
Starkiller: A Static Type Inferencer and Compiler

for Python

by

Michael Salib

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2004

c© Massachusetts Institute of Technology 2004. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2004

Certified by. .
Jonathan Bachrach
Research Scientist
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Starkiller: A Static Type Inferencer and Compiler for
Python

by
Michael Salib

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2004, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Starkiller is a type inferencer and compiler for the dynamic language Python designed
to generate fast native code. It analyzes Python source programs and converts them
into equivalent C++ programs. Starkiller’s type inference algorithm is based on
the Cartesian Product Algorithm but has been significantly modified to support a
radically different language. It includes an External Type Description Language that
enables extension authors to document how their foreign code extensions interact with
Python. This enables Starkiller to analyze Python code that interacts with foreign
code written in C, C++, or Fortran. The type inference algorithm also handles data
polymorphism in addition to parametric polymorphism, thus improving precision.
Starkiller supports the entire Python language except for dynamic code insertion
features such as eval and dynamic module loading. While the system is not yet
complete, early numeric benchmarks show that Starkiller compiled code performs
almost as well as hand made C code and substantially better than alternative Python
compilers.

Thesis Supervisor: Jonathan Bachrach
Title: Research Scientist

3

4

Acknowledgments

This work is a product of my time at the Dynamic Languages group, and to them I owe
an enormous debt. Jonathan Bachrach supervised this thesis and provided invaluable
advice throughout. As a thesis adviser, he combined an encyclopedic knowledge of
dynamic languages and compilers together with the patience of Job. Greg Sullivan
guided this work at a very early stage and was the one who suggested that I look into
Ole Agesen’s work. Howie Shrobe provided encouragement and advice, and somehow
always managed to find the funding needed to support this work. In different ways,
all three have served as role models. If I know anything about juggling chainsaws, it
is because I learned by watching them.

I would also like to thank Ole Agesen since much of the work here is based on his
research at Stanford.

I cannot thank enough my parents, who never stopped fighting for me, no matter
how hopeless the situation. I’d also like to thank my brother and my grandparents for
teaching me how decent human beings live. Siessa Kaldas provided food and shelter
at a critical time in the writing of this thesis. If it were not for the hard work of
Anne Hunter and Kristine Girard, I never would have made it this far. Finally, I
must thank Benazeer, who has become a guiding light in my life.

Looking back, I can see that I have been blessed beyond measure; more than
anything, I am grateful for the hope that has sustained me these long years, given to
me by my friends and family.

5

6

Contents

1 Introduction 13
1.1 Motivation . 13

1.1.1 The Coming Plague . 13
1.1.2 Dodging Bullets . 14
1.1.3 Where is the Red Pill? . 14

1.2 Past Type-Inference Algorithms . 16
1.2.1 Hindley–Milner . 16
1.2.2 Shivers . 17
1.2.3 Palsberg and Schwartzbach 17
1.2.4 Agesen . 18

1.3 Python Optimization Tools . 20
1.3.1 Python2C . 20
1.3.2 211 . 21
1.3.3 Weave . 21
1.3.4 Psyco . 22

1.4 Starkiller in Historical Context . 23

2 Type-Inferencer Design 25
2.1 Core TI Algorithm . 26

2.1.1 Nodes and Constraints . 27
2.1.2 Functions . 28
2.1.3 Classes and Objects . 31

2.2 Advanced Language Features . 33
2.2.1 Operators . 33
2.2.2 Exceptions . 34
2.2.3 Iterators and Generators . 35
2.2.4 Modules . 36

2.3 Foreign Code Interactions . 36
2.3.1 External Type Descriptions 36
2.3.2 The builtins Module Type Description 38

2.4 Known Problems and Limits . 41
2.4.1 Poor Handling of Megamorphic Variables 41
2.4.2 Template Instance Shadowing 42
2.4.3 Partial Evaluation . 43

7

3 Compiler Design 45
3.1 Core Design Decisions . 45

3.1.1 Target Language Selection Criteria 45
3.1.2 Target Language Selection Rational 46
3.1.3 Intermediate Language . 47
3.1.4 Data Model and Memory Management 48

3.2 Basic Language Features . 50
3.2.1 Arithmetic Operations . 50
3.2.2 Functions . 52
3.2.3 Classes and Class Instances 58

3.3 Advanced Language Features . 64
3.3.1 Exceptions . 64
3.3.2 Modules . 65
3.3.3 Foreign Code . 65
3.3.4 Iterators and Generators . 66

4 Results 67
4.1 Current status . 67
4.2 Benchmarks . 67
4.3 Analysis . 69

5 Conclusions 77
5.1 Contributions . 77
5.2 Future Work . 80

5.2.1 False Numeric Polymorphism 80
5.2.2 Static Error Detection . 81
5.2.3 Integer Promotion . 82
5.2.4 Eval, Exec, and Dynamic Module Loading 85

8

List of Figures

1-1 A function that returns another function 15
1-2 Pathological program demonstrating dynamic class membership. . . . 16
1-3 Using Blitz to make a two-dimensional average faster 22

2-1 The trouble with flow-insensitive analysis 27
2-2 Assignment in action. 28
2-3 Constraint network for assignment example 29
2-4 The factorial function. 29
2-5 A nested function. 30
2-6 An external type description for the list type from the builtins module 40
2-7 Template instance shadowing in action. 42
2-8 The visitor design pattern in Python. 44

3-1 Transformed segment of Python source code. 48
3-2 A simple Python class definition. 58
3-3 The equivalent code generated by Starkiller for the definition shown in

Figure 3-2. 59

4-1 The original Python source code used for benchmarking. 68
4-2 Hand made C code for performing the same task as the original Python

source code in Figure 4-1. 70
4-3 The C++ code generated by Starkiller corresponding to the Python

code in Figure 4-1, part 1 of 2. 72
4-4 The C++ code generated by Starkiller corresponding to the Python

code in Figure 4-1, part 2 of 2. 73
4-5 C code for the factorial function generated by Python2C for the pro-

gram shown in Figure 4-1, part 1 of 2. 74
4-6 C code for the factorial function generated by Python2C for the pro-

gram shown in Figure 4-1, part 2 of 2. 75

5-1 An example of static detection of run time errors. 81

9

10

List of Tables

4.1 Benchmark results comparison . 69

11

12

Chapter 1

Introduction

1.1 Motivation

Information technology has brought marvelous advances to our society. At the same
time, it has extracted a terrible cost, and that cost is growing. From the software
developer’s perspective, software costs too much and takes too long to build. Indeed,
empirical evidence suggests that the majority of large software projects are completed
significantly over budget and beyond schedule [10]. The situation is even worse from
the software user’s perspective: she sees a product that is fragile, defective, and dan-
gerous. Calling most commercial software “dangerous” may seem like an exaggeration
until one asks the opinions of the millions of people forced to spend billions of dollars
cleaning up after an unending series of viruses and worms infecting various pieces of
Microsoft software [42, 43, 44, 45].

1.1.1 The Coming Plague

Project Oxygen espouses a vision in which computing becomes as ubiquitous as the
very air we breathe. But without radical changes in how we design and build software
systems, the realization of that vision will bring about a dystopia where software fail-
ures and malicious attacks thoroughly poison all aspects of our lives. As bad as the
current situation may be, it will become a lot worse. Computers are widespread in
our society but as trends in microelectronics further reduce the cost of computational
elements, they will become pervasive. The value of this universal computation is
greatly compounded by universal information access. Thus, the drive to add compu-
tational agents anywhere and everywhere is tightly bound to the drive for universal
network connectivity.

We are thus entering a world where every system is a distributed system; every-
thing is connected, and all those connections bring with them new failure modes and
new attackers. This poses a double problem: not only will we be increasingly depen-
dent on computers in all aspects of our lives, but because those computers will be
networked, they will be all the more vulnerable. In fact, Leslie Lamport humorously
describes a distributed system as “one in which the failure of a computer you didn’t
even know existed can render your own computer unusable.”

13

Of course, right now you can still use the postal service should your computer
be disabled by the latest Microsoft worm. However, the day may yet come when
the postal service requires computer generated addressing for delivery (after all, it is
much cheaper than handwriting recognition). Likewise, you can still use the telephone
network in the event of a desktop computer failure, but major telephone network
operators have already begun integrating their voice and data networks [41] and many
large companies have abandoned dedicated voice service entirely in favor of Voice over
Internet Protocol. Indeed, the cellular phone is a perfect example of such convergence.
Modern cellular phones are essentially portable computers coupled to transceivers.
Newer cell phones run Linux and other operating systems designed originally for
desktop computers and consequently carry many of the same vulnerabilities [36, 34].

1.1.2 Dodging Bullets

The horrific vision of a helpless population utterly dependent on increasingly vulnera-
ble and fragile technology begs the question: “how do we improve software reliability
and security?”. As it happens, software reliability and security are intimately related.
In fact, the vast majority of remotely exploitable network vulnerabilities are caused
by buffer overruns [33]. Computer scientists have known about these problems for the
past 40 years and have observed them causing exploited vulnerabilities in the wild for
the past 30. This example suggests that the use of low level programming languages is
partially responsible for software unreliability and insecurity. Higher level languages
(HLLs) eliminate buffer overflows by either perform range checking for each array
access or statically verifying that range violations are impossible.

In fact, HLLs can alleviate many of the problems plaguing software development
described above. HLL programs are typically far shorter than equivalent lower level
language programs. Research indicates that the number of programmer mistakes
made as well as the time needed to write a program are proportional to the length of
the program. This suggests that programs written in an HLL can be written faster
and have fewer bugs than equivalent programs written in lower level languages [30].
Because writing code takes less time, its easier for developers to prototype designs al-
lowing them to get better user feedback [4] and to experiment with alternative designs
quickly [6]. Both of these techniques significantly improve the user experience. In
addition, HLLs often benefit from the last 30 years of research in software engineering
in ways that lower level languages and their immediate descendants rarely do. For
example, Python’s syntax was designed in part to eliminate the dangling-else prob-
lem that often causes serious bugs in C-like languages. The importance of avoiding
the dangling-else problem was brought home on January 15, 1990, when most of the
national telephone network went offline because one programmer misplaced a single
closing brace due to the dangling-else problem [39].

1.1.3 Where is the Red Pill?

All this raises the question of why haven’t HLLs succeeded in the marketplace given
their clear benefits. There are many reasons for this, but two stand out: performance

14

and familiarity. Regardless of how excellent a language is, it provides society no
benefit if no one uses it. Many HLLs look completely alien to everyday programmers,
either because of syntax (drowning in Lisp’s sea of parenthesis) or semantics (the total
absence of mutable state in Haskell) or both (Smalltalk, just because). For an example
of how important familiarity is, consider garbage collection. It took enormous time
and energy for Sun Microsystems to convince the larger programming community to
accept the use of GC in Java, even though it has been a widely used technique for
the last 30 years and solves very real problems.

While some HLLs boast impressive performance, serious problems remain. In par-
ticular, Perl and Python, the most popular HLLs, exhibit poor run time performance.
Currently, both of these languages suffer from performance problems in their virtual
machine implementation unrelated to the languages themselves [40]. Even if we had
the perfect virtual machine, however, these languages would still suffer because they
are dynamically typed. As Shivers points out in [37], compiler optimization algo-
rithms for dynamically typed languages have lagged far behind their statically typed
cousins. The crux of the problem is that dynamic typing makes it impossible to
statically determine the control flow graph and without that, many traditional op-
timization techniques cannot be applied. Agesen explains that the problem is even
worse for object oriented languages since dynamic dispatch prevents the application
of many optimization techniques for much the same reason [1].

Many features of the Python language impede compilation. For example, in con-
trast to C and C++ where function and method definitions are declarative and re-
solved statically, in Python, these definitions are imperative, thus postponing function
and method resolution until run-rime. A definition statement in Python simply binds
the function’s name to a newly created function object. Moreover, because functions
are first class objects, nested function definitions require that the function objects
corresponding to inner definitions be repeatedly created on each invocation of the
outer definition. For example, in the snippet of code shown in Figure 1-1, a new
version of the g function will be wastefully created and returned for each invocation
of the function f.

def f():
def g():

return "spam"
return g

Figure 1-1: A function that returns another function

Python’s object system provides further barriers to efficient compilation. More
specifically, a class’ list of base classes as well as its list of methods can change at
run time. Because of this dynamic inheritance and method binding, many traditional
object oriented programming language optimizations become inapplicable. This is
because even when a compiler can statically determine what class an instance belongs
to, it cannot safely inline method bodies for that instance since neither the class’ set of

15

methods nor its base classes can be statically determined at runtime from declarative
elements in the program source code. Most strangely of all, an instance’s class can
be changed dynamically as shown in Figure 1-2.

class Person:
pass

class Professor:
pass

bob = Person

bob. class = Professor

Figure 1-2: Pathological program demonstrating dynamic class membership.

The object system provides further obstacles to simple compilation by maintain-
ing strong reflection and introspection properties. For example, instance or class
attributes can be added at runtime using names that are generated at runtime by
means of the setattr function. In practice, this means it is impossible for any com-
piler to know the complete set of attribute names associated with certain classes or
instances. In a similar manner, Python’s inclusion of an eval function (and its related
exec function) make it impossible to statically examine all code that will be executed.

1.2 Past Type-Inference Algorithms

Despite the fact that existing languages and compilers fail to provide the level of safety
and performance needed to avert the aforementioned problems, the literature on type
inference is extensive. Much of this research centers on purely theoretical analysis with
little applicability to real world programs. Moreover, much of the practical research
centers on improving type inference for advanced languages too unpalatable for the
average programmer. Nevertheless, while current literature is unable to provide an
immediate solution to the problems described above, it can certainly provide the
foundation for such a solution. I review the relevant research presently. Note that
the structure of this review is partially based on Ole Agesen’s Thesis [1].

1.2.1 Hindley–Milner

Hindley invented a type inference algorithm that was later independently re-invented
by Milner; a concise introduction can be found in [7]. The algorithm operates by
annotating the nodes of an expression tree with type constraints in a bottom-up
fashion. Type constraints consist of either primitive types, type variables, or function
types. When processing an expression tree, constant elements are tagged with their
corresponding primitive types. Variable references are tagged with the type variable

16

of the corresponding variable. Compound expressions introduce new constraints on
their components to ensure that they fit together properly.

Ill-formed programs generate inconsistencies in the set of deduced constraints that
cause type inference to fail. Such inconsistencies indicate that a program may fail to
execute correctly. Cartwright and Fagan later extended basic Hindley–Milner with
soft typing. Compilers that use soft typing do not reject programs that generate
inconsistent types, but rather insert code to detect type errors at run-time in parts
of the program that cannot be statically verified.

Hindley–Milner forms the basis of type systems in many experimental languages
such as Haskell and the ML family of languages. It is often, but not always, im-
plemented with unification. Unfortunately, it suffers from a number of drawbacks.
Principal among them is that it infers the most general type possible. Specifically,
type variables are initially unrestricted and are only further constrained to the extent
needed to eliminate run-time type errors. This strategy has significant implications
for performance, since optimal performance typically demands knowledge of the con-
crete, or most specific types of each expression. Another problem with Hindley–Milner
type inference is that it was designed for functional languages with no notion of state.
It has since been extended to support mixed imperative and functional paradigms as
well as object oriented semantics, but with varying degrees of success.

1.2.2 Shivers

Shivers began by considering why Lisp compilers failed to optimize as efficiently as
Fortran compilers on equivalent programs. He concluded that the discrepancy was
due to the inability of Lisp compilers to statically determine a program’s global call
graph, which in turn precluded the application of many traditional data flow analysis
algorithms. Shivers further claimed that the presence of higher order functions greatly
impedes construction of static call graphs because they obscure function call targets.
As a result, Shivers recommends that closures must be tracked to their corresponding
call sites [37]. Much of his resulting work is theoretical and what little practical work
there is eliminates the possibility of analyzing programs with imperative semantics.

Nevertheless, Agesen made the connection that the problem of type inference
in the presence of higher order functions as described by Shivers is much the same
problem seen in object oriented languages with dynamic dispatch [1]. By analogy,
Shivers’ work suggests that objects must be tracked to sites from which their methods
are called.

1.2.3 Palsberg and Schwartzbach

Palsberg and Schwartzbach’s basic algorithm for type inference is totally unsuitable
for practical implementation, but formed the basis for Agesen’s later work and pro-
vides an excellent vehicle for understanding why many type inference algorithms fail.
The algorithm constructs a constraint network in which the type of each expression
in the program is represented as a node. The value of a node consists of a (possibly
empty) set of types which that expression might assume during program execution.

17

Constraints between nodes are imposed by program statements. Initially, all type
sets are set to the empty set except for constants and literals. The type sets for these
expressions are initialized to a single element containing the type of the constant or
literal. Finally, the algorithm propagates types along constraint edges. Constraints
are designed to mimic run time data flow and thus impose a subset relation on the
two nodes they connect. In other words, if expression x’s type set is connected to
expression y’s type set, whenever a new type is added to x, it will propagate along the
constraint and be added to expression y’s type set. At this point, expression y will
propagate the new type to any nodes it has constraints to. This propagation process
continues until there are no unseen types in the network, i.e., when the constraint
network has reached equilibrium.

