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ABSTRACT

Make a note of similarity between SLAM and localization,
tracking.

We demonstrate that it is possible to achieve accurate lo-
calization while target tracking in a randomly placed wire-
less sensor network composed of inexpensive components
of limited accuracy. We present an algorithm for creating
such a coordinate system without the use of global con-
trol, globally accessible beacon signals, or accurate esti-
mates of inter-sensor distances. The coordinate system is
robust and automatically adapts to the failure or addition
of sensors. The algorithm learns from observations of lo-
cal events, events that can be sensed in a particular neigh-
borhood. Tracking improves over time providing a measur-
able error that can also be used to guide further exploration.
The algorithm is based upon a general parameter estimation
framework that easily incorporates a priori knowledge, pro-
vides error estimates on all measurements, and allows for
well founded outlier rejection. Furthermore, this approach
can be generalized to also simultaneously calibrate sensors
and perform time synchronization and its coordinate system
can optionally be aligned to surveyed positions.

1. INTRODUCTION AND FEATURES

Advances in technology have made it possible to build ad
hoc sensor networks using inexpensive nodes consisting of
a low power processor, a modest amount of memory, a wire-
less network transceiver and one or more sensors; a typical
node is comparable in size to 2 AA batteries [1]. Many
novel applications are emerging: habitat monitoring, smart
building reporting failures, target tracking, etc. In these ap-
plications it is necessary to accurately orient the nodes with
respect to the global coordinate system. Ad hoc sensor net-
works present novel tradeoffs in system design. On the one
hand, the low cost of the nodes facilitates massive scale and
highly parallel computation. On the other hand, each node
is likely to have limited power, limited reliability, and only
local communication with a modest number of neighbors.

The application context and massive scale make it unreal-
istic to rely on careful placement or uniform arrangement
of sensors. Rather than use globally accessible beacons or
expensive GPS to localize each sensor, we would like the
sensors to be able to self-organize a coordinate system.

In this paper, we present SLAT (Simultaneous Local-
ization and Tracking), an algorithm that incrementally lo-
calizes the nodes in a sensor network as it tracks moving
targets in real-time. Our method is based on the observa-
tion that each range measurement between a sensor and a
target contains information about both the target’s location
and the sensor’s position and that given a sufficient quan-
tity of range data, we can simultaneously track a target and
localize our sensors.

Using target ranges to perform localization provides sev-
eral important advantages. The redundance inherent in the
tracking measurement data provides resistance to individual
measurement errors. Also, tracking accuracy improves in
high-traffic areas, since these areas witness the most data.
SLAT also allows networks to be localized without use of
inter-node ranging, which allows sensors to be deployed
without line of sight to each other (which is often desir-
able for ultrasound ranging systems [2]). SLAT provides all
of these benefits in a highly extensible probabilistic frame-
work.

SLAT localizes sensors into a coordinate system that
spans the entire network. That means all sensors’ posi-
tion estimates are mutually comparable. If anchor nodes
are present, SLAT can localize into an absolute coordinate
system. In their absence, SLAT places sensors in a relative
coordinate system that is correct up to a translation, rota-
tion, and possible reflection. Though this paper focuses on
localization when sensors and targets are located in a single
plane, SLAT extends intuitively to three dimensional prob-
lems.

SLAT arises from a very extensible probabilistic frame-
work. In the future, we will likely be able to cope with mov-
ing sensors. We also believe we can eventually calibrate the
sensors’ ranging hardware and perform time synchroniza-
tion at the same time as we track and localize. Though will
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not demonstrate these capabilities in this paper, we think our
system is in a good position to include them in the future.

The next section introduces our approach from a high
level. Section 3 explores our design in detail. Section 4
discusses our initial results. Sections 6 and 7 propose future
work and describe related algorithms in the literature. We
present our conclusions in section 8

2. SLAT OVERVIEW

In SLAT, sensors perceive a moving target as a sequence of
discrete events. An event occurs when the target emits a
tagged radio message followed by an acoustic pulse. Sen-
sors can estimate distance by comparing the arrival times
of the radio and acoustic signals using time difference of
arrival (TDoA). An event occurs at the location of the tar-
get, and is detected nearly simultaneously by most sensors
within range. These sensors are each able to compute an
estimate of the distance between themselves and the event.

