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1 Abstract

2 Introduction

Dylan is an object-oriented language with a combination of
features that present both difficulties and opportunities for
efficient compilation. The language is thoroughly object-
oriented and supports multimethod dispatch as well as dy-
namic typing. The semantics of the language are consis-
tently defined in terms of a program runtime model. How-
ever, the design goals included providing significant oppor-
tunities for compile-time optimizations that are consistent
with this runtime model. Additionally, the ability to dynam-
ically add classes and methods is balanced by the ability to
seal branches of the class and method hierarchy, thereby
declaring them invariant. Optimization proceeds through a
pay-as-you-go strategy. Programmers are not required to
choose between the extremes of full static dispatch with
strict typing and full runtime dispatch with dynamic typ-
ing. Instead, type information and constraints can be added
incrementally, with resulting incremental improvements in
performance, ultimately resulting in performance equivalent
to static languages when full type information is available
at compile-time.

Additional requirements on Functional Developer include
the need to support interactive software development and
the production of components using separate compilation.
The latter requirement - a real world constraint for com-
mercial development - rules out the possibility of using many
whole program analysis techniques. Instead, Functional De-
veloper makes aggressive use of partial type information
available at compile-time, and uses novel techniques to com-
bine this with runtime information to produce highly effi-
cient code.

2.1 Generic Functions

Dylan provides polymorphic method invocation through generic
function calls ([Keene89], [Shalit96], [Stefik86]). A generic
function consists of a set of methods. Each method includes
parameter specializers that indicate the types of arguments
for which a method is applicable. When a generic function

is called, the actual arguments are compared to specializers
of all the generic function’s methods; the applicable meth-
ods are selected and then sorted; finally, the most specific
applicable method is invoked, passing along the remaining
applicable methods to be used in the next-method chain. 1

In languages that support multimethods, the types of all
the arguments are included in this computation. Needless
to say, this multistage process can be quite expensive. The
result has been a large amount of research on strategies for
reducing the cost, both through compile-time method selec-
tion as well as through caching strategies. Dylan’s method
selection process is complicated by the variety of types that
can be used as specializers. Any given object may be a
member of several different types, which are ordered through
subtyping rules. 2

• A class type restricts its argument to be an instance
of that class.

• A singleton type restricts its argument to be a specific
object.

• A subclass type restricts its argument to be a class
object that is a subclass of a given class.

• A union type restricts its argument to be an instance
of one of a number of other types.

• A limited collection type restricts its argument to be
an instance of a collection with additional restrictions
on size and collection contents.

• A limited integer type restricts its argument to be
within a subset of the range of whole numbers.

Multimethod dispatch has traditionally been optimized
in an all or nothing fashion: either the call is statically dis-
patched (the unique effective method is determined by the
compiler) or it is dynamically dispatched, considering all
arguments irrespective of compile time information. The
Functional Developer compiler supports these approaches
and also supports partial static dispatch, whereby the com-
piler combines inferred type information and sealing decla-
rations to pre-compute some of the logic that would happen
at runtime method call time. For example, knowing the ar-
gument types and domain sealing constraints may allow the

1Dylan’s next-method mechanism is a way of passing control to
the next-most-specific method, like super.

2The algorithm used for ordering classes depends on the type of
the actual argument, so is computable for two types which are joint
but neither super- nor sub-types of each other.
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compiler to statically narrow the number of possibly appli-
cable methods at a call site down to only a few. In that case,
the emitted code need only branch on the relevant data dis-
tinguishing the few applicable methods, rather than having
to choose from among all the methods of a generic function.
In fact, if the compiler is able to narrow the set of applicable
methods down to one, then the method call can be emitted
as a simple function call, or the method body may even be
inlined. In this way, Dylan preserves the semantics of a dy-
namic object-oriented language while recapturing much of
the efficiency of a static procedural language.

Dylan supports the development of reusable components
using separate compilation. Unfortunately, separate compi-
lation can starve the compiler of information necessary to
perform full static dispatch of multimethod calls. A com-
mon example of this is when dispatch is performed on ab-
stract types. Dylan’s sealing construct provides a way to
gain back partial class hierarchy information. For example,
subhierarchies of the class hierarchy and the set of methods
more specific than a particular signature can be sealed, thus
permitting the compiler to perform static dispatch within
that hierarchy.