Constraints are added based on two features of the program text: assignment and
function calls. For a given assignment of the form x = y, the algorithm creates a
constraint from the type set for expression y to the type set for expression x. This
enforces the superset relation ensuring that the set of types which x can achieve during
execution must be a superset of the set of types y can achieve. Function calls are dealt
with by building constraints from each actual argument to the corresponding formal
argument. For example, given a function call f(3, 4.0) and a function definition for
f(x, y), Palsberg and Schwartzbach’s algorithm would build a constraint between the
type set for the expression 3 and the variable x in the body of f’s definition in addition
to a constraint between the type set of 4.0 and the variable y in f’s body.

Palsberg and Schwartzbach enhanced this algorithm to improve inferencer preci-
sion of object oriented code by making several changes. They eliminate inheritance
by copying base classes into the bodies of their descendant classes. This ensures
that the effects of multiple descendant classes are not commingled in the same code
block. In a similar vein, they duplicate class definitions at each constructor call site
and duplicate method bodies at each method call site. These techniques improve the
algorithm’s ability to operate precisely in the presence of data polymorphism and
parametric polymorphism respectively.

It is important to realize that these expansions are done once, and not recursively.
Later versions of this algorithm repeated the expansion a fixed number of times.
While solving a number of problems, this basic algorithm has a number of serious
flaws. In the worst case, successive expansions squared the size of the program to be
analyzed. Yet without them the algorithm proved to be too imprecise for practical
use. Moreover, much of the analysis performed by the algorithm was unnecessary
since code was expanded regardless of whether precision required expansion or not.

1.2.4 Agesen

Agesen based his work on that of Palsberg and Schwartzbach. He introduced a new
type inference algorithm designed to remedy the worst faults of theirs and called it
the Cartesian Product Algorithm (CPA). In contrast to the basic algorithm’s fixed
expansions, CPA attempts to adapt in a flexible manner to the amount of parametric
polymorphism present in a program. It strives to do no more work than is strictly
necessary to achieve maximal precision.

18

The specific problem that CPA tries to remedy is the case where a function is
called in with different argument types. The basic algorithm described above will
conflate argument types from different calls thus reducing precision. By performing
repeated expansions, this problem can be lessened, but not eliminated. CPA solves
this problem by building multiple copies of each function body called templates. Each
template corresponds to an argument list containing only monomorphic types, that
is, type sets containing exactly one type. At each function call site, CPA takes the
cartesian product of the list of argument type sets, creating a set of argument lists
containing only monomorphic types. Each of these argument lists is then connected
to its corresponding template body; the return values of all the templates generated
for a particular call are all connected to the result of the function call.

The key to CPA’s operation is that template bodies are reused. This ensures
that CPA never analyzes the same function more than once for each possible set of
argument types. CPA is efficient in that it never repeats an analysis. For example, if
a new type is added to a function call argument, CPA will take the cartesian product
of the resulting argument type set list, but most of the templates needed for that
call will have already been analyzed and are already connected. At that point, CPA
will only build templates for the monomorphic type set argument lists that have not
been seen before. Furthermore, since each template has monomorphic arguments, no
precision is lost due to parametric polymorphism: calls to the same function with
different types are not commingled but remain isolated in different template bodies.
Their only interaction occurs when their results are integrated into the function call
return value.

The core idea behind CPA is monotonicity. In other words, CPA always main-
tains correct, but potentially incomplete type information for a program. As new
information is deduced, it propagates through the constraint network. Consequently,
CPA is far more efficient than the basic algorithm described above and is also far
more precise. However, it does have several problems, especially when applied to a
language like Python. While it handles parametric polymorphism well, it performs
imprecisely in the presence of data polymorphism. It also has no way of dealing with
foreign code linked into the program from external sources but written in a different
language from the main program.

The last major problem Agesen identified has to do with recursive closures. Es-
sentially, type inference of a function that recursively calls itself may never terminate.
This happens when CPA builds a template for a recursive function but in so doing
must build a template for the recursive call inside the original recursive function.
If the recursive function call in the template was connected back to itself, analysis
would terminate and there would be no problem. But, the two templates may differ
because their lexical environments differ. This can easily happen when one of the
arguments is a closure since on each successive recursive invocation, the closure will
be different. Agesen introduced heuristics into his CPA implementation to try and
check for unbound recursive analysis, but this solution is somewhat fragile and very
ad-hoc.

19

1.3 Python Optimization Tools

Python’s longstanding performance problems have not been ignored by the commu-
nity; far from it in fact. There have been several significant efforts over the years
directed at improving Python’s run time performance through compilation. Never-
theless, none of these efforts has proven to be a sustainable, general purpose, easy
to use solution to Python’s performance problems. I survey the more significant of
these efforts below. Two of these tools rely entirely on static compilation while the
other two utilize dynamic compilation. It is telling that both of the static compilation
projects have died out while the dynamic compilation projects remain in active use
and see continued development. In addition, as will be shown in Chapter 4, tools
that perform dynamic compilation outperform those that rely on static compilation.
Part of this discrepancy may be explained by the fact that the dynamic compilation
tools generate specialized versions of compiled code based on the types observed at
runtime while the static compilation tools essentially generate slower generic code
since they lack both the ability to observe runtime types as well as the ability to
infer types statically. Consequently, the availability and relative performance of opti-
mization tools for Python highlights the vital importance of static type inference for
supporting static compilation.

1.3.1 Python2C

Python2C is a straightforward Python to C compiler written by Bill Tut and Greg
Stein. Given Python module source file, it generates equivalent code in C. Since it
performs no type inference and little optimization, the code it generates consists al-
most entirely of calls into Python’s C API. Optimizations that are performed include
directly calling by name functions defined in the top level (rather than calling them
indirectly through a module dictionary), interning of integer and string constants,
optimized for–loop representations when the loop bounds are constant integers, and
inlining integer specific code for binary operations. Note that since Python2C does
not perform type inference, the inlining just described includes type checks on the
operands; should either operand fail to be an integer, the slower generic binary oper-
ation is called.

By effectively “unrolling” the virtual machine, Python2C eliminates much of the
overhead associated with byte code processing and dispatch. Those benefits come at
the cost of a large increase in code size, which in turn can incur a significan perfor-
mance penalty by increasing memory pressure and overflowing the instruction cache.
As might be expected, performance of the resulting code is mixed. Anecdotal evi-
dence indicates that programs compiled with Python2C see only a small performance
boost on average, about 20%. Some programs experience performance regressions
when compiled with Python2C. Development of Python2C terminated in 2000 and
has not resumed since. Ironically, during the interim period, the performance of the
CPython virtual machine has improved by an equivalent amount due simply to in-
cremental enhancements. More specifically, Python 2.3.3 has a 15% higher score on
the PyStone benchmark than Python 1.5.2 has.

20

1.3.2 211

211 is a program that compiles Python bytecode into equivalent C code and then in-
tegrates the generated C code into the Python virtual machine [2]. It splits sequences
of bytecodes into Extended Basic Blocks (EBB) and, for each EBB, generates a frag-
ment of C code equivalent to concatenating the C code executed by the VM for each
bytecode in that EBB. The C code for proccessing each EBB is associated with a
new bytecode and is implanted directly into the VM’s dispatch loop. In other words,
long sequences of bytecodes are replaced by a single bytecode, custom generated for
the program being analyzed. The code to handle this new bytecode is spliced into
the VM, necessitating a recompilation of the VM as well as translation of the original
bytecode file into one that utilizes the new bytecodes.

211 goes a step further however: it runs a peephole optimizer over the new byte-
code handlers it generates. This optimization pass removes performance degrading
artifcats that result from concatenating individual bytecode handlers together. For
example, it eliminates adjacent push and pop instructions. In addition, the extra
optimization pass presents new opportunities for optimization to the platform’s C
compiler.

As in the case of Python2C, the results of using 211 are mixed at best. Tests by
Aycock indicate a 6% performance improvement over the standard Python VM on
the PyStone benchmark. The disappointing overall performance improvement may
can be attributed in part by the increased code size: 211’s extra bytecode handlers
made the VM dispatch loop file 5 times larger than it was before. It should be noted
that on some micro-benchmarks, 211 performed substantially better than CPython.
It particularly excelled when compiling for–loops and conditionals.

1.3.3 Weave

Weave [24] is a collection of tools designed to improve Python’s performance in sci-
entific computing. It includes several components, but only one is of interest here,
the Blitz package. Blitz exposes a Python function that compiles a string of Python
code into C++, compiles the resulting C++ code with the platform C++ compiler,
dynamically loads the generated module, and executes the code. Unfortunately, the
C++ compilation stage takes a great deal of time due to the complexities of the
underlying C++ libraries. Consequently, Blitz caches compiled code aggressively. A
short example of Blitz in action taken from [24] is shown in Figure 1-3.

Blitz does not perform type inference per se, but does perform runtime specializa-
tion. Essentially, it checks the types of all variables referenced in the given statement
at runtime before compilation and compiles a version of the code specialized for those
operand types. Blitz improves upon Numeric Python’s performance by eliminating
temporary variables and performing aggressive loop fusion. For the scientific com-
puting problems for which Blitz was designed, such optimizations provide significant
performance benefits. However, these benefits come at the cost of generality. Blitz
only handles expressions involving Python scalars and Numeric Python array ob-
jects. The only type of statement that Blitz can compile is assignment to an existing

21

from scipy import *
import weave
a = ones((512,512), Float64)
b = ones((512,512), Float64)

weave.blitz(
"""a[1:-1,1:-1] = (b[1:-1,1:-1] + b[2:,1:-1]

+ b[:-2,1:-1]+ b[1:-1,2:]
+ b[1:-1,:-2]) / 5.""")

Figure 1-3: Using Blitz to make a two-dimensional average faster

variable.

Yet another problem Blitz faces is that it implements semantics that differ subtly
from the ones that Numeric Python implements. For example, in cases where a
variable’s value is being used to update itself, Numeric mandates the creation of
temporary objects to ensure that the entire right hand side of the assignment has
completed before the left hand side is modified whereas Blitz will simply modify the
variable being assigned to in-place.

1.3.4 Psyco

Psyco [31, 28] is the most recent and most promising of the compilation technologies
surveyed here. It is a just-in-time specializing compiler. More specifically, Psyco re-
places the main interpreter loop with an internal function that examines bytecodes to
be executed and generates specialized code to execute in their steed. This generated
code is raw i386 machine code that has been specialized for the types of operands
and variables referenced. To reduce overhead, Psyco caches generated code aggres-
sively, which can lead to memory exhaustion when used indiscriminately in large and
complex applications.

The primary benefit of Psyco’s specialization algorithm is the ability to integrate
constant values and types whose invariance is not statically determinable. This yields
substantial performance improvements because when Psyco generates code specialized
for particular objects, it need not construct the complete object representation. Since
the synthesized code “knows” precisely what the types are, it can use a much more
compact and immediate representation. For example, integer objects are at least
three machine words long and must be heap allocated (albeit with special purpose
allocator). All access to integer objects occurs via pointer. Psyco can adapt a much
simpler representation, namely a single machine register that contains the integer
value. In the event that types change and the current specialized code is no longer
applicable, execution falls back to a slower, generic version of the code. The reversion
to generic code requires that “virtualized” objects be converted into real objects based
on their compact representation so normal Python code can interact with them.

22

1.4 Starkiller in Historical Context

Starkiller’s type inference algorithm is based loosely on Agesen’s Cartesian Product
Algorithm [1], but with significant changes needed to support an entirely different
language (Python versus Self) and to rectify serious problems in the algorithm. CPA
has three main problems that Starkiller solves: recursive closures, data polymorphism,
and interactions with foreign code.

Starkiller dispatches with Agesen’s clumsy method for dealing with recursive
closures. Instead, function bodies maintain a set of “silent arguments” associated
with them corresponding to all of the out of scope variables those bodies close over.
Starkiller treats these silent arguments just like it treats a function’s normal argu-
ments; they participate in template formation and selection using the cartesian prod-
uct. This approach eliminate problems Agesen encountered with indirect recursive
customization.

Data polymorphism proves to be a more serious challenge, but one that must be
tackled to precisely analyze common Python programs. Starkiller deals with data
polymorphism by creating unique polymorphic instance types for each constructor
call site. These types contain a type set for each instance attribute. When a method
is called on an instance type, the method is treated like a function which takes the
instance object as its first argument. However, instead of passing in the instance type
as the type of the first argument, the instance type takes the cartesian product of its
attributes and generate a list of monomorphic instance state types. These instance
states have a link back to their parent instance type so that they proxy all state
changes back to the original instance type. As a result, instance state types are com-
pletely immutable; any changes made to them are proxied back to their polymorphic
parent type who then generates new instance state types. These new instance state
types propagate from the constructor call site throughout the rest of the program
via data flow, eventually reaching everywhere their earlier forebears reached. Method
templates are shared between all users of a particular instance, but not across all
instances of a class. This is because instance state types maintain a link back to their
respective parents; if method templates were shared, a method induced attribute type
change would effect only one instance type rather than all of them.

Finally, Starkiller provides a mechanism for dealing with code that is used by
Python programs but that is not written in Python and is not accessible for analy-
sis. Since much of the functionality in the Python library depends heavily on exter-
nal modules written in C, this issue is vitally important for practical deployments.
Consequently, we provide a way for extension module authors to describe how their
extensions interact with the type system. For example, the Python function str

takes an object and, if it returns, always returns a string. Unfortunately, while many
external modules have similarly simple type behaviors, there are some that exhibit
far more complex behavior. For example, the function map takes a list of elements
and a function but returns a list of elements which have a type corresponding to
the return type of the given function when passed an element of the input list as an
argument. Furthermore, some external functions modify the state of Python objects
passed to them. Since the Python/C API provides extension authors with complete

23

access to the Python runtime, an extension can do anything to objects in the system
that normal Python code can do.

This thesis describes the design and implementation of Starkiller with a particular
focus on its type inference algorithm. Chapter 1 motivates the subject and reviews
past work. Chapter 2 describes Starkiller’s type inference algorithm in depth. Chapter
3 describes Starkiller’s compiler. Chapter 4 presents an analysis of how Starkiller fares
compared to similar systems. Finally, Chapter 5 reviews contributions made in this
thesis and makes suggestions for future work.

24

Chapter 2

Type-Inferencer Design

Starkiller’s type inference algorithm is designed to take as input a Python source pro-
gram and generate as output a declaration of what type each expression in that source
program will achieve at runtime. There are two unexpected features of Starkiller’s
output that bear mentioning. The first is that each function and method in the decla-
ration will be repeated such that each copy is specialized for a particular sequence of
monomorphic argument types. The second feature is that a single class may produce
more than one class instance type after construction. These features are artifacts of
the manner in which Starkiller deals with parametric and data polymorphism respec-
tively. Nevertheless, they are useful artifacts since they naturally suggest particularly
efficient compilation strategies.

From a type inference perspective, Python is a large and complex language. In
contrast to other languages that rely heavily on type inference for performance, such
as Eiffel, Haskell, or the many variants of ML, Python was not designed with any
thought as to how the language semantics would hinder or help type inference. In-
stead, Python’s semantics evolved over several years in response to feedback from a
community of skilled practitioners. Thus, while languages like Haskell suffer occa-
sional design flaws that had to be imposed specifically to make type inference easier,
Python makes no such compromises in its design, which only makes Starkiller’s job
that much harder. One example of type inference dictating language development is
how Haskell forbids the polymorphic use of functions passed as arguments because
the Hindley-Milner type inference algorithm that Haskell relies upon cannot handle
such nonlocal usage. This limitation stems directly from Hindley-Milner’s focus on
incremental inference rather than whole program analysis.

While Starkiller’s TI algorithm can analyze a large subset of the Python language,
there are some language constructs that it cannot handle. Programs that use these
constructs are rejected by the inferencer. Most unhandled constructs have a known
algorithm for type inference but have not been implemented due to lack of time. There
are, however, several language features that remain unimplemented because we do not
know how to perform type inference in their presence. These features introduce new
code into the system at runtime and thus necessarily render static type inference
impossible. These features are dynamic module loading, and the functions eval and
exec. In practice, most programs that would benefit from static type inference and

25

compilation do not make use of these features, so their exclusion from Starkiller is of
little concern. Nevertheless, in Section 5.2, we discuss techniques that may one day
allow the integration of these features into Starkiller.

Like Agesen [1], we necessarily take an operational approach in describing Starkiller’s
TI algorithm. We thus forego mathematically intensive descriptions of the denota-
tional semantics in favor of simpler step-by-step descriptions of what the TI algorithm
does.

To ease exposition, we begin by describing Starkiller’s TI algorithm for the most
basic language features: assignments, function definitions and calls, and the object
system. We then examine the TI algorithm as it relates to more advanced but pe-
ripheral features of Python, such as generators and exception handling. Having com-
pleted a thorough description of how Starkiller’s TI algorithm works for pure Python
code, we then turn our attention to Starkiller’s foreign code support and review how
Starkiller integrates the analysis of foreign code extensions into its analytic frame-
work. We explore the subject in some detail by examining how Starkiller handles
the built-in functions and types. Finally, we review the most serious of Starkiller’s
problems and limitations.

2.1 Core TI Algorithm

The core idea behind Starkiller’s type inference algorithm is to find concrete types
in the program source and then propagate them through a dataflow network that
models the dynamics of runtime data transfer. Concrete types are those types that
are actually created at runtime, as opposed to an abstract type that is either never
created (such as an abstract base class) at runtime or that is a model for any number
of types (as in Hindley-Milner type inference). Because Starkiller deals exclusively
in concrete types, it must have access to the entire input program source at once.
In other words, it must perform whole program analysis rather than incremental one
module at a time analysis.

