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Abstract

We present a model of an African drum ensemble. We develop a model
of polyrhythms, their creation, and their goodness. We assume that drum-
mers are distributed and autonomous and must coordinate their rhythms
and timing amongst themselves. We introduce a new amorphous clus-
tering algorithm and show that distributed temporal synchronization is
possible under certain restrictions. We develop a suite of visualizations
that provide key insights into the structure of polyrhythms. Finally, we
present interactive mechanisms that allow users to participate in and in-
vestigate polyrhythm evolution.

1 Introduction

The goal of this project is to develop an understanding of the nature of African
drum ensembles and to create an engaging interactive art installation modeling
a drum ensemble. In an African drum ensemble, polyrhythms are created in a
coordinated yet decentralized fashion. As an art installation, Beatrix permits
users to interact through the introduction of their own beats, voices, and tempo
changes.

Beatrix is built as a matrix of 8-24 self-powered speakers mounted on a white
panel with visualizations superimposed on top with a projector. The ensemble
is composed of drummers performing solos or accompaniment. The accompa-
niment parts are simple rhythms composed of limited voices that together fuse
into a parsimonious yet complex interlocking rhythm. Appropriate accompani-
ments are determined based on other accompaniments. Soloists perform highly
syncopated rhythms that cut across this accompaniment foundation. Soloists
are also able to change tempo, change rhythms, and crescendo with agreed on
patterns. Finally, sensor input controls tempo and allow the introduction of
parts and voices.

Beatrix is a music producing machine and because music is a subjective
experience, it is challenging to measure its success. Nevertheless, we measure
success on a number of more objective axes. Although we focus on typical
drum ensemble plausible scenarios, we also consider both larger ensembles and
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Figure 1: One measure of basic 4/4 time divided into 16 secondary pulses, with
4 downbeats (D) and 12 possible upbeats (U).
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Figure 2: One measure of basic 12/8 time divided into 12 secondary pulses, with
4 downbeats (D) and 8 possible upbeats (U).

algorithms that are more optimal, scalable, and generally more amenable to
computer implementation.

2 Rhythm Basics

Beatrix is based on the principles of African polyrhythms [5]. In this section,
we describe rhythm basics. In its most basic form, rhythm is time structuring.
We start by introducing temporal structures of a single rhythm.

We assume that time is divided up into a sequence of measures with a finite
period and resulting tempo. Measures are then further evenly divided up into a
series of primary pulses. Beats played on primary pulses are called downbeats.
For the purposes of this presentation we assume that there are four primary
pulses per measure, with the first beat, called the one, occurring at the begin-
ning. Additionally, there is a secondary structure, whereby finer grain secondary
pulses subdivide the primary divisions. Beats played on non-primary secondary
pulses are called upbeats. Two popular secondary pulse schemes are three sec-
ondary pulses per primary pulse and four secondary pulses per primary pulse.
These correspond respectively to 12/8 (shown in Figure 1) and 4/4 (shown in
Figure 2) time in Western music. We focus on 4/4 time (i.e., 16 secondary
pulses per measure) in this presentation.

Now that we have an evenly space temporal grid, we can describe rhythm
patterns as the subset of the pulses played. Played pulses are called beats. One
representation of a pattern is a bit vector of length equal to the number of
secondary pulses in one measure. Ones in a bit vector pattern are interpreted

1001001000101000

Figure 3: The beatbox (bitvector) notation of a basic 4/4 clave part.
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Drum/Tone Character
Bass B
Tone T
Slap S

Doundoun D
Sangban S
Kenkeni K

Figure 4: African drum notation font.

C--C--C---C-C---

Figure 5: The alphabetic beatbox notation of a basic 4/4 clave part.

as played beats while zeroes are interpreted as rests. This is equivalent to
beatbox notation shown in Figure 3, which is a popular drum notation originally
popularized by drum machines. Although the beatbox notation is linear, we
assume that patterns are played in a loop and thus the one is both the beginning
and end of a pattern.

Now rhythms would be pretty boring without a variety of drum sounds. We
call these drum sounds tones. In this treatment (and without loss of generality),
we assume that each drummer plays a single drum which produces a single tone.
At each time, a drummer is playing a particular pattern with a certain tone.

