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1.1 INTRODUCTION

Advances in technology have made it possible to build ad hoc sensor networks
using inexpensive nodes consisting of a low power processor, a modest amount
of memory, a wireless network transceiver and a sensor board; a typical node
is comparable in size to 2 AA batteries [10]. Many novel applications are
emerging: habitat monitoring, smart building failure detection and reporting,
and target tracking. In these applications it is necessary to accurately orient
the nodes with respect to a global coordinate system in order to report data
that is geographically meaningful. Furthermore, basic middle ware services
such as routing often rely on location information (e.g., geographic routing).

Ad hoc sensor networks present novel tradeoffs in system design. On the
one hand, the low cost of the nodes facilitates massive scale and highly parallel
computation. On the other hand, each node is likely to have limited power,
limited reliability, and only local communication with a modest number of
neighbors. These application contexts and potential massive scale make it
unrealistic to rely on careful placement or uniform arrangement of sensors.
Rather than use globally accessible beacons or expensive GPS to localize each
sensor, we would like the sensors to self-organize a coordinate system.

In this chapter, we review localization hardware, discuss issues in local-
ization algorithm design, present the most important localization techniques,
and finally suggest future directions in localization. The goal of this chapter
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ii LOCALIZATION

is to outline the technical foundations of today’s localization techniques and
present the tradeoffs inherent in algorithm design. No specific algorithm is
a clear favorite across the spectrum. For example, some algorithms rely on
prepositioned nodes (section 1.2.1) while others are able to do without. Other
algorithms require expensive hardware capabilities. Some algorithms need a
way of performing off-line computation, while other algorithms are able to do
all their calculations on the sensor nodes themselves. Localization is still an
new and exciting field, with new algorithms, hardware, and applications being
developed at a feverish pace; it is hard to say what techniques and hardware
will be prevalent in the end.

1.2 LOCALIZATION HARDWARE

The localization problem gives rise to two important hardware problems. The
first, the problem of defining a coordinate system, is covered in section 1.2.1.
The second, which is the more technically challenging, is the problem of cal-
culating the distance between sensors (the ranging problem), which is covered
in the balance of section 1.2.

1.2.1 Anchor/Beacon nodes

The goal of localization is to determine the physical coordinates of a group
of sensor nodes. These coordinates can be global, meaning they are aligned
with some externally meaningful system like GPS, or relative, meaning that
they are an arbitrary “rigid transformation” (rotation, reflection, translation)
away from the global coordinate system.

Beacon nodes (also frequently called anchor nodes) are a necessary prereq-
uisite to localizing a network in a global coordinate system. Beacon nodes are
simply ordinary sensor nodes that know their global coordinates a priori. This
knowledge could be hard coded, or acquired through some additional hard-
ware like a GPS receiver. At a minimum, three non-collinear beacon nodes
are required to define a global coordinate system in two dimensions. If three
dimensional coordinates are required, then at least four non-coplanar beacons
must be present.

Beacon nodes can be used in several ways. Some algorithms (e.g. MDS-
MAP, section 1.4.2) localize nodes in an arbitrary relative coordinate system,
then use a few beacon nodes to determine a rigid transformation of the relative
coordinates into global coordinates (see appendix B). Other algorithms (e.g.
APIT, section 1.5.4) use beacons throughout, using the positions of several
beacons to “bootstrap” the global positions of non-beacon nodes.

Beacon placement can often have a significant impact on localization. Many
groups have found that localization accuracy improves if beacons are placed in
a convex hull around the network. Locating additional beacons in the center
of the network is also helpful. In any event, there is considerable evidence
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that real improvements in localization can be obtained by planning beacon
layout in the network.

The advantage of using beacons is obvious: the presence of several pre-
localized nodes can greatly simplify the task of assigning coordinates to or-
dinary nodes. However, beacon nodes have inherent disadvantages. GPS
receivers are expensive. They also cannot typically be used indoors, and can
also be confused by tall buildings or other environmental obstacles. GPS re-
ceivers also consume significant battery power, which can be a problem for
power-constrained sensor nodes. The alternative to GPS is pre-programming
nodes with their locations, which can be impractical (for instance when de-
ploying 10,000 nodes with 500 beacons) or even impossible (for instance when
deploying nodes from an aircraft).

In short, beacons are necessary for localization, but their use does not come
without cost.

The remainder of section 1.2 will focus on hardware methods of computing
distance measurements between nearby sensor nodes (i.e. ranging).

1.2.2 Received Signal Strength Indication (RSSI)

In wireless sensor networks, every sensor has a radio. The question is: how
can the radio help localize the network? There are two important techniques
for using radio information to compute ranges. One of them, hop count, is
discussed in section 1.2.3. The other, Received Signal Strength Indication
(RSSI), is covered below.

In theory, the energy of a radio signal diminishes with the square of the
distance from the signal’s source. As a result, a node listening to a radio
transmission should be able to use the strength of the received signal to cal-
culate its distance from the transmitter. RSSI suggests an elegant solution
to the hardware ranging problem: all sensor nodes are likely to have radios –
why not use them to compute ranges for localization?

In practice, however, RSSI ranging measurements contain noise on the
order of several meters [2]. This noise occurs because radio propagation tends
to be highly non-uniform in real environments (see figure 1.1). For instance,
radio propagates differently over asphalt than over grass. Physical obstacles
such as walls, furniture, etc. reflect and absorb radio waves. As a result,
distance predictions using signal strength have been unable to demonstrate
the precision obtained by other ranging methods such as time difference of
arrival (section 1.2.4).

However, RSSI has garnered new interest recently. More careful physical
analysis of radio propagation may allow better use of RSSI data, as might
better calibration of sensor radios. Whitehouse [32] did an extensive analysis
of radio signal strength, which he was able to parlay into noticeable improve-
ments in localization. Thus, it is quite possible that a more sophisticated
use RSSI will eventually prove to be a superior ranging technology, from a
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Fig. 1.1 Diagram by Alec Woo, borrowed with permission from [32], which shows
the probability of successful packet transmission with respect to distance from the
source. It shows that the fixed-radius disk approximation of radio connectivity is
quite inaccurate. It also demonstrates the difficulties inherent in retrieving distance
information from signal strength.

price/performance standpoint. Nevertheless, the technology is not there to-
day.

1.2.3 Radio Hop Count

Even though RSSI is too inaccurate for many applications, the radio can still
be used to assist localization. The key observation is that if two nodes can
communicate by radio, their distance from each other is less than R with high
probability, where R is the maximum range of their radios, no matter what
their signal strength reading is. Thus, simple connectivity data can be useful
for localization purposes.

In particular, many groups have found “hop count” to be a useful way to
compute inter-node distances. The local connectivity information provided by
the radio defines an unweighted graph, where the vertices are sensor nodes,
and edges represent direct radio links between nodes. The hop count hij

between sensor nodes si and sj is then defined as the length of the shortest
path in the graph between si and sj .

Naively, if the hop count between si and sj is hij then the distance between
si and sj , dij , is less than R∗hij , where R is again the maximum radio range.

It turns out that a better estimate can be made if we know nlocal, the
expected number of neighbors per node. Then, as shown by Kleinrock and
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Fig. 1.2 Examples of hop count. In this diagram, hAC = 4. Unfortunately, hBD

is also four, due to an obstruction in the topology. This is one of the ways that hop
count distance metrics can experience dramatic error.