Traditionally, whole program analysis techniques have been looked down upon
compared to their incremental cousins. However, as the modern computing environ-
ment has evolved, many of the reason for favoring incremental analysis techniques
have evaporated. In part due to the open source movement, we live in a world where
source code is universally available. Even large commercial libraries ship as source
code. The vast majority of applications that benefit from static compilation and type
inference have all their source code available for analysis at compile time. For those
limited cases where programs must integrate with pre-compiled libraries, the mecha-
nism Starkiller uses for interfacing with foreign code (see Section 2.3) can be readily
adapted.

Starkiller’s type inference algorithm is flow-insensitive, meaning that it assigns
types to variables in the input program source. In contrast, flow-sensitive algorithms
assign types to individual variable accesses. In theory, flow-insensitive algorithms
are less precise than their flow-sensitive counterparts. However, they are also much
simpler to implement. To see how flow-insensitivity can hamper precision, consider

26

the code in Figure 2-1. The variable num is assigned an integer value and then
later a floating point value. Flow-insensitive algorithms like the one Starkiller uses
combine both of these writes together; consequently both reads of num in the calls to
doSomething see num as having a type set of integer, float. A flow-sensitive algorithm
would have been smart enough to segregate the two writes so that the first call to
doSomething would see num as having a typeset of integer while the second call would
see num as having a type set of float. The increased precision has obvious implications
for generating faster code.

num = 4 # an integer
doSomething(num)
num = 3.14159 # a float
doSomething(num)

Figure 2-1: The trouble with flow-insensitive analysis

Starkiller could be augmented to perform flow-sensitive analysis by converting
input source programs into Single Static Assignment (SSA) form. In this form, vari-
ables are systematically renamed so that each read corresponds to exactly one write.
Another approach would involve calculating the set of reachable definitions at every
variable read point in the program. Starkiller does not use either of these approaches
because they only solve trivial cases like the example shown in Figure 2-1 while be-
ing unable to handle more serious sensitivity precision losses. These algorithms are
unsuitable for handling anything more complex than multiple writes to the same vari-
able in one scope. Yet the only way that problem can occur is for programmers to
reuse the same variable for different purposes. Introducing significant costs simply
to provide for better inference of “bad” code is untenable. Moreover, neither SSA
nor reachable definitions can handle attribute accesses easily, especially not in the
presence of threads, generators, or continuations.

2.1.1 Nodes and Constraints

Starkiller’s type inference algorithm works by constructing a dataflow network for
types that models the runtime behavior of values in an input program. This dataflow
network consists of nodes linked together by constraints. Of course, since Starkiller
only has access to information available at compile time, it must make conservative
approximations. This means that Starkiller will occasionally infer overly broad type
sets for an expression, but it also means that it will never fail to infer the existence
of a type that appears at runtime.

Each variable or expression in the input program is modeled by a node that
contains a set of possible types that expression can achieve at runtime. Initially, all
sets are empty, except for constant expressions, which are initialized to contain the
appropriate constant type. Nodes are in turn connected with constraints that model
data flow between them. A constraint is a unidirectional link that forces the receiving

27

node’s type set to always contain at least the elements of the sender node’s type set.
In other words, constraints impose a subset relationship between the pairs of nodes
they connect. As a result, types flow along constraints. When a node receives a new
type, it adds the type to its type set and promptly dispatches that type to all other
nodes connected to it. The algorithm continues until type flow has stabilized.

The preceding discussion raises a question as to how different elements in input
program source code generate nodes and constraints. We examine the simplest case,
an assignment statement presently and defer more substantiative cases for the follow-
ing sections. Consider the assignment statement x = exp which binds the expression
exp to the name x. Starkiller processes this statement by building a node for x if one
is not already present and building a constraint from the node corresponding to exp

to the node corresponding to x. That constraint ensures that any types in exp’s type
set eventually propagate to x’s type set.

x = 3
y = x
z = y
z = 4.3

Figure 2-2: Assignment in action.

As an example, consider the source code in Figure 2-2 and the corresponding
constraint network shown in Figure 2-3. Initially, Starkiller creates nodes with empty
type sets for the variables x, y, and z. It also creates nodes for the constant expressions
3 and 4.3. However, those two nodes have type set that consist of either the integer
type or float type respectively. The assignments indicated dictate that Starkiller
place constraints between 3 and x, x and y, y and z, and 4.3 and z. As a result,
once processing has completed, the type set for nodes x and y will contain exactly
one element: the integer type. The type set for node z will contain two types: the
integer type and the float type.

It is important to realize that there are a variety of nodes, each with different
behavior. The simplest nodes are variable nodes whose is behavior is as described
above. There are more complicated nodes for function calls, function definitions, class
definitions and instance definitions. Another important feature of the system is that
constraints can be named. This allows a function call node to distinguish between
constraints representing different arguments, for example.

2.1.2 Functions

We now examine how Starkiller performs type inference for code that defines or calls
Python functions. But first, we review Python semantics regarding function defini-
tions and calls. In Python, functions are first class objects and function definitions
are imperative statements that are evaluated at runtime. Consequently, the defini-
tion shown in Figure 2-4 serves to create a function object and bind it to the name

28

Constant:3
{int}

x
{}

y
{}

z
{}

Constant:4.3
{float}

Constant:3
{int}

x
{int}

y
{int}

z
{int, float}

Constant:4.3
{float}

Figure 2-3: Constraint network for the code shown in Figure 2-2 before (left) and
after (right) type propagation has converged.

“factorial” when encountered at runtime. Because definitions are evaluated at run-
time, the same function definition can easily be instantiated into different function
objects. This point is illustrated by the source code in Figure 2-5. Successive calls
to makeAdder will return distinct function objects since the definition of add triggers
the creation of a new function object for each invocation of makeAdder. Python func-
tions can have default arguments; any such expressions are evaluated once at function
definition time. This feature has important implications for type inference.

def factorial(n):
if n == 1:

return 1
else:

return n * factorial(n − 1)

x = factorial(5)
y = factorial(3.14)

Figure 2-4: The factorial function.

Upon encountering a function definition, Starkiller creates a special function defi-
nition node that encapsulates the code associated with the definition. It also creates a
node representing the function’s name and a constraint from the definition node to the
name node. The definition node generates function type objects which then become
part of the variable node’s type set. In this way, Starkiller models the runtime behav-
ior of function definition as assignment of a newly created function object. Starkiller

29

def makeAdder(a):
def add(b):

return a + b
return add

Figure 2-5: A nested function.

also creates constraints from any default argument expressions to the definition node,
so that as information about the types of default arguments reaches the definition
node, it can produce updated function types that incorporate that information.

When Starkiller finds a function call, it creates a special function call node. It
then creates a constraint from the variable node associated with the name of the
function being called to the call node. It also creates constraints from each of the
nodes associated with the actual arguments to the call node as well. Finally, Starkiller
creates a constraint from the call node to wherever the return value of the function
call lies. This constraint is used by the call node to transmit the type of the function’s
return value.

The call node responds to incoming types by taking the Cartesian product over the
list of sets of callee types and argument types. The result is a list of a monomorphic
types where the first entry is the type of a callee and successive entries represent the
argument types. For each monomorphic entry, the function call node attempts to find
a matching template. Templates are unique instantiations of the node and constraint
graph associated with a single function’s source code. Each template associates a
monomorphic type for each of the function’s arguments. Thus, for any function,
there could be many templates that differ only in the argument types. Templates are
shared across all call sites of a particular function, so each function in principle only
needs to be analyzed once for each monomorphic call signature. If the call node can
find a matching template, it adds a constraint from that template’s return node to
itself so that it can propagate return value types to its caller. If no template exists,
the call node creates one, building a set of nodes and constraints.

Starkiller does slightly more than the preceding discussion indicates in order to
properly handle lexical scoping. Because nested definitions have access to variables
defined in their enclosing scopes, function types must depend on the types of out-
of-scope variables referenced by the function. In other words, function types must
effectively include the types of all variables they reference that they do not define.
For the example code in Figure 2-5, this means that the type of the function add

incorporates the type of the argument n. One benefit of this approach is that function
types are completely self contained: they include all information needed to perform
inference at a function call site. There are no hidden “lexical pointers” that connect
function calls back to the original defining context.

In this way, out-of-scope variables are treated like default arguments. When an-
alyzing functions, Starkiller keeps track of which names are read by each function
and which names are written to. This information is used to statically determine a

30

list of out-of-scope dependencies for each function. Starkiller compiles these nonlocal
dependencies recursively, so if a function’s lexical parent does not define a nonlocal
name that function references, then that name is nonlocal for the parent as well. At
function definition time, the types of all nonlocal names are immediately available.
Starkiller adds constraints from each nonlocal name to the function definition node,
which in turn produces function types that incorporate the types of nonlocal names
being referenced. This process is somewhat akin to a common optimization technique
for functional languages known as lambda lifting.

The inference algorithm described so far has difficulties analyzing recursive func-
tions. Consider the factorial function shown in Figure 2-4. When Starkiller encounters
the definition, it creates a definition node and a name node and links them together.
However, because factorial is recursive, it references itself and lists its own name as a
nonlocal dependency. Starkiller thus adds a constraint from the name node for fac-
torial to its definition node. Since factorial is a nonlocal name for itself, the function
type generated by the definition node must include the type of factorial itself. But
now we have generated a cycle. The definition node produces a function type which
flows to the name node and then back to the definition node as a nonlocal reference
type. As a result, the definition node performs CPA on its list of nonlocal and default
argument type sets and produces a new function type that includes that old function
type. Rinse, wash, and repeat.

Starkiller solves this problem by detecting the cycle and stopping it. When a
definition node sees a new type being sent for a nonlocal name or default argument,
it checks to see if that type or any type encapsulated by it is one of the types the
definition node itself has generated it. If the incoming type contains a type gener-
ated by the definition node, there must be a cycle, and the definition node ignores
it. This architecture is designed to alleviate the problems that plagued Agesen’s
CPA, namely an inability to precisely analyze recursive functions without becom-
ing vulnerable to recursive customization. While not perfect, Starkiller’s approach
has significant improvements over the heuristics Agesen employed to detect and stop
recursive customization.

2.1.3 Classes and Objects

Having explored how Starkiller handles functions, we now turn our attention to how
it handles Python’s object system. As before, we briefly review Python’s semantics
before diving into Starkiller’s type inference algorithm.

Classes in Python are defined using an imperative statement in much the same
way functions are. Within a class body, variables defined are class specific, that is,
they are accessible by all instances of the class. Functions defined inside the class are
methods. Unlike a function definition, the body of a class definition is executed when
the class definition is first encountered. The result of a class definition is the creation
of a new class object and the binding of that object to its name. Once created, a
class’ methods and attributes can be modified or added, even after instances have
already been created for it. Class definitions explicitly include an ordered list of base
classes. This list can be modified at any time.

31

Class instances are created by calling the class as a function. This produces an
instance as a result and also calls the class’ constructor method with the calling
arguments as a side effect. As with classes, instances can have attributes added or
modified at any time simply by assigning to them. Attribute references using the self
parameter are first resolved in the instance, then in the class, and then in the class’
base classes. Attribute write always occur in the instance; writing to the class or one
of its base classes is permitted via explicit naming (i.e., self.age = 3 for instance
attributes versus self.__class__.age = 3 for class writes). When an attribute
lookup fails for the instance and the class, the base classes are perused in the order
indicated by a depth first traversal of the inverted base class tree. Attribute accesses
in the source code generate GetAttribute and SetAttribute nodes in the constraint
network. These nodes have constraints to them indicating what object should be
queried, and, for SetAttribute nodes, what the new value should be. The attribute
name is a constant string encoded upon construction.

Upon encountering a class definitions Starkiller creates a variable node to hold
their name, a new class definition node to generate appropriate class types and a con-
straint linking the two together. It also creates constraints to the definition node from
the nodes corresponding to the listed base classes as well as any nonlocal references.
The definition node maintains type sets for each base class and nonlocal reference and
takes the Cartesian product of those sets to generate a list of monomorphic types.
These monomorphic types packaged as class types and dispatched from the definition
node. Reading or writing a class attribute is simple: when a class type reaches a get
attribute operation, the attribute type can be read directly from the class type. If it
doesn’t exist, then no type is returned. When a class type reaches a set attribute call,
it does not change its state. Class types are immutable and once created cannot be
modified. Instead, they contain a reference back to the definition node that produced
them. Rather than change their state, they inform the definition node of the state
change, and if necessary, the definition node generates new class types incorporating
that change which eventually propagate throughout the system.

When a class type reaches a function call node, it creates an instance definition
node at the same place. Much like the class definition node, the instance definition
node acts as the repository of the instance’s polymorphic type state. The instance
definition node generates monomorphic instance types that contain a single type for
every attribute defined by applying the cartesian product algorithm over its poly-
morphic type state. It also creates a new function call node to represent the call
to the class constructor, and adds constraints from the original function call to this
new one to simulate argument passing. The class constructor is extracted using a
GetAttribute node so that if later information adds a new constructor or new base
class, all possible constructors will be called.

Because instance attributes shadow class attributes, precision can be lost. For
example, a common design scenario is to encode the initial value of an attribute as a
class variable, but have instances write newer values as instance attributes directly.
This technique can make the initialization logic simpler and cleaner since the instance
always has a correct value available.

When an instance type reaches a GetAttribute node, the attribute name is looked

32

up in the instance type itself, its class type, and its’ class type’s base classes. All
types found as a result of these lookup operations are returned to the GetAttribute
node. This parallel attribute lookup suggests a possible loss of precision since, at
most, only one lookup result will be passed to the GetAttribute node at runtime.
However, this loss in precision is necessary to properly deal with the fact that instance
attributes shadow class attributes with the same name. However, because attribute
writes must be explicitly qualified, writes do not impose a precision loss. When an
instance type reaches a SetAttribute node, it informs its instance definition node
of the resulting type change, but it does not change. Like class types, instance
types are immutable. Note that Python classes can override the attribute read and
write functions with custom methods. This means that, in addition to the process
described above, Starkiller must create a call for the __getattr__ method whenever
that method exists and the attribute cannot be found. Calls to the __setattr__

method must be invoked whenever it exists as well.

Instance method calls require some explanation. Python parses a method call like
inst.method(1,2) into an AST that looks something like CallFunction(GetAttr(inst,
’method’), (1, 2)). In other words, a bound method is first extracted from the instance
using ordinary attribute lookup and that bound method object is then called just like
a normal function. Bound methods are first class object, just like functions. The
instance attribute machinery in Starkiller packages both the instance type and the
method type together into a bound method type that is returned to the GetAttribute
node. This behavior only happens when the attribute name is found inside a class or
base class and that resulting attribute type is a function.

2.2 Advanced Language Features

2.2.1 Operators

Python allows individual classes to define methods that specify the behavior of over-
loaded operators. For example, a class that wanted to implement the addition oper-
ator would defined a method named __add__ that takes the instance and the other
object being added as parameters. While operator calls internally reduce to method
calls, their semantics introduce sufficient complexity so as to preclude treating them
as mere syntactic sugar for method calls. This complexity stems from Python’s coer-
cion rules, and their long storied history of informal specification, special casing, and
evolutionary change.

These coercion rules specify which method will actually be executed for a par-
ticular operator call given a pair of operands. For an operator op the coercion rules
specify selection of a method named __op__ defined in the left operand. If such a
method is not defined, the rules mandate that a method named __rop__ defined
for the right operand be used, where the r prefix indicates right associativity. If
that method is undefined, the implementation throws a NotImplemented exception.
There are further complications, such as special case rules for operator precedence
of new style classes where the right operand is an instance of a proper subclass of

33

the left operand. In-place operators (e.g., +=) introduce further complexity since
a method __iop__ is searched first and used without coercion if found, but, if that
method is not defined, execution falls back to a combination of the standard operator
(__op__) and assignment. A complete copy of the coercion rules in all their hideous
soul devouring glory can be found in Section 3.3.8 of [48].

Starkiller handles operator calls by creating an operator node that has constraints
from the operand types and that generates the result type for that operation. In-
ternally, the operator node performs CPA on the operand types just like a function
call node, but unlike a function call node, it enumerates the resulting monomorphic
operand type lists and uses the coercion rules to determine which method from which
operand should be called for each monomorphic pair of operands. Having found the
method, it builds a get attribute node to extract the correct method from the correct
operand and a function call node to call that method so as to determine the result
type of the operation. Since the result types of all of these function call nodes point
back to the operator node using a named constraint, the operator node can easily
generate a return type for the value of the operation expression.

2.2.2 Exceptions

Python provides structured exceptions not unlike those found in Java and C++.
One notable difference is that functions and methods do not (and can not) declare a
list of exceptions they can potentially throw. Exceptions can be any Python object,
although exception comparisons in the catch clause of try/except statements are based
on class and subclass comparisons. In other words, an exception will be caught by
an exception handler only if it is a an instance of a class or subclass of the handler’s
exception target.

Starkiller’s type inference algorithm refuses to deal with exceptions in any way.
This is because exception handling is complex and delicate and in many ways, rep-
resents a corner case in language implementation. In addition, with one small ex-
ception, exception handling provides no useful type information to a flow insensitive
algorithm. Traditionally, Python exceptions have been understood as a slow mecha-
nism for transferring control. This experience is also true in C++, Starkiller’s target
language. As a result, exception handling invariably occurs outside the critical path,
and thus sees little if any benefit to aggressive optimization.