Unfortunately, sealing is not applicable in a number of
important cases that turn up in the development of reusable
components. The most important case occurs when a partic-
ular component defines an interface that client components
implement. A classic example that turns up in both our
Dylan compiler and graphical user interface toolkit is where
an abstract backend is defined in a backend interface com-
ponent, methods specialized on this abstract backend class
are defined in core components, a particular backend is de-
fined in a concrete backend component, and then top-level
methods are defined in a backend specific glue component
which uses all of the previously mentioned components (see
figure 1). The problem is that the concrete backend is un-
known when compiling the core code component leading to
full dynamic dispatch on all methods specializing on the
backend. Sealing doesn’t help because the backend inter-
face is intentionally open to allow the graceful addition of
backends either at compile-time or through dynamic load-
ing. Furthermore, performing whole program class hierarchy
analysis at compile-time [Dean96] is not applicable because
it is at odds with separate compilation and dynamic loading.
First, components would have to compile in implementation
details about used components (i.e., their class hierarchies)
and thus would have to be recompiled even if implementa-
tion details of these used components change (aka fragile
base class problem). Second, and even worse, in Dylan,
where methods can be added in using components (and in
Cecil where classes can be added in using components), in
order to utilize whole program class hierarchy analysis, com-
ponents would have to compile in implementation details
about using components. Third, this sort of whole program
analysis would rule out the dynamic loading of components
as this could potentially invalidate assumptions derived at
compile-time. Fourth, this analysis implies that sources for
a given component are made available for recompilation in
the field.

Delaying whole-program optimizations until link-time is
unacceptable for Functional Developer for a number of rea-
sons. First, it slows down start up time by delaying the bulk
of the optimizations until link time. Although an incremen-
tal implementation is conceivable, it is difficult to support
our “pay as you go” philosophy. Second, it relies on non-
standard linker technology complicating the support of and
integration with other languages and platforms. Third, it

can prevent object code sharing by specializing each com-
ponent.

3 Overview

We present our engine-node paradigm for constructing de-
cision trees at run time, with which we develop a number of
optimizations. First, we present our basic shared decision
tree approach, which incrementally augments a shared (one
per generic-function) decision tree only as needed, where un-
necessary dispatch steps are replaced by type checks. Next,
we expand the paradigm to call site caches - decision trees
that are local to a call site (or shared among “similar” call
sites), which take advantage of type information injected
into the runtime by the compiler to reduce or eliminate deci-
sion steps, and which may also benefit from “lighter weight”
decisions due to the more limited size of the decision tree.
We then show how we can make use of disjointness infor-
mation and Dylan’s differentiation of abstract and concrete
classes to prune the decision steps further still, and discuss
the runtime dependency tracking needed for this to work in
the dynamic Dylan environment. We show how our per-call-
site decision trees can be profiled, and how we can use this
information to make implementation decisions in a future
compilation. Lastly, we demonstrate how our decision trees
can be used to eliminate dispatch from certain self-recursive
functions. Finally, we compare our work to others and then
discuss our future directions.

4 Runtime Dispatch with Discrimination Trees

For those cases in which function calls cannot be fully stat-
ically optimized, Functional Developer uses an adaptive dy-
namic dispatch mechanism. Generic function dispatch is
performed by a program - a decision tree - dynamically con-
structed of building blocks we call engine nodes. An engine
node gets invoked to perform some action, for instance to
check whether a particular argument is of some type and
perform alternate actions depending on the result. Typically
the action is to invoke another engine node, and ultimately
the method most applicable in the generic function call. The
MEP (for Method Entry Point) calling sequence is designed
so that shared code for generic function dispatch and next-
method invocation can efficiently access arguments and pass
them along. Both engine-nodes and methods have an MEP
slot, which contains the address of the code to handle the
invocation. For this calling sequence, only a fixed number
of arguments can ever be passed by any particular function.
If the function takes any optional arguments (i.e., has #rest
and/or #key arguments), they have been formed up into a
stack allocated vector, which is then treated as a single ar-
gument. A Dylan function

define generic futz (a, b, #rest more);

will consist of engine nodes and methods whose entry
points expect three arguments, corresponding to parame-
ters a, b, and more. (Dylan’s definition of congruency re-
quires all methods of a generic function to have the same
number of required arguments, unlike some other languages.
Optional arguments can be passed by keywords and #rest
arguments.)