Silvester [14], it is possible to compute a better formula for the distance cov-
ered by one radio hop:

dhop = R

(
1 + e−nlocal −

∫ 1

−1

e−
nlocal

π (arccos t−t
√

1−t2)dt

)
(1.1)

Then, dij ≈ hij ∗ dhop. Experimentally[20], equation (1.1) has been shown
to be quite accurate when nlocal grows above 5. However, when nlocal > 15,
dhop approaches R, so equation (1.1) becomes less useful.

There are two problems with using hop count as a measurement of distance.
First, distance measurements are always integral multiples of dhop. This in-
accuracy corresponds to a total error of about 0.5R per measurement, which
can be too high for some applications. Second, environmental obstacles can
prevent edges from appearing in the connectivity graph that otherwise would
be present. As a result, hop count based distances can be substantially too
high, for example as in figure 1.2.

Nagpal et al [20] demonstrate algorithm that even better hop count dis-
tance estimates can be computed by averaging distances with neighbors. This
benefit does not begin to appear until nlocal ≥ 15, however, it can reduce hop
count error down to as little as 0.2R.

1.2.4 Time Difference of Arrival (TDoA)

Time Difference of Arrival (TDoA) is a commonly used hardware ranging
mechanism. In TDoA schemes, each node is equipped with a speaker and
a microphone. Some systems use ultrasound while others use audible fre-
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Fig. 1.3 Time Difference of Arrival (TDoA) illustrated. Sensor A sends a radio
pulse followed by an acoustic pulse. By determining the time difference between the
arrival of the two pulses, sensor B can estimate its distance from A.

quencies. However, the general mathematical technique is independent of
particular hardware.

In TDoA, the transmitter first sends a radio message. It waits some fixed
interval of time, tdelay (which might be zero), and then produces a fixed
pattern of “chirps” on its speaker.

When listening nodes hear the radio signal, they note the current time,
tradio, then turn on their microphones. When their microphones detect the
chirp pattern, they again note the current time, tsound. Once they have tradio,
tsound, and tdelay, the listeners can compute the distance d between themselves
and the transmitter using the fact that radio waves travel substantially faster
than sound in air.

d = (sradio − ssound) ∗ (tsound − tradio − tdelay) (1.2)

TDoA methods are impressively accurate under line-of-sight conditions;
however, they perform best in areas that are free of echoes, and when the
speakers and microphones are calibrated to each other. Several groups are
working to compensate for these issues, which will likely lead to even better
field accuracy.

Nevertheless, rather good results can already be obtained, even in sub-par
conditions. The Cricket ultrasound ranging system [3] can obtain close to
centimeter accuracy without calibration over ranges of up to ten meters in
indoor environments, provided the transmitter and receiver have line-of-sight.

The downside of TDoA systems is that they inevitably require special hard-
ware to be built into sensor nodes, specifically a speaker and a microphone.
TDoA systems perform best when they are calibrated properly, since speakers
and microphones never have identical transmission and reception character-
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istics. Furthermore, the speed of sound in air varies with air temperature
and humidity which introduces inaccuracy into equation 1.2. Finally, the
line-of-sight constraint can be difficult to meet in some environments.

It is possible to use additional constraints to identify and prune bad ranging
data (“outliers”) [15]. Representative constraints include:

1. The range from node A to node B should be approximately equal to the
range from node B to node A (rAB ≈ rBA).

2. The pairwise ranges between nodes A, B, and C should obey the triangle
inequality (rAB + rAC ≥ rBC)

In the end, many localization algorithms use time difference of arrival rang-
ing simply because it is dramatically more accurate than radio-only methods.
The actual reason why TDoA is more effective in practice than RSSI is due to
the difference between using signal travel time and signal magnitude, where
the former is vulnerable only to occlusion while the latter is vulnerable to
both occlusion and multipath.

1.2.5 Angle of Arrival (AoA), Digital Compasses

Some algorithms depend on angle of arrival (AoA) data. This data is typically
gathered using radio or microphone arrays, which allow a listening node to
determine the direction of a transmitting node. It is also possible to gather
AoA data from optical communication methods.

In these methods, several (3-4) spatially separated microphones hear a
single transmitted signal. By analyzing the phase or time difference between
the signal’s arrival at different microphones, it is possible to discover the angle
of arrival of the signal.

These methods can obtain accuracy to within a few degrees [25]. Unfortu-
nately, angle-of-arrival hardware tends to be bulkier and more expensive than
TDoA ranging hardware, since each node must have one speaker and several
microphones. Furthermore, the need for spatial separation between speakers
is difficult to accommodate as the form factor of sensors shrinks.

Angle of Arrival hardware is sometimes augmented with digital compasses.
A digital compass simply indicates the global orientation of its node, which
can be quite useful in conjunction with AoA information.

In practice, few sensor localization algorithms absolutely require Angle of
Arrival information, though several are capable of using it when it is present.

1.3 ISSUES IN LOCALIZATION ALGORITHM DESIGN

1.3.1 Resource constraints

Sensor networks are typically quite resource-starved. Nodes have rather weak
processors, making large computations infeasible. Moreover, sensor nodes
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are typically battery powered. This means communication, processing, and
sensing actions are all expensive, since they actively reduce the lifespan of the
node performing them.

Not only that, sensor networks are typically envisioned on a large scale,
with hundreds or thousands of nodes in a typical deployment. This fact has
two important consequences: nodes must be cheap to fabricate, and trivially
easy to deploy. Nodes must be cheap, since fifty cents of additional cost
per node translates to $500 for a one thousand node network. Deployment
must be easy as well: thirty seconds of handling time per node to prepare for
localization translates to over eight man-hours of work to deploy a 1000 node
network.

Localization is necessary to many functions of a sensor network; however,
it is not the purpose of a sensor network. Localization must cost as little as
possible while still producing satisfactory results. That means designers must
actively work to minimize the power cost, hardware cost, and deployment cost
of their localization algorithms.

1.3.2 Node density

Many localization algorithms are sensitive to node density. For instance, hop
count based schemes generally require high node density so that the hop count
approximation for distance is accurate (section 1.2.3). Similarly, algorithms
that depend on beacon nodes fail when the beacon density is not high enough
in a particular region. Thus, when designing or analyzing an algorithm, it is
important to notice the algorithm’s implicit density assumptions, since high
node density can sometimes be expensive if not totally infeasible.

1.3.3 Non-convex topologies

Localization algorithms often have trouble positioning nodes near the edges
of a sensor field. This artifact generally occurs because fewer range measure-
ments are available for border nodes, and those few measurements are all
taken from the same side of the node. In short, border nodes are a problem
because less information is available about them and that information is of
lower quality. This problem is exacerbated when a sensor network has a non-
convex shape: Sensors outside the main convex body of the network can often
prove unlocalizable. Even when locations can be found, the results tend to
feature disproportionate error.

1.3.4 Environmental obstacles and terrain irregularities

Environmental obstacles and terrain irregularities can also wreak havoc on
localization. Large rocks can occlude line of sight, preventing TDoA ranging,
or interfere with radios, introducing error into RSSI ranges and producing
incorrect hop count ranges. Deployment on grass vs. sand vs. pavement can
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affect radios and acoustic ranging systems. Indoors, natural features like walls
can impede measurements as well. All of these issues are likely to come up in
real deployments, so localization systems should be able to cope.

1.3.5 System organization

This section defines a taxonomy for localization algorithms based on their
computational organization.

Centralized algorithms (section 1.4) are designed to run on a central ma-
chine with plenty of computational power. Sensor nodes gather environmental
data and pass it back to a base station for analysis, after which the computed
positions are transported back into the network. Centralized algorithms cir-
cumvent the problem of nodes’ computational limitations by accepting the
communication cost of moving data back to the base station. This tradeoff
becomes less palatable as the network grows larger, however, since it un-
duly stresses nodes near the base station. Furthermore, it requires that an
intelligent base station be deployed with the nodes, which may not always
be possible. This scaling problem can be partially alleviated by deploying
multiple base stations (forming a multi-tier network).