The one instance where exception handling provides necessary type information
to a type inferencer is for programs that make use of named exceptions. Such pro-
grams use a variant of the except clause in a try/catch statement to bind the captured
exception to a local variable and make it available to exception handler. Starkiller
cannot perform complete type inference on programs that use this feature since it
does not process type information for exceptions. One simple alternative would be to
use the type of the exception handler’s target as a surrogate for the type of the excep-
tion actually caught, but this approach would violently break language compatibility.
The crux of the problem is that the exception object that must be bound locally
is generated in a later call frame, and we cannot determine that without exerting
significant effort to track the movement of exception objects across call frames.

34

While the current implementation of Starkiller does not process exceptions, later
versions easily could using the strategy outlined below. Doing so would involve using
the static call graph, of which Starkiller has ready access to a conservative approxima-
tion. Each function call node already maintains constraints to itself from the return
nodes of each template it makes use of. Exception handling could work in much
the same manner, where function and method bodies maintained a hidden variable
to record the types of all uncaught exceptions and passed them back to their callers
using a named constraint in the same way that they pass return values to their callers.

In order to deal with the fact that a given function can contain multiple possibly
nested try/except clauses, we introduce an exception node for each of them and
build constraints between them over which exceptions flow based on their scoping
relationships. Function call nodes have named constraints emanating from themselves
to the most closely scoped exception node. When they encounter an exception type
from one of their callee templates, they pass it along to the nearest exception node,
which may make it available in a local binding if the exception matches the target
or may propagate it onward to the next outer exception scope. This design supports
all Python exception semantics while ensuring that inference remains complete, even
in the face of named exceptions. Its major drawback is that precision for exception
expressions may be reduced in some cases, but it should be more than adequate to
improve upon the current Python implementation’s performance.

2.2.3 Iterators and Generators

Recent Python releases have introduced iterators [50] and generators [32] into the
language. Their design was heavily influenced by the Sather [29] and Icon [18] pro-
gramming languages, where such objects play a vital role. Iterators are objects that
follow a standard protocol whereby they provide clients with a stream of intermediate
values using a next method and signal the end of iteration by raising a StopIteration
exception. For–loops act naturally over iterators. Generators are a particular type
of iterator object that make use of the yield keyword. They allow functions to natu-
rally suspend their entire execution state while providing intermediate values to their
callers without terminating.

As with exceptions, Starkiller provides no support currently for generators and
iterators. Due to the tight relationship between iterators and exceptions, support
for the latter necessitates support for the former. Nevertheless, once Starkiller’s
type inference algorithm properly supports exceptions, it can be easily extended to
support iterators and generators. Iterator support can be added by modifying how
Starkiller analyzes for–loops to check for and make use of __iter__ and next methods
when present. Generators can be supported by recognizing functions that contain
the yield keyword and ensuring that any calls to them result in a generator object
that implements the iterator protocol. Each invocation of the next method should be
equivalent to executing the body of the generator, with the yield statement being used
to return values to the caller instead of the return statement as used in traditional
functions.

35

2.2.4 Modules

The Python module system allows statements of the form from email.encoders

import encode_base64 and import socket. When using the former, objects named
on the import statement are made immediately available to the importing module
after the import statement has executed. When using the later form, module objects
are bound to a variable with their name. A module’s contents can be accessed using
named attributes, such as socket.gethostbyname. Starkiller reflects these semantics
by representing each module with a type. Note that the term module can refer to
a Python source file or an extension module with a corresponding Starkiller type
description.

Like function types, module types have templates associated with them, but un-
like function types, there is only one template associated with each module type.
Upon encountering an import statement, Starkiller locates the needed module and
checks whether it has been analyzed before. Since Python caches module imports
in order to ensure that each module is executed only once, Starkiller replicates this
behavior by only analyzing a module once and thereafter referencing its template.
For named imports, where some or all of the module’s contents are imported into
another module, Starkiller creates a variable node in the importing module for each
name being imported. It then builds constraints from the original variable node in
the imported module template to the newly created variable node of the same name
in the importing module.

2.3 Foreign Code Interactions

Because it must perform type inference on programs that use both native Python
source code as well as Python extensions written in other languages (typically C,
C++, or Fortran), Starkiller is faced with a serious problem. Moreover, these external
languages and the APIs they use to interact with Python are sufficiently complex so as
to make type inference infeasible. In order to resolve this impasse, extension module
authors are expected to write simple descriptions of the run time type behavior of their
modules. These External Type Descriptions are written in a language that Starkiller
specifically provides for just this purpose. In this section, we begin by exploring the
External Type Description language. We conclude by examining the external type
description for one particular module, the __builtins__ module, which defines all
of Python’s core types and functions.

2.3.1 External Type Descriptions

External Type Descriptions are Python classes that subclass an ExternalType class
provided by Starkiller. That base class provides its subclasses with a stylized interface
into Starkiller’s internals. There are also ExternalFunction, ExternalMethod and
ExternalModule base classes provided to complement ExtensionType. The power of
the extension type description system is difficult to understate; it allows extension
authors to “plug into” Starkiller’s type inference machinery and make their own

36

code part of that machinery. The relationship between Lisp and its macro system
is analogous to the relationship between Starkiller and its external type description
system.

Extension type description authors write description classes that describe the run
time type behavior of their extension types. These classes are subclassed from Exten-
sionType and can use its getState and addState methods to manipulate the polymor-
phic state of that particular instance of the extension type. These description classes
include methods that describe the behavior of the actual methods implemented by
the extension type. For example, when an extension type instance’s append method
is called, Starkiller will invoke the corresponding method in the extension type to
determine the method call return type. The append method is presented not just
with the monomorphic argument types of the method call, but also the result node
that it will be directed to and the monomorphic state of extension type instance. The
method can retrieve or add new type state to the extension type or any other type
visible to it and it can also use the callFunction method to simulate arbitrary function
calls. This feature can be used to model extension functions that return result types
that depend on calling one of their arguments, such as map. In fact, the method can
apply arbitrary transformations to the constraint network.

External types are treated in much the same way as class instances. In particular,
their internal state is described completely by a mapping from state names to poly-
morphic variables. For example, if an external list type has method names append

and insert, it will have a state element for each with their corresponding name and
a type set consisting of a single external method type. As with class instances, when
external type instances reach a get attribute node and are asked for a method, they
generate a bound method type that encapsulates both the external type instance as
well as the method name. When this bound external method type reaches a call func-
tion node in the network (i.e., when someone attempts to execute an external type’s
method), the corresponding extension type method is called and asked to supply a
return type for the operation. In lieu of supplying a return type, the method has the
option of creating a link to the destination node for the return type so that it can be
filled persistently. Polymorphic external type instances are associated with instance
definition nodes that generate appropriate monomorphic external type instance state
types that propagate through the network. Because their architecture mirrors that
of native Python classes, external types see the same level of precision that native
Python classes do.

The External Type Description Language is as follows. Type descriptions are
short files written in the Python language. A type description describes the behavior
of an extension module. Within each type description file are individual descriptions
for the external functions and types provided by the module. External functions are
represented by a class that must inherit from ExternalFunctionInstance, a base
class that Starkiller provides. This class should define a method named call that
takes the following arguments:

1. self, the instance of that external function being called

2. resultNode, the node in the constraint network to which the result of this

37

function call is being directed

3. monoState, the monomorphic state of the function object

4. the actual arguments of the function

Note that the actual arguments of the function can include default and keyword
arguments just like a normal Python function, which is why it is described using
Python functions. During type inference, when native Python code calls an external
function object, the types of the arguments associated with that call are passed after
the first three arguments described above. As usual, Starkiller performs CPA on
the argument types of external function calls, so even if the argument types are
polymorphic, the external function instance will only have to deal with monomorphic
argument types at any one time. The return value of the call method is a set of
types corresponding to the type of the value returned by the actual external function.
Note that Python’s builtin datatypes can be referenced from the basicTypes module,
which is automatically imported. In addition to simply calling an external function,
Python can also read and write the function’s attributes. Consequently, if extension
authors define methods with the same arguments as call but named attr_read_NAME

and attr_write_NAME, Starkiller will treat attribute reads and writes of the function
object as if they were properties and invoke the appropriate methods of the instance
type.

External types are similar to external functions. Each external type is repre-
sented by a single class that must subclass ExternalTypeInstance, a base class that
Starkiller provides. They handle attribute accesses in the same way that external
function instances do. But instead of a single call method, they define one method
for each method implemented by the external type. These methods have the same
calling signature as call, but are named method_NAME instead. A list of the methods
defined should be provided in the class attribute definedMethods.

2.3.2 The builtins Module Type Description

Python includes a special module called __builtins__ that encompasses all the ba-
sic types and functions accessible by default. It includes named constructors for the
basic types of machine integers, double precision floating point numbers, long inte-
gers, lists, tuples, and dictionaries. These basic data types are completely pervasive
in all real Python programs; in fact, certain syntactic constructs use them implic-
itly. For example, tuple unpacking happens automatically in assignment statements
like a, b = foo(). Moreover, a class’ base class list is represented as a tuple of
classes stored in an attribute named __bases__. In order to properly analyze pro-
grams using these basic types, Starkiller includes an external type description for
the __builtins__ module. Those type descriptions will be described briefly, both
to illustrate the issues involved in writing a proper external type description and to
showcase the limits of inferencer precision when using basic datatypes. It is impor-
tant to note that for a given external type, there can be many different external type
descriptions that differ significantly in precision and run time inferencer performance.

38

Contrary to their name, Python lists are vector–like data structures capable of
holding any type of element while supporting fast appending at the end and constant
time element writing and retrieval. Starkiller provides an external type description
for lists that maximizes precision in the common case while degrading gracefully in
the face of operations that necessitate imprecision. The crux of the problem is that
while we want to be able to associate precise types with individual slots of a list, there
are some list operations that modify the lists’ type state in a way that is impossible
for a flow insensitive inferencer to trace. For example, consider the case of a list
initialized with the statement L = [1, 2.2, z]. Starkiller has enough information
on the list to determine that the type of the first element of the list will be an integer.
However, if at some later point in the program, L.sort() is called, we can no longer
make that guarantee since sort swaps the list’s elements in place.

Consequently, the external type description for lists maintains a state variable
indicating whether that particular list has been “tainted” by such operations. The
list keeps a state variable which describes the type set of each slot and an extra state
variable describing the type set of all slots combined. Reading from a particular
slot of an untainted list yields the type set of that slot, while a slot read from a
tainted list yields the combined type of all slots. Lists initially are untainted, but
can become tainted when they become subject to a tainting operation, like the sort
method described above. When that happens, additional types may be propagated
through the constraint network to reflect the fact that previously single slot reads
may actually refer to the contents of any slot. This protocol works well with CPA
because it never violates the monotonicity principal: the set of types produced by
reading a list item is always (partially) correct, but may not always be complete.
Adding types is safe, but removing them is not.

Tuples use a very similar mechanism, namely maintaining state for each element.
Of course, since tuples are immutable, they need not deal with tainting operations.
Dictionaries use a similar method to associate key and value types together. Astute
readers will notice one serious problem with the scheme described above: Starkiller
deals in types, not values, but in order properly associate individual list indices with
unique types, it must necessarily keep track of values. In general, Starkiller tracks
types, however, in a limited number of special cases, it will actually process constant
values. The two special cases are attribute names and indexing operations. Fail-
ing to provide special case value handling of constant attribute names would make
Starkiller so imprecise as to be useless: the type of any attribute referenced would
have to be equivalent to the combined type set off all attributes. Indexing using the
__getitem___ and __setitem__ methods plays just as serious role. Without spe-
cial case support for constant index expressions, operations involving implicit tuple
packing and unpacking would lose a great deal of precision. Unfortunately, such op-
erations are utterly pervasive: they are simply too convenient not to use. Python
code generally includes both constant and variable forms of both attribute access and
indexing. Thus we see expressions like x.attr and y[2] in addition to expressions
like getattr(x, userInput()) and y[z*2 - 1].

A simplified form of the external type description that Starkiller supplies for lists
is shown in Figure 2-6. This version does not implement the “tainted” behavior

39

class homogenousList(ExternalTypeInstance):
definedMethods = (’__getitem__’, ’__setitem__’, ’__len__’,

’append’, ’count’, ’sort’, ’reverse’)

def method getitem (self, resultNode, monoState, itemIndex):
return self.getState(monoState, ’elementTypes’)

def method setitem (self, resultNode, monoState,
itemIndex, itemValue):

self.addState(’elementTypes’, itemValue)
return Set((basicTypes.NoneType,))

def method len (self, resultNode, monoState):
return Set((basicTypes.IntType,))

def method append(self, resultNode, monoState, itemToAdd):
arguments after self are each a single monomorphic type
self.addState(’elementTypes’, itemToAdd)
return value is a tset
return Set((basicTypes.NoneType,))

def method count(self, resultNode, monoState, item):
return Set((basicTypes.IntType,))

def method sort(self, resultNode, monoState):
return Set((basicTypes.NoneType,))

def method reverse(self, resultNode, monoState):
return Set((basicTypes.NoneType,))

Figure 2-6: An external type description for the list type from the builtins module

needed to provide isolated per-slot behavior; instead, the types of all slots in the list
are commingled together into a single state variable called elementTypes. The type
description is simply a subclass of ExternalTypeInstance with a set of named meth-
ods that correspond to the methods of the external type. When Starkiller encounters
a method call for an external type, it calls the corresponding method in the external
type description, passing the method call’s monomorphic argument types as param-
eters. In addition, Starkiller also passes the monomorphic state of that instance as
well as the result node where the method call’s return value is being sent. The former
allows the type description code to interrogate the state variables associated with
the instance being called while the latter allow the type description code to build
constraints directly to the result node. Such constraint building is required in cases
where the result type of a method call comes directly from a normal Python function

40

call or global state since the result could change as constraint propagation evolves.
Note that many of the methods defined are rather simple: they return None or an
integer and nothing else. This example demonstrates how simple most extensions are
from a type inference perspective.

The challenge for extension type description authors lies in designing extension
types descriptions that can make good use of constant information when available
while degrading gracefully in the face of variable attribute and index accesses, all the
while maintaining the monotonicity invariant that Starkiller relies upon.

2.4 Known Problems and Limits

Starkiller’s type inferencer has a number of problems that need to be resolved before
it be used in production environments.

2.4.1 Poor Handling of Megamorphic Variables

The type inferencer currently assumes that it will never encounter any megamorphic
variables. These are variables for which the number of possible concrete types is
very large. Such variables are problematic because the cartesian product of a list of
megamorphic variables can easily grow far beyond the memory capacity of a single
machine. For an example of where this problem can occur even absent truly patho-
logical cases, consider HTMLgen, a component library that simplifies the creation of
dynamic HTML pages. Each tag in HTML has a corresponding class in HTMLgen;
HTML documents are constructed by creating instances of the different tags as needed
and stringing them together in trees. HTMLgen has about 75 different classes, all
of which are essentially interchangeable as potential document tags. Thus a function
that took three tags as arguments would have 421,875 unique templates associated
with it, far more than could be constructed or analyzed in reasonable amount of time.

Starkiller currently does nothing to recognize and deal specifically with megamor-
phic variables; in the hypothetical example above, it will happily begin analyzing
421,875 different templates although the user is unlikely to ever allow it to finish. In
order to reliably analyze programs that use large component libraries like HTMLgen,
Starkiller’s type inferencer must be modified to recognize when the cardinality of a
function call’s argument’s type set exceeds some threshold. Similar modifications
must be made when dealing with data polymorphism in class, instance, and external
type descriptors. The response to such megamorphism must be the abandonment of
precision; in other words, we trade execution time and memory space for precision.
As Agesen points out in [1], the precision lost when dealing specially with megamor-
phic variables is often a useless precision since such variables see no benefit from the
cartesian product because they represent a collection of interchangeable types that
must be dynamically dispatched in any event.

Recognizing megamorphism is insufficient by itself. Starkiller’s type inferencer
must also adapt by not including megamorphic variables when taking the cartesian
product. Moreover, the inferencer must be modified to accept megamorphic sets of

41

types in many places where it expects monomorphic types. The transition will be a
difficult one. In the same vein, the compiler must be modified to deal appropriately
with megamorphism so as not to generate an enormous number of templates.

2.4.2 Template Instance Shadowing

Template instance shadowing is a complex problem that may result in the loss of
precision in some cases. The crux of the matter is that the stateful nature of instance
state types does not interact well with Agesen’s stateless monotonic model of CPA.
The problem is as follows. Ordinarily, each template should create a new instance
type so that the different templates do not contaminate a single instance type. This
occurs normally when the instance is created in the polymorphic function. But if the
instance is created in another function that returns it to the polymorphic function,
the same instance type will be shared by all templates of the polymorphic function.

class a:
pass

def f():
return a()

def g(arg):
w = f()
w.attr = arg

x = g(1)
y = g(3.14159)

Figure 2-7: Template instance shadowing in action.

This problem will be made clearer with an example, shown in Figure 2-7. Assume
a function f returns an instance of class a. Another function g acquires an instance
of a by calling f; g takes a single argument and assigns that argument as an attribute
of the newly return instance. If g is then used to generate two different instances of
a named x and y, the result will be two objects that have different types associated
with the attribute attr. However, Starkiller will conclude that in both x and y, the
attribute attr has a polymorphic type that contains both integer and float. This is
because exactly one instance type is returned by the cached template for the function
f, so the different templates of g must share it. Consequently, the types associated
with different templates of g commingle.