The arguments are passed in registers and/or stack; the
engine node or method being invoked is placed in the func-
tion virtual register; an “extra argument” is placed in the
extra argument register; and the address in the MEP slot is
jumped to in order to perform the invocation. At the start
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of dispatch, the extra argument is the generic function; as
long as engine nodes are being invoked, it will be either this
or a parent engine node from which the generic function can
be derived. (This is how the generic function can be recov-
ered from the dispatching state without the need for explicit
pointers to it from the individual engine nodes, as will hap-
pen when a dispatch miss occurs as described below.) For a
method, the extra argument is theoretically customized to
the method; in practice, if it is needed, it is information used
for the execution of next-method calls within the method. 3

5 Dispatch Engine Design

Engine nodes are implemented as Dylan objects, all sub-
classes of the (internal) class <engine-node>. They are or-
ganized in a type hierarchy that describes their functional-
ity, and permits them to be programmatically understood
and manipulated. For instance, ¡discriminator¿ is the (ab-
stract) class of all engine-nodes that examine a particular
argument in order to make some decision. All discriminators
store the argument number they examine, and information
about the number of arguments the function takes. Other
abstract types of engine node are <terminal-engine-node>,
which would be used when discrimination is complete, and
<encapsulating-engine-node>, which is used when some
action (e.g. relating to profiling, metering, or tracing) needs
to be inserted into the discrimination program, but doesn’t
otherwise affect discrimination.

The discrimination program of a generic function is in-
crementally constructed out of engine nodes as needed. If
it encounters a set of arguments it does not handle - which
indicates that either the discrimination program needs to
be augmented or the generic function is not applicable to
that set of arguments - a dispatch miss is said to occur.
The internal Dylan function handle-missed-dispatch is in-
voked. This function recovers some of the dispatch state
and the generic function involved from the extra-argument
register mentioned earlier. The generic function is locked to
prevent race conditions, and additional discrimination pro-
grams composed of engine nodes and methods is generated
to dispatch this call. The dispatch is then continued, or a
“no applicable method” error is signaled. This is also the
point at which ambiguous method ordering might be de-
tected.

Some examples of <terminal-engine-node> types are:

<absent-engine-node> Executing this type of engine node
causes a dispatch miss to occur. An absent engine
node is placed anywhere an engine node can be placed,
to indicate a control branch has not yet been com-
puted. For instance, in an <if-type-discriminator>
described below, one branch of the “if” might not be
computed - it would contain an absent- engine-node.
The initial discrimination program of a generic func-
tion is an absent-engine-node. For efficiency, we only
create a single instance of <absent-engine-node>, and
use it repeatedly. This saves both the space of multiple
instances, and permits more efficient checking for the
absent-engine-node when a discrimination program is
being modified.

<slot-accessing-engine-node> This is the common super-
class of a number of classes of engine node which are
used to perform slot access. We do not use the slot

3And as will be seen later, reused for providing precomputed dis-
crimination state in recursive partial dispatch.

method to do the access, but instead use a <slot-accessing-engine-node>
for the exact kind of access and offset called for. This
enables some optimizations. First, the object that rep-
resents the method for a slot accessor does not require
an MEP slot as it does not take part in this protocol,
making the representation for slot functions smaller.
We also share slot-accessing-engine-node objects: the
very same one can be used for different slots in differ-
ent generic functions that are accessed the same and
lie at the same offset. Finally, because of multiple
inheritance, the “same” slot may be allocated in dif-
ferent locations in different classes that inherit it from
a common superior class. So we can use different slot-
accessing-engine-nodes to access the same slot depend-
ing on the exact class of the argument, as determined
by some preceding discriminator.

Some examples of discriminator types:

<by-class-discriminator> This is the general-case discrim-
inator for specializers of type <class>. It is keyed by
the object-class of the argument. Our implementation
uses multiple subtypes of <by-class-discriminator>
that correspond to different table lookup strategies de-
pending on the number of keys in the table. This dis-
criminator fetches the object-class of the specified ar-
gument, looks that up in its table, and tail-recursively
invokes the resulting engine node or method; if no en-
try was found, the absent-engine-node is used.
Currently we utilize three lookup strategies correspond-
ing to the degree of polymorphism, which we call monomor-
phic, polymorphic, and megamorphic. The monomor-
phic by-class discriminator is a one entry table and
is made to be as fast and compact as possible. The
polymorphic by-class discriminator is used for a rel-
atively small number of entries and employs a linear
lookup strategy. 4 Finally, the megamorphic by-class
discriminator handles larger numbers of entries and is
implemented as a hash table.