SLAT attempts to determine the most probable positions
of the sensors and events given a collection of computed
ranges by finding the posterior distribution over the sensors
and events. To compute this distribution, SLAT begins by
finding two other distributions: a prior distribution over the
sensors and events, and a sensor model.

The prior distribution can be used to incorporate a va-
riety of initial knowledge about the layout of the network.
More importantly, it can retain knowledge about the sensor
positions between groups of events. The prior in a sense is
responsible for SLAT’s learning behavior.

The sensor model is the probability distribution of range
measurements given a particular placement of sensors and
events.

SLAT is an iterative algorithm, since it processes events
in small batches shortly after they occur. Each iteration be-
gins with a simple Gaussian prior distribution over the sen-
sors. When SLAT witnesses events, it computes the poste-
rior over the positions of the sensors and events. It then gen-
erates a position estimate for the sensors and events based
on the mode of the posterior. Finally, it reduces the posterior
to a “prediction” that it approximates using a Gaussian dis-
tribution and reuses as the prior for the next group of events.

This process repeats continually. At each step, the sen-
sor estimates become more accurate. Once these position
estimates converge to the sensors’ real positions, the SLAT
algorithm becomes simple tracking. Figure 1 summarizes
our architecture in diagram form.

Most of the work in each SLAT iteration goes into find-
ing the mode of the posterior distribution. We perform this
optimization using the Newton-Raphson method. However,
like most optimization techniques, Newton-Raphson can con-
verge to local optimums unless they are applied carefully.

Fig. 1. The SLAT architecture. Given a Gaussian prior dis-
tribution and a collection of ranges to some events, SLAT
produces an estimate of the sensors’ positions, an estimate
of the events’ locations, and a more informative Gaussian
prior for use with future computations.

SLAT chooses an initial prior distribution that helps the op-
timizer avoid these problems.

TODO: Ali needs to talk about EKF.

3. SLAT DETAILS

3.1. Definitions

For simplicity, we confine ourselves to two dimensions, though
we can trivially extend our method to three. Letsi be a two
dimensional vector representing the position of theith sen-
sor, wherei = 1 . . . n, and defines = {si}i=1...n to be the
set of all sensor positions.

To name the events, we first split time intoT discrete
intervals. At the end of each interval, SLAT estimates po-
sitions of the events that occurred within the interval. Each
interval contains several events. This is especially important
when the prior distribution is based on few measurements.
As more measurements are gathered, the interval size de-
creases to improve tracking speed. Letet = {et

j}j=1...mt

be the set of events that occur during intervalt, t = 1 . . . T .
et
j is the position of thejth event to occur intth time inter-

val.
Finally, let yt = {yt

ij} be the set of sensor measure-
ments taken during intervalt. yt

ij is the measurement taken
by sensorsi during the eventet

j .

3.2. The posterior distribution

SLAT’s design is focused on identifying and working with
the posterior distribution, specifically:

p(s, et|y1, y2, . . . , yt) (1)
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That is, SLAT wants the distribution over the positions of
the sensors and most recent events, given all measurements
observed up until time intervalt. At the end of each interval
t, SLAT finds the distribution (1). It then produces a most
probable estimate fors andet by finding the mode:

s∗, et∗ = argmax
s,et

p(s, et|y1, y2, . . . , yt)

We will split the measurementsy1 . . . yt into two groups.
yt is the most recent measurements, andyold = {yi}i=1...t−1

is the set of measurements incorporated by earlier iterations
of the algorithm. The posteriorp(s, et|yt, yold) can be ex-
pressed in terms of two important distributions: the prior
distributionp(s, et|yold), and the sensor modelp(yt|s, et).

For notational convenience, definext = {s, et}, which
makes the posteriorp(xt|yt, yold). By Bayes’ Rule:

p(xt|yt, yold) =
p(yt|xt, yold)p(xt|yold)

p(yt|yold)
(2)

Knowledge of measurements to earlier events does not
provide any basis for predicting future measurements, so the
new measurements in intervalt (yt) are independent of the
measurement history prior to intervalt (yold). Equation (2)
becomes:

p(xt|yt, yold) =
p(yt|xt)p(xt|yold)

p(yt)
∝
xt

p(yt|xt)p(xt|yold)
(3)

So as a function of the variables to estimate, the pos-
terior distribution is proportional to the product of a “prior
distribution”p(xt|yold) = p(s, et|yold) and a “sensor model”
p(yt|xt) = p(yt|s, et). The next two sections will discuss
these two distributions in depth.

