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Abstract. We demonstrate that it is possible to achieve accurate lo-
calization and tracking of a target in a randomly placed wireless sensor
network composed of inexpensive components of limited accuracy. The
crucial enabler for this is a reasonably accurate local coordinate system
aligned with the global coordinates. We present an algorithm for creat-
ing such a coordinate system without the use of global control, globally
accessible beacon signals, or accurate estimates of inter-sensor distances.
The coordinate system is robust and automatically adapts to the fail-
ure or addition of sensors. Extensive theoretical analysis and simulation
results are presented. Two key theoretical results are: there is a critical
minimum average neighborhood size of 15 for good accuracy and there
is a fundamental limit on the resolution of any coordinate system deter-
mined strictly from local communication. Our simulation results show
that we can achieve position accuracy to within 20% of the radio range
even when there is variation of up to 10% in the signal strength of the
radios. The algorithm improves with finer quantizations of inter-sensor
distance estimates: with 6 levels of quantization position errors better
than 10% are achieved. Finally we show how the algorithm gracefully
generalizes to target tracking tasks.

1 Introduction

Advances in technology have made it possible to build ad hoc sensor networks
using inexpensive nodes consisting of a low power processor, a modest amount
of memory, a wireless network transceiver and a sensor board; a typical node is
comparable in size to 2 AA batteries [5]. Many novel applications are emerging:
habitat monitoring, smart building reporting failures, target tracking, etc. In
these applications it is necessary to accurately orient the nodes with respect to
the global coordinate system. Ad hoc sensor networks present novel tradeoffs in
system design. On the one hand, the low cost of the nodes facilitates massive
scale and highly parallel computation. On the other hand, each node is likely
to have limited power, limited reliability, and only local communication with a
modest number of neighbors. The application context and massive scale make
it unrealistic to rely on careful placement or uniform arrangement of sensors.
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Rather than use globally accessible beacons or expensive GPS to localize each
sensor, we would like the sensors to be able to self-organize a coordinate system.

In this paper, we present an algorithm that exploits the characteristics of
ad hoc wireless sensor networks to discover position information even when the
elements have literally been sprinkled over the terrain. The algorithm exploits
two principles: (1) the communication hops between two sensors can give us an
easily obtainable and reasonably accurate distance estimate and (2) by using
imperfect distance estimates from many sources we can minimize position error.
Both of these steps can easily be computed locally by a sensor, without assuming
sophisticated radio capabilities. We can theoretically bound the error in the
distance estimates, allowing us to predict the localization accuracy. The resulting
coordinate system automatically adapts to failures and the addition of sensors.

There are many different localization systems that depend on having direct
distance estimates to globally accessible beacons such as the Global Positioning
System [6], indoor localization [1] [14], and cell phone location determination [3].
Recently there has been some research in localization in the context of wireless
sensor networks where globally accessible beacons are not available. Doherty
et al [4] present a technique based on constraint satisfaction using inter-sensor
distance estimates (and a percentage of known sensor positions). This method
critically depends on the availability of inter-sensor distance measurements and
requires expensive centralized computation. Savvides et al [15] describe a dis-
tributed localization algorithm that recursively infers the positions of sensors
with unknown position from the current set of sensors with known positions,
using inter-sensor distance estimates. However, there is no analysis of how the
error accumulates with each inference and what parameters affect the error. By
contrast, our algorithm does not rely on inter-sensor distance estimates, is fully
distributed, and we can theoretically characterize how the density of the sensors
affects the error. Our algorithm is based on a simpler method introduced by one
of the authors in [11] but also independently suggested in [9].

Section 2 presents the algorithm for organizing the global coordinate sys-
tem from local information. We present a theoretical analysis of the accuracy
of the coordinate system along with simulation results is presented in section 3.
Section 4 reports simulation results that generalize the basic algorithm to in-
clude more accurate distance information based on signal strength. Section 5
investigates the robustness of the algorithm to variations in communication ra-
dius as well as sensor failures. Section 6 introduces a variation of the coordinate
estimation algorithm that tracks moving targets.

