
Towards more human-like computer opponents

Michael Freed, Travis Bear, Herrick Goldman, Geoffrey Hyatt,
Paul Reber, and Joshua Tauber

NASA Ames Research Center
mfreed@mail.arc.nasa.gov

Current-generation online games typically incorporate a
“computer” opponent to train new players to compete
against human opponents. The quali ty of this training
depends to a large degree on how similar the computer’s
play is to that of an experienced human player. For
instance, inhuman weaknesses in computer play
encourage new players to develop tactics, prediction rules
and playing styles that will be ineffective against people.
Game designers often compensate for weaknesses in the
computer’s play by providing it with superhuman
capabiliti es such as omniscience. However, such abiliti es
render otherwise important tactics ineffective and thus
discourage players from developing useful skil ls.

These differences are especially pronounced in
“real-time strategy” games such as Starcraft where tactics
are often designed to take advantage of specific human
limitations. An informal survey of experienced Starcraft
players reveals numerous play-critical differences
between human and computer performance. In this paper,
we identify several of these differences, and then discuss
a prototyping tool for constructing appropriately human-
like software agents.

Play-relevant human characteristics

In real-time strategy games, players carry out a variety of
fast-paced, combat-related activities including: attacking
opponents, producing and positioning combat units,
gathering resources needed to produce units, defending
production faciliti es and collecting information about
opponent units and facili ties (scouting). Individually and
in combination, these tasks are demanding in ways that
push the limits of human performance. For example,
dexterity-imposed limitations on control of the interface
(keyboard and mouse) increase the time taken to bring
groups of units into action. Players can exploit dexterity
limits using “raiding” tactics: units make a brief,
disruptive attack, and then depart before the opponent can
command an effective response. In Starcraft, the
computer can command a response without dexterity-
imposed delays, enabling it to repel raids reliably.

Consequently, the computer opponent provides littl e
opportunity to learn and practice raids.

An informal survey of experienced Starcraft
players was used to identify significant differences
between human and computer play. These differences,
summarized below, fall into general categories including:
fine-motor control, visual field-of-view, and visual
attention.

Fine motor control. One critical difference between a
human player and a typical computer player is the speed
with which commands can be issued. While this speed
can be essentially unlimited for the computer, human
speed depends on dexterity in controlli ng the interface.
Limited dexterity has numerous play-relevant
implications in a game such as Starcraft where micro-
management of units at critical phases of combat often
determines the outcome. One implication, as already
discussed, is to create a vulnerabili ty to raiding tactics.
Another is to create vulnerabili ty to “ forks” in which the
opponent initiates multiple, concurrent attacks. If
effective defense requires carefully manipulating
defending units, responding to one attack may entail
suffering substantial loss against others. Similarly, the
time required to control units trades off against other
potential uses of that time such as bringing idle units into
battle, maintaining production, and gathering information.
Experienced players take advantage of this by constantly
skirmishing and probing opponent defenses, thereby
encouraging the opponent to interrupt and delay other
important tasks.

An additional effect of limited dexterity is to
reduce the value of powerful units whose attacks must be
manually targeted. In Starcraft, using such a unit requires
(1) selecting the unit (which may be small , moving, and
partly obscured) with the mouse, (2) employing
mouse/menu or keyboard shortcut to select what kind of
attack it should make, and then (3) using the mouse to
specify a target for the attack. The time required to
execute this sequence, often several seconds for
experienced players, limits the rate at which manually

targeted attacks can be made. This, in turn, limits the
number of such units that can be used effectively in a
given battle and affects strategic choices about the
production of these units compared with others that are
less powerful but easier to manage.

Field of view. In Starcraft, as in many similar games, the
main display window shows a portion of the playing area
in detail , while a small accompanying window coarsely
depicts the full map geography and provides crude
situation information. The inabil ity of a human player to
view the full map in detail1 produces vulnerabili ty to a
range of deceptive tactics.

For example, a player can “ feint,” attacking one
location with a small force in an attempt to trick the
opponent into thinking that a major attack at that location
is imminent. If the opponent responds by moving units
into position for the expected attack (meanwhile wasting
time that could be better used for other purposes), this
creates an opportunity for a real attack elsewhere.
Clearly, the success of a feint depends on the opponent
not knowing where one’s units are actually located.

A second tactic that depends on limited view is
to “ lure” units out of position. In this case, the opponent
is encouraged to chase a small number of units with a
larger force, either to enable an ambush or simply to
move opponent units away from an effective position. A
third tactic is to mislead an opponent about the overall
composition of one’s forces by showing an
unrepresentative sample. This encourages the opponent
to misallocate unit production resources to counter the
perceived force composition, thus increasing vulnerabili ty
to one’s actual forces.

Visual Attention. Limits on people’s abilit y to pay
attention to all available visual stimuli has a variety of
effects. In Starcraft, two effects stand out as especially
important. First, players often fail to detect units which
are visible but non-salient. For instance, a unit may be
camouflaged by similar background, partially obstructed
by another object, or visible only as a blurring or
darkening of background terrain. Players take advantage
of their opponent’s limited visual attention to sneak units
into position and to hide them “ in plain sight.”