To summarize, here are the steps of the SLAT algorithm:

Step 1 Start with the prior distributionp(xt|yold).

Step 2 Observe new measurementsyt.

Step 3 Compute the posteriorp(xt|yt, yold) using the prior
from step 1 and a sensor modelp(yt|xt).

Step 4 Compute the mode of the posterior, and report it as an
estimate of the sensor positionss and event positions
et.

Step 5 Compute the predictionp(xt+1|yt, yold) using an ap-
proximation to the posterior.

Step 6 Return to step 1, using the prediction as the prior for
intervalt + 1.

3.3. The sensor model

First consider the sensor modelp(yt|xt). As defined in sec-
tion 3.1,yt is a set of measurementsyt

ij . Each measurement
yt

ij depends only on the sensor taking the measurement,si,
and the event generating the measurement,et

j .

p(yt|xt) =
∏
i,j

p(yt
ij |si, e

t
j) (4)

As we noted in section 2, we assume that the target pro-
duces a tagged radio pulse followed by a sonic pulse. This
allows the sensors to easily differentiate between events,
and allows the sensors to use time difference of arrival (TDoA)
to obtain fairly accurate range measurements. We model
these measurements as follows:

yt
ij = ‖si − et

j‖+ ωt
ij (5)

‖ · ‖ indicates the vector 2-norm, which is the same as
the Euclidian distance betweensi and et

j . ωt
ij represents

some amount of zero-mean Gaussian noise with variance
σ2. We chose this model because it is similar to noise mod-
els used in the literature [3, 4], and because it is mathemati-
cally tractable. We could also have used more sophisticated
modelling techniques – in particular, we could use a particle
representation. TODO: Ali, talk about particle representa-
tions.

From (5), we can directly statep(yt
ij |si, e

t
j) – it is a uni-

variate Gaussian with mean‖si − et
j‖ and some variance

σ2:

p(yt
ij |si, e

t
j) =

1√
2πσ

exp

[
−

(‖si − et
j‖ − yt

ij)
2

2σ2

]
(6)

In the absence of an informative prior distributionp(xt|yold),
equations (3), (4), and (6) reduce to the simple squared mea-
surement error metric often used in the literature, for in-
stance in “spring model” approaches such as [4]. However,
the use of an informative prior makes our algorithm sub-
stantially more capable. TODO: fix this

3.4. The prior distribution

The prior distributionp(xt|yold) encodes an a priori belief
about the relative likelihood of different sensor and event lo-
cations. It encapsulates two different distributions:p(s|yold)
andp(et). The product of these distributions is the prior
p(xt|yold), sinceet is independent of bothyold ands.

We require that the prior distributionp(xt|yold) be a
multivariate Gaussian so that the product of the prior and the
sensor model defined in the last section is manageable. This
in turn suggests thatp(s|yold) andp(et) also be Gaussian.

p(s|yold) has two forms, which we will summarize here:
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• System startup.In this case, there are no measure-
ments inyold. We create a Gaussian priorp(s) en-
codes any information we have about the sensor loca-
tions. This information might come from specialized
hardware (e.g. GPS) or other localization techniques.
In particular, we use the results of a lower precision
localization algorithm based on radio signal strength
or radio hop count as a weak prior to help SLAT avoid
false optima. We discuss specific algorithms and the
local minimum problem in section 3.7.

• Online updates.In the update case, SLAT has a non-
trivial measurement historyyold. This implies that
SLAT has already computed the distributionp(xt−1|yt−1 . . . y1) =
p(s, et−1|yold). We simply marginalize out the events
et−1 to getp(s|yold). We then approximatep(s|yold)
with a multivariate Gaussianq(s|yold) using Laplace’s
method. q(s|yold) becomes the basis for a “predic-
tion” for interval t: p(xt|yold). We show how to de-
rive this prediction from the posterior in section 3.6.

SLAT also uses a prior on the events,p(et), which we
show how to compute in section 3.7. Likep(s), p(et) pri-
marily helps SLAT avoid trouble with local optimums.

The SLAT prior consists of two multivariate Gaussians.
p(s|yold) is described by its meanst

0 and its covarianceΛt
s.