It remains unclear to what extent template instance shadowing will prove detri-
mental to precision in practice. It is possible that constructs associated with template
instance shadowing are sufficiently infrequent so as to make its impact negligible. In
the event that template instance shadowing is responsible for a significant loss of
precision, there are several possible techniques that can be employed to eliminate

42

it. One such technique involves intercepting instance state types that traverse con-
straints which cross template boundaries. We only do this for types that originate in
definition nodes associated with a sibling or child scope of the destination template’s
scope. During interception, we replace the outgoing type with a copy of itself by
creating a new definition node whose state is seeded by the state of the outgoing
type.

2.4.3 Partial Evaluation

Starkiller’s implementation for dealing with attributes is rather inelegant. Essentially,
support for explicit constant attribute names has been hard coded into the type
inferencer as a special case, since the program source contains them directly. A more
elegant approach would have been to treat all attribute accesses like invocations of the
getattr function. Since this function cannot know statically what attribute name
it will look up, it returns the types of all attributes together. Unfortunately, named
attribute references are far too common for this approach to have been practical;
its application would have rendered all non-trivial programs a morass of imprecision.
However, it would be desirable to replace Starkiller’s special case logic for dealing with
attribute access with a more generalized partial evaluation framework, since constant
explicit attribute access is simply a special case of partial evaluation. This approach
would provide other benefits as well, such as improving precision when analyzing
some common programming idioms.

One such idiom describes how to build a class that deals with many other client
classes without expanding those client classes. It works by implementing one method
for each client class to be examined and uses Python’s introspection features to select
the correct method to call based on one of the client class’ data attributes. For
example, consider Figure 2-8 which portrays a stereotypical implementation of the
Visitor design pattern [14] used to implement part of a compiler. The compiler defines
classes for all possible nodes of an abstract syntax tree, including nodes to represent
constants, if statements, and for–loops. If we wanted to write code that would operate
on instances of all those nodes without touching the original classes, we might build
a visitor class as shown in Figure 2-8. This class uses introspection to determine the
class name of any instance presented to it and then uses that name to construct an
appropriate method name to process that instance. This is a well known idiom in the
Python community.

Starkiller handles code like this, but not well. Because it performs no partial
evaluation, it assumes that the getattr call can return any value that is an attribute
of instances of the visitor class, when in fact, it can only return attributes whose names
begin with the string “visit”. Starkiller’s conservative assumption leads to imprecision
which in turn hinders performance and increases generated code size since extra type
checks and error handling code must be synthesized to deal with the invocation of
other attributes besides the visit methods. A more general solution would obviate
the need to check for impossible combinations that cannot arise in practice.

43

class Constant(Node):
pass

class If(Node):
pass

class For(Node):
pass

class visit:
def processNode(self, node):

return getattr(self, ’visit’ + node. class . name)(node)

def visitConstant(self, node):
pass

def visitIf(self, node):
pass

def visitFor(self, node):
pass

Figure 2-8: The visitor design pattern in Python.

44

Chapter 3

Compiler Design

While Starkiller’s type inferencer is absolutely vital and in many ways its most novel
component, the compiler is its heart. Starkiller’s compiler processes as input Abstract
Syntax Trees (ASTs) representing Python source code annotated with type inference
information provided by the type inferencer. These annotated ASTs are used to
generate C++ source code for an equivalent program. This equivalent program can
then be compiled to machine code using a common, off the shelf C++ compiler such as
g++. Between processing input ASTs and generating output C++ code, Starkiller’s
compiler has ample opportunity to perform optimization passes ensuring that the
resulting code runs as fast as possible. Starkiller’s compiler encompasses not only
the code generation component, but also the runtime support library that compiled
output programs rely upon.

The design of a source to source translator like Starkiller’s compiler presents the
designer with a vast multitude of design decisions to solve. In contrast to the type
inferencer, the compiler affords far more leeway in design and implementation. These
design decisions include basic questions such as what target language the compiler
should generate code for and how data structures should be translated. Other sig-
nificant questions include how individual language features should be translated as
well as what kinds of optimizations should be performed. This chapter examines all
these questions and the answers that Starkiller’s compiler represents. Note that while
a very primitive version of this compiler has been built, much of what follows is a
design for a system that has not yet been implemented.

3.1 Core Design Decisions

3.1.1 Target Language Selection Criteria

In order to realize the full performance benefits implied by Starkiller’s type inferencer,
the compiler must generate code in a suitable language. In particular, that language
must enable the creation of high performance code. In other words, appropriate
target languages will have powerful optimizers that benefit from the last few decades
of research in compiler optimization. This criteria essentially requires the use of a
statically typed target language, a requirement bolstered by the fact that Starkiller is

45

able to determine static types for most expressions in input programs. Fine grained
control over memory layout and allocation are also required in order to make the
best use of the static type and size information Starkiller provides. Given Python’s
historical predilections as a glue language, interoperability with existing C, C++
and Fortran code bases is an absolute must. While not strictly necessary, platform
portability is a significant benefit, as is the availability of multiple implementations
of the target compiler.

The above criterion severely constrain the choice of target languages, but other
features in Starkiller’s design reduce those constraints. For example, since the output
program is generated by machine, the target language need not be concise nor need
it have a pleasant syntax. In fact, the target language can be brutally painful for
a human being to write code in without hampering Starkiller’s objectives in the
slightest.

3.1.2 Target Language Selection Rational

In selecting a target language, several possibilities were considered, specifically C,
C++, Java, Common Lisp, Scheme, Haskell, and variants of ML. Common Lisp and
Scheme were eliminated early on because they are dynamically typed and lack high
performance, low cost implementations that run on a variety of platforms. Haskell
and the ML languages were removed from consideration because they do not give
target programs fine grained control over memory management and structure layout
in addition to failing to interoperate well with existing foreign code bases. Java was
eliminated on the basis of its poor performance. Only C and C++ survived the first
round of elimination.

Python’s original VM implementation was written in ANSI C with particular
emphasis on portability, although other implementations have been written in Java
[21] and Microsoft’s common language runtime [22]. Like Python, many dynamic
languages have virtual machines or compiler output written in C. C offers the benefit
of simplicity and universality: C code runs as close to hardware as anyone concerned
with portability dares, thus ensuring that C compilers are available for every platform
known to man. Moreover, since C++ compilers also compile C programs, integrating
with existing C and C++ code bases is a simple matter.

In contrast to C’s spartan simplicity, C++ is large and complex. It is a testament
to how unwieldy C++ has become that nearly 20 years elapsed before C++ compil-
ers that complied with the ISO C++ standard were actually produced. Nevertheless,
C++ offers a number of benefits over C that are difficult to ignore. The availabil-
ity of classes makes implementation more convenient and the presence of references
improves safety while offering the compiler greater opportunities for optimization.
C++’s native exception handling system provides an important substrate needed in
all Python programs that would be difficult and time consuming to replicate in C.
Moreover, the generic programming facilities in general and the Standard Template
Library in particular greatly simplify the implementation of Starkiller’s polymorphic
templates. The STL offers other benefits in providing a library of fast, safe, and
debugged containers and algorithms that would have to be built by hand in a C im-

46

plementation. One shudders at the comparison between fundamentally unsafe string
handling in the C standard library versus its counterpart in the STL string class.

While C++ does not enjoy the incredible platform support of C, support for the
language has matured greatly in the last few years; the advent of g++ as a serious
compiler that actually implements (almost) the entire standard means that there is
at least a decent C++ compiler available for (almost) every 32-bit platform one can
find. Much has been made about the performance differences between C and C++.
Empirical results suggest that C++ compilers generate code that is just as fast as
C compilers when given similar code [11]. Significant performance disparities arise
when programmers use C++ constructs that are impossible to optimize well, such as
virtual methods [11]. However, Starkiller simply does not use such features. Other
C++ language features such as exceptions and templates may increase the size of
executable, but have no direct impact on run time performance [11].

Another benefit that C++ provides is that its generic programming facilities make
it substantially easier to drop in libraries in a standardized manner. For an exam-
ple of where this might be useful, consider CPython’s specialized memory allocator
for integers. This allocator has been shown to substantially improve performance in
comparison to the generic object allocator [22]. By using C++ as the target lan-
guage, Starkiller gains the ability to drop in the Boost memory pool allocators [9]
with only a few lines of code. Of course, since Starkiller uses unboxed arithmetic
whenever possible, optimized integer allocation is not nearly as important, but there
are substantial benefits to be had for other object types.

3.1.3 Intermediate Language

Starkiller uses the results generated by the type inferencer to annotate an AST repre-
sentation of the input program in order to produce code in an intermediate language.
The compiler only processes intermediate language ASTs. The intermediate language
effectively comprises a strongly typed version of Python: variables are annotated with
concrete types. A variable’s type is either a monomorphic type or a polymorphic type
that comprises a known sequence of monomorphic types. Monomorphic types include
the basic Python types like integers, floats, long integers, lists, tuples, and dictionar-
ies as well as classes and class instances. A monomorphic type can have polymorphic
attributes, as in the case of an instance that has a polymorphic attribute. It is im-
portant to note that the types used in the intermediate language do not necessarily
correspond to those used by the type inferencer; the process by which the type in-
ferencer’s results are used to generate code in the intermediate language is described
in more detail below. In particular, there are some things that the type inferencer
does to improve analysis precision that are of little or no use to compiled code. For
example, the inferencer generates monomorphic instance state types to represent in-
stances with polymorphic state attributes. The compiler, however, simply deals with
instance types that have polymorphic attributes directly since one cannot change an
instance’s type at runtime to accommodate attribute values with new types.

Types that are executable, such as functions, modules, and class definitions, con-
tain a type map. This mapping describes the types of the variables defined in the

47

executable’s body. Function types have an executable section and type map for every
realized template while class and module types have exactly one template. Classes
and modules can thus have polymorphic attributes whereas functions can only have
monomorphic arguments. Functions that have polymorphic default arguments are
represented as several different function types, one for each of the cartesian product
of the polymorphic default argument types.

Types in the intermediate language can be tagged with attributes that describe
particular features of their behavior. Two such attributes are VarGetAttr and VarSe-
tAttr which indicate whether a type may be exposed to the getattr or setattr

functions respectively. This information can be easily determined once type inference
is complete and is vitally important for generation of fast code.

Note that before the type inferencer even sees the input program, it is first trans-
formed into a flattened form in which expressions cannot be nested. Compound ex-
pressions are broken down into primitive expressions that are assigned unique names.
The compound expressions are then built referencing the newly introduced variable
names. For example, the Python statement x = sqrt((a + b) * c) will be trans-
formed into the following sequence of statements, where u0 and u1 are new unique
variables introduced into the program shown in Figure 3-1. This flattening differs
from single static assignment in that it ignores control flow and thus introduces no
choice point operators. In addition to simplifying implementation of the type infer-
encer, flat input programs are required for some of the fast polymorphic dispatch
mechanism discussed in Section 3.2.2.

u0 = a + b
u1 = u0 * c
x = sqrt(u1)

Figure 3-1: Transformed segment of Python source code.

3.1.4 Data Model and Memory Management

A compiler’s business consists of two principal activities: control flow and data flow.
While the compiler’s handling of control flow is discussed at great length in Section
3.2, we describe its handling of data presently. Basic Python types, such as integers,
floating point numbers, and strings are mapped to equivalent C++ classes defined in
the Starkiller runtime library. Thus, for example, Starkiller’s run time support library
includes a C++ class named skInteger that contains a C++ machine integer and
implements all the basic operations described by Python’s standard numeric interface
[48, Section 3.3.7]. These wrapper classes bridge the chasm between native C++ types
like and int, double, and std::string and their Pythonic siblings.

Numbers are stack allocated and passed by value; they are thus always unboxed.
All other values are heap allocated and passed by reference using pointers. Heap

48

allocating most objects raises the issue of how and when those objects are ever deal-
located. The current implementation of Python uses a reference counting scheme
whereby each object maintains a count of how many other objects point to it. Since
reference counting cannot handle cycles of object references, CPython augments ba-
sic reference counting with a periodic garbage collection phase designed to explicitly
break reference cycles. Starkiller abandons reference counting entirely in favor of
conservative garbage collection. It uses the Boehm garbage collection library [5]. In
contrast to implementing a reference counting scheme, this approach dramatically
reduces both object size and development time while increasing performance. The
problem with using garbage collection is that it reduces portability since the Boehm
implementation requires explicit support from the operating system. In practice, this
is not a problem as the Boehm collector has been ported to most popular operating
systems and platforms.

Opting for conservative garbage collection, at least initially, helps to mitigate
other problems, specifically, a design flaw in C++ involving exception handling and
memory allocation. The problem is that when an exception is thrown from within an
object’s constructor, the object’s destructor is never called. The object’s memory is
safely deallocated, but any cleanup actions that need to be done and are normally the
province of the destructor never occur. A critical example is the case of an object that
allocates a sub object off the heap in its constructor and then deletes that memory
in its destructor: if an exception occurs in the constructor after the call to new,
the sub object’s will never be deleted, resulting in a memory leak. One solution to
this problem is to use smart pointers to describe heap allocated objects. When the
object is deallocated after an exception is thrown during its constructor, the smart
pointer will be deleted which will trigger its destructor which will, in turn, deallocate
the heap allocated sub object. The use of smart pointers such as std::auto_ptr

is a messy “solution” that brings with it additional complexities and inefficiencies.
In contrast, garbage collection solves this problem cleanly, without placing undue
burdens on programmers.

It has long been an article of faith among C++ programmers that in order to
maximize performance, objects should be stack allocated whenever possible. More
specifically, they believe that objects should only be heap allocated if life cycle rules
mandate their continued existence outside the scope of their creation. Their rational
is that in most implementations, stack allocation requires a constant increment to the
stack pointer on function entry while free store allocation requires searching through
a free list to locate a block of memory that is sufficiently large and then marking the
free list as needed. Stack space is more likely to be in the cache and can be accessed
using constant offsets from the stack pointer that can be determined at compile time
in contrast to free store references which typically require pointer dereferences from a
distant and likely uncached region of memory. Deallocation is greatly simplified since
it consists of nothing more than decrementing the stack pointer once in contrast to
far more expensive strategies such as the continuous arithmetic implied by reference
counting or the cache poisoning pointer walking required by even the best garbage
collectors. Finally, stack allocation may allow the optimizer to generate better code
because it is easier to avoid aliasing in some cases when using stack allocation in

49

contrast to free store references. Yet another benefit of stack allocation is that it
embodies the Resource Acquisition is Initialization paradigm, which greatly simplifies
development when using C++’s baroque exception handling scheme. While often
cited as a significant benefit, this feature does not motivate

Starkiller will have an extra optimization pass that performs escape analysis to
determine which objects have the possibility of escaping the scope in which they are
created [38]. Objects which can be shown not to escape their creation scope can be
allocated on the stack. Doing so not only speeds up allocation, but also deallocation
since there is less free store memory used that the garbage collector must track and
reclaim. Starkiller’s intermediate language is well suited to traditional escape analysis
algorithms, such as those described in [15, 8].

3.2 Basic Language Features

3.2.1 Arithmetic Operations

Arithmetic operations present a critical problem for Starkiller because Python op-
erators must handle overflow. This behavior is not described in the language spec-
ification, but it has been enforced in all versions of Python. Note that while the
most recent releases of Python introduce new behavior that automatically coerces
integer objects to long integer objects in response to overflow, the underlying imple-
mentation still needs to determine when overflow occurs. Previous versions of Python
responded to overflow by throwing an exception. Traditional Python implementations
have checked for overflow by performing explicit checks after each arithmetic oper-
ation. For example, when CPython calculates the product z of integers x and y, it
checks for overflow by verifying that (z ^ x) < 0 && (z ^ y) < 0. Since Starkiller
must also detect overflow, it could conceivably use the exact same technique. How-
ever, following each arithmetic operation with an explicit branch is incredibly slow.
Beyond the cost of extra instructions, this method severely limits performance by
inducing extra pipeline stalls and using up valuable branch prediction slots.

Alternative techniques for detecting overflow include using special instructions
such as JO (jump if overflow bit is set) and using processor exceptions to detect over-
flow and inform the application automatically. CPython tolerates the performance
penalty incurred by explicit checks rather than use either of these techniques for three
reasons:

Portability and simplicity Explicit checks written in C provide identical seman-
tics on all architectures in contrast to fragile tests written in assembler that are
unique to each architecture and possibly operating system.

Foreign code Both techniques described above require that the processor state be
kept consistent, but this is very difficult in cases where Python is either em-
bedded in a larger C program or extended with foreign code. In either case,
Python cannot reasonably guarantee that code outside the Python core will
keep the processor state consistent during calls back into the Python core. For

50

example, if an extension author is careless about resetting the carry flag, when
Python relies on that flag to detect overflow, havoc will result. Preemptive multi
threading makes the problem even worse since control could transfer between
application threads between individual instructions.

Other performance losses dominate The performance penalty is small compared
with many other overheads associated with the virtual machine. However, since
Starkiller eliminates many of those conventional sources of overhead, the per-
formance loss of checking for overflow after each arithmetic operation becomes
more substantial.