A second effect is to delay situation assessment.
In particular, understanding the nature of an attack or of a
defensive position may require taking account of
numerous visual objects (units, terrain features,
fortifications,..). Since human attention mechanisms

1 Limited field of view arises both from interface design
and from innate human limits. In particular, innately
limited human visual acuity effectively limits field of
view on a detailed scene by requiring a person to stay
close to the display. This puts much of the scene out of
view or in the visual periphery.

demand time for each object to be examined, a visually
complex situation forces a player to either act prematurely
(i.e. without having taken account of all available
information) or to delay action.

Numerous play-relevant human characteristics
may be added to those described. For example, limits on
human auditory attention has effects analogous to those
on visual attention. Constraints on memory performance
make it difficult to maintain situation awareness by
requiring repeated observations, and may enhance the
disruptive effect of interruptions as players forget to
resume after interruption. This discussion focuses on
general human characteristics which can be taken
advantage of by specific tactics. Other interesting
characteristics may be idiosyncratic rather than general
(e.g. susceptibility to fatigue, boredom, or
overconfidence), or may result in broad effects on play
style without producing specific tactical vulnerabiliti es.

Agent Architecture

The previous section identified common playing tactics
that depend on the opponent having specific human
characteristics. A computer player that lacks these
characteristics will not be vulnerable to the associated
tactics, at least partly undermining its value as a training
tool. Having identified at least some of the human
qualiti es that could profitably be incorporated into a
computer opponent, it is worth considering how these
may be incorporated effectively. In our view, a successful
approach should satisfy the following criteria:

1. Since many games emphasize similar aspects of
human performance, human characteristics
underlying performance should be represented in a
highly reusable agent architecture.

2. The main consideration in building a computer player
is enabling it to play the game effectively. The agent
architecture should facil itate constructing capable
agents by incorporating sophisticated AI mechanisms
for selecting and controlli ng action.

3. The architecture should emphasize limitations and
temporal characteristics of human performance that
tend to be game-relevant.

4. Games will differ in which aspects of human
performance are worth representing. When
developing any particular game agent, it should be
easy to “ turn-off” or ignore human attributes not
currently relevant.

In the remainder of this paper, we will describe an agent
architecture called APEX that satisfies these criteria.
APEX was developed to help simulate human commercial
jet pilots, air traff ic controllers, and other highly skill ed

operators in complex real-world environments. These
tasks and environments are similar to those in many
games, including real-time strategy games. Thus, we
expect that APEX’s success in simulating operators in
these domains will t ranslate to success at simulating
human gamers.

As software, the APEX consists of two main
components. The agent architecture provides a set of
powerful AI mechanisms that enable an APEX agent to
operate capably in demanding task environments. This
component is not intended to be particularly human-like,
and could in fact be used to simulate (or control) a wide

range of agent types including animals and robots. The
human resource architecture consists of modules, each
representing a human cognitive, perceptual, or motor
faculty (resource); these give the agent component human
characteristics.

Agent architecture. The core of the agent architecture is
a reactive planner (Firby, 1989; Simmons, 1994; Gat,
1996; Pell , et al., 1997; Freed and Remington, 1997), an
algorithm used to generate competent behavior in
dynamic,

time-pressured and otherwise demanding task
environments. Reactive planners select action based on a
library of stored plans which together represent the
agent’s expertise in a particular environment. Different
reactive planners use different plan notations and
incorporate somewhat different capabiliti es. The
following describes an APEX plan for attacking a
fortified position:

(procedure
 (index (attack ?fortification with ?artill ery-grp))
 (step s1 (select staging-ground near ?fortification => ?stage))
 (step s2 (select support-group => ?supp-grp))
 (step s3 (move units ?artill ery-grp to ?stage) (waitfor ?s1))
 (step s4 (move units ?supp-grp to ?stage) (waitfor ?s1 ?s2))
 (step s5 (interpose ?supp-grp btwn ?artill ery-grp ?fortification)

(waitfor ?s3 ?s4))
 (step s6 (target ?fortification with ?artill ery-grp) (waitfor ?s5))
 (step s7 (terminate) (waitfor (destroyed ?fortification))))

Domain
 Skil ls

 Agent Architecture

 R

es
ou

rc
e

A
rc

hi
te

ct
ur

e

VISION GAZE HANDS VOICE

MEMORY
Innate
Skil ls

General
 Skil ls

World

Agent Level

Human Level

Domain Level

When a plan’s INDEX clause matches an active goal,
it is retrieved from the plan library. For instance, a goal
of the form
(attack base7 with company5) would match the plan
above and cause it be retrieved. Plan STEPs
corresponding to low-level “primitive” actions such as
keypresses and gaze shifts are handled by signaling the
appropriate module of the resource architecture to carry
out the action. Non-primitive steps are treated as goals
and (recursively) decomposed into subgoals using other
stored plans.