In contrast, distributed algorithms are designed to run in the network, using
massive parallelism and inter-node communication to compensate for the lack
of centralized computing power. Often distributed algorithms use a subset of
the data to solve for each position independently yielding an approximation
of a corresponding centralized algorithm where all the data is considered and
used to solve for all the positions simultaneously.

There are two important approaches to distributed localization. The first
group, beacon-based distributed algorithms (section 1.5), typically starts with
some group of beacons (section 1.2.1). Nodes in the network obtain a distance
measurement to a few beacons, then use these measurements to determine
their own location. In some algorithms, these newly localized nodes become
beacons to help other nodes localize.

The second group approaches localization by trying to optimize a global
metric over the network in a distributed fashion. This group splits out into
two substantially different approaches. The first approach, relaxation-based
distributed algorithms (section 1.6) is to use a coarse algorithm to roughly lo-
calize nodes in the network. This coarse algorithm is followed by a refinement
step, which typically involves each node adjusting its position to optimize a
local error metric. By doing so, these algorithms hope to approximate the
optimal solution to a network-wide metric that is the sum of the local error
metric at each of the nodes.

Coordinate system stitching (section 1.7) is the second approach to opti-
mizing a network-wide metric in a distributed manner. In these algorithms,
the network is divided into small overlapping subregions, each of which cre-
ates an optimal local map. Finally, the subregions use a peer-to-peer process
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to merge their local maps into a single global map. In theory, this global map
approximates the global optimum map.

The next four sections treat each of these groups in turn.

1.4 CENTRALIZED ALGORITHMS

This section is devoted to centralized localization algorithms. Centralization
allows an algorithm to undertake much more complex mathematics than is
possible in a distributed setting. However, as we said in the previous section,
centralization requires the migration of inter-node ranging and connectivity
data to a sufficiently powerful central base station and then the migration
of resulting locations back to respective nodes. The main difference between
centralized algorithms is the type of processing they do at the base station.
We will discuss two types of processing: semidefinite programming and mul-
tidimensional scaling.

1.4.1 Semidefinite Programming (SDP)

The semidefinite programming (SDP) approach to localization was pioneered
by Doherty et al [7]. In this algorithm, geometric constraints between nodes
are represented as linear matrix inequalities (LMIs). Once all the constraints
in the network are expressed in this form, the LMIs can be combined to form
a single semidefinite program. This is solved to produce a bounding region
for each node, which Doherty et al simplify to be a bounding box. See figure
1.4 for some sample LMI constraints.

Unfortunately, not all geometric constraints can be expressed as LMIs. In
general, only constraints that form convex regions are amenable to represen-
tation as an LMI. Thus, angle of arrival data can be represented as a triangle
and hop count data can be represented as a circle, but precise range data can-
not be conveniently represented, since rings cannot be expressed as convex
constraints. This inability to accommodate precise range data may prove to
be a significant drawback.

Solving the linear or semidefinite program must be done centrally. The
relevant operation is O(k2) for angle of arrival data, and O(k3) when radial
(e.g. hop count) data is included, where k is the number of convex con-
straints needed to describe the network. Thus running time is something of
an Achilles’ heel for this algorithm. A hierarchical version of this algorithm
might have better scaling properties, but no relevant performance data has
been published to our knowledge.

The real advantage of this algorithm is its elegance. Given a set of convex
constraints on a node’s position, SDP simply finds the intersection of the
constraints. However, SDP’s poor scaling and inability to effectively use range
data will likely preclude the algorithm’s use in practice.
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Fig. 1.4 (a) A radial constraint, for example from radio connectivity. (b) A trian-
gular constraint, for example from angle of arrival data. (c) Location estimate derived
from intersection of two convex constraints.

1.4.2 MDS-MAP

MDS-MAP is a centralized algorithm due to Shang et al [29]. Instead of
using semidefinite programming, however, MDS-MAP uses a technique from
mathematical psychology called multidimensional scaling (MDS).

The intuition behind multidimensional scaling is simple. Suppose there
are n points, suspended in a volume. We don’t know the positions of the
points, but we do know the distance between each pair of points. Multidi-
mensional scaling is an O(n3) algorithm that uses the Law of Cosines and
linear algebra to reconstruct the relative positions of the points based on the
pairwise distances. The mathematical details of MDS are in appendix C of
this chapter.

MDS-MAP is almost a direct application of the simplest kind of multidi-
mensional scaling: classical metric MDS. The algorithm has four stages, which
are as follows:

Step 1 Gather ranging data from the network, and form a sparse matrix R,
where rij is the range between nodes i and j, or zero if no range was
collected (for instance if i and j are physically too far apart).

Step 2 Run a standard all pairs shortest path algorithm (Dijkstra’s, Floyd’s)
on R to produce a complete matrix of inter-node distances D.

Step 3 Run classical metric MDS on D to find estimated node positions X, as
described in appendix C.

Step 4 Transform the solution X into global coordinates using some number of
fixed anchor nodes using a coordinate system registration routineB.
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MDS-MAP performs well on RSSI data alone, getting performance on the
order of half the radio range when the neighborhood size nlocal is higher than
12. As expected, MDS-MAP estimates improve as ranging improves. MDS-
MAP also does not use anchor nodes very well, since it effectively ignores their
data until stage 4. As a result, its performance lags behind other algorithms
as anchor density increases. The main problem with MDS-MAP, however, is
its poor asymptotic performance, which is O(n3) on account of stages 2 and 3.
It turns out that this problem can be partially ameliorated using coordinate
system stitching: see section 1.7 for details.

1.5 BEACON-BASED DISTRIBUTED ALGORITHMS

In this section we talk about beacon-based distributed algorithms. These algo-
rithms all extrapolate unknown node positions from beacon positions. Thus,
they localize nodes directly into the global coordinate space of the beacons.
These algorithms are also all distributed, so that all the relevant computation
is done on the sensor nodes themselves. We will present four beacon-based
distributed algorithms: diffusion, bounding box, gradient multilateration, and
APIT.

1.5.1 Diffusion

Diffusion arises from a very simple idea: the most likely position of a node is
at the centroid of its neighbors positions. Diffusion algorithms require only
radio connectivity data. We describe two different variants below.

Bulusu et al [4] localize unknown nodes by simply averaging the positions
of all beacons with whom the node has radio connectivity. Thus, Bulusu et
al assume that nodes have no way of ranging to beacons. This method is
attractive in its blinding simplicity; however, the resulting positions are not
very accurate, particularly when beacon density is low, or nodes fall outside
the convex hull of their audible beacons.

Fitzpatrick and Meetens [8] describe a more sophisticated variant: each
node is at the centroid of its neighbors, including non-beacons. The algorithm
is as follows:

Step 1 Initialize the position of all non-beacon nodes to (0, 0).

Step 2 Repeat the following until positions converge:

Step 2a Set the position of each non-beacon node to the average of all its neigh-
bors’ positions.

This variant requires fewer beacon’s than Bulusu et al’s algorithm; neverthe-
less, its accuracy is poor when node density is low, nodes are outside the
convex hull of the beacons, or node density varies across the network. In
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all of these cases, a more sophisticated algorithm would improve accuracy
dramatically. Fitzpatrick and Meetens’ variant also uses substantially more
computation than Bulusu et al’s approach, since positions must be exchanged
between adjacent nodes during step 2.