Instead of accepting such a severe performance penalty, Starkiller opts for an
alternative mechanism to detect overflow. By setting the appropriate CPU and FPU
control words, Starkiller generated code can instruct the processor to generate an
exception in response to overflow conditions. This exception forces the processor to
transfer control to the operating system. The OS in turn informs the application using
Unix signals (specifically, SIGFPE). Starkiller generated code includes a signal handler
that responds appropriately to SIGFPE signals by throwing a C++ exception. That
C++ exception could encapsulate a Python OverflowError exception. Alternatively,
silent coercion to long integers could occur if blocks of arithmetic operations were
wrapped in C++ try–catch statements that re-executed the entire block using long
integer types in response to an overflow exception. This mechanism allows Starkiller
to generate code that responds appropriately to integer overflow without resorting to
explicit checks on each and every arithmetic operation.

Note that the mechanism just described is not completely portable; at the very
least, it requires an IEEE 754 compliant floating point unit and may impose additional
requirements on the choice of processor architecture, operating system, standard C
library, and C++ compiler. This is because while many CPUs and Unix-like operating
systems support overflow detection through hardware exceptions and Unix signals as
described above, it is not required by any standard. In fact, according to the C and
C++ standards, program behavior after signed integer overflow occurs is undefined
and implementation dependent. Moreover, the ability to successfully throw C++
exceptions from within a signal handler is a rather delicate process; it is partially
supported in at least some C++ compilers. Empirical investigations suggest that
this mechanism will work correctly on Intel IA-32 and IA-64 architectures running
GNU/Linux in combination with recent versions of g++.

The relative complexity of the process described above may require additional
work or introduce additional points of failure. For example, under some conditions,
Intel microprocessors do report an overflow condition during the instruction that
triggers it, but during the following instruction. In addition, signal delivery is not
guaranteed in all cases and can fail under some conditions in some operating systems.
Finally, usage of machine exceptions in this manner complicates the life of extension
authors while arguably improving overall application safety. This problem is not as
significant for Starkiller as it is for CPython because there are far fewer reasons to
include numerically intensive foreign code extensions in Starkiller.

51

3.2.2 Functions

Despite its apparent simplicity, a strategy for efficiently implementing Python func-
tions in C++ while maintaining the original Python semantics has proven difficult
to develop. Nevertheless, such a strategy has been developed and we now describe
it in some detail. In part, this extra detail stems from the fact that functions are
emblematic of a host of implementation issues seen in other areas of the compiler.
Another reason why functions merit detailed description is that they are crucially
used in building higher level constructs. For example, class methods are really just
functions bound to a class object. When selected from a class object, they behave
precisely as ordinary functions would, because they are ordinary functions. As an-
other example, consider that the case of dynamic dispatch in Python programs is
really a special case of polymorphic function dispatch that is described below.

It is tempting to believe that Starkiller could compile Python functions into equiv-
alent C++ function definitions. Unfortunately, for a variety of reasons, such simple
translation is impossible in the general case. One reason is that Python definitions
are imperative statements while C++ definitions have declarative semantics. Another
reason is that Python functions are first class objects in their own right which can
have attributes associated with them. Yet another reason is that Python functions
can be nested and can close over variables defined in the scope of their lexical parent.
In theory, some of these problems can be worked around. For example, gcc offers an
language extension that supports nested scopes. However, on closer examination, one
can see that that extension is unsuitable for Starkiller’s purposes because it provides
no support for inner functions escaping their parent. Consequently, Starkiller imple-
ments Python functions as C++ objects. In other words, each function definition is
associated with a class; thus, defining a function in Python triggers the construction
of an instance of that definition’s C++ class and binds the newly created function
object to a variable with function’s name.

This approach allows Starkiller to model all the semantics of Python functions.
Nevertheless, there are additional subtleties to Starkiller’s translation of function def-
initions. One of those subtleties is the handling of default arguments. In Python, a
function definition can specify default values for some of the function’s arguments.
Such values are evaluated exactly once when the function definition is encountered.
Starkiller stores these default values as member variables of the function’s implemen-
tation class. Their precise values are assigned when the function object is created by
the class constructor. Since the “same” function can be defined many times over if it
is defined in the body of another function, each definition creates a new instance of
that function with new values for the default arguments.

Closures

Another vital detail relating to Starkiller’s handling of functions is the compilation
mechanism used for closures and lexical scoping. Starkiller can detect which variables
that a function defines are referenced by other functions defined within that scope.
Whereas variables are ordinarily allocated on the stack, Starkiller allocates such inner

52

scope variables from a Mini Stack Frame (MST). Note that variables consist of either
primitive objects such as integers or floats that are stored by value or a pointer to a
heap allocated object. An MST is a custom block of memory which contains these
variable references or primitive values. Functions that define variables referenced in
inner scopes create an MST object on entry and refer to all such variables using the
MST. Functions that reference variables defined in their lexical parents take in the
address of the MST which defines those variables as a parameter of their construc-
tion. These pointers to MSTs are stored as member variables in each function object
and enable the function instance to transparently reference variables defined in their
parents’ scope. This implementation strategy relies heavily on one crucial feature of
the Python language, namely the fact that variables cannot be written to from inner
scopes. In other words, variables defined in an outer scope can be read from, but
not assigned to. The one exception to this rule is global variables referenced using
the global keyword. However, since they are allocated statically in the module, such
variables can be easily dealt with as a special case.

The rational behind the MST is that in order for both the defining and inner
functions to see the same set of variables, those variables must be allocated in space
that is available to both of them. However, because an inner function can (and often
will) persist even after its lexical parent has returned, Starkiller cannot use space on
the stack to store these shared references since that space will be reclaimed when the
defining function returns. In the most general case, the best that Starkiller can do is
to allocate the space for such variables from the free store. Garbage collection will
ensure that the MST will not be reclaimed as long as either the defining function or
some inner function persists and refers to it. Given the constraints described above,
MSTs are a relative efficient implementation technique for dealing with closures. If a
function is defined N layers deep, then it will have at most N + 1 MST’s. Because
function definition nesting is in general infrequent and almost always very shallow
when it does occur, most inner functions will have only one or two MSTs. Moreover,
all functions defined in or below a given scope will reference the same MST, minimiz-
ing storage overhead. Another performance benefit is that MSTs are only needed for
variables referenced from an inner scope; variables that are not referenced from an
inner scope do not pay the performance penalty imposed by the MST. The primary
performance costs associated with MSTs are the need to allocate from the free store
on function entry and the extra cost of indirect references for MST variables.

Starkiller attempts to minimize these costs in two way. The first method exploits
the fact that variables defined in the top level of a module are created exactly once.
Python’s module system has the property that module objects are created exactly
once, and that subsequent imports of the same module simply return references to
the existing module object. Because of this semantic guarantee, module variables
can be placed directly within the module object itself, and module objects can be
allocated statically. Since the majority of out-of-scope accesses will likely be reads
of objects defined in the top level of modules, this optimization should significantly
reduce the need for MSTs. Module objects will not be accessible through a constant
offset of the stack pointer, but they will be the next best thing since their address
will be a known constant. The second technique that Starkiller uses to minimize

53

the detrimental performance impact imposed by MSTs is a limited form of escape
analysis. Although not as sophisticated as the analysis described in Section 3.1.4,
escape analysis can prove very beneficial. If an inner function can be shown to never
escape from its lexical parent, then the variables referenced by that inner function
can be allocated normally on the stack, bypassing the need for an MST altogether.
Instead of an MST, inner functions must take a reference or pointer to the stack
allocated variables as a parameter of their constructor.

Fast Polymorphic Dispatch

When performing type inference, Starkiller analyzes functions independently for ev-
ery possible set of monomorphic arguments. Such individual instances of functions
are called templates. Starkiller’s compiler mirrors this approach by generating differ-
ent copies of function objects’ call method. These copies are distinguished by their
argument types. This duplication of code provides the compiler with similar benefits
as the corresponding duplication of analysis provides the type inferencer. In cases
where a function call’s argument types are known statically, the compiler can inline
the appropriate call method. Beyond simple inlining lie a whole host of compiler
optimizations that only become possible when the code to be executed is known at
compile time.

Creating new templates for each monomorphic argument type list that a function
may encounter can lead to significantly increased code size. An alternative approach
would create only one version of the function body which accepted polymorphic ar-
guments. Unfortunately, the loss of precision incurred by completely polymorphic
function bodies would spread to any functions called by the function in question.
Starkiller’s approach gives the compiler as much knowledge as possible to support
optimization while maintaining maximal precision since the function’s body has been
specialized for the particular monomorphic types. Consequently, functions called by
the function in question can be inlined and optimized as well. Even if a particular
function benefits little from having monomorphic versions of itself available, functions
called by that function can be better optimized since their argument types are more
likely to be monomorphic. As with type inference, the process of maximizing pre-
cision in compilation leads to a virtuous cycle in which monomorphic functions call
other functions that can in turn benefit from monomorphic arguments. Neverthe-
less, in may be advantagous to bound template creation by the compiler even though
the type inferencer operates under no such restriction. The benefit here is that the
type inferencer can still work without losing any precision, but the compiler need not
generate an enormous amount of code that presents little if any performance benefit.

Of course, this virtuous cycle can only occur when all of a function’s argument
types are known statically. While that is often the case, there are times when
Starkiller’s type inferencer cannot statically reduce an argument’s type set to ex-
actly one entry. Such cases are either an artifact of the conservative approximations
the type inferencer makes, or represent the intent of the programmer. In any event,
Starkiller must insert code at the site of function calls involving polymorphic argu-
ments to determine the argument types at runtime and call the appropriate version

54

of the function. This problem is similar to the one faced by object oriented languages
that perform dynamic dispatch. In fact, because more than one argument type may
be polymorphic, this problem is equivalent to that faced by languages that support
multimethods, such as Dylan [35] or CLOS [12]. This is a simple problem to solve
unless one cares about performance. Typical implementations use the argument types
as indices into a table of function pointers. Because of the performance properties
of modern CPU architectures, compilers that use this approach generate code that
performs poorly.

This performance loss is caused by the need to perform an indirect branch through
the lookup table as well as the optimization opportunities forsaken by remaining igno-
rant about precisely which piece of code will be executed at the call site. The trend in
architecture evolution has been toward longer and longer instruction pipelines which
impose correspondingly stronger performance penalties on instruction sequences that
trigger pipeline stalls, such as indirect branches. While modern architectures rely
on a combination of branch prediction and speculative execution to achieve high
performance in the face of code laden with run time choice points, neither of these
strategies provides significant benefit to code that uses indirect branches extensively.
This problem has proven to be such a serious impediment to high performance in
common object oriented languages like C++ and Java, that microprocessor vendors
have begun adding indirect branch prediction units to their most recent chips [13].
The success of the new indirect branch prediction units is too recent a development
to evaluate, but the difficulty of the problem bodes poorly. Beyond the problems
with pipeline stalls and optimization opportunities foiled by dynamic code selection,
the size of the dispatch tables also plays a role in reducing performance. This occurs
because the tables tend to be large and thus place additional stress on the memory
cache. Fortunately, this particular problem can be ameliorated to a large extent using
simple compression techniques as described in [25].

In some ways, Starkiller has a slightly easier problem to solve than other statically
typed object oriented languages because it does not have to worry about new classes
and types being introduced at runtime. Nevertheless, the problem remains daunt-
ing. Starkiller thus offers several different approaches for dealing with polymorphic
argument dispatch in the hopes that the relative performance merits of each can be
characterized and compared on a variety of different architectures. The three options
offered are traditional dispatch tables, branch ladders, and signature hash dispatch.
Traditional dispatch mechanisms suffer from the problems described above, but are
likely to be the optimal choice in cases where there are many function templates that
may be called from a given call site or if the templates are very large or if the function
code takes a significant amount of time to execute (as in the case of a short function
that makes system calls). In these cases, the overhead of the indirect dispatch and
function call will be negligible compared to the execution time of the function itself
and the costs of implementing the other two polymorphic dispatch mechanisms will
likely be prohibitive. Once the performance of the different algorithms has been char-
acterized on different architectures, Starkiller will include a heuristic for selecting the
correct dispatch mechanism at each polymorphic call site. One possible heuristic is
to use traditional vtable dispatch for megamorphic calls in which there are more than

55

eight possible templates while using signature hashing for cases where there are be-
tween three and eight possible templates and using branch ladders for cases in which
one is trying to select between only two possible templates. This flexible multimodal
dispatch agent is a simplified version of what is described in [3].

Branch ladders are akin to a technique described in [52] where dynamic dispatch is
replaced with a binary search through the receiver types followed by a direct jump to
the appropriate method. For cases in which there are only a few applicable methods,
this technique has been shown to provide a moderate performance improvement over
traditional dispatch tables. Instead of binary search, branch ladders perform dispatch
by testing each polymorphic argument’s type code against every possible type code
that argument can achieve at runtime. Once an argument’s type code has been
found, dispatch on the next polymorphic argument type begins. After all polymorphic
arguments have been discovered, the proper method is called. This dispatch technique
thus generates a set of nested if tests where the depth of nesting is equal to the number
of arguments with polymorphic types and the number of branches at any particular
depth is equal to the number of possible types that the corresponding argument
may achieve. This approach has the benefit of working with the processor’s branch
prediction unit rather than against it. However, since branch prediction units have
relatively small tables (often less than 2000 entries) and relatively poor resolution
(often only a few bits), this technique will perform poorly in cases where there is either
a large number of polymorphic arguments or where the degree of polymorphism is
high. Even if it is only used with function calls that have a small number of minimally
polymorphic arguments, it may still perform poorly if used so pervasively that the
branch prediction unit’s storage tables overflow. An alternative implementation uses
switch statements instead of if statements. For some combinations of compiler and
processor architecture, switch statements may prove more efficient.

The last technique that Starkiller can use to perform polymorphic function dis-
patch is signature hashing. This actually refers to a family of techniques that all rely
upon quickly combining the type codes of the polymorphic arguments of a function
call into a single number, the signature, and using the that signature to perform dis-
patch. In effect, this process amounts to hashing the type codes of the polymorphic
arguments. Once the signature has been calculated, there are several different mech-
anisms that can employ it to perform dispatch. The first method is a variant of the
branch ladder technique described above. The primary difference though is that there
is no nesting of branches: there is only one layer of tests, rather than one layer per
polymorphic argument. Each test compares the signature against a constant value
and if it succeeds, calls a particular specialized version of the function call method.
Alternatively, the signature hash can be used as input to a perfect hash that takes
generates indices into a computed goto array for dispatch. In this scheme, each func-
tion call generates a series of blocks, one for each possible monomorphic argument
combination. Each block is comprised of a label, a specialized function call, and a
goto statement that transfers control past the end of the last block. The addresses
of the individual block labels are stored in a static array using g++’s “labels as lval-
ues” extension. Upon reaching a function call with polymorphic arguments, Starkiller
inserts code to calculate the signature hash and then use that number to calculate

56

an index into the block label table. Once an index is known, jumping to the appro-
priate block using g++’s computed goto extension is simple. Starkiller converts the
signature hash to the appropriate block label table index using a specially designed,
minimal perfect hash function.

Perfect hash functions are hash functions that guarantee no collisions assuming
the set of all possible keys is known statically. In this case, the perfect hash maps a set
of integers (the signature hashes) to another set of integers (the indices of the block
label table). Minimal refers to the fact that the hash function generated maps a set of
N keys onto the integer range [0, n− 1] with no more than N elements. In general, a
different perfect hash function must be generated for each function call site since most
function call sites will have different polymorphic argument types. This duplication
is no cause for concern because creating the perfect hash functions is a fast process
and because the generated hash functions are so small they will almost certainly be
inlined in any event, thus negating any savings from calling a single perfect hash
from multiple call sites. The algorithm Starkiller uses to generate perfect hashes is
the same one found in [23]. For small input sets (those with 8 or fewer keys), it
generates hash functions that are only a few instructions long. These functions are
simple combinations of logical shifts, negations, and addition operations. They use no
other data except an occasional constant integer and the input signature hash. These
hash functions run very quickly since they are composed entirely of ALU operations
that only reference a single register and a few immediate values.

As an example, consider the perfect hash function generated for signature hashes
drawn from the set (432, 32, 0, 49, 97, 34). If the signature hash is an integer variable
named sig, the resulting hash function is (((sig >> 1)+(sig >> 8))&7). In summary,
the signature hash maps the types of the polymorphic arguments to a single number.
A perfect hash function is then used to map that single number to an index into the
block label table. The runtime jumps to the address at that index of the table. This
architecture may seem convoluted, but with the exception of the computed goto, all
the operations that comprise it are very fast on modern architectures. The computed
goto normally compiles down to a single jump to register instruction, which is not fast,
but is faster than many of the alternatives. However, the most significant benefit is
the ability to inline small functions and perform many of the other basic optimizations
that are easily foiled by dynamic dispatch.

In theory, one can avoid the overhead associated with the block label table by using
the perfect hash function to generate block offsets directly from signature hashes. In
practice, this process is rather difficult since the precise offsets needed cannot be
known until the platform assembler is run on the compiler’s output. The core of
the problem is that g++ does not calculate such offsets directly: they remain in
the assembler input as constants. The problem can be remedied either by directly
generating machine code or by patching the assembler output of the compiler before
it is assembled to machine code, but the difficulty of either of these two options
compels us to leave such modifications for another day. In any event, the benefit
appears minimal.