2 Coordinate System Formation Algorithm

In this section we describe our algorithm for organizing a global coordinate sys-
tem from local information. Our model of an ad hoc sensor network is randomly
distributed sensors on a two dimensional plane. Sensors do not have global knowl-
edge of the topology or their physical location. Each sensor communicates with
physically nearby sensors within a fixed distance r, where r is much smaller than
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the dimensions of the plane. All sensors within the distance r of a sensor are
called its communication neighborhood. In the first pass we assume that all sen-
sors have the same communication radius and that signal strength is not used
to determine relative position of neighbors within a neighborhood. Later in sec-
tions 4 and 5 we relax both of these constraints. We also assume that some set
of sensors are “seed” sensors - they are identical to other sensors in capabilities,
except that they are preprogrammed with their global position. This may be
either through GPS or manual programming of position. The main point is for
the seeds to be similar in cost to the sensors, and for it to be easy to add and
discard seeds.

The algorithm is based on the fact that the position of a point on a two
dimensional plane can be uniquely described by its distance from at least three
non-collinear reference points. The basic algorithm consists of two parts: (1)
each seed produces a locally propagating gradient that allows other sensors to
estimate their distance from the seed and (2) each sensor uses a multilateration
procedure to combine the distance estimates from all the seeds to produce its
own position. The following subsections describe both parts of the algorithm in
more detail.

2.1 Gradient Algorithm

A seed sensor initiates a gradient by sending its neighbors a message with its
location and a count set to one. Each recipient remembers the value of the
count and forwards the message to its neighbors with the count incremented by
one. Hence a wave of messages propagates outwards from the seed. Each sensor
maintains the minimum counter value received and ignores messages containing
larger values, which prevents the wave from traveling backwards. If two sensors
can communicate with each other directly (i.e. without forwarding the message
through other sensors) then they are considered to be within one communication
hop of each other. The minimum hop count value, hi, that a sensor i maintains
will eventually be the length of the shortest path to the seed in communication
hops. Hence a gradient is essentially a breadth-first-search tree [8].

In our ad hoc sensor network, a communication hop has a maximum physical
distance of r associated with it. This implies that a sensor i is at most distance
hir from the seed. However as the average density of sensors increases, sensors
with the same hop count tend to form concentric circular rings, of width approx-
imately r, around the seed sensor. Figure 1 shows a gradient originating from a
seed with sensors colored based on their hop count. At these densities the hop
count gives an estimate of the straight line distance which is then improved by
sensors computing a local average of their neighbors’ hop counts.

2.2 Multilateration Algorithm

After receiving at least three gradient values, sensors combine the distances from
the seeds to estimate their position relative to the positions of the seed sensors.
In particular, each sensor estimates its coordinates by finding coordinates that
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Fig. 1. Gradients propagating from a seed. Each dot represents a sensor. Sensors are
colored based on their gradient value.

minimize the total squared error between calculated distances and estimated
distances. Sensor j’s calculated distance to seed i is:

dji =
√

(xi − xj)2 + (yi − yj)2 (1)

and sensor j’s total error is:

Ej =
n∑
i=1

(dji − d̂ji)2 (2)

where n is the number of seed sensors and d̂ji is the estimated distance computed
through gradient propagation. The coordinates that minimize least squared error
can be found iteratively using gradient descent. More precisely, the coordinate
estimate starts with the last estimate if it is available and otherwise with the
location of the seed with the minimum estimated distance. The coordinates are
then incrementally updated in proportion to the gradient of the total error with
respect to that coordinate. The partial derivatives are:

∂Ej
∂xj

=
n∑
i=1

(xj − xi)(1−
dji

d̂ji
) and

∂Ej
∂yj

=
n∑
i=1

(yj − yi)(1−
dji

d̂ji
) (3)

and incremental coordinate updates are:

∆xj = −α∂Ej
∂xj

and ∆yj = −α∂Ej
∂yj

(4)

where 0 < α << 1.

3 Analysis

In this section we analyze the accuracy of the coordinate system produced by
this algorithm. In particular we are interested in the effect of the random dis-
tribution of sensors and the average local neighborhood size on the accuracy of



Organizing Coordinate Systems 5

the position estimates. Accuracy is measured by computing the average absolute
error (distance) between the actual physical location and the logical position.
The error comes from two sources: (1) errors in the distance estimates produced
by gradients and (2) errors produced by combining the distance estimates using
multilateration.