Drummers typically utilize a phonetic scheme for communicating rhythms
and can often be seen speaking these phonetic representations under their breath
during solos 1. An extensive font of African tones is available from [3] and
Figure 4 shows a typical mapping. These tone letters can now be used instead
of 1’s and 0’s in the bitvector representation as shown in Figure 5. This allows
for a very condensed representation of tone and time.

The fundamental aspect of African rhythm is the notion of a polyrhythm,
which is the composition of multiple drum patterns. Cross rhythm is another
name for polyrhythm, emphasizing the concept of the interaction between multi-
ple contrasting drum patterns. The character of cross rhythms can be elucidated
by examining their interplay. Beats that coincide create a sense of calm and
order, whereas disagreeing beats engender a sense of motion or disorder. In
traditional African polyrhythms, the “one” is the focus of coincident beats. Fi-
nally, patterns fuse more completely when they are played with more similar
tones and stay separate when played with less similar tones. Spatialization can
also affect the separation of patterns.

1Phonetic representations are typically optimized to allow efficient articulation and some
even also represent the hand usage.
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3 Assumptions

Beatrix makes a number of assumptions both to ensure realism and pragma-
tism. The assumptions meant to parallel real world ensemble qualities are as
follows. Drummers are placed in two-dimensional space, have a finite dimension,
and radius of communication. Neighbors are those drummers located within a
radius of communication. We assume that drummers are autonomous agents,
computing independently, but are loosely coupled by the perception of the beats
produced by their local neighbors. A beat produced by a drummer is broadcast
to all of its neighbors much as sound travels through air 2. We assume that a
small percentage beats might not be heard and that our algorithms should be
robust in the face of these failures.

The assumptions that are meant to simplify beatrix and that may not be
realistic are as follows. We assume but do not rely too heavily on the fact
that drummers have unique ids. We could use random ids without loss of
generality. For the purposes of this paper, we assume that drummers are fixed
in space, approximately evenly spaced, and that the spatial coordinates of a
few drummers are known. We assume that the one pulse is locally broadcast
at the beginning of every period. The problem of inferring the phase of a
drummer from merely the recently heard beats is beyond the scope of this paper.
Beats are communicated instantaneously and without attenuation. Although
sound travels fast enough to produce effectively zero delay, we do believe that
there are large enough and probabilistic enough delays in the perception and
motor control systems of drummers to justify factoring delays into temporal
algorithms. We choose not to for this paper. Finally, we do not address the
selective attention of drummers nor other human cognitive artifacts.

4 Basic Amorphous Computations

Beatrix requires a basic set of organizational structures and distributed com-
putations in order to coordinate certain music behaviors such as soloing and
part specialization. In this section, we describe the basic structures and com-
putations that will form building blocks for higher level behaviors. While these
algorithms have nice computational properties, some of them might not be plau-
sible for human drummers in African ensembles.

4.1 Flooding

It is often necessary to get messages out to all drummers. A simple flooding
procedure can achieve this. A message is sent from a particular originating
drummer to its neighbors. When a drummer receives a new message it records
it and sends it out to its neighbors. Already heard messages are ignored.

2except that sound is attenuated with distance.
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4.2 Election

In certain situations, it is important to elect k leaders. We can choose leaders
by using their unique id’s as follows [6] 3. Each drummer maintains a list of
their top k ids initialized to its id. During each round drummers merge max
ids heard in the last round and then broadcast these lists of ids if their max list
changed. This procedure stop when there are no more changes in lists. At this
point all lists will converge to the max k ids. The leaders are then the drummers
with ids in their lists.

4.3 Gradients

Gradients are a biologically inspired mechanism for estimating minimum rela-
tive measures through local communication [7] [9] [10]. For example, relative
drummer distance to soloist could be estimated by maintaining minimum com-
munication hop counts to the soloist. In more detail, a seed drummer initiates
a gradient by sending its neighbors a message with a zero count. When a
drummer receives a message with a count less than previously heard, then it re-
members it and sends a message along to its neighbors with count incremented
by one. This procedure completes when no more updates occur. Hop-counts
can then be interpreted as an estimated distance by multiplying by the radio
range. Smoothing hop-counts with neighbors can increase the resolution.