However, this algorithm is quite useful in networks where nodes are capa-
ble of very little computation, but the network topology can be selectively
changed to improve localization. In particular, Savvides et al [27] recommend
placing some beacons around the edges of the sensor network field. Selectively
adding additional beacons can also help resolve pathologies in the diffusion es-
timates. Bulusu et al [4] describe an approach for adaptive beacon placement
to improve diffusion-based localization.

1.5.2 Bounding Box

The bounding box algorithm [28, 30] is a computationally simple method of
localizing nodes given their ranges to several beacons. See figure 1.5 for an
example. Essentially, each node assumes that it lies within the intersection
of its beacons’ bounding boxes. The bounding box for a beacon b is centered
at the beacon position (xb, yb), and has height and width 2db, where db is the
node’s distance measurement to the beacon.

The intersection of the bounding boxes can be computed without use of
floating point operations:

[max(xi − di),max(yi − di)]× [min(xi + di),min(yi + di)] (1.3)

i = 1 . . . n

The position of a node is then the center of this final bounding box, as shown
in Figure 1.5.

Whitehouse [32] analyzes a distributed version of this algorithm[30], show-
ing that unfortunately this version is highly susceptible to noisy range esti-
mates, especially small estimates which tend to propagate.

The accuracy of the bounding box approach is best when nodes’ actual
positions are closer to the center of their beacons. Simic and Sastry [30] prove
results about convergence, errors, and complexity.

In any event, bounding box works best when sensor nodes have extreme
computational limitations, since other algorithms may simply be infeasible.
Otherwise, more mathematically rigorous approaches such as gradient multi-
lateration (section 1.5.3) may be more appropriate.

1.5.3 Gradient

The principal mathematical operation of the gradient method is called mul-
tilateration. Multilateration is a great deal like triangulation, except that
multilateration can incorporate ranges from more than three reference points.
Formally, given m beacons with known Cartesian positions bi, i = 1 . . .m
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Fig. 1.5 An example of the intersection of bounding boxes. The center of the
intersection is the position estimate for the unknown node. The size of the boxes is
based on hop count radio range from the beacons to the unknown node.

and possibly noisy range measurements ri from the known nodes to an un-
known sensor node s, multilateration finds the most likely position of s. The
mathematics of multilateration are outlined in appendix 1.9.

Using gradients to compute ranges for multilateration has been proposed
by a number of researchers [5, 23, 4, 16, 1]. These algorithms all assume
that there are at least three beacon nodes somewhere in the network (though
probably more). Each of these beacon nodes propagates a gradient through
the network, which is the distributed equivalent of computing the shortest
path distance between all the beacons and all of the unlocalized nodes. The
gradient propagation is as follows:

Step 1 For each node j and beacon k, let djk (the distance from j to k) be 0 if
j = k and ∞ otherwise.

Step 2 On each node j, perform the following steps repeatedly:

Step 2a For each beacon k and neighbor i, retrieve dik from i.

Step 2b For each beacon k and neighbor i, apply the following update formula:

djk = min(dik + r̂ij , djk)

where r̂ij is the estimated distance between nodes i and j. These inter-
node distance estimates can be either unweighted (one if there is con-
nectivity, zero otherwise) or measured distances (e.g. using RSSI or
TDoA).
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Fig. 1.6 Gradients propagating from a beacon (in the lower right corner). Each dot
represents a sensor node. Sensors are colored based on their gradient value.

After some amount of settling time, each value djk will be the length of the
shortest path between node j and beacon k. Figure 1.6 shows the results of
running the gradient propagation algorithm with one beacon.

The gradient based distance estimate to a beacon must be adjusted since
even given perfect internode distance estimates, gradient distance estimates
will always be longer than (or exactly equal) to corresponding straight line
distances. Of course given imperfect internode distance estimates, gradient
based distance estimate can actually be shorter than straight distances. In
fact, Whitehouse [32] shows that it is actually more likely that they are shorter
since underestimated internode distances skew all subsequent gradient based
estimates. Niculescu and Nath [21] suggest using a correction factor calculated
by comparing the actual distance between beacons to the shortest path dis-
tances computed during gradient propagation. Each unlocalized node simply
applies the correction factor from its closest beacon to its gradient distance
estimate.

As an alternative, Nagpal et al [20] in their Amorphous algorithm suggest
correcting this distance based on the neighborhood size nlocal, as we previously
discussed in section 1.2.3.

Once final distance estimates to beacons have been computed, the actual
localization process simply uses multilateration directly on the beacon posi-
tions k and the distance measurements djk.
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Like the other beacon-based distributed algorithms, this algorithm has the
virtue of being direct and easy to understand. It is also scales well (provided
the density of beacons is kept constant, otherwise the communication cost
can be prohibitive). It is also quite effective in homogeneous topologies where
there are few environmental obstructions. However, even when using high
quality range data, this algorithm is subject to the deficiencies described in
section 1.2.3 and demonstrated in figure 1.2, so it behaves badly in obstructed
settings. It also requires substantial node density before its accuracy reaches
an acceptable level.

A number of variations to the multilateration approach have been sug-
gested. Niculescu et al [22] suggest propagating AoA information along links.
Nagpal et al [19] propose refining the hop count estimates by averaging values
among neighbors. This turns out to greatly increase the accuracy of gradient
multilateration.

1.5.4 APIT

APIT [9] is quite a bit different from the beacon-based distributed algorithms
described so far. APIT uses a novel area-based approach, in which nodes are
assumed to be able to hear a fairly large number of beacons. However, APIT
does not assume that nodes can range to these beacons. Instead, a node forms
some number of “beacon triangles”, where a beacon triangle is the triangle
formed by three arbitrary beacons. The node then decides whether it is inside
or outside a given triangle by comparing signal strength measurements with
its nearby non-beacon neighbors. Once this process is complete, the node
simply finds the intersection of the beacon triangles that contains it. The
node chooses the centroid of this intersection region as its position estimate.
Figure 1.7 shows an example of this process: each of the triangles represents
a triple of beacons and the intersection of all the triangles defines the position
of the unknown node.

The actual algorithm is as follows:

Step 1 Receive beacon positions from hearable beacons.

Step 2 Initialize inside-set to be empty.

Step 3 For each triangle Ti in possible triangles formed over beacons, add Ti to
inside-set if node is inside Ti. Goto Step 4 when accuracy of inside-set
is sufficient.

Step 4 Compute position estimate as the center of mass of the intersection of
all triangles in inside-set.

The point in triangle (PIT) test is based on geometry. For a given triangle
with points A, B, and C, a given point M is outside triangle ABC, if there
exists a direction such that a point adjacent to M is further/closer to points
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Fig. 1.7 Node position estimated as the center of mass of the intersection of a
number of beacon triangles for which a given node is inside.

A, B, and C simultaneously. Otherwise, M is inside triangle ABC. Unfortu-
nately, given that typically nodes can not move, an approximate PIT (APIT)
test is proposed which assumes sufficient node density for approximating node
movement. If no neighbor of M is further from/closer to all three anchors A,
B, and C simultaneously, M assumes that it is inside triangle ABC. Other-
wise, M assumes it resides outside this triangle.