Likewise,p(et) is defined by its meanet
0 and its covariance

Λt
e. As a result, the algebraic form ofp(xt|yold) is as fol-

lows, whereZ is a normalization constant:

p(xt|yold) =
1
Z

exp
[
−1

2
(xt − xt

0)
T [Λt

x]−1(xt − xt
0)

]
xt

0 =
[

st
0

et
0

]
Λt

x =
[

Λt
s 0

0 Λt
e

]
(7)

p(xt|yold) is the prior or prediction we require to com-
pute the posterior distributionp(xt|yt, yold). We will return
to specific choices of Gaussians forp(s|yold) andp(et) in
sections 3.6 and 3.7.

3.5. Finding the mode of the posterior

In this section, we show how SLAT computes a specific set
of sensor and event positions from the posterior distribution.
As we mentioned in section 2, SLAT computes this estimate
xt∗ by finding the mode of the posterior:

xt∗ = argmax
xt

p(xt|yt, yold)

= argmin
xt

− log p(xt|yt, yold)

= argmin
xt

[
(xt − xt

0)
T [Λt

x]−1(xt − xt
0)

+
1
σ2

∑
i,j

(‖si − et
j‖ − yt

ij)
2
]

(8)

We can now optimize (8) using the Newton-Raphson
method. The Newton-Raphson method is an iterative tech-
nique for solving minimization problems. Starting at some
point xt

i, Newton-Raphson fits the error surface (8) with a
quadratic whose value, gradient, and Hessian match those
of the error surface atxt

i. It then placesxt
i+1 at the bottom

of the quadratic. The process continues until it converges
at the minimum of the error surface. In principle, Newton-
Raphson is similar to gradient descent, but boasts a faster
rate of convergence.

We show in section 9 that the update equation for Newton-
Raphson on our problem is:

xt
i+1 = (AT A + [Λt

x]−1)−1(AT b + [Λt
x]−1xt

0) (9)

A and b are defined in section 9 as a matrix and vec-
tor respectively. Both are computed usingxt

i. This update
equation gives us a complete method for finding the mode
of the posteriorp(xt|yt, yold.

1. Set the starting pointxt
0 to be the mean of the prior

distributionp(xt|yold).

2. Repeat until thext
i ’s converge:

2a. Compute the matrixZ = [Λt
x]−1 +AT A and the vec-

tor y = [Λt
x]−1xt

0 + AT b.

2b. Solve the linear systemZxt
i+1 = y.

3. The finalxt
i is xt∗, the mode ofp(xt|yt, yold).

This is the most important part of the SLAT algorithm.
Given a multivariate Gaussian priorp(xt|yold) and a quan-
tity of range datayt, SLAT produces the most probable sen-
sor topology and event locations.

In the next two sections, we turn to the question of how
to create the priorp(xt|yold) = p(s|yold)p(et) in order to
maximize SLAT’s effectiveness.

3.6. Computing a prediction from the posterior

The most important use of the priorp(xt|yold) is encap-
sulating knowledge of the sensor positionss based on old
measurements. To do this, we first findp(s|yold).
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p(s|yold) =
∫

p(s, et−1|yt−1, . . . , y2, y1)det−1 (10)

Unfortunately, (10) is hardly a simple integral. It also
seems unlikely thatp(s|yold) is Gaussian. We needp(s|yold)
to be Gaussian, since Gaussians are compact (since they are
represented by a single vector of means and a single matrix
of covariance) and easy to work with.

We resolve both problems by simply approximating the
posterior with a Gaussian using Laplace’s method. We will
call this Gaussian distributionq(s, et−1|yold). Since we are
using Laplace’s method, the meanq∗ is the mode of the
posteriorx(t−1)∗, which we computed in section 3.5. The
inverse covarianceΛ−1

q is the Hessian of the negative log
posterior:

Λ−1
q = −∇2 log p(xt−1|yold)|xt−1=x(t−1)∗

= AT A + [Λt−1
x ]−1 (11)

The derivation of this formula is presented in appendix
9. Next, we integrateq(s, et−1|yold) with respect toet−1

to get the multivariate Gaussian priorq(s|yold). This inte-
gration can be performed simply by dropping the rows and
columns ofΛq and the elements of the meanq∗ that corre-
spond to the eventset−1, to produce the required covariance
Λt

s and meanst
0.