4.4 Aggregation

Often it is necessary to aggregate information across drummers. One way to
achieve this is to construct a spanning tree such that children communicate their
values to their parents and values are aggregated on their way up towards the
root of the spanning tree. The root will contain the total aggregated value at
the end of the aggregation process.

A spanning tree can be constructed starting from the root [6]. A parent
recruits children by broadcasting a recruit message including the parent’s id.
Unrecruited drummers hearing the recruit message record the parent message
and then recruit their own children recursively. The process completes when
all drummers (except the root) have parents. A minimum spanning tree can be
constructing by choosing nearest parents using gradients.

5 Temporal Structure

In order for a drum ensemble to play coherent polyrhythms, their primary pulses
must coincide. In order for this to happen, drummers’ phases and periods
must be equal. We can identify a couple dimensions that control the level
of complexity of this problem. The first is whether there are none, one or
multiple true time keeping drummers. The second is whether drummers can

3Nagpal and Coore [8] present an algorithm not requiring unique id’s.
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hear all the time keepers or not. We consider these various scenarios but in
the end develop an algorithm able to temporally coordinate in real-time using
distributed local neighborhood coordination. More realistic models might have
to consider probabilistic delays introduced by perceptual and motor systems.
More robust algorithms require more structure and control and as such are less
realistic as models of natural drumming situations where time synchronization
is fallible.

5.1 Phase Estimation

The first problem in temporal coordination of drummers is the problem of es-
timating a common phase. To simplify matters in this subsection, we assume
that all drummers play at the same tempo.

5.1.1 Direct Phase Estimation

The simplest mechanism for phase locking with a single true and globally audible
time keeping drummer is as follows. When each of the drummers hear a time
keeper’s one pulse they adjust their phases forward or backward in proportion
to the discrepancy with the time keepers phase. The update equations is:

φj(t + 1) = φj(t) + α(φi(t) − φj(t)) (1)

where φj(t) is the phase of drummer j at time t, drummer i is a neighboring
drummer time keeper, and 0 < α << 1. We can increase the speed with which
a drummer tracks phase changes and the extent to which tracking is sensitive
to noise by increasing α. Lower α makes drummers track slower but also makes
them less sensitive to fluctuations in phase noise.

5.1.2 Mirollo and Strogatz

Mirollo and Strogatz [13] present a model of synchronization of biological os-
cillators. They assume that the oscillators’ frequencies are very close and that
each oscillator can sense the firings of all the other oscillators. Upon hearing
the firing of another oscillator, an oscillator advances its phase as a nonlinear
function of its current phase, phase advancement increasing with phase. They
are able to prove convergence for a whole population of oscillators starting with
random phases. Unfortunately, its not obvious how to extend their model to
the case of local sensing and unequal frequencies.

5.1.3 Synchronous Fireflies

Buck and Buck [2] present a model of the synchronization of fireflies. They
assume that firefly firing frequencies are very close and that each firefly can
sense the firings of fireflies with a strength inversely in proportion to the square
of the distance. Fireflies maintain an excitation level which is incremented at
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regular intervals. When the excitation exceeds a threshold the firefly fires and
resets its excitation to zero. At the same time, if the accumulated received light
from neighboring fireflies exceeds a trigger value, then a given firefly resets its
excitation to zero (without firing). However, if a firefly is close enough to its
firing threshold, then it proceeds along undisturbed. While a nice model of
fireflies, it’s not clear how to extend this to unequal frequencies, not to mention
how to prove convergence.

5.2 Period Estimation

Unfortunately, it is not enough to just coordinate drummers’ phases. Drummers
must also coordinate their tempo as we can not assume that drummers will all
play at the same tempo.

5.2.1 Direct Period Estimation

A simple mechanism for coordinating neighboring periods is for a drummer to
attempt to directly estimate a time keeper’s period and to adjust its period to
minimize the discrepancy. Drummers can estimate a period at the onset of a
one by subtracting the current time from the time of the previous one. The
estimation procedure is as follows:

γ̂i(t) = τi(t) − τi(t − 1) (2)
γj(t + 1) = γj(t) + α(γ̂i(t) − γj(t)) (3)

where τi(t) is the time of drummer i’s one, γj(t) is the period of drummer j at
measure t, γ̂i(t) is the current estimate of drummer i’s period, and 0 < α << 1.
As in direct phase estimation, adjustments in α tradeoff tracking speed for
insensitivity for target noise.