The APEX planner emphasizes capabiliti es for
managing concurrency, repetition and multitask
interactions. For instance, to support specification of
concurrent behavior, parallel execution of plan is assumed
unless order is specified. For example, steps s3 and s4
above are each constrained to wait until step s1 has
completed; s4 has to wait for s2 also. However, the two
steps are not ordered with respect to one another. For this
particular plan, this has the useful consequence that
group has to wait (senselessly) for the other to arrive at its
destination before beginning to travel.

Even when a plan specifies no order on a pair of
steps, constraints may emerge during execution that
require order to be imposed dynamically. For instance,
subgoals generated in the process of carrying out s3 and
s4 may come into conflict when each needs the dominant
hand to manipulate the mouse. To resolve this, the
planner needs to temporarily suspend effort at either s3 or
s4, thus managing access to a limited resource by
imposing order on otherwise concurrent activities.
Detecting and resolving such conflicts is the
responsibili ty of multitask coordination mechanisms
incorporated into the APEX planner; further information
on these mechanisms can be found in (Freed, 1998b).

Resource architecture. The function of the resource
architecture is to give the agent human-like qualities,
particularly performance-limiting and temporal
characteristics. For example, the module representing a
human hand/arm specifies that completing a targeted
action such as a grasp, button push, or mouse movement
requires an amount of time determined by Fitts Law (Fitts
and Peterson, 1964). It also represents attributes such as
limited strength. Strength, completion time and other
characteristics are automatically considered whenever the
agent component commands the hand/arm to take an
action.

For example, if a lifting action is commanded,
the hand/arm will first check the object’s weight against
strength limits, causing the action to fail if it exceeds the
strength threshold. Next, if the action is to succeed, the
hand/arm resource determines how much time should
elapse before completion. After this interval, the
hand/arm signals the world (game application) to indicate
that the action has taken place.

We have identified 6 general characteristics that
apply to any all resource modules (Freed, 1998a). Using
the hand/arm to il lustrate, these are: capacity (limited
li fting strength); precision (maximum fine motor control);
bias (handedness); fatigue (muscle weariness); unique
state (a hand can only be in one place at a time); and time
(every action requires some). Some categories may apply
in several different ways (e.g. capacity also applies to
hand/arm as a limit on graspable volume). We are still far
from having incorporated the complete set of human
characteristics implied by this taxonomy, although
significant progress has been made in modeling certain
resources, particularly vision.

A key feature of the resource architecture is the
abili ty to turn off characteristics; for example, one could
prevent the hand/arm from enforcing limits on strength,
allowing objects of any weight to be li fted. The
importance of this feature can be seen when one considers
the diverse and often subtle means by which people cope
with or circumvent their limits. For instance, people
compensate for limited visual acuity (loss of detail about
objects in the periphery of vision) by shifting gaze –
scanning and searching as needed to maintain a relatively
current picture of the whole visual field. Since people
rely on domain-specific expertise to scan effectively, new
scanning plans must be created for any new game agent.
Developers who do not want to create scanning plans can
turn off acuity limits, allowing the visual field to be
examined in detail without scanning.

Conclusion

More human-like computer opponents could serve a
valuable role in training new players, and may have other
benefits such as providing players with an improved
testing ground for new tactical and strategic ideas. In our
view, the problem of creating such agents involves two
main problems. First, a game designer must be able to
identify which aspects of human performance are most
relevant to gameplay – i.e. which are most significant in
determining how well various tactics would work against
a human opponent. Second, the designer requires
software and methodological support for developing
capable, human-like agents. In this paper, we present
progress on both problems.

References

Fitts, P.M. and Peterson, J.R. 1964. Information capacity
of discrete motor responses. Journal of Experimental
Psychology, 67, 103-112.

Firby, R.J. 1989. Adaptive Execution in Complex
Dynamic worlds. Ph.D. thesis, Yale University.

Freed, M. 1998a. Simulating human performance in
complex, dynamic environments. Ph.D. Dissertation,
Department of Computer Science, Northwestern
University.

Freed, M. 1998b. Managing multiple tasks in complex,
dynamic environments. In Proceedings of the 1998
National Conference on Artificial Intelligence. Madison,
Wisconsin.

Freed, M. & Remington, R.W. 1997. Managing Decision
Resources in Plan Execution. In Proceedings of the
Fifteenth Joint Conference on Artificial Intelligence,
Nagoya, Japan.

Gat, Erann. 1996. The ESL User’s Guide. Unpublished.
Available at: www-aig.jpl.nasa.gov/ home.gat/esl.html

Pell , B., Bernard, D.E., Chien, S.A.., Gat, E., Muscettola,
N., Nayak, P.P., Wagner, M., and Willi uams, B.C. 1997.
An autonomous agent spacecraft prototype. Proceedings
of the First International Conference on Autonomous
Agents, ACM Press.

Simmons, R. 1994. Structured control for autonomous
robots. IEEE Transactions on Robotics and Automation.
10(1).