q(s|yold) is exactly the Gaussian prior we want. We can
now formp(xt|yold), and use it to compute a posterior for
interval t. Note that as we incorporate new measurements
after each time interval, the storage used to maintain SLAT
state remains constant – justst

0 andΛt
s. This allows SLAT

to handle large amounts of data over the life of the network.
The ability to save state using a prior also means that the

localization of the network can converge over time. Even-
tually, the priorp(xt|yold) dominates the termp(yt|xt) in
the optimizer. This leads to little change in the position esti-
mates∗. It also leads to quick convergence in the optimizer,
since the optimization begins very close tox∗. We expect
SLAT’s performance to increase over time, both in accuracy
and in speed. Our simulation results (which we present in
section 4) support this claim.

3.7. Avoiding local minima using a weak prior

Localization systems that attempt to localize using an opti-
mization over range measurements often encounter trouble
with local minima. As shown by Priyantha et al. [4], most
of these problems stem from topological “folds.” Figure 2
illustrates the problem graphically. Essentially, the possibil-
ity of folds causes concavities in the error surface analyzed
by the optimizer.

Fig. 2. An example of topology folding. Note that range
estimates (shown as edges in the graph) cannot differen-
tiate between the placement(A,B,C) and the placement
(A′, B′, C ′). As a result, the error surface for optimization
is bi-modal. If D, E, andF have known positions, then
without additional information to differentiate the between
two modes, the optimizer has an unacceptably high chance
of choosing the wrong mode. The wrong mode results in
A, B, andC suffering grevious error relative toD, E, and
F . Typically, one or two such folding errors leads to wildly
inaccurate topology estimates.

In SLAT, we use an initial priorp(s) to avoid the vast
majority of these problems. There are several localization
algorithms in the literature that are (1) simple, (2) distrib-
uted, and (3) hop-count based. These algorithms are typi-
cally somewhat inaccurate, since their only source of data
is the radio connectivity of the network. However, several
of these, such as the unfolding phase of [4] and the gradient
multilateration approach of [5] and [6] completely avoid the
issue of local minima, since they are not based on an opti-
mization.

SLAT can use any of these algorithms to generate a fold-
free topology of the sensor network, as in [4]. This topol-
ogy’s accuracy may be bad, but it does provide a total order
over the sensors – that is, each sensor in roughly the right
part of the plane relative to the rest of the sensors. By en-
coding this total order as a very weak prior, SLAT biases the
optimizer in favor of the correct minimum. For instance,
the fold-free topology might placeA in figure 2 nearF .
This allows the optimizer to correctly choose the position-
ing (A,B, C) over the incorrect positioning(A′, B′, C ′).

The mathematics of this weak priorp(s) are simple.
Suppose an algorithm such as the unfolding phase from [4]
generates positionssunfolded. Then, the means0 of p(s) is
simply sunfolded. The covariance matrixΛs is wI, where
w is a large number we choose (typicallyw ≈ 108), andI
is the identity matrix.

It is also helpful to provide a priorp(et) that gives the
events a good starting point. This helps avoid local minima
and speeds convergence. SLAT generates a good placement
quickly using the sensor meanss0 produced after the last
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time interval. For each event, it chooses the three sensors
whose ranges to the event are smallest. It then simply aver-
ages the position estimates of the sensors to get an estimate
of the event’s position. The covariance ofp(et) is also set
to wI, wherew is again a large constant.

This initial prior p(et) can be combined withp(s|yold)
or p(s) to formp(x|yold), the full prior.

4. RESULTS

4.1. Cricket

In our first experiment, a roomba is placed in a rectangu-
lar wooden enclosure. A cricket [CITE] is attached to the
roomba [CITE]. This cricket beacons periodically using its
radio and ultrasound transmitter. Six more crickets were
placed outside the enclosure facing the roomba and instructed
to listen for beacon pulses. The roomba was turned on and
allowed to move freely within the enclosure. The roomba’s
movements were tracked using a video camera.

The ranges computed by the six external crickets were
collected and processed in a Java-based simulator. This sim-
ulator simply applied the SLAT algorithm to the measure-
ment data. The resulting target path and sensor positions are
plotted in figure 3. Figure 3 also contains the target path ex-
trapolated from the video camera gootage for comparison.
The SLAT algorithm produced a rather high fidelity recon-
struction of the roomba’s path. It also correctly identified
the placement of the six cricket sensors.