57

3.2.3 Classes and Class Instances

Like function definitions and unlike classes in C++ and many other languages, class
definitions in Python are imperative rather than declarative statements. Conse-
quently, they can appear anywhere in a program, including the body of a function.
Starkiller treats class definitions and function definitions in a similar manner. Class
definitions have a C++ class that describes the state of the class and stores its at-
tributes. Upon encountering class definition, Starkiller generates code to construct
and initialize an instance of that class’s corresponding C++ class. The terminology is
somewhat confusing; suffice it to say that every Python class object is an instance of a
C++ class. The result is assigned to a variable with the same name as that specified
in the class definition. This process will be made clearer with an example. Consider
the Python source code in Figure 3-2 that depicts a simple class definition. Starkiller
compiles that code into something like the C++ source code shown in Figure 3-3.
The definition for class a occurs inside function f, so Starkiller create a new instance
of the class object in the body of f on each invocation of f. Once the class object
is constructed and bound to the class’ name, a, an instance is constructed by calling
the class object. This instance is then returned from f.

def f():
class a:

pass
inst = a()
return inst

Figure 3-2: A simple Python class definition.

Like Starkiller and the rest of this thesis, this section applies to classic classes only.
New style classes [47] must be handled differently, but in many ways pose a simpler
problem than classic classes. Besides using a different mechanism to search the class
inheritance tree, new style classes differ principally in their ability to explicitly and
statically describe their attribute set and limit some forms of dynamism. Since classic
classes will continue to be used for a long time to come (especially if Starkiller proves
successful in optimizing their performance), Starkiller focuses on implementing them
first.

Class objects and instances at the most basic level can be thought of as collec-
tions of named attributes; these collections are not unlike dictionaries but with a
more convenient syntax. Consequently, any compilation process that supports classes
must expressly support attribute access. However, attribute access is also needed for
function objects as well as module objects. Starkiller internally uses a protocol for
reading and writing statically visible attributes. If a given object has an attribute
named X, Starkiller will add methods to the corresponding C++ class named set X
and get X. In the typical case, these methods will be inlined. However, in more
complex cases, these methods can be used to implement specialized behavior such as

58

class f class;
static f class* f;

class a class;
class a inst class;

class f class
{
public:

a inst class* operator()()
{

a class* a;
a = new a class();

a inst class* inst;
inst = a();
return inst;

}
};

. . .

f = new f class();

Figure 3-3: The equivalent code generated by Starkiller for the definition shown in
Figure 3-2.

reading from either the instance attribute directly or the instance’s class’ attribute
depending on whether the instance’s attribute has been defined yet. Of course, this
protocol is only useful for attributes whose names are statically known. Attributes
whose names are only apparent at runtime are called dynamic attributes. Starkiller
uses special techniques for dealing with them, as described in Section 3.2.3.

Beyond being a simple bag of attributes, One of the most notable features of
Python class objects is that they support multiple inheritance. More specifically,
every class definition specifies a list of base classes from which the class being defined
inherits. The ordered set of base classes associated with a class object can be inspected
and even replaced by referencing the attribute __bases__. In Python, inheritance
means nothing more than different rules for attribute lookup. Specifically, searching
for a particular attribute of a class object will cause the class object to ask its base
classes for that attribute if it is not defined. Base classes are searched in depth
first order, from left to right. The first match found is used; multiple matchings
are ignored. Assignment must be explicitly qualified: the only way to assign an
attribute to a class (outside of its definition) is to explicitly state the class name as in
c.attr = 4 for a class named c. Class attribute writes are thus always unambiguous,

59

which is not the case for class attribute reads in the presence of inheritance.
Starkiller implements static class attribute semantics by providing special code for

the get methods of the C++ classes used to implement class objects. In cases where
a class inherits from other classes that either define the same name or have been
tagged with the VarSetAttr attribute by the type inferencer, this special lookup code
walks up the inheritance tree in depth first, left to right order and returns the first
matching attribute value it finds. However, since inheritance is far less frequently
used in Python than in other popular object oriented languages, and since name
shadowing is infrequently used even when inheritance is used, this case represents a
rare occurrence. In most cases, the attribute lookup method will simply return the
value bound to the class object directly. Since attribute writes are always explicitly
qualified, the set methods can simply write into the class object directly without
having to deal with inheritance at all.

Class instances are created by calling a class object as if it were a function. Like
class objects, instances are bags of attributes, but their behavior differs significantly.
For example, while attribute writes modify the instance state directly, attribute reads
may not necessarily refer to instance state. If the requested attribute is not defined by
an instance, the instance will search for it in its class object, which may in turn search
for it in its base classes. Starkiller implements different get methods for statically
known instance attributes depending on which types define them. If an attribute is
known only to the instance, the get method simply return the instance state for that
attribute. If it is defined only in the class object or one of its base classes, the get
method simply returns the result of calling the same get method on the class object.
In the unfortunate case where both the instance and the class or a base class define
the same attribute, the get method returns the instance value if it has been defined;
otherwise, it delegates the request to the class object.

Instances distinguish themselves in other ways. The most significant is their treat-
ment of methods. When an instance retrieves an attribute from its class object and
that attribute happens to be a function, a special transformation is applied. Instead
of returning the function object directly, the instance returns a bound method ob-
ject that packages the instance itself and the function object together. Note that
this process does not happen when one directly references the class object: attribute
lookup works as usual there. The bound method object is a callable object that calls
the function object using the list of arguments supplied after prepending it with the
instance object. This is the primary manner in which Python implements traditional
object oriented programming. Starkiller generates appropriate bound method classes
for each function object that can become a class attribute. Instance get methods
that refer to attribute names that may return a bound method object create them
as needed. However, in the common case where a method name is referenced and
then immediately called, Starkiller optimizes away the temporary bound method ob-
ject and directly calls the function object that would be returned. Of course, this
optimization only occurs when the method attribute type is monomorphic.

As in other languages, Python’s object model includes explicit support for con-
structors and destructors. These are overloaded methods defined by a class that
bear the names __init__ and __del__. Despite the name constructor, __init__

60

methods really only perform object initialization: they are presented with an already
constructed, but empty, object instance just like any other method would be. In
a similar manner, the __del__ method actually implements object finalization, not
destruction. Instance construction is implemented with an internal construct method
defined in class objects. This method creates an instance of the C++ class implement-
ing the type of instance needed and returns it after calling the associated __init__

method if it is available. Destructors are somewhat more difficult to implement. Since
intrinsic types like integers and floats are passed by value, their destruction is man-
aged automatically when their scope of use exits, as long as their C++ destructor calls
the equivalent Python __del__ method. All other objects however, are deleted by
garbage collector. The Boehm collector will also call the appropriate C++ destructor
for classes that inherit from the base class gc cleanup, as all Starkiller classes that
may implement finalizers do. The Boehm collector provides guarantees equivalent to
those provided by the Python language specification in pathological cases, such as
when given a cycle of objects that include finalizers.

In addition the behavior described above, instances differ in one other key way.
They always have a special attribute named __class__ that refers to the instance’s
class object. This attribute can be modified or inspected at run time, allowing ar-
bitrary client code to change the class associated with a particular instance at any
time. Consequently, Starkiller provides the necessary get and set methods when the
type inferencer indicates they may be used. The vast majority of objects, however,
will never require explicit inspection or assignment of their __class__ variable.

There are several cases where get methods rely on knowing whether a particular
object has actually defined an attribute. For example, when the same attribute is
defined by an instance and its class object, the value associated with the instance
object should not be returned unless it has been assigned. As another example,
consider the case where a base class and its derived class define an attribute with
the same name. In all such cases, Starkiller adds boolean member variables to the
object’s C++ class definition that indicate whether a particular attribute has been
defined for the object. These member variables default to FALSE, but are assigned
a value of true on each call to the corresponding set method.

Dynamic Attributes

Dynamic attributes are attributes whose names cannot be determined statically. Class
objects and instances that have a VarGetAttr attribute require special code for dy-
namic attribute lookup and retrieval. Such lookup operations return values of a
polymorphic type that encompasses the types of all the object’s attributes, since a
dynamic attribute lookup could, in principle, retrieve any attribute the object has.
Since the set of all possible valid keys is known, the lookup operation is implemented
using a near minimal perfect hash [23]. This enables very fast retrieval. More specifi-
cally, a perfect hash is used that maps each of the attribute name strings to an integer
index describing which of the object’s attributes have that name. The lookup code
thus computes the hash and returns the correct attribute, using either a switch state-
ment or a set of computed goto labels. Unfortunately, when presented with unseen

61

keys, a perfect hash algorithm will return an incorrect mapping, so the lookup opera-
tion must check the incoming key name for equality with the key name generated by
the hash. If the two do not match, a runtime AttributeError exception is raised,
as would be the case in CPython. This extra string check imposes a small additional
runtime cost, but is needed to ensure correct operation.

Class objects and instances that have a VarSetAttr attribute cannot implement
that functionality with extra code alone as is the case for objects tagged with VarGe-
tAttr. In addition to extra code, objects tagged with VarSetAttr require an internal
dictionary that is used to store the values of all the attributes that are not statically
known to Starkiller. Statically visible attributes are stored separately in the object
as normal. The variable attribute dictionary’s keys are strings corresponding to the
name of the attribute. Note that for a class c, this dictionary is not the object that
would be returned by c.__dict__ since it contains only the dynamic attributes but
not statically visible attributes. Starkiller generates a special dynamic setattr method
for these objects that assigns new attribute values to either the statically known at-
tributes or the dynamic attribute dictionary. It does so using a very similar algorithm
as described above for looking up attributes of objects tagged as VarGetAttr. More
specifically, the setattr method first uses a perfect hash to map the incoming attribute
name to an attribute index. It then compares the incoming attribute name to the
known attribute name associated with that index; if the two names match, that par-
ticular attribute is modified. If they do not match, the incoming attribute is added
to the dynamic attribute dictionary.

Objects that are tagged with both the VarGetAttr and VarSetAttr attributes
inherit the union of behaviors associated with either attribute. They maintain a
dynamic attribute dictionary and have a special dynamic setattr method that dis-
patches assignments to either statically known attributes or the dynamic dictionary
as needed. They also have a special dynamic getattr dictionary that searches for
attributes amongst the statically known set as well as in the dynamic attribute dic-
tionary.

Starkiller’s approach for dealing with VarSetAttr tagged objects makes the best
of a bad situation. Since a call to setattr could conceivably mutate any attribute,
the types of all attributes must be polymorphic and must include at least the types
assigned by the setattr calls. An alternative design would have made all objects
tagged with the VarSetAttr attribute implemented using only a dictionary with no
support for separate static attributes. On the surface, this approach appears to
provide similar tradeoffs, however, this alternative approach provides slightly fewer
avenues for optimization. Consider the case of a class object tagged with VarSetAttr.
Any references to the class objects method attributes will necessarily be polluted
by the types deriving from the dynamic setattr. Because such types will necessar-
ily be polymorphic, method calls for that class cannot be inlined without including
expensive dynamic dispatch code.

Starkiller can optimize this problem away with only a slight loss of compliance
to the Python language specification by assuming non-callable objects cannot be
assigned to method attributes for this class. Consequently, the method attributes can
have monomorphic types that do not include the types deriving from the dynamic

62

setattr call. Starkiller will generate a dynamic setattr method for this class that
verifies that the key being assigned to is not a method name, and throws an exception
if it is. In most cases, the user of a class takes special steps to ensure that their use of
the setattr function will not modify the value of method attributes. Assuming that
is true, this optimization will not change program semantics in user-visible manner. If
this assumption is violated and user code really does replace class methods will non-
callable objects, then an exception will be raised in the likely event of those methods
being called. With this optimization, an exception gets raised, but in a different place
and time than would be dictated by the language specification. In the exceedingly
unlikely event that the class user has replaced a method attribute but then taken steps
to ensure that method will never be called again, this optimization would trigger an
exception whereas the language specification indicates that no exception would occur.
Regardless of the merits of this particular optimization, the point remains that it is
much easier to implement when statically known attributes are separated from the
dynamic attribute dictionary.

Since class objects and instances are not implemented as dictionaries in Starkiller,
all objects trap requests for the attribute named __dict__. The object returned by
c.__dict__ is a proxy object that includes a reference to the original object and
implements the standard dictionary interface. It simulates a dictionary that includes
all of the elements of the object’s dynamic attribute dictionary in addition to the
object’s statically known attributes.

There are two implementation methods that Starkiller offers for providing this
proxy dictionary. The approaches tradeoff object size and speed for strict compatibil-
ity with the language specification. In the optimized approach, no space is reserved
in the object itself for this __dict__ proxy; it is created dynamically in response to
attribute lookups. Different requests for the dictionary attribute will return different
proxy objects, but because their underlying storage is the same, the different prox-
ies will behave identically in all aspects except for one. Because they are different
objects, they will test false for identity (even though they test true for equality). In
other words, the expression c.__dict__ is c.__dict__ will return false, whereas
the language reference indicates that it should return true. It is unlikely any code
exists which relies on such subtle semantics.

Nevertheless, for those individuals who do have code that relies on dictionary
identity semantics, or even those unsure as to what assumptions their code relies
on, Starkiller provides a compilation option that provides strict compliance with the
language reference. In this mode, space is allocated for a dictionary proxy in the object
and one proxy object is created during object construction. That proxy is referenced
throughout the lifetime of the object. In practice, not all objects need to be bloated
in space and construction time with the dictionary proxy. Only those object types
that are tagged as VarGetAttr and those types that have constant references to the
__dict__ attribute need an dictionary proxy.

It is important to realize that as a consequence of how Starkiller implements
support for __dict__, it cannot use simple reference counting alone. This is because
when using the conservative __dict__ implementation described above, many objects
will be created with reference cycles automatically. These cycles occur because class

63

objects and instances maintain a pointer to their dictionary proxy object which in
turn keeps a pointer back to them. Both pointers are needed since we must ensure
that, even if the object is no longer needed, it will not be deallocated as long as a
reference is still being held to its dictionary proxy.

3.3 Advanced Language Features

3.3.1 Exceptions

Observant readers will note that despite the fact that Starkiller compiles Python
code to C++, it does not port Python language constructs directly onto their C++
equivalents. This is especially true in the case of functions and objects. In large part,
that discrepancy is due to the fact that the C++ function and object models are
simply too restrictive to support the full semantics Python demands. In contrast,
Starkiller uses C++’s exception system rather directly.

Starkiller defines one exception class that it uses pervasively called InternalRuntimeError

(IRE). This exception class acts as a wrapper for native Python exceptions as well as
internal exceptions in the Starkiller runtime that have no Python equivalent. Python
exceptions cannot be handled directly by the C++ exception system because C++
determines whether exception objects can be captured by a catch clause using class
identity and inheritance. Python uses the same mechanism. Unfortunately, because
Starkiller’s implementation of Python objects does not use C++ inheritance to model
Python class inheritance relationships, Python exception catching semantics cannot
be modeled using C++’s exception handling system without wrapper classes.

All functions and methods that Starkiller generates as well as all of its runtime
library routines are declared as capable of throwing instances of IRE and no other
C++ exception. Any native C++ functions or methods that can throw exceptions are
wrapped in exception handlers when used by Starkiller library components. These
handlers trap native C++ exceptions and re raise them as IRE instances. When
possible, C++ exceptions are translated into Python equivalent exceptions. For ex-
ample, if object allocation fails during a call to operator new and a std::bad_alloc

exception is raised, Starkiller’s runtime system will catch that exception and re raise
it as a Python MemoryError exception object. In fact, operator new is shadowed with
a Starkiller provided version that performs such transparent exception translation
automatically.

Within the infrastructure described thus far, there are only two major problems
left to resolve: the precise manner in which Starkiller translates try-except-finally
statements and raise statements. Try statements in Python are translated into Try-
except statements in C++ but with the caveat that the only exception listed in the
C++ catch clause is IRE. Within the catch clause, Starkiller generates code to inspect
the native Python exception object associated with the instance of IRE just caught.
If the Python exception matches the exception classes listed in the corresponding
except clause of the Python program, the appropriate exception handling code is
executed. Alternatively, if the captured exception does not match, it is reissued for

64

the next handler to catch and test. Raise statements can be easily handled in this
framework. The Python exception being raised is constructed as usual and then
packaged in an IRE object which is then thrown using the standard C++ facilities
for raising exceptions.

Python try-except statements that include finally clauses are problematic since
C++ does not have an equivalent mechanism in its exception handling system. Nev-
ertheless, Starkiller can effectively simulate such a mechanism by judicious code gen-
eration. Specifically, when presented with a finally clause, Starkiller inserts the fi-
nalization code in two different places. The code is inserted immediately after the
try-except statement which ensures that it will be executed in all cases where no
exception was thrown or all exceptions thrown were safely caught by this try-except
statement. Starkiller also inserts the finalization code inside the exception handler,
immediately before the statement needed to re raise the exception. Doing so ensures
that even if the exception propagates beyond the current scope, the finalization code
will be processed.

One important detail to note is that constructors for Starkiller objects, including
functions and classes, are designed to never throw exceptions. Since arbitrary Python
code can throw exceptions at any time, Starkiller takes pains to ensure that arbitrary
Python code is never executed from within a constructor. For example, the code in
the body of a class definition can potentially raise exceptions, but Starkiller does not
run such code in the class object’s constructor. Instead, it relegates such code to an
initialize method that is called after the constructor has finished its work from the
same scope in which the class object was created. Essentially, constructors are for only
the most basic allocation and setup. The reason Starkiller strives to avoid throwing
from constructors is that when exceptions are thrown from a constructor, the object’s
destructor is never called. This complicates memory management and several other
resource management problems sufficiently to make no-throw constructors worth the
small extra effort they require.