5.2.2 Proportion Estimation

If all drummers can hear each other and know the total number of drummers,
then one can imagine drummers estimating the average tempo by measuring
the proportion of ones heard in a given period [4]. If the number of ones is less
than the total number of drummers, then the period could be increased, and
if greater, then decreased. Although not perhaps the most realistic model, we
have shown experimentally that it will in fact find a common tempo.

5.3 Phase and Tempo Estimation

We can combine phase and frequency estimation to form a comprehensive tem-
poral synchronization algorithm. In particular, we can combine direct phase
and frequency estimation. Each time a drummer hears a neighbor it adjusts its
phase and frequency to better correspond to its neighbors. Preliminary results

7



suggest that even for small neighborhood and a large number of drummers, this
mechanism converges quickly.

Another way to achieve the same effect is to use a simple form of phase lock
looping [16] (PLL) which uses errors in phase to drive corrections in frequency:

τj(t + 1) = τj(t) + α(φi(t) − φj(t)) (4)

This is a mechanism for adjusting phase and frequency together by only modu-
lating the frequency. The lowest error solution will be the one where the phase
and frequencies agree. Convergence can be proven for the two player case, but
not for the n player version as we desire.

5.4 Temporal Synchronization Success

Beatrix plays as an ensemble coordinating phase and tempo. One major piece
of work is to develop algorithms that can permit distributed tempo tracking and
phase locking. The easiest version of this involves the global communication of
each drummer’s downbeats. The hardest version involves local communication
of the beats themselves without obvious downbeats. A simple measure of suc-
cess of phase locking and tempo tracking is the average square error across the
ensemble. A more advanced measure of success for tempo tracking is the maxi-
mum sustainable change in tempo per measure. We have described a simple and
intuitive algorithm for phase and tempo synchronization which tracks quickly
and accurately in simulation for plausible ensembles. More work is needed to
properly test this algorithm and to improve the realism of the simulation.

6 Specialization

Clearly, multiple parts are necessary for the creation of compelling polyrhythms.
Each part involves different patterns and tones. Often parts will each be played
by multiple drummers with slight variance in time and tone giving a part more
depth and power. As in an orchestra, parts are more effectively played in spa-
tially colocated groups. In this section, we investigate algorithms for part as-
signment.

6.1 Small Ensemble Specialization

In the simplest configuration, drummers are preassigned roles and particular
drums with their specific tones. A drum leader will then assign patterns to
each of the drummers. This seems quite reasonable for small ensembles but
unfortunately does not scale so well.

6.2 K-Means Clustering

The most popular algorithm for dividing up a group of examples into k clusters
is called k-means clustering. The algorithm starts by assigning best guess to k
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Figure 6: k-means clustering after 6 iterations with 3 clusters and 1024 drummers.

means. Until there is no more change in the means, we use the estimated means
to classify the examples into k clusters and then replace each mean i with the
mean of all examples from cluster i.

The way that this algorithm could roughly apply to ensemble specializa-
tion is to map examples to drummers’ spatial locations, using these locations
to determine both cluster membership and means. In particular, a drummer’s
cluster membership is calculated as the cluster which has the closest mean and
new means are calculated as the center of mass of a cluster’s members. Fig-
ure 6 shows the result of running k-means clustering on 1024 drummers with 3
clusters.

6.3 Amorphous K-Means Clustering

Running k-means clustering on an amorphous computer presents unique chal-
lenges. Fortunately, most of the building blocks are already available. The
main challenges are to calculate the center of mass of clusters and to calculate
minimum mean distances. In order to simplify the algorithm, we assume that
we assign mean drummers, that is drummers that are at the center of mass of
their clusters.

Cluster membership can be determined by choosing a cluster with a mini-
mum estimated distance to its mean. Distance to mean drummers can be esti-
mated using smoothed minimum hop-counts calculated using gradients. Center
of mass can be calculated using aggregation of cluster member coordinates and
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Figure 7: Amorphous k-means clustering after 3 iterations with 3 clusters and 1024

drummers. Triangles are drummers on cluster edges. Shape line width is proportional

to hop-count distance.

cluster membership count. The center of mass then becomes the average x and
y coordinates of cluster members.