4.2. Decreasing error over time

The remainder of our results are based on simulated sensor
network topologies. Sensor placements are made at random,
with the constraint that sensors be scattered fairly evenly
in a rectangular area. Events are placed on random con-
tinuous paths through the sensor network’s area. Sensor-
event ranges are simulated based on the characteristics of
Maroti et al’s acoustic ranging system [CITE] for the Berke-
ley mica2 mote [CITE]. These measurements have a stan-
dard deviation error of about 8 cm.

Figure 4 shows a representative plot of SLAT estimate
error versus the number of events witnessed by the network.
In this network, 60 sensors were scattered over a 600 cm
x 600 cm area. The average error in estimated sensor po-
sitions falls off rapidly at the beginning, and then slowly
declines below the average measurement error. The ini-
tial falloff occurs since each measurement taken provides
significant new information. This causes the estimate to
change quickly. Once enough measurements have been taken,
further refinement only occurs due to additional measure-
ments cancelling out each others’ noise. This accounts for
the gradual improvement encountered after the initial drop.

(a) Ground truth

(b) SLAT estimate

Fig. 3. Ground truth and SLAT estimate for Roomba exper-
iment. Note that the SLAT estimate is affected by a rigid
transformation.

The average event estimate error declines somewhat in
the first few SLAT iterations, and soon stabilizes around
the average measurement error. This is entirely reasonable,
since it indicates that the majority of the error in an event
estimate is the noise in the measurements to that event.

Figure 5 plots sensor estimate error against the number
of measurements taken by the sensor. Note that all three
quantities (minimum, average, and maximum error) decline
as more measurements are taken. This indicates that as ex-
pected, SLAT’s accuracy increases over time, and increases
fastest in the areas with highest traffic.

Figure 6 shows the simulated sensor network used in
figures 4, 5, and 7 at several points in time. These pictures
show the SLAT process converging over time to a highly ac-
curate localization estimate while reliably tracking targets.

Figure 7 shows the average variance of the estimated po-
sitions in the SLAT posterior after each time interval. The
variance of sensor position estimates starts very large, and
rapidly drops as measurements are incorporated. This cor-
responds to increased confidence in the SLAT estimates. As
expected, the event variances are relatively constant.

We claimed that the Newton-Raphson method of max-
imizing the posterior distribution converges quickly. Em-
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Fig. 4. SLAT estimate error vs. number of observed events.
In this simulation, 60 sensors are spread over a 600 cm x 600
cm area. Simulated targets move along continuous paths
through the network producing events as they move. Each
mark on the graph represents the status of the network af-
ter an iteration of the SLAT algorithm. Error is measured
relative to ground truth. As predicted, SLAT’s localization
estimate improves over time; this drives the improvement in
event error.
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Fig. 5. SLAT sensor estimate error vs. number of observed
measurements per sensor for the simulation in figure 4. The
three plotted lines indicate the maximum, average, and min-
imum error in the SLAT estimate.

(a) initial hop-count estimate (b) after 190 events

(c) after 385 events (d) after 589 events

Fig. 6. These four graphs show a simulated sensor network
at several points in time. The estimates are dark colored.
Lines indicate the correspondence between estimates and
ground truth positions. Figures b-d show the event estimates
for the most recent time interval as ’x’ marks.

pirically, each SLAT iteration typically requires on average
3.25 Newton-Raphson iterations to converge.

4.3. Sensitivity to measurement error

Figure 8 demonstrates the effect of increased measurement
error on SLAT’s accuracy. We ran simulated experiments
with a measurement error standard deviations of 8 cm, 14
cm, and 20 cm. Each increase in variance slightly increases
the number of events required before the initial decrease in
sensor position estimate error is complete. Furthermore,
each increase in measurement error slightly increases the
asymptotic amount of measurement error.