<if-type-discriminator> This discriminator has three ad-
ditional slots: type, then, and else. When invoked, it
looks to see if the specified argument is of type type,
and then tail-recursively invokes the engine-node or
method in then or else depending on the answer. An
<if-type-discriminator> is normally used when, at
a particular argument position, there are just two dif-
ferent specializers remaining to be differentiated to fur-
ther select methods - <object> and something else,
which is the type to be checked. if-type discriminators
are also used to construct decision trees for differenti-
ating among sets of specializers which the discrimina-
tion code does not understand directly, such as some
kinds of limited types. 5

<typecheck-discriminator> This discriminator has two ad-
ditional slots: type and next. If the specified argument
is of type type, it tail- recursively invokes the next
engine-node or method. If the argument is not of that
type, it invokes the absent engine node.

<singleton-discriminator> Singleton discriminators store
a table-like association of keys with resultant engine
nodes, plus a default. Consider

4Currently we switch from polymorphic to megamorphic by-class
discriminators when the number of concrete classes exceeds four.

5using partial dispatch later, we generalize this to one type which
needs to be checked, and another which does not.
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• M1: define method G (x) ... end;

• M2: define method G (x == #"foo") ... end;

• M3: define method G (x == 3) ... end;

The discrimination we need to occur is: if the argu-
ment is 3, invoke M3; else, if the argument is #"foo"
invoke M2; else invoke M1. So this could be imple-
mented as a singleton discriminator with keys of 3 and
#"foo" and a default engine-node of M1.

In practice, we always precede a singleton-discriminator
by a by-class-discriminator. This means that each
singleton- discriminator contains only elements of the
same direct class, permitting specialization and opti-
mization of the lookup strategy.

todo:

• Microbenchmark results go here.

5.1 Thread Safety and Synchronization

Engine-node discrimination programs are designed to be
able to operate in a multi-threading environment without
requiring any synchronization other than at dispatch miss
time. handle-missed-dispatch and any other defining (e.g.
add-method) or redefining operations use a general object-
locking protocol to lock the generic function when they do
make any modifications. The side effects that may be per-
formed on engine-nodes are strictly limited to those that
will not interfere with ongoing execution, such as a single
store of a new engine-node in a slot. For instance, say that
a dispatch miss occurs, and the size or representation of a
<by-class-discriminator> needs to be changed because a
new entry is being added. We

1. Create a new table of appropriate size

2. Copy all existing key/value pairs to it

3. Add the new entry to it

4. Generally make it completely set up and ready to use

5. Drop the new one into the place where the old one was
- a single write.

If another thread just happens to be looking through the
old table, it can just continue on its merry way, because no
damaging modifications have been performed to it or any of
the discrimination program it points to. If that thread takes
a dispatch miss, it will wait until we have finished because of
the lock on the generic function. Then (once it can hold the
lock) it will either add some more discrimination program,
or it might find that what it needed to execute is now already
there, and just go around and try again.

5.2 Call Site Caching

Call Site Caching is a general term for utilizing information
saved on the argument usage at a particular call site to help
predict or otherwise improve performance. Usually it refers
to something simple like remembering the types of the argu-
ments used on the last call and the resulting method. Before
doing dispatch, a check is performed to see if the arguments
are the same. If so, the dispatch is skipped. Otherwise, the
dispatch is performed, and the new argument/method set is
stored in the cache.

Implementation of this as described has a number of pit-
falls for Functional Developer, including multithread syn-
chronization issues (the overhead of storing back multiple
pieces of data atomically) and the difficulty of determining
whether a type set is ‘the same’ in the face of singleton and
other complex specializers.

Our engine-node paradigm, however, lends itself towards
this. Let us presume that when we call a generic function
from a piece of code, instead of invoking the discrimination
program that is stored in the generic function (and used by
all callers to it), we start a new discrimination program just
for that call site. This discrimination program will only be
constructed for the kinds of arguments used at that call site.
Furthermore, it will be tuned to that call site automatically,
because the kinds of arguments used at a particular call site
will generally vary less than those used with the function
as a whole. Consequently we would expect improved per-
formance from any kind of micro-caching of results done at
the individual engine node level, plus from any advantage of
having fewer discrimination choices at some of the discrim-
ination steps.

For instance, in order to improve the performance of lin-
ear by-class discrimination based on the class frequencies,
a very simple but thread safe re-ordering mechanism is em-
ployed. A start index slot is added to the polymorphic by-
class linear discriminator which specifies the index to start
scanning. The scanning is then modified to wrap around
and stop right before it reaches its start index. The start
index is updating upon matching. This mechanism is cheap
and thread safe because it atomically updates only one slot
and does not require locking. It does though have the dis-
advantage that the order of the keys does not approach the
order of their observed frequencies as would a move-to-front
approach.

todo:

• Speed up results using re-ordering go here.