A center of mass algorithm more in the spirit of amorphous computing can
be based around gradient propagation. The edge of a cluster is detected by
drummers noticing that neighbors are in other clusters. The edge is then seeded
and gradients propagate inwards towards the center of a cluster where their
values are maximal. Local maxima can then be detected by noticing that a
drummer’s gradient value is higher than its neighbors. The mean for a given
cluster is chosen as the highest local maxima or randomly if there are multiple
global maxima. Choose more optimal local maxima is a topic for future research.
Figure 7 shows the result of using this amorphous style k-means clustering
algorithm on 1024 drummers and 3 clusters.

7 Composition and Improvisation

In this section we examine in more depth the principles of polyrhythm compo-
sition and propose goodness measures and introduce likely compositional oper-
ators.
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B---B---B---B---
C--C--C---C-C---

Figure 8: The basic 4/4 clave part contrasted against the 4/4 beat pattern.

7.1 Goodness Measures

We start by examining the attributes of good drum patterns. Though somewhat
subjective, we articulate these features in hopes of formulating a goodness mea-
sure so as to better understand why successful rhythms work and unsuccessful
rhythms fail and to potentially identify new rhythms. We back our choices by
testing these attributes on both successful and unsuccessful patterns. We will
use the popular 4/4 clave pattern shown in Figure 8 as a running example.

7.1.1 Monorhythms

We start with a few basic principles of creating single patterns in isolation. We
suggest that successful single patterns can form the root of a whole family of
rhythms, where a family is a set of variations or improvisations on the root pat-
tern. By discovering new successful root patterns we can hope to also discover
a whole new family.

We restrict our patterns to bit-vectors of a particular length, and for the pur-
poses of this discussion, we consider only bit-vectors of length 16, corresponding
to 4/4 rhythms. Some of our principles are described in terms of a generative
model, that is, in terms of how to produce conforming patterns. Other prin-
ciples suggest numeric goodness metrics that can favor certain patterns over
others.

Conjecture 1 A good pattern is rooted in the one, that is, the one is played.

This is necessary to provide a moment of recurring tranquility and to aid in tem-
poral synchronization. Secondary patterns can successfully start on an upbeat
but primary patterns must be rooted.

Conjecture 2 Patterns are aligned with an underlying pulse structure 4.

Conjecture 3 Interesting root patterns have a medium density of beats.

Patterns with too low or high a density (number) of beats have too little struc-
ture and create too little interesting contrast. Furthermore, high density pat-
terns are less appropriate for improvisations.

As an experiment consider the case of 4/4 patterns, where we have 16 pos-
sible beats and as a rule of thumb consider the best patterns to have between
4 (0.25) and 8 (0.5) beats (density). We only consider only rotational unique

4as a simplification, we do not consider swing in the playing of patterns
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2/3 Pattern Spread Symmetry 4 Pattern Spread Symmetry
SS------ 0.70 0.50 SSSS---- 0.58 0.00
S-S----- 0.90 0.50 SSS-S--- 0.75 0.50
S--S---- 0.98 0.50 SS-SS--- 0.75 0.50
S---S--- 1.00 1.00 S-SSS--- 0.75 0.50
SSS----- 0.61 0.25 SS--SS-- 0.79 1.00
SS-S---- 0.78 0.25 SSS--S-- 0.79 0.50
S-SS---- 0.78 0.25 S-SS-S-- 0.90 0.00
SS--S--- 0.84 0.75 S-S-SS-- 0.90 0.50
S--SS--- 0.84 0.75 SS-S-S-- 0.90 0.50
S-S-S--- 0.94 0.75 S-S-S-S- 1.00 1.00
S-S--S-- 0.98 0.25

Figure 9: The sparse 8-bit patterns with 2 to 4 beats and their spread and
symmetry values.

patterns, that is, we choose only one pattern per set of equivalent pattern under
rotation. Out of 65536 possible 16-bit patterns, we have 38506 unique patterns
and 2418 sparse patterns. Out of 256 8-bit patterns, there are 154 unique pat-
terns and 21 sparse patterns with 2 to 4 beats as shown in Figure 9. These
numbers are small enough to enumerate and discover new interesting patterns.

Conjecture 4 Compelling patterns have a good spread of beats across a pattern.