For the purpose of analysis, the sensors are assumed to be distributed inde-
pendently and randomly on a unit square plane. This means that for each sensor
we choose a random x coordinate and random y coordinate on the unit square,
independently of all other sensors. The probability that there are k sensors in a
given area a can be described by a Poisson distribution [10].

Pr(k sensors in area a) =
(ρa)k

k!
e−ρa

From this formula, we can derive the expected number of sensors in area a
to be ρa. ρ is equal to N

S where N is the total number of sensors and S is the
total surface area. The value that we are interested in is the expected number of
sensors in a local neighborhood, which we will call nlocal. A sensor communicates
with all other sensors within the communication radius r. Thus the expected
local neighborhood nlocal is ρπr2. In reality the sensors are randomly distributed
but would probably not arbitrarily overlap, which reduces the variance in local
neighborhood sizes. This random distribution represents a worst case analysis
where sensors may overlap arbitrarily.

3.1 Error in Distance Estimate

The first source of error in distance estimate arises from the discrete distribu-
tion of sensors. A gradient computes the shortest communication path from the
source to any sensor. Let the gradient value of sensor i be hi, then the distance
between sensor i and the source is at least hi × r. In the ideal case the gradient
value is equal to the straight-line distance, which would imply that with each
communication hop one moved a distance r closer to the source. However given
any two sensors, there may not be enough intermediate nodes for the shortest
communication path to lie along the straight-line path between the source and
destination. In that case, the gradient value overestimates the actual distance
between the sensor and the source. Intuitively this is related to the density of
sensors within a local neighborhood.

We can characterize the effect of density on the error using results derived in
the context of random plane graphs and packet radio networks. In these models,
receivers are spatially distributed (usually randomly) and each receiver com-
municates via broadcast with all neighbors within a fixed radius. The goal is
usually to guarantee connectivity and optimize network throughput. Shivendra
et al showed that the theoretical expected local neighborhood nlocal to ensure
connectedness is between 2.195 and 10.526 and simulation experiments suggest
at least 5 [13]. Silvester and Kleinrock proved that nlocal = 6 produces optimal
network throughput for randomly distributed receivers [7]. In the process they
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Fig. 2. Theoretical and experimental values for the average distance covered in one
communication hop dhop, for different expected local neighborhoods nlocal. There is
significant improvement below nlocal = 15, after which increasing the neighborhood
size has diminishing returns.

derived a formula for how the expected distance covered in one communication
hop is affected by the parameters of the random distribution. The expected dis-
tance covered per communication hop, dhop, is the physical distance between a
pair of sensors divided by the expected number of hops in the shortest commu-
nication path. Kleinrock and Silvester [7] showed that dhop depends only on the
expected local neighborhood nlocal, not the total number of sensors.1

dhop = r(1 + e−nlocal −
∫ 1

−1

e−
nlocal
π (arccos t−t

√
1−t2)dt) (5)

In Figure 2, we numerically compute and plot dhop for different nlocal using
this formula. From this graph we can see that when the expected number of
local neighbors is small, the distance covered per communication hop is small
and the percentage of disconnected sensors is large. But as the expected local
neighborhood increases, the probability of nodes along the straight-line path
increases rapidly until nlocal = 15, when further increases in local sensor density
has diminishing returns. Hence the analysis suggests nlocal of 15 to be a critical
threshold for achieving low errors in the distance estimates.
1 Since nlocal is proportional to N/S where N is the total number of sensors, it would

seem odd to say that the formula does not depend on the total number of sensors.
However if nlocal is kept constant and N is increased (which implies the total area
S must increase), then N has no effect. Hence it is appropriate to say that dhop
depends on only nlocal.
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In Figure 2, we also show the measured value of the average distance covered
per hop for different nlocal, averaged over several simulations of a gradient from
a random source. We also show the percentage of unconnected sensors. The
result confirms that the average distance covered per hop does vary as predicted
by Kleinrock and Silvester. The formula slightly under-predicts dhop due to an
approximation made in the proof when the source and destination are close. Also,
the simulation results suggest nlocal of at least 10 is necessary to significantly
reduce the probability of isolated sensors.