This algorithm is described as being range-free, which means that RSSI
range measurements are required to be monotonic and calibrated to be com-
parable but are not required to produce distance estimates. It could be that
the effort put into RSSI calibration would produce an effective enough rang-
ing estimate to be useful for gradient techniques described in section 1.5.3,
making the range-free distinction potentially moot. The APIT algorithm also
requires a relatively high ratio of beacons to nodes, requires longer range bea-
cons, and is susceptible to erroneously low RSSI readings. On the other hand,
He et al [9] show that the algorithm requires smaller amounts of computation
and less communication than other beacon based algorithms. In short, APIT
is a novel approach which is a potentially promising direction that requires
further study.
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1.6 RELAXATION-BASED DISTRIBUTED ALGORITHMS

This class of algorithms starts with nodes estimating their positions with any
of a variety of methods such as gradient distance propagation. These initial
positions are then refined from position estimates of neighbors.

Savarese et al [26] refine the initial gradient derived positions using local
neighborhood multilateration. Each node adjusts its position by using its
neighbors as temporary beacons. Convex optimization can also be used to
find an improved position for situations where beacon distance estimates are
unavailable.

An equivalent formulation to local multilateration is presented in [24] and
is generally referred to as a spring model. This description considers edges
between nodes as springs with resting lengths being the actual measured dis-
tances. The algorithm involves iteratively adjusting nodes in the direction of
their local spring forces. The optimization stops when all nodes have zero
forces acting on them. If the magnitude of all the forces between nodes is also
zero then the final positions form a global minimum.

Unfortunately, these relaxation techniques are quite sensitive to initial
starting positions. Bad starting positions will result in local minima. Priyan-
tha et al [24] describe a technique for producing starting positions for nodes
that nearly always avoid bad local minima. The insight is that the network
gets tangled and that using the spring model style optimization is unable to
fully untangle the network. Their approach starts the network in a “fold-free”
state.

The fold-free algorithm works by choosing five reference nodes, one in the
center n0 and four on the periphery, n1, n2, n3, n4. The four on the periphery
are chosen so that the two pairs n1, n2 and n3, n4 are roughly perpendicular
to each other. The choice of these nodes is performed using a hop count
approximation to distance. The node positions (xi, yi) are calculated using
polar coordinates (θi, ρi) as follows:

θi = h0,iR

ρi = arctan
h1,i − h2,i

h3,i − h4,i

xi = h0,iR
h3,i − h4,i

li

yi = h0,iR
h1,i − h2,i

li

li =
√

(h3,i − h4,i)2 + (h1,i − h2,i)2

(1.4)

where hj,i is the hop count to reference node j and R is the maximum radio
range.
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These relaxation algorithms have the virtue that they are fully distributed
and concurrent and operate without beacons. While the computations are
modest and local, it is unclear how well these algorithms scale to much larger
networks. Furthermore, there are no provable means for avoiding local minima
and local minima problems could worsen at larger scales. To date researchers
have avoided local minima by starting optimizations at favorable starting
positions, but another alternative would be to utilize optimization techniques,
such as simulated annealing [13], which tend to fall into fewer local minima.

1.7 COORDINATE SYSTEM STITCHING

In section 1.6, we showed one method of fusing the precision of centralized
schemes with the computational advantages of distributed schemes. Coordi-
nate system stitching is a different way of approaching the same problem. It
has received a great deal of recent work [6, 21, 17, 18]. Coordinate system
stitching works as follows:

Step 1 Split the network into small overlapping subregions. Very often each
subregion is simply a single node and its one-hop neighbors.

Step 2 For each subregion, compute a “local map”, which is essentially an em-
bedding of the nodes in the subregion into a relative coordinate system.

Step 3 Finally, merge the subregions using a coordinate system registration pro-
cedure. Coordinate system registration finds a rigid transformation that
maps points in one coordinate system to a different coordinate system.
Thus, step three places all the subregions into a single global coordi-
nate system. Many algorithms do this step sub-optimally, since there
is a closed-form, fast, and least squares optimal method of registering
coordinate systems. We describe this optimal method in section B.

Steps 1 and 2 tend to be unique to each algorithm, whereas Step 3 tends to
be the same in every algorithm. We will describe three different methods of
performing step 1 and 2, and finally explain the typical method of performing
step 3.

Meertens and Fitzpatrick [17] form subregions using one hop neighbors.
Local maps are then computed by choosing three nodes to define a relative
coordinate system and using multilateration (section 1.5.3) to iteratively add
additional nodes to the map, forming a “multilateration subtree”.

Moore et al [18] outline an approach which they claim produces more robust
local maps. Rather than use three arbitrary nodes to define a map, Moore
et al use “robust quadrilaterals” (robust quads), where a robust quad is a
fully-connected set of four nodes, where each subtriangle is also “robust”. A
robust subtriangle must have the property that:

b sin2 θ > dmin
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where b is the length of the shortest side, θ is the size of the smallest angle, and
dmin is a predetermined constant based on average measurement error. The
idea is that the points of a robust quad can be placed correctly with respect to
each other (i.e. without “flips”). Moore et al demonstrate that the probability
of a robust quadrilateral experiencing internal flips given zero mean Gaussian
measurement error can be bounded by setting dmin appropriately. In effect,
dmin filters out quads that have too much positional ambiguity to be localized
with confidence. The appropriate level of filtering is based on the amount of
uncertainty σ2 in the distance measurements.

Once an initial robust quad is chosen, any node that connects to three of
the four points in the initial quad can be added using simple multilateration
(section 1.5.3). This preserves the probabilistic guarantees provided by the
initial robust quad, since the new node forms a new robust quad with the
points from the original. By induction, any number of nodes can be added to
the local map, as long as each node has a range to three members of the map.

These local maps (which Moore et al call “clusters”) are now ready to be
stitched together. Optionally, an optimization pass such as those in section
1.6 can be used to refine the local maps first.

Ji et al [12] use multidimensional scaling (MDS) to form local maps. We
discussed multidimensional scaling with MDS-MAP in section 1.4.2, and cover
the mathematics of MDS in appendix C. Ji et al use an iterative variant of
MDS to compensate for missing inter-node distances. This iterative variant
turns out to be intimately related to standard iterative least squares algo-
rithms, though it is somewhat more sophisticated. Ji et al focus on RSSI for
range data. Once again, subregions are defined to be one-hop neighborhoods.

The stitching phase (step 3 above), uses coordinate system registration
(described in section B) in a peer-to-peer fashion to shift all the local maps into
a single coordinate system. One way of performing this stitching is described
below:

Step 1 Let the node responsible for each local map choose an integer coordinate
system ID at random.

Step 2 Each node communicates with its neighbors; each pair performs the
following steps:

Step 2a If both have the same ID, then do nothing further.

Step 2b If they have different IDs, then register the map of the node with the
lower ID with the map of the node with the higher ID. Afterward, both
nodes keep the higher ID as their own.

Step 3 Repeat step 2 until all nodes have the same ID; now all nodes have a
coordinate assignment in a global coordinate system.

Limited work has been done on the mathematical properties of this scheme.
Moore et al prove the probability their algorithm constructing correct local
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maps and prove error lower bounds on the local map positions. Meertens
and Fitzpatrick [17] devote some discussion to the topic of error propagation
caused by local map stitching. They point out that registering local maps iter-
atively can lead to error propagation and perhaps unacceptable error rates as
networks grow. Furthermore, they argue that in the traditional communica-
tion model, where nodes can communicate only with neighbors, this algorithm
may converge quite slowly since a single coordinate system must propagate
from its source across the entire network. Future work is needed to curb this
error propagation.

Furthermore, these techniques have a tendency to orphan nodes, either
because they could not be added to a local map or because their local map
failed to overlap sufficiently with neighboring maps. Moore et al argue that
this is acceptable because the orphaned nodes are the nodes most likely to
display high error. However, this answer may not be satisfactory for some
applications, many of which cannot use unlocalized nodes for sensing, routing,
target tracking, or other tasks.