Good spread is also justified by the need for interesting structure. Spread can
be measured with the following equation:

S(p) =
∑

b1,b2∈Nbrs(p)

log D(b1, b2)/(|Ones(p)| ∗ log(N/|Ones(p)|)) (5)

where p is a bit-vector, Ones(p) is the set of ones in p, Nbrs(p) is the set of
neighboring ones, D(b1, b2) is the interbeat distance, |Ones(p)| is the number
of ones in the vector, and N is the size of the bit-vector. A perfect spread is
normalized to be one using the maximum spread for the given number of beats
as the denominator of Equation 5. Figure 9 shows the spread values for the
sparse 8-bit patterns.

Beyond good patterns having a solid structural basis, they also have the
qualities of movement and surprise and contrasting moments of order and dis-
order.

Conjecture 5 Good patterns exhibit a certain amount of asymmetry.

Asymmetry creates contrast between parts of itself and other patterns. The
asymmetry of a particular pattern can be measured as the deviation from itself
when broken up into equal parts. One way to calculate symmetry is to count
the number of beats in agreement starting at each phase and normalized by the
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maximum possible agreements. Asymmetry could then just be the negative of
the symmetry. Figure 9 shows the resulting symmetry values.

Conjecture 6 Interesting patterns often utilize syncopation to create expecta-
tion and surprise.

We have yet to devise a good measure of syncopation other than an obvious
variant of the proposed symmetry metric. We can see that spread and asymme-
try/syncopation are somewhat at odds. Interesting patterns (e.g., S-S--S--)
strike a balance between the two properties.

The clave pattern from Figure 8 exhibits all of these basic qualities. In
particular, it starts with an even pattern and then changes gears to realign
itself with the pulse beat pattern.

Goodness metrics were developed that we think highly correlate with success.
For example, a pattern goodness metric has been invented and in the future
will be used to exhaustively test all 16 bit drum patterns to both confirm the
recognition of the goodness of standard patterns and to discover new patterns
with high goodness. We plan to use linear regression to find a weighting of the
goodness features that most faithfully predicts success.

7.1.2 Polyrhythms

Now we turn to the question of how polyrhythms combine to create successful
polyrhythms. Clearly, if all drummers played the same patterns, the resulting
composite polyrhythm would not be much more interesting than if one drum-
mer were to play it. So patterns must complement each other, that is, patterns
should have beats that are not in common. Furthermore, common beats would
more likely be on primary pulses, although patterns can have no beats in com-
mon.

In the future, we will be investigating measures of goodness for polyrhythms.
One promising direction is to measure the mutual information between cross
rhythm patterns [11].

7.2 Compositional Operators

We have described desirable basic qualities of patterns but we have not neces-
sarily invented mechanisms to create them. One obvious technique is to copy
popular patterns. This is not the final answer but a good point of departure 5.
We would hope to create new patterns that are both interesting and novel in
their own right, but also best reflect the actively played set of (or library of
root) patterns.

A popular and intuitive popular approach is to model the creation of pat-
terns as a form of evolution [12] [14], whereby new patterns are created based
on or as a function of actively played patterns. New patterns could then be
evaluated using goodness measures described in Section 7.1.1. Others [15] have

5we would like to use our measures of goodness developed here to choose these root patterns
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Period Pattern
8 B-------B-------
7 B------B------B-
6 B-----B-----B---
5 B----B----B----B
4 B---B---B---B---
3 B--B--B--B--B--B
2 B-B-B-B-B-B-B-B-

Figure 10: The set of basis patterns with beats occurring at constant frequencies.

examined the use of genetic based operators for generating improvisational mu-
sic. Our approach differs by grounding the genetic operators in plausible drum
improvisation techniques instead of merely genetic operations.

We can actually create all of the standard rhythms using a set of basis
patterns and combinator operators. The set of basis patterns are the patterns
created by placing beats at evenly spaced intervals. Figure 10 shows a number
of basis patterns for successive periods from 2 to 8 secondary pulses. The most
compelling basis patterns are those of periods 2, 3 and 4. We can see that the
clave pattern (shown in Figure 8) is actually a crossover of period 3 and 2 basis
patterns.

