easy to prove that (b, c) +S = (b′, c′) +S. For surjectivity, it is obvious since

φ((b, c) + S) = b+ c.

Second one states that how cokernels are involved with pushouts. Since the proof of the following

proposition is almost similar to the previous proposition, we omit the proof of it.

Proposition 12. If f : A → B is a homomorphism in RMod, then cokernel of f, coker f is the

pushout of the following diagram.

224 Setting the Stage Ch. 5

of the first diagram below.

A
f !!

0 ""

B

0

A
f !!

0
""

B

""

##!
!!

!!
!!

!!
!!

!!
!

0 !!

$$""""""""""""""""""" coker f
θ

%%#
#

#
#

X

The verification that coker f is a pushout is similar to that in Exam-
ple 5.12(iii).

(iv) Pushouts exist in Groups, and they are quite interesting; for example,
the pushout of two injective homomorphisms is called a free product
with amalgamation. If K1 and K2 are subcomplexes of a connected
simplicial complex K with K1 ∪ K2 = K and K1 ∩ K2 connected, then
van Kampen’s Theorem says that π1(K ) is the free product of π1(K1)
and π1(K2) with π1(K1 ∩ K2) amalgamated (see Spanier, Algebraic
Topology, p. 151). !

Here is another dual pair of useful constructions.

Definition. Given two morphisms f, g : B → C , then their coequalizer is
an ordered pair (Z , e) with e f = eg that is universal with this property: if
p : C → X satisfies p f = pg, then there exists a unique p′ : Z → X with
p′e = p.

B
f !!
g

!! C

p
&&$

$$
$$

$$
e !! Z

p′

""
%
%
%

X.

More generally, if ( fi : B → C)i∈I is a family of morphisms, then the co-
equalizer is an ordered pair (Z , e) with e fi = e f j for all i, j ∈ I that is
universal with this property.

We can prove the existence of coequalizers in Sets using the notion of
orbit space.

Definition. Let ∼ be an equivalence relation on a set X . The orbit space
X/ ∼ is the set of all equivalence classes:

X/ ∼ = {[x] : x ∈ X},

where [x] is the equivalence class containing x . The function ν : X → X/ ∼,
defined by ν(x) = [x], is called the natural map.

Figure 2: Pushouts and cokernels

The last property in this paper is about the relationship between pushouts and short exact

sequences.

Proposition 13. Suppose we have following two short exact sequences in RMod with an assump-

tion that all diagrams are commutative:

direct sum to prove the existence of the pushout of any such diagram.

Proposition 1. Let f : X ! Y and g : X ! Z be R-module homomorphisms. If we

set T = {(f(x),Äg(x)) 2 Y à Z : x 2 X}, then (Y à Z) /T , together with the maps ã(y) =

(y, 0) + T and å(z) = (0, z) + T , is a pushout of f and g.

Proof. With the definition of ã and å, we have ãéf = åég since (f(x), 0) ë (0, g(x)) mod T .

We then have to verify the mapping property. Set F = (Y à Z) /T , and suppose there is

a module G and maps ã0 : Y ! G and å0 : Z ! G with ã0 é f = å é g. To define

' : F ! G, we have the canonical map ã0àå0 : Y àZ ! G, given by (y, z) 7! ã0(y)+å0(z),

that arises from the mapping property of a coproduct. This map sends (f(x),Äg(x)) to

ã0(f(x)) Ä å0(g(x)) = 0 since ã0 é f = å0 é g. Therefore, ã0 à å0 factors through T to give a

map f : F ! G, defined by f ((y, z) + T ) = ã0(y) + å0(z). It is easy to see that ã0 = f é ã
and å0 = f é å. Moreover, the definition of f is forced upon us by the requirement that

ã0 = f é ã and å0 = f é å. Thus, F , together with ã and å, is a pushout of f, g.

We now prove a technical result about pullbacks that we will use in Section 3.4 of Weibel

[1].

Proposition 2. Suppose we have a commutative diagram

0 M
i

å

P
õ

ã

A

id

0

0 B
j

X ú A 0.

Then X is the pushout of B and P with respect to i and å.

Proof. We first note that X = ã(P ) + j(B). To prove this, let x 2 X. Then ú(x) = õ(p)

for some p 2 P . Therefore, x Ä ã(p) 2 ker(ú) = im(j), so x Ä ã(p) = j(b) for some b 2 B.

Thus, x = ã(p) + j(b), as desired. We have j é å = ã é i by the assumption that the

diagram is commutative. To verify the mapping property, suppose G is an R-module with

homomorphisms ã0 : P ! G and j0 : B ! G such that ã0 é i = j0 é å. We define ' : X ! G

by '(ã(p) + j(b)) = ã0(p) + j0(b). If we show that ' is well defined, then we get ' é ã = ã0

and ' é j = j0 by alternatively setting b = 0 and p = 0 in the definition of '. Furthermore,

if û is another map from X to G with û é ã = ã0 and û é å = å0, then

û(ã(p) + j(b)) = '(ã(p)) + '(j(b)) = ã0(p) + j0(b)

= '(ã(p) + j(b)),

showing that û = '. Also, it is clear that ' will be a homomorphism once we know that it is

well defined. To see that ' is well defined, it is enough to show that if ã(p) + j(b) = 0, then

ã0(p) + j0(b) = 0. So, suppose that ã(p) + j(b) = 0. Applying ú gives 0 = ú(ã(p)) = õ(p).

2

Figure 3: Pushouts and sequences

Then X is the pushout of B and P with respect to i and β.

Proof. First, from the definition of short exact sequence, it is easy to see that X = α(P ) + j(B).

And since all diagrams are commutative, we get jβ = αi.

Now we prove the universal property. Suppose G is an R-module with homomorphisms α′ : P → G

and j′ : B → G such that α′i = j′β. Let φ : X → G by α(p) + j(b) 7→ α′(p) + j′(b). To see

that φ is well-defined, we just need to show that if α(p) + j(b) = 0 then α′(p) + j′(b) = 0. Let
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α(p) + j(b) = 0, then 0 = τ(α(p)) = σ(p). Thus p = i(m) for some m ∈ M . Thus we get

0 = α(i(m)) + j(b) = j(β(m)) + j(b). Since j is injective, β(m) + b = 0. Thus we get

α′(p) + j′(b) = α′(i(m)) + j′(−β(m)) = (α′i− j′β)(m) = 0.

Therefore, φ is well-defined. Now we get φα = α′ and φj = j′ by setting b = 0 and p = 0

respectively. So the only thing that we need to show is its uniqueness. if ψ : X → G satisfies the

universal property, we get ψα = α′ and ψβ = β′, then

ψ(α(p) + j(b)) = ψ(α(p)) + ψ(j(b)) = α′(p) + j′(b) = φ(α(p) + j(b)).

This shows the uniqueness of φ. Note that obviously φ is a homomorphism due to its well-

definedness.
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