4.4. Sensitivity to density

Figure 9 shows the effect of sensor density on SLAT effec-
tiveness. Each decrease in density means that fewer sensors
witness any particular event. Intuitively, this suggests that
less dense networks will improve less quickly. Furthermore,
we know there is some threshold of density beyond which
SLAT will not converge at all, since at least three measure-
ments are required simply to track a target. Both of these
intuitions are supported by simulation.

se
e h

ttp
://w

ww.jb
ot.

org
/P

roj
ec

ts/
sla

t-ip
sn

06
.pd

f fo
r n

ew
er 

ve
rsi

on



0 100 200 300 400 500 600
101

102

103

104

105

106

107

108

# of events

V
ar

ia
nc

e

Mote Estimate Variance
Event Estimate Variance
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Fig. 9. Effect of sensor density on SLAT localization accu-
racy.

4.5. Performance on larger networks

Figure 10 demonstrates the SLAT algorithm on a larger net-
work. This larger network maintains a constant density,
but contains four times as many sensors. The decrease in
convergence speed is easily explained. As we showed in
figure 5, sensor estimate accuracy is primarily dictated by
the number of measurements observed. This suggests that
a larger network with identical density will require more
events in order to provide the requisite number of measure-
ments for each sensor. This turns out to be the case.

Some of the effect is also caused by our simulator’s al-
gorithm for generating target paths. These paths tend to
avoid the corners of the network, which results in some
sensors improving more slowly than others. As we noted
earlier, this behavior is expected and acceptable, since the
slowly improving sensors are always in low traffic areas.

5. DISTRIBUTED SLAT

In this paper, we have primarily presented SLAT as a cen-
tralized algorithm. However, we have every reason to be-
lieve our techniques can be implemented to run in distribut-
edly inside the network using only local communication be-
tween nodes. In fact, we expect the space and time require-
ments of distributed SLAT to beO(nlocal), wherenlocal is
the number of nodes within two times the sensing range of
a node. This is possible because the important matrices in
SLAT, AT A andΛ−1

t , contain internal structure which we
can exploit for efficient storage in the network.

Furthermore, the heavy lifting computation in SLAT, the
solving of a large system of linear equation in (9), can be
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Fig. 10. Effect of network size on SLAT localization accu-
racy.

distributed using a type of Richardson Iterations [7] known
as the Gauss-Siedel method. Distributed least squares solvers
have been used in sensor networks in the past. Jacobi itera-
tions in particular are quite common [4]. These techniques
never require the entire linear system to be assembled on
a single processor; in fact, their computation patterns inte-
grate nicely with the storage scheme dictated by the struc-
ture ofAT A andΛ−1

t . The task of applying Laplace’s method
to the posterior and marginalizing events (section 3.6) has a
closed form that is amenable to distributed computation.

We are optimistic that we can implement SLAT in a dis-
tributed fashion.

6. FUTURE WORK

As we saw in section 4, sensor calibration can make a sub-
stantial difference to both localization and tracking accu-
racy. We believe that we can detect the mean measure-
ment error within the SLAT parameter estimation frame-
work. This would allow sensor calibration to occur con-
currently with localization and tracking.

Events are rarely randomly located. Targets follow a
somewhat predictable path based on the physics of their
movement. We think that by applying a special dynamics
prior to the events in our estimation framework, we can fur-
ther improve our target tracking accuracy. It is also likely
that target dynamics will assist us in avoiding local minima
for event estimates.

Our framework may also be capable of accomodating
mobile sensors. By applying dynamics to the priorp(s|yold),
we may be able to detect changes in sensor location.

SLAT currently depends on TDoA range measurements

from sensors to targets. We think it may be possible to lo-
calize sensors based solely on common observations of en-
vironmental noise. We would estimate relative distance to
the target by comparing the arrival times of a single sound
at different sensors. The goal would then be to locate the
source of the sound while localizing the sensors. It may
even be possible to leverage the information from the sound
arrival times to perform time synchronization between sen-
sors.

Finally, we hope to complete a true distributed imple-
mentation of the SLAT algorithm on real sensor network
hardware.

7. RELATED WORK

I think I will need Ali’s help writing about SLAM research.
We should talk about Sebastian Thrun’s work, and Phil McLauch-
lan’s work on VSDF.

In the sensor network space, there are no papers to our
knowledge that address simultaneous localization and target
tracking. The closest algorithms to SLAT are those that per-
form some type of optimization, such as multidimensional
scaling by Shang et al. and Ji et al. [8, 9], linear/semidefinite
programming by [10], and the algorithms that apply squared
error minimization techniques [4, 3]. SLAT’s probabilistic
modeling makes it substantially more powerful and sophis-
ticated than these algorithms.