Nonetheless, coordinate system stitching techniques are quite compelling.
They are inherently distributed, since subregion and local map formation can
trivially occur in the network and stitching is easily formulated as a peer-
to-peer algorithm. Furthermore, they enable the use of sophisticated local
map algorithms which are too computationally expensive to use at the global
level. For example, map formation using robust quadrilaterals is O(n4), where
n is the number of nodes in the subregion; however, in networks with fixed
neighborhood size nlocal, map formation is O(1). Likewise, coordinate system
stitching enables the realistic use of O(n3) multidimensional scaling in sensor
networks.

1.8 FUTURE DIRECTIONS

The sensor network field and localization in particular are in their infancy.
Much work remains in order to address the varied localization requirements
of sensor network services and applications. Many future directions stand out
as important areas to pursue in order to meet both current and future needs.

Localization hardware will always involve fallible and imperfect compo-
nents; thus, calibration is imperative [32]. For example, raw measurements
from RSSI vary wildly from node to node while most algorithms expect mea-
surements to be at minimum monotonic and comparable. If calibration can
bridge this gap, a wide variety of algorithms would become practical on cheap
hardware.

Even with accurate calibration, localization hardware produces noisy mea-
surements due to occlusion, collisions, and multipath effects. This mandates
an improvement in measurement outlier rejection algorithms. Early work has
suggested [15] that outlier rejection can greatly improve the performance of
localization algorithms. Some early ideas [15] involve using consistency checks



xxii LOCALIZATION

such as symmetry and geometric constraints to reject improbable measure-
ments as discussed in Section 1.2.4. Other possibilities involve using statistical
error models to identify outliers.

Future sensor networks will involve movable sensor nodes. New localization
algorithms will need to be developed to accommodate these moving nodes.
Some algorithms can tolerate a certain amount of movement but more exper-
iments and algorithm development is required. Some researchers [31, 4] have
touched on this issue with adaptive beacon placement, but much more work
is needed.

No current localization algorithm adequately scales for ultra-scale sensor
networks (i.e., 10000 nodes and beyond). It seems likely that such networks
will end up being multi-tiered, and will require the development of more hi-
erarchical algorithms.

1.9 CONCLUSION

In this chapter we presented the foundations of sensor network localization.
We discussed localization hardware, issues in localization algorithm design,
major localization techniques, and future directions. In this section, we sum-
marize the tradeoffs and provide guidelines for choosing different algorithms
based on context and available hardware.

The first primary distinction between algorithms is those that require bea-
cons (described in section 1.5) and those that do not (described in sections 1.4,
1.6, and 1.7). Beaconless algorithms necessarily produce relative coordinate
systems which can optionally be registered to a global coordinate system by
positioning three (or four) nodes. Often sensor network deployments make the
use of beacons prohibitive and furthermore many applications do not require
a global coordinate system. In these situations beaconless algorithms suffice.
Finally, some algorithms (such as APIT from section 1.5.4) require a higher
beacon to node ratio than others to achieve a given level of accuracy.

The next distinction between localization algorithms is their hardware
requirements. All sensor nodes have radios and most can measure signal
strength, thus, algorithms that rely on hop count or RSSI require the least
hardware. Varying degrees of ranging precision can be achieved from RSSI,
with hop count being at the low end, with one bit precision. Gradient algo-
rithms (from section 1.5.3 such as DV-hop and Amorphous can often produce
quite accurate results using only hop counts and sufficient node density. Some-
times, a microphone and speaker are required for other reasons, making the
use of more accurate TDoA ranging possible. Sometimes nodes lack sufficient
arithmetic processing making certain algorithms impractical. Algorithms such
as bounding-box and APIT make the least demands on processors (although
APIT makes some demands on memory).

Finally, certain algorithms are centralized while others are distributed.
Centralized algorithms typically compute more exact positions and can be
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Fig. A.1 In this diagram, a single unknown node with ranges to six different beacons
localizes itself using multilateration. The ground truth position of the unknown node
is circled. The X’s mark the best estimate after each iteration of least squares, with
darker colors indicating higher iterations.

competitive in situations where accuracy is important and the exfiltration of
ranging data and dissemination of resulting location data is not prohibitively
time consuming nor error prone. Centralized algorithms could actually be a
viable option in many typical deployments where a base station is already
needed for other reasons. Distributed algorithms are often local approxima-
tions to centralized algorithms, but have the virtue that they do not depend
on a large centralized computer and potentially have better scalability.

Other issues to consider are battery life and communication costs. Of-
ten these two are intertwined as typically communication is the most battery
draining sensor node activity. Consult He et al [9] for a comparison of com-
munication costs (and other metrics) of a number of localization algorithms.

The development of localization algorithms is proceeding at a fast pace.
While the task appears simple, to compute positions for each node in a sensor
network, the best algorithm depends heavily on a variety of factors such as
application needs and available localization hardware. Future algorithms will
address new sensor network needs such as mobile nodes and ultra-scale sizes.

Appendix: A. Multilateration

This appendix derives a solution to the multilateration problem (section 1.5.3).
See figure A.1 to see an example of this solution in practice.
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Multilateration is a simple technique, but the specific mathematics of its
implementation vary widely, as do its application in sensor networks. The
purpose of multilateration is simple: given m nodes with known Cartesian
positions bi, i = 1 . . .m and possibly noisy range measurements ri from the
known nodes to an unknown node s, multilateration finds the most likely
position of s.

Multilateration is typically done by minimizing the squared error between
the observed ranges ri and the predicted distance ‖s− bi‖:

s = argmin
s

E(s)

E(s) =
m∑

i=1

(‖s− bi‖ − ri)2
(A.1)

This minimization problem can be solved using Newton-Raphson/least
squares as follows. First, approximate the error function e(s, bi) = ‖s−bi‖−ri

in equation (A.1) with a first order Taylor series about s0:

e(s, bi) ≈ e(s0, bi) +∇e(s0, bi)(s− s0)
= ∇e(s0, bi)s− (−e(s0, bi) +∇e(s0, bi)s0)

∇e(s, bi) =
s− bi

‖s− bi‖

Plug this approximation back into equation (A.1):

s ≈ argmin
s

m∑
i=1

(∇e(s0, bi)s− (−e(s0, bi) +∇e(s0, bi)s0))2

Stacking terms:

s ≈ argmin
s

‖As− b‖2 (A.2a)

A =


∇e(s0, b1)
∇e(s0, b2)

...
∇e(s0, bm)

 (A.2b)

b =


−e(s0, b1) +∇e(s0, b1)s0

−e(s0, b2) +∇e(s0, b2)s0

...
−e(s0, bm) +∇e(s0, bm)s0

 (A.2c)
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The right side of equation (A.2a) is in exactly the right form to be solved
by an off-the-shelf iterative least squares solver. The resulting s is a good
estimate of the unknown sensor’s position, provided bi and ri are accurate.
Here is a summary of the multilateration method:

Step 1 Choose s0 to be a starting point for the optimization. The choice is
somewhat arbitrary, but the centroid b̄ is a good one:

b̄ =
1
m

m∑
i=1

bi

Step 2 Compute A and b using s0 and equations (A.2b) and (A.2c).

Step 3 Compute s′0 = argmin
x

‖Ax− b‖2 using a least squares solver.

Step 4 If E(s0)− E(s′0) < ε, then s′0 is the solution, otherwise set s0 = s′0 and
return to Step 2.