New patterns can be created by manipulating prior patterns. Patterns can
be rotated to created a new variant patterns. Rotation is an important source
of novel patterns and in fact is often used with classic clave patterns to create
a family of patterns. Patterns can be imitated with mutation, where there are
certain probabilities of adding or dropping beats.

Patterns can be combined in a few different ways. First, two patterns can
be crossed over, with the first part of the pattern coming from the first part of
one pattern and the last part coming from the last part of the other pattern.
Second, variety can be introduced by merging multiple patterns creating a new
composite pattern.

7.3 Compositional Control

Now that we have introduced measures of rhythmic goodness and have described
a number of compositional operators, we turn to the question of compositional
control. We first describe the current composition control algorithm in beatrix
and then consider more compelling designs.

The current version of Beatrix is a simple improvisational rule-base system.
Each drummer plays a pattern for a random amount of time from 3 to 16
measures. When it is time for a drummer to improvise, it randomly chooses
between four different operators: template, mimicry, syncopation, and rotation.
Template chooses patterns from a set of classic patterns and applies a random
amount of mutation. Template introduces root patterns into the rule-base and
are chosen to balance the distribution of tones. Drum tones are divided into four
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categories: low, mid, high, and bell. Patterns are chosen evenly between these
categories. The remaining operators base their improvisation on patterns being
played by themselves or neighbors. Mimicry copies an existing pattern and
again applies random mutation. Syncopation adds intervening beats to existing
rhythms. Rotation creates new patterns through small amounts of rotation.
These four operators produce both a feeling of progression and allow a large
amount of novelty.

Despite such a simple control design, members of the ensemble form distinct
roles and play parts which together are more than the sum of the parts. Each
part is unique and simple enough to be uninteresting on its own but together
produce a captivating ever changing rhythm. Part determination takes place in
a distributed fashion.

There are many opportunities for improvement. Although crude versions of
call and response behaviors occur, we would like to build this more fundamen-
tally into our control regime. The use of dynamic range can be a very powerful
compositional technique. For example, we would like to have periods of coordi-
nated inactivity followed by the incremental addition of drummers. We would
like more informed decisions as to the introduction of beats and tones. Muta-
tion can be directed towards creating new patterns that introduce syncopation
or that more generally increase mutual information [11]. Finally, we would like
to add more improvisational operators. Two likely candidates are crossover and
merging.

7.4 Musical Success

Beatrix produces music that is captivating and enjoyable while at the same
time ever changing. The ultimate measure of success would be whether this
system could be sold in quantity, commissioned for art exhibitions, and would
be actively listened to. Short of this, a survey could be conducted or master
drummers consulted. An informal but true measure of success could be whether
people would actually spontaneously dance to the produced rhythms. Currently,
we have yet to conduct such tests.

8 Visualization

In this section, we introduce visualization techniques. Visualization is impor-
tant for understanding the mechanisms of polyrhythms, developing alternative
representations, and for creating audio/visual beauty. We start by describing
important features and then go on to present a few visualization strategies.

8.1 Single Beat Representations

At the lowest level, for each drummer it is important to visualize the pattern
and tone being played and the state of playing it. If a beat is being played at
a particular moment, it is useful to have a visual indication of it. Also, it is
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Figure 11: Single beat visualizations.

Figure 12: Linear pattern visualization.

informative to see the history of the recently played beats. We have investigated
the use of size, color, and filmstrips (shown in Figure 11) to indicate the onset
and history of beats.

It is also important to portray the tones. We have experimented with the
representation of tones as colors, approximately mapping the sound frequency
onto the color spectrum. For example, low frequency sounds would have cold
colors such as blue and green, while high frequency sounds would have hot colors
such as orange and red. Another equally compelling tone visualization scheme
is through an alphabetic representation also shown in Figure 11.

Finally, it is important to show the phase of the drummer. The most obvious
depiction is animated rotation. This works best with shape beat representations
such as letters or squares.

8.2 Single Pattern Representations

The most straightforward visual representation of a pattern is the beatbox
shown in Figure 12, that is, a linear pattern layout with beat shapes correspond-
ing to played beats. The problem with this depiction is that the beginning and
end of a pattern are disjoint even though a pattern is played cyclically. A radial
representation is much more natural, although a linear representation is still
useful in certain situations. The easiest realization of a radial representation is
by just laying out the linear visualization along a circle.