6 Partial Dispatch

A truly powerful addition to call site caching is informing
the discrimination program generator of argument type in-
formation determined by the compiler. The whole class hi-
erarchy can be consulted by waiting until execution time.
This enables it to prune out methods that are provably not
applicable, reducing the number of alternatives at discrimi-
nation steps, and even eliminating discrimination steps. The
“partial dispatch” could reduce to just a single applicable
method; in this case, even though the compiler might not
have figured it out, what might have been a full generic func-
tion dispatch is now just an indirection to a direct method
call.

Call-site specific compile-time inferred types can now
lead to much more specialized dispatch trees often only dis-
patching on one or no arguments before jumping to the most
specific method. First, methods are ruled out as impossible
candidates because their specializers are disjoint with corre-
sponding compile-time inferred types.

Consider the following class hierarchy

O
/|\
/ | \

/ | \
A B E

/ \
C D
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and the following methods on the generic function f:

• 1 - f(A, A)

• 2 - f(C, E)

• 3 - f(D, E)

Suppose that a particular call-site has inferred types B
and E for the two arguments. Because of disjointness, method
1 would be ruled out leaving methods 2 and 3 each of which
have E as their second specializer. The entire second dis-
patch step can now be eliminated because the inferred type
on this position, E, guarantees that all second arguments
will always be instances of E.

The definition of disjointness we use to make these in-
ferences is more powerful than what is used by the compiler
to do static method selection, because it is based on the
actual, current state of the class hierarchy rather than only
immutable characteristics of the hierarchy. For the above ex-
ample, we find it useful to assert that A and B are disjoint,
even though that assumption could be invalidated later by
an operation as simple as the creation of a class with A
and B as common superclasses. The runtime dependency
tracking needed to let us use this power is discussed later.

Concrete-subtype? is a mechanism for leveraging in-
ferred types to yield even more precise types by pushing
down through abstract classes until concrete classes are reached.
The insight is that abstract classes are not directly instan-
tiable, and thus there can never be any direct instances of
them at runtime. For classes C1 and C2, we say that C1 is a
concrete subtype of C2 if all concrete subclasses of C1 (which
may include C1) are subclasses of C2. So if <c-back-end>
is the only subclass of <back-end>, and <back-end> is ab-
stract and <c-back-end> concrete, <back-end> is a concrete
subtype of <c-back-end>. Consider also the lattice, with A,
B, and C abstract:

A
/ \

B C
\ /
D

We can similarly deduce that A, B, and C are all con-
crete subtypes of D. Even more unusual is deducing that B
and C are mutually concrete subtypes. (They are all “con-
crete type equivalent” - they have the same set of concrete
subclasses.) For the more complicated hierarchy

A
/ \

B C
/ \ /
D E

in which D and E are concrete and A, B, and C abstract,
we can see that C is a concrete-subtype of B (if there are any
indirect instances of C, they are going to be instances of E
and are therefore instances of B), even though the reverse
no longer holds.

In practice, we only perform concrete-subtype? on two
classes if the classes are joint. Otherwise, we can get quasi-
false positives where unrelated classes with no concrete sub-
classes are noted - correctly - as being subtypes.

6.1 Dependency Tracking

In order to maintain correct partial-dispatch call-site caches,
information derived from the current class-hierarchy must
be tracked such that when it becomes invalid, such as dur-
ing dynamic class creation or class redefinition 6 dependent
call-sites caches are recalculated. Disjointness can become
invalid when two classes that were disjoint suddenly be-
come joint because a common subclass is added. Similarly,
concrete-subtype? can become invalid when subclasses are
added (e.g., another back-end is loaded).

During the creation of a partial-dispatch tree, disjoint-
ness between all specializers and corresponding compile-time
inferred types is used to proactively prune out inapplicable
methods from further consideration. The disjointness pred-
icate, which operates on arbitrary Dylan type objects, even-
tually devolves to determining the disjointness relationships
of pairs of classes. When a pair of classes is encountered, is
considered to be disjoint, and is a candidate for future joint-
ness (i.e. creation of a future common subclass is possible
based on sealing restrictions), the generic function is noted
as being a “subclass dependent generic” of both classes. In
this way, whenever a subclass (direct or indirect) is added
to either of these classes, all call sites on that generic will
be decached and forced to be recomputed. Dependencies
on potentially ephemeral results of concrete-subtype? are
tracked similarly. concrete- subtype? eventually devolves
to computing the relation on two classes; if such a pair of
classes are found, they are concrete-subtype? even though
not subtype?, and that relationship is potentially change-
able (in view of, e.g., sealing declarations), then the generic
is tracked on the subclass dependent generics of the first
class, as the relationship can only be changed by addition of
new subclasses of that class.