There are many ways to solve the multilateration problem. The one pre-
sented above is equivalent to Newton-Raphson descent on the error function E
(equation (A.1)). Most alternate methods also attempt to minimize squared
error using some form of iterative optimization. To see a prototypical example
of an algorithm that uses multilateration, see section 1.5.3.

Appendix: B. Coordinate System Registration

Many localization algorithms compute a relative coordinate assignment for a
group of sensors and later transform this local coordinate assignment into a
different coordinate system. To do this, the algorithm must compute a trans-
lation vector, a scale factor, and an orthonormal rotation matrix that define
the transformation from one coordinate system to the other. The process of
finding these quantities is known as “Coordinate System Registration.” Reg-
istration can be performed for two dimensions as long as three points have
known coordinates in both systems. The three dimensional version naturally
requires four points.

We will present Horn et al’s method of solving the coordinate system reg-
istration problem. It has many advantages over commonly used registration
methods:

1. It has provable optimality over the canonical least squares error metric
(equation (B.2)).

2. It uses all the data available, though it can compute a correct result
with as few as three (or four) points.
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3. It can be computed quickly, since its running time is proportional to the
number of common points n.

There is one caveat: even after a rigid transformation, it is unlikely that
the known points will precisely align, since the measurements used to localize
the points are likely to have errors. Thus, the best that can be done is a
minimization of the misalignment between the two coordinate systems. Let
xl,i and xr,i be the known positions of node i = 1 . . . n in the left hand and
right hand coordinate systems respectively. The goal of registration is to find
a translation t, scale s, and rotation R that transform a point x in the left
hand coordinate system to the equivalent point x′ in the right hand coordinate
system using the formula:

x′ = sRx + t (B.1)

Horn et al approach this problem using squared error; they look for a t, s,
and R that meet the following condition:

(t, s, R) = argmin
t,s,R

n∑
i=1

‖ei‖2 (B.2a)

ei = xr,i − sRxl,i − t (B.2b)

In [11], Horn et al derive a closed form for equation (B.2) which can be
computed in O(n) time. The method is outlined below with emphasis on the
precise steps required to perform the computation. For more detail on the
mathematical underpinnings, see [11]. To see the method in action, see figure
B.1.

Step 1 Compute the centroids of xl and xr:

x̄l =
1
n

n∑
i=1

xl,i x̄r =
1
n

n∑
i=1

xr,i

Step 2 Shift the points so that they are defined with respect to the centroids:

x′l,i = xl,i − x̄l x′r,i = xr,i − x̄r

Now the error term in equation (B.2b) can be rewritten as:

ei = x′r,i − sRx′l,i − t′

t′ = t− x̄r + sRx̄l
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Fig. B.1 An example of coordinate system registration. In the upper left is a set
of reference points (X, Y ). On the right, the reference points have been moved into
a new coordinate system by a linear transformation (X ′, Y ′) = L(X, Y ) and then
jittered to simulate position error. Finally, in the lower right the (X ′, Y ′) coordinate
system is brought into registration with the reference coordinate system (X, Y ).
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As it turns out, the squared error from equation (B.2) is minimized
when t′ = 0, independent of s and R. Therefore:

t = x̄r − sRx̄l (B.3)

So after s and R have been computed, equation (B.3) can be used to
compute t. Since t′ = 0, the error term can be rewritten as:

ei = x′r,i − sRx′l,i (B.4)

Now that t is out of the way, we can focus on finding s and R. Equation
(B.4) can be rewritten as:

ei =
1√
s
x′r,i −

√
sRx′l,i (B.5)

So now we need only find:

(s,R) = argmin
s,R

n∑
i=1

‖ei‖2

= argmin
s,R

1
s

n∑
i=1

‖x′r,i‖2 + s
n∑

i=1

‖rl,i‖2

− 2
n∑

i=1

x′r,i · (Rx′l,i)

(B.6)

By completing the square in s, it can be shown that equation (B.6) (and
thus equation (B.2)) is minimized when:

s =

√√√√ n∑
i=1

‖x′r,i‖2/
n∑

i=1

‖x′l,i‖2 (B.7)

Step 3 Use equation (B.7) to compute the optimal scale factor s. Now equation
(B.6) can be simplified to:

R = argmin
R

2


√√√√( n∑

i=1

‖x′r,i‖2
)(

n∑
i=1

‖x′l,i‖2
)
−

n∑
i=1

x′r,i · (Rx′l,i)


(B.8)

Equation (B.8) is minimized when the following is true:
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R = argmax
R

n∑
i=1

x′r,i · (Rx′l,i)

This is the same as:

R = argmax
R

Trace(RT M) (B.9a)

M =
n∑

i=1

x′r,i(x
′
l,i)

T (B.9b)

M is a 2x2 or 3x3 matrix, depending on whether the points xl,i and
xr,i are two or three dimensional. For the remainder of this discussion,
assume M is 3x3; the results are similar for the two dimensional case.

Step 4 Compute M using equation (B.9b).

Step 5 Compute the eigen-decomposition of MT M . That is, find eigenvalues
λ1, λ2, λ3 and eigenvectors û1, û2, û3 such that:

MT M = λ1û1û
T
1 + λ2û2û

T
2 + λ3û3û

T
3

Step 6 Compute S = (MT M)1/2 and U = MS−1. That is:

S =
√

λ1û1û
T
1 +

√
λ2û2û

T
2 +

√
λ3û3û

T
3

U = MS−1 = M

(
1√
λ1

û1û
T
1 +

1√
λ2

û2û
T
2 +

1√
λ3

û3û
T
3

)
Note that M = US, and that U is orthonormal, since UT U = I.

We can now write Trace(RT M) from equation (B.9a) as:

Trace(RT US) =
√

λ1Trace(RT Uû1û
T
1 )

+
√

λ2Trace(RT Uû2û
T
2 )

+
√

λ3Trace(RT Uû3û
T
3 )

Trace(RT Uûiû
T
i ) can be rewritten as (Rûi ·Uûi). Since ûi is a unit vec-

tor, and since U and R are orthonormal transformations, (Rûi ·Uûi) ≤ 1,
with equality only when Rûi = Uûi. Therefore:

Trace(RT US) ≤
√

λ1 +
√

λ2 +
√

λ3 = Trace(S)
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The maximum value of Trace(RT US) occurs when RT U = I, i.e. when
R = U . Therefore, the rotation R necessary to minimize the error in
equation (B.8) is given by:

R = U = M

(
1√
λ1

û1û
T
1 +

1√
λ2

û2û
T
2 +

1√
λ3

û3û
T
3

)
(B.10)

Step 7 Compute R using equation (B.10). R is an orthonormal matrix that
encapsulates the rotation and possible reflection necessary to transform
xl,i into xr,i.

Step 8 Now we have R and s, so use equation (B.3) to compute t. R, s, and
t form a complete linear transformation between the two coordinate
systems that minimizes equation (B.2).

Step 9 For each point x in the left hand coordinate system, compute the cor-
responding position x′ in the right hand coordinate system using:

x′ = t + sRx

Even though this math may look imposing, it is straightforward to im-
plement, and gives provably optimal results. As you will see shortly, many
algorithms depend on coordinate system registration, either to shift a com-
pletely localized relative topology into global coordinates, or to “stitch to-
gether” small local topologies into a single consistent coordinate assignment.
This appendix described a powerful closed-form method of performing the
necessary registration operations.

Appendix: C. Multidimensional Scaling

Multidimensional Scaling (MDS) was originally developed for use in mathe-
matical psychology. It comes in many variations, but all the variations share a
common goal. Given a set of points whose position is unknown and measured
distances between each pair of points. Multidimensional scaling determines
the underlying dimensionality of the points, and finds an embedding of the
points in that space that honors the pairwise distances between them.