Improving the Distance Estimate through Smoothing Even in the ideal
case of infinite density, the distance estimates produced are still integral multiples
of the communication radius r. This low resolution adds an average error of
approximately 0.5 r to the distance estimates. Therefore we expect the error to
asymptote around 0.5 r.

The gradient distance estimate is improved by using local averaging. Each
sensor collects its neighboring gradient values and computes an average of itself
and neighbor values.

si =

∑
j∈nbrs(i) hj + hi

|nbrs(i)|+ 1
− 0.5 (6)

where hi is the gradient value at sensor i (in other words, the integral distance
estimate in units of r). nbrs(i) are all the sensors within the communication
radius r of sensor i.

Intuitively, sensors can determine if they are on the edge of the band by
noticing that a large fraction of their neighbors have an integral distance estimate
one lower or one higher than their own. The larger the fraction, the closer they
are to the edge. The formula is derived from the effect of smoothing a gradient
on a linear array of evenly spaced sensors where it produces the perfect distance
(formal derivation in [11]). However in our model the sensors are not evenly
spaced and there are variations in density even within a neighborhood. The
variations in density are the main source of error in the smoothing process.

Simulation Results on Distance Error Figure 3 shows results from sim-
ulation experiments that calculate the average absolute error in the integral
distance estimates for different values of nlocal. To vary nlocal, the total number
of sensors N is changed while keeping S and r constant. This keeps the physical
diameter of the network (in units of r) constant across all simulations, so that
all experiments are equally affected by any errors correlated with distance. In
each simulation a gradient is produced by a randomly chosen sensor in the lower
left corner. The data point for each value of nlocal is averaged over 10 simula-
tions. The absolute error for a sensor i is computed as errori = hidhop − di,
where hi is the gradient value, di is the Euclidean distance between sensor i and
the source, and dhop is the expected distance covered per hop calculated using
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Absolute Error in Distance Estimates by Gradients
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Fig. 3. Average error in gradient distance estimates for different nlocal. Significant
improvements are seen in the integral distance estimates for nlocal < 15. Beyond 15
there is improvement when the distance estimates are smoothed.

formula 5. This takes into account the fact that dhop represents the expected
distance traveled in one hop for a given sensor density.

The results confirm our earlier analysis. As the value of nlocal increases the
accuracy of the distance estimate improves, with both the average and standard
deviations in error decreasing dramatically. However past nlocal = 15 the error
before smoothing asymptotes at 0.4r due to the limited resolution. Further anal-
ysis of these simulations shows that the error does not increase significantly with
distance from the source because the majority of the per hop error is removed
by using Kleinrock and Silvester’s formula (5). The error is also not correlated
with orientation about the source which is an interesting side-effect of choos-
ing a random distribution versus a rectangular or hexagonal grid where there is
anisotropy.

For each of the experiments done for integral gradient values, we also cal-
culated the error in the smoothed gradient value for each sensor. The average
error results are also plotted in the same figure. The simulation experiments
show that for nlocal > 15 smoothing significantly reduces the average error in
the gradient value. Before that the error is dominated by the integral distance
error. At nlocal = 40 the average error is as low as 0.2 r. However the error is
never reduced to zero due to the uneven distribution of sensors.

3.2 Accuracy of Multilateration

The distance estimates from each of the seeds has a small expected error. We
combine these distance estimates by minimizing the squared error from each
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Fig. 4. Error in position relative to two seeds can be approximated as a parallelogram.
The area of this parallelogram depends on the angle θ. When θ is 90 degrees the error
is minimized, however in certain regions θ is very small resulting in very large error.

of the seeds using a multilateration formula. Multilateration is a well-studied
technique that computes the maximum likelihood position estimation. We use
gradient descent to compute the multilateration incrementally.