The space overhead is a slot in each class and a sequence
element for every subclass dependent generic. The measured
overhead is quite reasonable even for large programs. For
example, in the Functional Developer compiler, the number
of subclass dependent generics totaled 492.

todo:

• Need data total number of generics and classes.

6.2 Profile Feedback and Sharing

todo:

• SHARING

The proliferation of call-site decision trees increases the
importance of sharing of equivalent decision trees, if that
does not detract from the micro-caching optimizations which
they permit.

Within the same decision tree, there may be multiple
equivalent subtrees. We do not address decision subtree
sharing in this paper, except to observe that - in our in-
crementally generated decision trees - the structural equiva-
lence of subtrees is not sufficient to determine that they can
be shared; some knowledge about the state from the preced-
ing decisions is needed. (Two subtrees can be structurally
equivalent, but it may be only because they are incomplete

6The Dylan language does not support most forms of redefinition.
The intent of this is that redefinition is a development activity, and
consequently need not be supported by Dylan, only by Dylan develop-
ment environments. This doesn’t preclude a Dylan implementation
from implementing incremental development support in the Dylan
runtime proper, but it does mean we don’t need to worry about that
level of assault on our type hierarchy here.
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- if they were incrementally extended, they would diverge.)
We also note that Dujardin ([Dujardin96]) provides a model
we believe could be used to track this state efficiently and
so address this issue.

The selective sharing of decision trees among multiple
call sites can be guided by a number of factors. Intuitively,
decision trees that are most similar should be shared: those
which handle the same types of arguments most frequently
and with similar degrees of polymorphism, and which re-
quire the same decisions to be made - i.e., they have similar
compile-time-inferred type information. We consider a num-
ber of ways these sharing decisions can be made.

In the runtime alone, it can be arranged for all call sites
with the same compile-time-inferred type information to use
the same decision tree. We experimented with this to good
effect, using just simple type equivalence for the inferred
type information as the matching criterion. (A more general
and strictly correct mechanism would be to upgrade the type
information to Dujardin’s “pole types” ([Dujardin96]) before
matching.) It is also possible to decide - at runtime - that
a decision tree has grown too large (“gone megamorphic”)
and should no longer be maintained as a separate call site
decision tree, but instead just use one default megamorphic
decision tree.

todo:

• Sharing space savings results go here.

Profiling information can be used to refine these deci-
sions. For instance, call sites which are known to be infre-
quently used, or known to be megamorphic, could be flagged
by the compiler so that they automatically shared rather
than maintained as separate call site decision trees from the
start. As described below, we are able to able to profile in-
dividual call sites, and can quantify not only their frequency
of use but the degree of polymorphism, the distribution of
calls to different methods, and the average call cost. This
information could be used to help match, at compile time,
call sites which are sufficiently similar that they could be
shared without performance loss.

todo:

• Megamorphic space savings results go here.

6.3 PROFILE FEEDBACK

Call-site dispatch trees (like Polymorphic Inline Caches) pro-
vide a natural framework for collecting runtime call statis-
tics that can be fed back into the compiler to inform future
optimization decisions.

• A profiling engine-node - one which just ticks an in-
ternal counter and then passes control on to another
engine node - can be used near the root of the discrim-
ination program to meter uses of that call site.

• A profiling engine-node can be inserted just in front of
a method to meter the uses of a particular method.

Partial dispatch and call-site caches have a runtime and
compile-time overhead that can be mitigated by avoiding
their expense in low frequency and megamorphic call-sites.
Call-site dispatch-tree caches can be instrumented to collect
both their call-site frequency, degree of polymorphism, and
even their callee distribution.

Partial dispatch is able to tighten the type information
inferred at compile-time turning most call-sites into monomor-
phic decision trees and reducing the number of multimethod

dispatch decision steps. While this is an improvement over
standard dynamic dispatch, because there is not a compiler
present in the runtime, this refined type information can
not be used to better optimize downstream code. Arguably
the biggest win comes when inlining a specialized copy of
the chosen method. This is especially true when either
the chosen method’s body is sufficiently small (e.g., inte-
ger arithmetic) or without inlining would cons a closure. Of
secondary importance, fed back profile information can be
used to trigger such optimizations as customization, split-
ting, and dead branch elimination ([Holzle91], ) which can
leverage and amplify this tighter type information.