Clearly, MDS has potential in the sensor localization domain. Using only
ranging data, without anchors or GPS, MDS can solve for the relative coor-
dinates of a group of sensor nodes with resilience to measurement error and
rather high accuracy.

This section focuses on a type of multidimensional scaling called “classi-
cal metric MDS,” classical because it uses only one matrix of “dissimilarity”
or distance information, and metric because the dissimilarity information is
quantitative (e.g. distance measurements), as opposed to ordinal. There are
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many other types, but they are not common in sensor networks so they are
omitted for brevity.

Let there be n sensors in a network, with positions Xi, i = 1 . . . n, and
let X = [X1, X2, . . . , Xn]T . X is nxm, where m is the dimensionality of X.
For now, consider m to be an unknown. Let D = [dij ] be the nxn matrix of
pairwise distance measurements, where dij is the measured distance between
Xi and Xj for i 6= j, and dii = 0 for all i. The distance measurements dij

must obey the triangular inequality: dij + dik ≥ djk for all (i, j, k).
The goal of MDS is to find an assignment of X in low-dimensional space

that minimizes a “Stress function”, defined as:

X = argmin
X

Stress(X) (C.1)

Stress(X) =

√√√√∑n
i=1

∑i−1
j=1(dij − δij)2∑n

i=1

∑i−1
j=1 δ2

ij

(C.2)

In equation (C.1), δij is the distance between Xi and Xj . Thus, the metric
MDS stress function is closely related to the squared error function we have
seen in other techniques such as multilateration (section 1.5.3).

Classical metric multidimensional scaling is derived from the Law of Cosines,
which states that given two sides of a triangle dij , dik, and the angle between
them θjik, the third side can be computed using the formula:

d2
jk = d2

ij + d2
ik − 2dijdik cos θjik (C.3)

Rewriting:

dijdik cos θjik =
1
2
(d2

ij + d2
ik − d2

jk) (C.4)

The left side of equation (C.4) can be rewritten as a dot product:

(Xj −Xi) · (Xk −Xi) =
1
2
(d2

ij + d2
ik − d2

jk) (C.5)

If all measurements are perfect, then a good zero-stress way to solve for
the positions X is to choose some X0 from X to be the origin of a coordinate
system, and construct a matrix B(n−1)x(n−1) as follows:

bij =
1
2
(d2

0i + d2
0j − d2

ij) (C.6)

B is known as the matrix of scalar products. As we know from equation
(C.5), we can write B in terms of X. Call X ′

(n−1)xm the matrix X where each
of the Xi’s is shifted to have its origin at X0: X ′

i = Xi − X0. Then, using
equations (C.5) and (C.6):
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X ′X ′T = B

We can solve for X ′ by taking an eigen-decomposition of B into an or-
thonormal matrix of eigenvectors and a diagonal matrix of matching eigen-
values:

B = X ′X ′T = UV UT

X ′ = UV 1/2
(C.7)

The problem is that X ′ has too many columns: we need to find X in 2-
space or 3-space. To do this, we throw away all but the two or three largest
eigenvalues from V , leaving a 2x2 or 3x3 diagonal matrix, and throw away the
matching eigenvectors (columns) of U , leaving U(n−1)x2 or U(n−1)x3. Then X ′

has the proper dimensionality.
Note that this method produces a coordinate system that is a linear trans-

formation from the coordinate system of the true Xi’s. Reconciling the two
requires a registration procedure like that of appendix B.

Remember, though, that we said this method only works when the data
dij is perfect, which is an unrealistic assumption. In practice, there is some
error, which ends up in the stress value of the final coordinate assignment.
Fortunately, the classical metric MDS method generalizes to gracefully cover
measurement errors. Above, we chose a single point from our data to be the
origin. This choice gives X0 an undue influence on the error of X. Thus,
real MDS doesn’t use a point from the data; rather, it uses a special point in
the center of the Xi’s. This point is found by “double centering” the squared
distance matrix. The squared distance matrix D2 = [d2

ij ]. To double center
a matrix, subtract the row and column means from each element. Then, add
the grand mean to each element. Finally, multiply by −1/2. The element-wise
formula for double centering is below.

bij = −1
2

(
d2

ij −
1
n

n∑
k=1

d2
kj −

1
n

n∑
k=1

d2
ik +

1
n2

n∑
k=1

n∑
l=1

d2
kl

)

=
m∑

a=1

xiaxja

(C.8)

Reformulating equation (C.8) in matrix notation:
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Bnxn = −1
2
JD2J = XXT (C.9a)

Jnxn = Inxn −
1
n

eT e (C.9b)

e1xn = [1, 1, 1, . . . , 1] (C.9c)

Equation (C.9) is an expression for X in terms of D, in m-dimensional
space. If m = n − 1, then there is a trivial assignment of X1 . . . Xn that
makes Stress(X) = 0. As m decreases, it turns out that Stress(X) must
increase or stay the same; it cannot decrease. We know that the measurements
D originate from a two or three dimensional space. If the measurements from
D are perfect, then there is a zero stress assignment of X when m = 2 or 3.
However, measurement error makes it unlikely that such an assignment really
exists. Thus, some stress is inevitable as we reduce the dimensionality from
n to 2 or 3.

As before, this dimensionality reduction is done by taking an eigen-decomposition
of B, then removing eigenvalues and eigenvectors. This is a safe operation
because B is symmetric positive definite, and therefore has n positive eigen-
values.

B = XXT = UV UT

X = UV 1/2
(C.10)

Thus, multidimensional scaling provides a method of converting a complete
matrix of distance measurements to a matching topology in 2-space or 3-
space. This conversion is quite resilient to measurement error, since increased
measurement error simply becomes an increase in the stress function. To see
an example of MDS in action, look at figure C.1.

Unfortunately, multidimensional scaling has some disadvantages. First, the
main computation of MDS, the eigen-decomposition of B (equation (C.10))
requires O(n3) time. As a result, a single pass of multidimensional scaling
cannot operate on a large topology, particularly in the constrained computa-
tional environment of sensor networks. Second, classical MDS requires that
D contain a distance measurement for all pairs of nodes. This requirement
is impossible to meet with ranging hardware alone in large networks; thus,
implementations of MDS in sensor networks must do pre-processing on mea-
sured data to generate D (section 1.4.2) or use coordinate system stitching to
distribute the computation (1.7).

To conclude, here are the steps of classical metric multidimensional scaling:

Step 1 Create the symmetric matrix D = [dij ], with dii = 0 and dij +dik ≥ djk.

Step 2 Create the symmetric matrix J (equation (C.9b)).
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Fig. C.1 Topology constructed by multidimensional scaling. Each inter-node range
measurement has zero-mean Gaussian error with a standard deviation of 10 units.
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Step 3 Compute B using D2 = [d2
ij ] and J (equation (C.9a)).

Step 4 Take an eigen-decomposition UV UT of B.

Step 5 Let Vd be the diagonal matrix of the d largest eigenvalues in V , where
d is the desired dimensionality of the solution.

Step 6 Let Ud be the d eigenvectors from U that match the eigenvalues in Vd.

Step 6 Compute Xd = [X1, X2, . . . , Xn]T using Xd = UdV
1/2
d . V

1/2
d can be

computed by taking the square root of each of Vd’s diagonal elements.

Step 7 (Optional) Transform the Xi’s from Xd into the desired global coor-
dinate space using some coordinate system registration algorithm (ap-
pendix B). These transformed Xi’s are the solution.
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