The seed placement has a significant effect on the amount of error in the po-
sition of a sensor. The error in the distance estimate from a single seed is radially
symmetric. However, when the distances from multiple seeds are combined, the
error varies depending on the position of the sensor relative to the seeds. In Fig-
ure 4 the concentric bands around each seed represents the uncertainty of the
distance estimate from that seed; the width of the band is the expected error in
the distance estimate. The intersection region of the two bands represents the
region within which a sensor ”may” exist — the larger the region, the larger
the uncertainty in the position of the sensor. Hence the error in position of a
sensor depends not only on the error in the distance estimates, but also in the
position of the sensor relative to the two sources. Let ε be the expected error
in the distance estimates from a seed, and θ be the angle 6 ASB. The overlap
region between two bands can be approximated as a parallelogram.

Theorem 1: The expected error in the position of a sensor S relative to
two point sources A and B is determined by the area of the parallelogram with
perpendiculars of length 2ε and internal angle θ. The area is (2ε)2

sin θ .
The area of the parallelogram is minimized when θ is 90 degrees (square)

and when θ is very large or very small the bands appear to be parallel to each
other resulting in very large overlaps and hence large uncertainty.

As we add more seeds, the areas of uncertainty will decrease because there
will be more bands intersecting. If placed correctly the intersecting regions can
be kept small in all regions. This analysis suggests first placing seeds along the
perimeter to avoid the large overlaps regions behind seeds. However if seeds are
inexpensive then another possibility is simply to place them randomly.
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Position Error vs # Seeds
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Fig. 5. Graph of position error versus number of seeds for two different seed placement
strategies. Position error for smoothed hop count and 6 level radio strength distance
estimates are shown.

Simulation results on Position Error The simulations presented here are
motivated by an actual scenario of 200 sensors distributed randomly over a
square region 6r×6r. This gives a local neighborhood size of roughly 20, which we
know from our previous analysis to give good distance estimates. We investigate
two seed placement methods: (1) all seeds are randomly placed and (2) four are
hand placed at the corners and the rest are randomly placed. Figure 5 shows the
location estimation accuracy averaged over 100 runs with increasing numbers of
seeds.

We can see that location accuracy is reasonably high even in the worst case
scenario with all randomly placed seeds. Accuracy improves with the hand place-
ment of a few. However, the accuracy of both strategies converge as the number
of seeds increases and the improvement levels off at about ten seeds. These re-
sults suggest that reasonable accuracy can be achieved by carefully placing a
small number of seeds when possible or using a large number of seeds when you
are unable to control seed placement.

3.3 Theoretical Limit on Resolution

There is, in fact, a fundamental limit to the accuracy of any coordinate system
developed strictly from the topology of the sensor graph. We can think of each
sensor as a node in a graph, such that two nodes are connected by an edge if
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A(z)

z

r

Fig. 6. A sensor can move a distance z without changing the connectivity if there are
no sensors in the shaded area.

and only if the sensors can communicate in one hop, i.e. they are less than r
distance apart. It is possible to physically move a sensor a non-zero distance
without changing the set of sensors it communicates with, and thus without
changing any position estimate that is based strictly on communication. The
old and new locations of the sensor are indistinguishable from the point of view
of the gradient. The average distance a sensor can move without changing the
connectivity of the sensor graph gives a lower bound on the expected resolution
achievable.

Theorem 2: The expected distance a sensor can move without changing the
connectivity of the sensor graph on an amorphous computer is ( π

4nlocal
)r.

Proof: Let Z be a continuous random variable representing the maximum
distance a sensor p can be moved without changing the neighborhood. The prob-
ability that Z is less than some real value z is:

F (z) = Pr(Z ≤ z) = 1− e−ρA(z)

which is the probability that there is at least one sensor in the shaded area A(z)
(Figure 6). The area A(z) can be approximated as 4rz when z is small compared
to r and we expect z to be small for reasonable densities of sensors. The expected
value of Z is:

E(Z) =
∫ ∞

0

zḞ (z)dz (7)

=
∫ ∞

0

ρ4rze−ρ4rzdz (8)

= −ze−ρ4rz
∣∣∣∣∞0 + (− 1

ρ4r
)e−ρ4rz

∣∣∣∣∞0 (9)

= −(z +
1
ρ4r

)e−ρ4rz

∣∣∣∣∞0 (10)

= r(
π

4nlocal
) q.e.d (11)

where Equation 9 is by the product rule.
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Hence, we do not expect to achieve resolutions smaller than π
4nlocal

of the local
communication radius, r, on an amorphous computer. Whether such a resolution
is achievable is a different question. For nlocal=15. this implies a resolution limit
of .05r, which is far below that achieved by the gradients.