Various compression tricks can be utilized to reduce the
space overhead of storing inferred types in a call-site cache.
A bit mask can be used to code special cases of types. The
two most important cases are the frequently occurring ¡ob-
ject¿ case and the type declaration case. If a specializer
is the same across all methods, which we call a type dec-
laration (because it isn’t used for discrimination between
methods just adds type information), and this can be de-
termined at compile-time, then a bit can be used in place
of the type itself. Another trick is to fuzz out types such
as singletons to be the class of their respective singleton ob-
jects. In practice, we only do this when the singleton object
is not a class, as singleton classes play a big role in Dylan.
Estimated space saving results.

Even though a compiler is not present in the runtime,
profile information can be collected, dumped, and then read
back into the compiler in order to produce a more efficient
application upon the next compilation. Results for profile
feedback.

7 Related Work

7.1 Multimethod Dispatch Caches

There has been considerable work in the area of multimethod
dispatch caches. The bulk of the techniques involve shared
caches stored in generic functions. Moon ([Moon86]) presents
an early mechanism that precomputes shared dispatch caches.
Later shared multimethod dispatch cache approaches for
CLOS ([Dussud90] and PCL [Kiczales90]) involved both hi-
erarchical dispatch tables and lazy cache creation.

There are several related multimethod dispatch tree ap-
proaches. Quinnec ([Queinnec95]) presents a technique in-
volving selectable dispatch tree components. He discusses
the possibility of dispatch tree nodes customized to the method
structure. He presents only a couple types of tree nodes and
does not present experimental results. He suggests a new
type of tree node that utilizes a fast subclass algorithm that
he also details.

Dujardin ([Dujardin96]) details an approach to organiz-
ing and compressing dispatch trees. His approach utilizes
subclass tests (as in [Queinnec95]) at the nodes which he
find useful for exploiting the regularity of the methods. Al-
though his compression technique shows promise, unfortu-
nately, he only compares his space savings against worst case
and does not take into account the cost of the subtype tests.

Chen et al ([Chen94], [Chen95]) present an approach to
organizing and compressing multimethod dispatch based on
automaton techniques. They present very few actual results
and again present only space saving against worst case and
do not analyze the actual runtime costs. The major con-
tribution is their automaton perspective which maps fairly
well onto dispatch tree approaches.
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Many researchers have worked on the problem of com-
pressing dispatch tables. The basic idea is to exploit regu-
larity in the class hierarchy and the set of generic methods
to reduce the space consumption of dispatch caches.

7.2 Call-site cache techniques

Deutsch and Schiffman ([Deutsch84]) are considered to be
the first to present a call-site cache technique. Their tech-
nique involves a per call-site cache of the last argument
class and corresponding taken method. A quick check is
performed in the prologue of every method comparing the
argument class against the last seen class. If they match,
then the method is executed, otherwise, a generic dispatch
is invoked and the cache is updated. Updating the cache
involves patching the call instruction at the call-site and
storing the argument class in the new method taken.

This one-entry call-site cache can be extended to better
mirror the call-site polymorphism. Holzle et al. ([Holzle91])
introduced the Polymorphic Inline Cache (PIC), which records
the n last most recently received argument classes and their
corresponding methods. The cache is linearly scanned dur-
ing lookup and a more expensive dispatch is employed on a
cache miss. The PIC provides the facility for record class/method
distributions and can be reordered to improve the hit to miss
ratio.

The Cecil group ([Chambers93], [Chambers95], [Dean96])
have shown how to extend the PIC to the multimethod con-
text. Their implementation tests all argument positions for
each entry unlike our decision tree cache design which checks
each argument position only once.

7.3 Type Feedback

Holzle and Ungar’s SELF system ([Holzle91], ) was the first
system to feedback call-site type information to improve
subsequent compilations. Their system employed PICs to
collect call-site statistics such as number of hits and class
distribution to both decide when a call-site warranted fur-
ther optimization and how to optimize in order to favor the
most likely classes. They describe standard optimizations
such as inlining and more advanced optimizations such as
splitting, uncommon branch elimination, and customization
(ref). Their SELF system actually employs an in resident
compiler that is triggered when “hot spots” are detected,
and thus acts as an on-line adaptive system. The Cecil
group ([Chambers95], [Dean96]) extended their work to mul-
timethods. Their system feeds back types in an off-line fash-
ion, but nonetheless, they present remarkable gains from
incorporating profile information into subsequent compila-
tions.

Our work shows how to feed back call-site statistics in
order to construct more economical caches.