8.3 Ensemble and Polyrhythmic Representations

At the higher level it is interesting to see the relationships between patterns and
drummers. For certain tasks (such as temporal synchronization) it is important
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Figure 13: Radial visualization of drum ensemble.

to show the spatial layout and neighborhood relationship of the drummers. From
there, it is interesting to see the relationship between drummers’ playing state
such as phase and tempo. During improvisation it is important to understand
how and from where patterns emerged. Here the linear beatbox visualization is
useful because two patterns can be lined up side by side in order to understand
their relationship.

8.3.1 Radial Representation

The radial representation is also useful for depicting the relationship between
patterns and the state of play. In this representation, there is a concentric ring
for each drummer which is divided evenly into contiguous segments correspond-
ing to each of the secondary pulses. A segment expands to full size when it is
being played and fades back to zero afterwards. The center ring is used as a
metronome, showing the pulses as they are crossed.

8.3.2 Grid Representation

The grid representation shown in Figure 14 is good at showing spatial structure
and improvisational movements during play. Each of the drummers is placed in
a square at a grid location, where there is an beat icon. The beat icon peaks in
size when a corresponding beat is played and shrinks with time. The age of a
pattern is represented by a square’s background color, with bright red meaning
brand new, bright blue meaning at least ten measures old, and interpolated
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Figure 14: Grid visualization of drum ensemble.

colors between red and blue corresponding to less than ten measures old. At the
introduction of a new pattern, the source and destination patterns are brought
next to each other in order to show both an improvisation’s origin but also the
operation as a function of its origin.

8.3.3 Spatial Representation

The spatial representation shown in Figure 15 is good for showing more liberal
spatial layouts. Drummers are randomly placed in a rectangle such that they
do not overlap in space. A drummer’s neighborhood is controlled by a radius
parameter, which allows a drummer to either hear just its neighbors all the way
up to hearing all the other drummers. In this configuration, drummer state is
represented merely with a beat icon.

9 Interactivity

Beatrix allows the introduction of a certain amount of interactive control. Users
can control the tempo, introduce patterns, and record new tones.

9.1 Computer Keyboard and Mouse

The simplest input device is the computer keyboard. Beatrix allows users to
control many aspects through keyboard and mouse input. For example, the
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Figure 15: Spatial visualization of drum ensemble.

mouse can be used to selectively control the drummers’ audio levels by adjusting
each volume inversely with the distance from the mouse allowing users to focus
in on particular drummers and their parts.

9.2 Midi Devices

Midi [1] input is very good for time critical input. Midi devices can be connected
to Beatrix allowing the creation of patterns in real-time. Midi input can be used
to control the overall tempo by measuring inter note onset intervals. We have
also begun investigating using drum pattern recognition to control different
aspects of Beatrix and the use of Beatrix as a semiautomatic music controller.

9.3 Voice Input

Beatrix also records digital audio input coming in through a computer micro-
phone. This input can be recorded and used as new drum tones.

9.4 Interactivity Success

Beatrix creates an amusing interactive experience for the users. The minimal
measure of success is that users feel that they have a real affect on the rhythms.
The next measure is that users have fun interacting with beatrix. Ultimately
beatrix works if users feel that they can introduce compelling rhythms and
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control the rhythmic creation without prior drumming experience. Preliminary
results are that users do feel that Beatrix is responding to them and that it is
entertaining and compelling.

10 Future Work

In this paper, we introduced a very early version of Beatrix. We have only
scratched the surface on the characterization of drum pattern goodness. We
hope to push this much further in the future hopefully identifying new families
of rhythms. Much future work remains including the incorporation of real mi-
crophones and modular visualization. Ideally there would be n Beatrix modules
independently capable of producing sound and visualizations and listening to
each other. Among other things, this would force more realism into the temporal
synchronization algorithms.

11 Conclusions

We have presented a model of an African drum ensemble. We have developed a
model of polyrhythms, their creation, and their goodness. We have introduced
a new amorphous clustering algorithm and shown that distributed temporal
synchronization is possible under certain restrictions. We have developed a suite
of visualizations that provide key insights into the structure of polyrhythms.
Finally, we have invented interactive mechanisms that allow users to participate
in and investigate polyrhythm evolution.
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