4 Improving Estimates using Inter-sensor Distance
Measurements

One virtue of our algorithm is that it can function in the absence of direct dis-
tance measurements. At the same time, our algorithm can be easily generalized
to incorporate direct distance measurements if available. For example, suppose
that sensors are able to estimate the distance of neighboring sensors through
radio strength, then these estimates can easily be used in place of r, or one hop.

In the signal strength simulation experiments, we show the error in position
estimates as we allow multiple levels of quantization. What that means is, for a
sensor i with 2 levels of quantization, it can tell whether its neighbor is within
1 mini hop or two mini hops. Figure 5 shows the position error for the case of
six radio levels in the randomly placed and 4 seeds hand placed seed placement
regimes for increasing numbers of seeds. First, we can see that six levels of quan-
tization information gives much improved accuracy over smoothed hop count
information. Second, like for hop count, the accuracy improves with increased
numbers of seeds tapering off at 10 seeds.

Figure 7 shows the effect of different amounts of signal strength information
on location estimation accuracy for eight seeds. We see that position accuracy
increases with increased levels of quantization. Beyond 7 levels there are di-
minishing returns. Our original position estimates based on hop count with no
quantization yield a position accuracy between 2 and 3 levels of quantizations.
This is because we us local averaging to improve the distance estimates. It un-
clear how smoothing could be used in conjunction with quantization which we
plan to investigate in the future.

We get very high position accuracy with six levels of quantization: error less
than 10%. At this level of accuracy with a radius of 20 feet, we could discern
locations within 2 feet, which is comparable to commercial GPS. Furthermore,
we have found experimentally that this is an achievable level of quantization on
the Berkeley mica mote [5] hardware.

5 Robustness

Up to this point we have assumed that each of our sensors had the same commu-
nication radius r. In a real-world application we would expect to see variations
in radio range from sensor to sensor. Our algorithm can also tolerate variations
in communication radius. In Figure 7 we show the error in distance estimate
and position estimates when we allow up to 10% random variation in the com-
munication radius. As we can see, the position estimates are reasonably robust
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Fig. 7. Graph of the effect of 0-10% communication radius variation and different levels
of signal strength quantization on location estimation accuracy.

to variation in sensor communication radius, tolerating up to 10% variation in
range with little degradation.

The algorithm can also adapt automatically to the death and addition of sen-
sors and seeds. If sensors are added, they can locally query neighbors for gradient
values and broadcast their value. If this causes any of their neighbors distances
estimates to change then those changes will ripple through the network. As a
sensor receives new gradient values it can just factor that into the multilater-
ation process. New seeds simply initiate gradients and any sensor that hears a
new seed can then incorporate that seed value into the multilateration process.
Prior location estimates will serve as good initial locations for multilateration
ensuring fast convergence.

If we assume that sensors randomly fail, then the accuracy is not affected
unless the average density falls below 15. If sensors in a region die then this
affects the distance estimates because the information will travel around the
hole and not represent the true distance. However regional failures can be easily
corrected by randomly sprinkling new sensors in that area.

The effect of seed failure depends on their placement strategy. Random place-
ment would be more statistically robust in the face of seed failure. Other place-
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ment strategies would be more fragile. In these regimes, sensors have to recognize
that seeds have failed to then exclude them from multilateration 2.

Our algorithm can tolerate a certain amount of random radio failure, because
there are multiple redundant paths from seeds to sensors and therefore distance
estimates are repeated many times. In general, the error caused by occasional
message loss is unlikely to be anywhere close to the error caused by the random
distribution of sensors.

6 Application to Tracking

Once a coordinate system is established it is then possible to provide a variety
of location based services, two of which we briefly describe here. The first is the
position service, in which a new (and possibly mobile) member of the ensemble
is informed of its own location. The second is tracking in which the ensemble
members collectively track the position of a mobile (and possibly uncooperative)
object based on sensor data.