7.4 Link-Time Optimizations

Another approach for performing whole program optimiza-
tion in the context of separate compilation is link-time op-
timization. Fernandez ([Fernandez95]) describes a link-time
optimization system for Modula-3. It performs data- driven
simplification of expressions, conservative static method dis-
patch, inlining, and specialization. The system performs
these optimizations on an intermediate code format that re-
tains the information needed for advanced object- oriented
optimizations. Their conservative static method dispatch
avoids converting calls when any method could be over-
ridden by a subtype. Our call-site based concrete-subtype

mechanism will convert more calls based on actual concrete
classes.

The Zuse Translation System (ref) reduces the runtime
overhead of software encapsulation mechanisms defined in
the programming language Zuse. The system is targeted
specifically for Zuse and the Sun-3 platform. It is able to
operate on both intermediate code and native object code
files.

The Apple Object Pascal linker (ref) replaced dynamic
calls with direct calls if an argument type had only one im-
plementation. This is very similar to the idea of concrete-
subtype?.

Other link-time optimization system ([Srivastava94]) are
very low-level and are usually platform specific. Some of the
object-oriented idioms might be transparent enough to al-
low these low-level systems to operate, but most of the type
information needed for object-oriented link-time optimiza-
tions would be not be available.

Link-time optimizations address similar problems to our
work, but in our view, have several shortcomings. The ma-
jor problems with link-time optimizations are that they re-
quire non standard tools, impose an impediment to incre-
mental development and a “pay as go” runtime, and prevent
the delivery of code shareable components. The advantages
are that more sophisticated optimizations can be performed,
such as inlining and specialization, and indirect calls can
be avoided. Our approach performs those optimizations in
sealed domains and performs partial dispatch elsewhere. We
feel this hybrid approach better matches our constraints and
gives best of both worlds performance.

8 Future Work

8.1 Alternatives to the Entry Point Design

The implementation of function and engine-node invocation
described here has all been in terms of jumping to addresses
(or invoking primitive procedures) fetched out of slots of
objects. These are computed gotos. Often these entry points
are shared code - part of the Dylan “runtime kernel” - which
do their work by examining the object which has been left
in the function register for just this purpose.

On some hardware architectures this might be anywhere
from slightly to substantially less efficient, especially if the
processor is highly reliant on branch prediction. It is impor-
tant to note however that our implementation as described
can be transformed to one without computed gotos with a
fairly simple conceptual modification: wherever one stores
an object which may be invoked, instead store space for a
piece of code which branches/jumps to it. For instance, in-
stead of jumping indirect through the XEP of a function, we
jump to the XEP location in a function, which contains ex-
ecutable code. Furthermore, the object itself may not need
to be loaded into the function register, as it might be able
to be reconstructed within the executing function by pointer
manipulation of the PC.

The details of how engine-node and function-entry code
would be shared depends on the requirements and limita-
tions of the architecture (e.g., does the code have to use
only relative branches and be position independent, what’s
the size of the allowed branches, etc.), but it’s easy to imag-
ine sharing common code within “spaces” from which Dy-
lan objects containing executable instructions are allocated
and connecting things together as necessary with glue code
and/or branch islands - techniques well used in dynamic
linking.
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9 Conclusions

We presented an approach to gaining back complete class hi-
erarchy information by delaying the construction of dispatch
caches until the whole class hierarchy is available at run-
time. Run-time call-site caches can then be constructed as
specialized decision trees built from disjointness and concrete-
subtype operations on actual arguments combined with compile-
time inferred types injected into the run-time. Unnecessary
decision steps can be avoided and often run-time dispatch
can be completely eliminated. We consider this to be a
nice half-way house between full static compilation and dy-
namic compilation which mitigates the runtime expense of
separately compiled components while satisfying our imple-
mentation constraints of code shareable components, multi-
threaded runtime, incremental development, “pay as you go
philosophy”, and interoperability with standard tools.

10 Appendix

The following represents a set of early results using different
dispatch strategies running the Functional Developer com-
piler. More complete results will be available at camera-
ready time. In the following table, the size is the size in
words occupied by all decision trees and support structure
in the Functional Developer environment after compilation
of a large sample program. The cost is average number of
decision steps per call. The Cache Hit Fraction is the pro-
portion of times that a “micro-cache” hits,

Size Cost Cache Hit Fraction Partial Dispatch 182159
1.22 0.72 Simple Call-Site Cache 207900 1.61 0.83 Shared
Generic Cache 135712 1.69 0.70 Shared Partial Dispatch
110577 1.23 0.68
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