Our technique for local minimum avoidance in section
3.7 is inspired primarily by the work of [4], which explores
the importance of fold freedom when localizing a network
using squared error metrics. In fact, as we stated in section
3.7, we use the unfolding technique presented in their paper
as SLAT’s initial prior. We also suspect that the gradient
multilateration approach presented by Nagpal et al. [5] pro-
duces a good SLAT prior, though we have not performed
any experimental validation.

Moore et al. [3] have also done interesting work in lo-
cal minimum avoidance, specifically on the topic of detect-
ing flip-prone topologies. This enables their algorithm to
avoid making poor choices when facing multi-modal error
surfaces. We are considering adapting this technique to help
detect the occasional mistakes SLAT makes at the edges of
sensor topologies.

8. CONCLUSION

Hit the high points one more time. Yell with triumph about
our results. Emphasize that our approach is deeply unique:
none of the related work we know does this stuff. It is awe-
some. I am punting on this until later. ————— In this
paper, we presented an algorithm for simultaneously con-
structing a coordinate system and tracking targets from only
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observation of common events. Our algorithm relies on sim-
ple distributed computation and local communication only,
features that an ad hoc sensor network can provide in abun-
dance. At the same time it is able to achieve very reasonable
accuracy. The algorithm gracefully adapts to take advantage
of any improved sensor capabilities or availability of addi-
tional seeds.

9. APPENDIX: NEWTON-RAPHSON

In this appendix, we show how to fit the negative log pos-
terior (equation (8)) with a quadratic function. We then
show that the minimum of this quadratic yields the Newton-
Raphson update formula (9). Finally, we compute the Hessian
of the negative log posterior for use in Laplace’s method, in
section 3.6 (equation (11)).

(8) has two parts: a quadratic due to the multivariate
Gaussian prior, and a sum of squared non-linear functions
from the sensor model. We fit the latter term with a quadratic,
from which we can trivially construct a quadratic that fits
(8).

It turns out that when the error surface can be expressed
as a sum of squares, it is possible to determine the fitting
quadratic without explicitly calculating the second deriva-
tive. In mathematical terms, suppose the error surface is:

∑
i,j

(fij(xt))2 (12)

We can find a fitting quadratic by replacingfij(xt) with
its first-order Taylor series aroundxt

i. So the quadratic that
fits (12) is:

∑
i,j

(fij(xt
i) +∇fij(xt

i)(x
t − xt

i))
2

=
∑
i,j

([∇fij(xt
i)]x

t − [−fij(xt
i) +∇fij(xt

i)x
t
i])

2

(13)

fij(xt) =‖si − et
j‖ − yt

ij

(14)

Equation (13) can be rewritten as a least squares prob-
lem by stacking terms:

∑
i,j

([∇fij(xt
i)]x− [−fij(xt

i) +∇fij(xt
i)x

t
i])

2

=‖Axt − b‖2 (15)

A =

 ∇f00(xi)
...

∇fnm(xi)


b =

 −f00(xi) +∇f00(xi)xi

...
−fnm(xi) +∇fnm(xi)xi


Thus, the quadratic that fits (8) atxt

i is:

0 = (xt − xt
0)

T [Λt
x]−1(xt − xt

0) + ‖Axt − b‖2 (16)

To complete Newton-Raphson we setxi+1 to be the
minimum of (16):

xi+1 = argmin
x

(x− x0)T Λx(x− x0) + ‖Ax− b‖2

We can do this in closed form by setting the gradient of
the quadratic to zero and solving, since the gradient is zero
only at the extremum of a quadratic.

0 = ∇
[
(xt − xt

0)
T [Λt

x]−1(xt − xt
0) + ‖Axt − b‖2

]
= 2[Λt

x]−1xt − 2[Λt
x]−1xt

0) + 2AT A− 2AT b (17)

([Λt
x]−1 + AT A)xt = [Λt

x]−1xt
0 + AT b (18)

Equation (18) is the update formula we require.
We conclude the appendix by computing the Hessian of

(8), which we used in section 3.6. This is simple, since (17)
contains the gradient: we simply apply another gradient:

−∇2 log p(xt|yt, yold)|xt=xt
i
= [Λt

x]−1 + AT A (19)
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