The position service is a simple application of the multilateration framework.
When a sensor broadcasts a position service request, every element of the en-
semble within the radio range of the sender responds by sending back its own
computed location. The requester then captures the location of each replying
element and also estimates the distance to that element using radio strength.
Since the requester now knows the estimated position and distance to several
other elements in the ensemble, it can use multilateration to compute its own
position.

The tracking algorithm employs the multilateration framework in conjunc-
tion with ad hoc group formation. We describe an algorithm capable of tracking
a single target. We assume that each element of the ensemble is equipped with a
sensor that can detect and estimate the distance to the target. Each sensor only
attends to targets that are no further away than half a radio range; as a result
all sensors that sense a target are within one radio range of one another and
may therefore communicate with each other using only local broadcast which we
use to mean that an element transmits a message over its radio, expecting it to
be heard by all elements within its radio range and no others.

The elements that can sense the target form an ad hoc tracking group; each
member of the group sends to the leader its own position and its estimate of the
distance between itself and the target. The group leader then employs multilater-
ation to calculate the estimated position of the target. As the target moves, each
group member sends updated estimates of distance to the group leader which
then re-estimates the position of the target (using the previous estimate as a
seed). The target will initially be roughly at the center of the tracking group,
surrounded by the group members. Group members drop out of the group when
they cease to be able to sense the target.

Forming the group: Group formation is based on the leader election al-
gorithm presented in [12]. This is a randomized greedy election algorithm that
2 perhaps using active monitoring of neighbors’ aliveness to produce active gradients.
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establishes which sensors are follower members of the tracking group and which
unique sensor is the group leader. Initially, all sensors are neither members nor
leaders. When a sensor first senses the target it picks a random number (bounded
above by the neighborhood size) and begins counting down to 0. If the sensor
counts down to 0 without receiving a recruit message from another, it then
becomes the group leader and immediately locally broadcasts a recruit message
containing its own identity. If, however, a sensor receives a recruit message before
it has counted down to zero, it becomes a follower group member.

Estimating Target Position: When recruited, a follower locally broadcasts
a joining group message containing its position and its estimate of the distance
to the target. Whenever a follower sensor senses a change in the distance to the
target it locally broadcasts a position update message. The leader captures these
distance estimates and periodically uses multilateration to estimate the position
of the target.

When a follower sensor notices that it can no longer sense the target it
locally broadcasts a member bailout message. The group leader then removes
this element from the vector of estimated positions and distances. When the
group leader notices that it can no longer sense the target, it locally broadcasts
a leader bailout message. This message contains the identify of that member of
the group that the leader estimates is closest to the target. Group members
respond to receipt of a leader bailout message in two ways: If the group member
is the element named in the bailout message, it immediately becomes the new
group leader by locally broadcasts a recruit message. Every other group member,
acts as if it had just sensed the target for the first time and begins the countdown
of the leader election algorithm. Normally, the follower sensors are recruited by
the new leader and the group is reconstituted. However, even if the designated
new leader for some reason fails to assume group leadership (for example, the
bailout message was garbled in transmission), one of the other sensors will claim
leadership and recruit the rest.

We have studied the tracking algorithm by simulating a moving target travers-
ing a path between a series of way points at constant speed. Preliminary results
show that the algorithm has positional accuracy comparable to that of the mul-
tilateration method used to induce the coordinate system. It also maintains
contact with the target quite well, losing the target for about 1% of the cycles.

7 Conclusions and Future Work

In this paper, we present an algorithm to self-organize a global coordinate sys-
tem on an ad hoc wireless sensor network. Our algorithm relies on distributed
simple computation and local communication only, features that an ad hoc sen-
sor network can provide in abundance. At the same time it is able to achieve
very reasonable accuracy and the error is theoretically analyzable. The algorithm
gracefully adapts to take advantage of any improved sensor capabilities or avail-
ability of additional seeds. Given that so much can be achieved from so little, an
interesting question is whether more complicated computation is worth it. We
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are in the process of realizing this algorithm on the Berkeley mote platform [5]
towards a implementation of tracking a rover in a field populated by sensors.
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