3.3.2 Modules

Like class objects, module objects are implemented with C++ classes. Like classical
function objects, the implementation class for a module objects includes an overloaded
function call method which contains the code associated with the module body. Be-
cause modules are objects just like classes and instances, they can be passed around
and inspected just like other objects.

3.3.3 Foreign Code

Since Starkiller’s type inferencer has extensive support for dealing with foreign code,
the compiler must provide corresponding facilities. However, the compiler’s task is far
simpler than the type inferencer’s in this regard. CPython uses a standard C API to
describe interactions between the virtual machine and foreign extensions. Starkiller’s
compiler simply has to include an implementation for the interface defined in the

65

header file Python.h. This interface consists of functions, macros, and constants for
creating, destroying, and manipulating Python objects.

3.3.4 Iterators and Generators

Iterators require very little support from Starkiller in terms of compilation. The
primary issue is recognizing types that support the iterator protocol when compiling
for–loops and if available, using that protocol to generate successive values of the
loop variable. Generators demand substantially more effort on the compiler’s part.
A generator must store sufficient information to restore both its data state (i.e., the
state of variables) and its control flow state (i.e., where it is in the code). Each
generator has a C++ class whose instances act as a repository for that generator’s
internal state while it is running. the traditional function object associated with a
generator definition does nothing but construct a generator state object and return
it.

Starkiller ensures that the generator’s data state is stored by converting all vari-
ables in the generator body into member variables of the generator state object. This
transformation guarantees that those variables persist and keep their values even as
control flow leaves the generator’s code during a yield. Control flow state is stored in
an extra member variable that denotes the next location in the generator’s body that
is to be executed. Ordinarily, this might require an arbitrary instruction address, but
since generators only transfer control synchronously using the yield statement, we
can do better. If control only leaves the generator at yield statements, then control
can only return to the generator at the very beginning of the body (when it is first
entered) or immediately after a yield statement. Starkiller adds distinct labels im-
mediately after yield statements. These labels are then stored in the generator state
object’s next code member variable using g++’s labels as lvalues extension to C++.

The body of the generator is thus placed inside a method of the generator state
object called __next__ that implements the generator protocol [50]. This method
is called on each iteration of the generator but the generator’s state is stored in
member variables between successive calls. Yield statements in the generator body
are translated into control state saving operations followed by the equivalent return
statements and a distinct label. Saving the control flow state is as simple as assigning
the the value of the label immediately following the yield to the next code member
variable. That is the last statement executed before the method returns. The first
line of the method body is a computed goto statement that jumps to the point in the
method body indicated by the next code member variable.

In order for the generator to work on the very first call to __next__(), before any
yield statements have been called, there must be a label immediately following the
computed goto statement demarcating the beginning of the official generator body
code. In addition, the next code member variable must be initialized in the generator
state object constructor to the value of that start of code label.

66

Chapter 4

Results

Having completed our tour of Starkiller’s design, we now turn to more practical
matters, namely the progress that is been made in implementing Starkiller and pre-
liminary benchmarks of its performance.

4.1 Current status

Starkiller consists of two main components, a type inferencer and a compiler. The type
inferencer is largely complete; it can interpret and correctly analyze a large variety
of Python code. Many of the language features that it cannot currently understand
are relatively simple but technically uninteresting constructs that were passed over in
the rush to develop a usable inferencer that performed well on difficult inputs. As a
result, the type inferencer correctly analysis programs that change an instance’s class
at runtime as well as programs that change inheritance relationships at runtime but
cannot understand programs that use for loops or tuple unpacking.

Starkiller’s compiler is at a very early stage of development; it currently lags
far behind the type inferencer in terms of both completeness and extensibility. The
compiler currently supports a very small subset of the language, consisting of little
more than basic arithmetic, simple functions, while loops, conditionals, and only
the most primitive forms of IO. Closures and nested functions, classes, modules,
exceptions, and generators are completely unimplemented. Despite its limitations,
development of the compiler has been enormously useful in illustrating the unique
design challenges presented by Starkiller. The wisdom gained thereby will prove
invaluable when constructing the next compiler.

4.2 Benchmarks

Starkiller’s overriding goal is to make Python programs run faster. A simple bench-
mark was devised in order to determine whether or not it has met that goal. This
effort was hampered by the fact that Starkiller currently only compiles a small subset
of Python, even though it can analyze a much larger subset. It would have been
preferable to use a standardized and well known benchmark, such as PyStone, but

67

def fact(n):
if n <= 1:

return 1
else:

return n*fact(n − 1)

def fib(n):
if n < 3:

return 1
else:

return fib(n − 1) + fib(n − 2)

i = 0
while i < 100000:

q = fact(12)
q2 = fib(15)
i = i + 1

Figure 4-1: The original Python source code used for benchmarking.

these benchmarks all use constructs that Starkiller’s compiler cannot currently han-
dle. The benchmark program used is shown in Figure 4-1. It consists entirely of
calling the Fibonacci and factorial functions repeatedly, in a loop.

This benchmark is rather unfair in the sense that it exposes CPython’s weakest
points. For example, it relies heavily on calls of pure Python functions and does
not take advantage of Python’s fast native code implementations for manipulating
large batches of data. As a result, it should not be considered representative of the
performance gains one might expect from Starkiller once it is completed. Conversely,
however, Starkiller is very immature in comparison to CPython, which has benefited
from several years of extensive profiling and performance tuning. Almost none of
the optimizations slated for inclusion in Starkiller’s compiler have been implemented
yet. These results are most relevant when understood as showing how the worst-case
implementation of Starkiller compares against the most recent version of CPython
on a benchmark that is as favorable to Starkiller as possible. In other words, as
Starkiller matures, we expect to see better performance than shown below on a more
representative sample of benchmark programs.

For comparison, Psyco and Python2C also participated in the benchmark. Due
to a memory management bug, Python2C required human intervention in the form
of a small change to the generated code in order to produce an executable that
successfully completed the benchmark. Blitz was excluded from the test because it
is such a special purpose tool and the problem domain it was designed for has no
overlap with the limited functionality that Starkiller’s compiler currently provides.
Because it is not readily available, 211 was also excluded. As an additional point
of reference, I included an equivalent program written by hand in C. The point of

68

Compiler Lines of Code Execution time Relative Improvement

Python 2.3.3 – 173 seconds 1
Python2C 1.0a4 893 78 seconds 2.2
Psyco 1.2 – 7.1 seconds 24
Starkiller 65 2.8 seconds 62
Human generated C code 26 2.7 seconds 64

Table 4.1: Benchmark results comparison

this addition was to illustrate what the maximum possible performance was for this
benchmark. All test programs were compiled using gcc 3.3.3 with -O3 optimization
and no debugging or profiling support enabled; tests ran on a quiescent 800 MHz
Pentium III with 256 MB of RAM. The results are as shown in Table 4.1. For each
compilation system tested, this table shows the number of lines of code generated
for intermediate compilation, the execution time, and the factor by which execution
time was improved relative to the performance of Python 2.3.3. Execution time was
measured by running all programs using the Unix time utility and examining the
wall clock (real) time that had elapsed.

4.3 Analysis

As the results above indicate, Starkiller outperforms CPython by a substantial margin
and Psyco by a smaller, but still significant margin. It is about 4% slower than human
optimized code. The handmade C code is shown in Figure 4-2 while the code that
Starkiller generated is shown in Figures 4-3 and 4-4.

As the generated source code indicates, Starkiller defined C++ classes to repre-
sent the main module (mod0) as well as the function definitions for fact (fact0) and
fib (fib1). The actual definition of these functions at runtime is represented by the
construction of a new instance of these functions’ classes. If these function defini-
tions included default arguments, the values of those arguments would be stored as
instance variables in the function classes fact0 and fib1 after being passed to the
class constructor. The application of both the functions and the module body itself
is encapsulated in a method that overloads the function call syntax. The functions
are referenced through pointer indirection, but this is not a major burden for the op-
timizer since the particular function to execute can be determined by the C++ type
of the function. Within function and module bodies, variables are declared before
use with their monomorphic type. It is not obvious from this example, but had there
been polymorphic code present, Starkiller would have generated several overloaded
function call methods for each polymorphic function class. These overloaded methods
would differ in the types of arguments they accepted. Note that none of the methods
Starkiller defines are virtual and neither C++ inheritance nor C++ run time type
information is used.

Figures 4-5 and 4-6 show a portion of the C program generated by Python2C. This

69

#include <stdio.h>
int fact(int n) {

if (0 != (n > 1)) {
return 1;

} else {
return n*fact(n − 1);

}
}

int fib(int n) {
if (0 != (n < 3)) {

return 1;
} else {

return fib(n − 1) + fib(n − 2);
}

}

int main() {
int i = 0;
int q, q2;
while (0 != (i < 100000)) {

q = fact(12);
q2 = fib(15);
i = i+ 1;

}
}

Figure 4-2: Hand made C code for performing the same task as the original Python
source code in Figure 4-1.

part is the C function that corresponds to the definition of the factorial function. It is
included to illustrate what static compilation for Python looks like in the absence of
static type inference. The generated code is littered with calls to check objects’ types
before performing faster versions of operations (PyInt_Check), as well as tedious and
cumbersome error checks, such as verifying that object constructors do not return
NULL. In addition, note the pervasive use of reference counting as indicated by calls
to the macros Py_INCREF and Py_DECREF. It is plain to see that even a sophisticated
C compiler will have difficulty optimizing this code.

Close examination of the code suggests a problem with this comparison: Python2C
generated C code that tested for integer overflow when performing arithmetic opera-
tions while the code generated by Starkiller did not. Psyco and the normal Python
VM also checked for overflow while the hand made C program did not. For this par-
ticular benchmark program, none of the arithmetic exceeded what could be contained
in a 32-bit signed integer, so no overflow occurred. Consequently, implementations
that coerce integer objects to longs in the case of overflow were not penalized for

70

such conversions since they never took place. However, those implementations were
penalized because they were continually performing checks that both the hand made
C program and the code generated by Starkiller did not have to perform.

In reality, this discrepancy does not significantly change the results. Although
it does not include such support right now, Starkiller will soon include the ability
to check for integer overflow using the CPU’s overflow trap as described in Section
3.2.1. In such cases, integer overflow triggers a CPU exception, which is caught by
the operating system and eventually passed to the offending code by way of Unix
signals. Recall that this benchmark does not trigger overflow at any time. Because
this mechanism for overflow detection imposes zero overhead when no overflow occurs,
its addition to the code generated by Starkiller is unlikely to change the results.

71

#include <iostream>
using namespace std;

class mod0 {
public:

class fact0;
static fact0 *fact;
class fib1;
static fib1 *fib;

class fact0 {
public:

int operator() (int n) {
if (0 != (n <= 1)) {

return 1;
} else {

return (n * (*fact) ((n − 1)));
}

}
};

class fib1 {
public:

int operator() (int n) {
if (0 != (n < 3)) {

return 1;
} else {

return ((*fib) ((n − 1)) + (*fib) ((n − 2)));
}

}
};

Figure 4-3: The C++ code generated by Starkiller corresponding to the Python code
in Figure 4-1, part 1 of 2.

72

void operator() () {
int i;
int q;
int q2;
mod0::fact = new fact0();
mod0::fib = new fib1();
i = 0;
while (0 != (i < 100000)) {

q = (*fact) (12);
q2 = (*fib) (15);
i = (i + 1);

}
}

};

mod0::fact0 * mod0::fact = NULL;
mod0::fib1 * mod0::fib = NULL;

int main()
{

mod0 m = mod0();
m();

}

Figure 4-4: The C++ code generated by Starkiller corresponding to the Python code
in Figure 4-1, part 2 of 2.

73

static PyObject *t fact(PyObject * self, PyObject * args, PyObject * kw)
{

int finally code = FC NORMAL;
PyObject *result = NULL;
PyObject *l n = NULL;
PyObject *temp 0 = NULL;
PyObject *temp 1 = NULL;
PyObject *temp 2 = NULL;
PyObject *temp 3 = NULL;
PyObject *temp 4 = NULL;
PyObject *temp 5 = NULL;
PyObject *temp 6 = NULL;
PyObject *temp 7 = NULL;
PyObject *temp 8 = NULL;
long long 0;
long long 1;
long long 2;

if (args == NULL)
goto error;

long 0 = ((PyTupleObject *) (args))−>ob size;
if (!t kwarg(args, "|O", kw, NULL, long 0, 1, t fact argnames, &l n)) {

return NULL;
}
Py INCREF(l n);

do {
long 0 = 1;
if (PyInt Check(l n) && PyInt Check(cInt 0)) {

/* INLINE: cmp(int, int) */
register long a, b;
a = ((PyIntObject *) l n)−>ob ival;
b = ((PyIntObject *) cInt 0)−>ob ival;
long 0 = a <= b;

} else {
long 0 = PyObject Compare(l n, cInt 0);
long 0 = long 0 <= 0;

}
} while (0);

if (long 0) {
Py XDECREF(l n);
return cInt 0;

} else {
temp 4 = PyTuple New(1);
if (temp 4 == NULL)

goto error;

long 2 = 1;

Figure 4-5: C code for the factorial function generated by Python2C for the program
shown in Figure 4-1, part 1 of 2.

74

if (PyInt Check(l n) && PyInt Check(cInt 0)) {
/* INLINE: int - int */
register long a, b, i;
a = ((PyIntObject *) l n)−>ob ival;
b = ((PyIntObject *) cInt 0)−>ob ival;
i = a − b;
if ((i ^ a) < 0 && (i ^ b) < 0) {

PyErr SetString(PyExc OverflowError, "integer overflow");
temp 6 = NULL;

} else
temp 6 = PyInt FromLong(i);

} else
temp 6 = PyNumber Subtract(l n, cInt 0);

if (temp 6 == NULL)
goto error;

PyTuple SET ITEM(temp 4, 0, temp 6);
temp 6 = NULL; /* Done with temp 6 */
temp 3 = t fact(NULL, temp 4, NULL);
Py DECREF(temp 4);
temp 4 = NULL; /* release called on temp 4 */
if (temp 3 == NULL)

goto error;
if (PyInt Check(l n) && PyInt Check(temp 3)) {

/* INLINE: int * int */
register long a, b, i;
a = ((PyIntObject *) l n)−>ob ival;
b = ((PyIntObject *) temp 3)−>ob ival;
i = a * b;
if ((i ^ a) < 0 && (i ^ b) < 0) {

PyErr SetString(PyExc OverflowError, "integer overflow");
temp 0 = NULL;

} else
temp 0 = PyInt FromLong(i);

} else
temp 0 = PyNumber Multiply(l n, temp 3);

Py DECREF(temp 3);
temp 3 = NULL; /* release called on temp 3 */
if (temp 0 == NULL)

goto error;
Py XDECREF(l n);
return temp 0;

}
Py XDECREF(l n);

Py INCREF(Py None);
return Py None;

error:
Py XDECREF(l n); Py XDECREF(temp 0); Py XDECREF(temp 1);
Py XDECREF(temp 2); Py XDECREF(temp 3); Py XDECREF(temp 4);
Py XDECREF(temp 5); Py XDECREF(temp 6); Py XDECREF(temp 7);
Py XDECREF(temp 8);
return NULL;

}

Figure 4-6: C code for the factorial function generated by Python2C for the program
shown in Figure 4-1, part 2 of 2.

75

76

Chapter 5

Conclusions

5.1 Contributions

Starkiller is a research prototype of a type inferencer and compiler for the Python
language. Although it is still immature, its design is complete and early tests show
that it can provide substantial performance improvements through a combination of
static compilation and static type inference. As demonstrated by previous compila-
tion systems, static compilation for highly dynamic languages such as Python yields
little if any benefit unless it is informed by a sophisticated static type inference al-
gorithm. Although research compilers have been built for other dynamic languages,
Starkiller is unique in offering better performance amongst interesting languages that
are widespread enough to matter outside of academia.

The adaption of Agesen’s Cartesian Product Algorithm to languages more widely
deployed than Self constitutes a significant contribution. By elucidating the types of
most expressions in a program at compile-time, Starkiller can discover the information
needed to support many of the optimization algorithms that languages like Fortran
and C have relied on for decades. Consequently, this work demonstrates that static
type inference is more likely than originally thought to be feasible and beneficial, even
for very dynamic languages with only latent types such as Python. Such languages
expose terribly little information to compilers, making the compilers’ job far more
difficult.

Starkiller’s type inferencer is far more than a simple port of Agesen’s work from
Self to Python. It introduces several new contributions such as:

Recursive customization Whereas Agesen relied on heuristics to detect and termi-
nate recursive customization when it occurred during analysis, Starkiller avoids
the issue entirely. It does so by representing out of scope references in a func-
tion as additional, “silent” arguments whose types participate fully in type
inference. Since simple recursive call cycles involve a function calling itself,
a simple recursive function will be among the nonlocal arguments over which
its own templates are specialized. However, because Starkiller employs an on-
line cycle detection algorithm that refuses to generate new types which contain

77

previously generated types originating from that node, template specialization
terminates naturally.

Extension Type Description Language Starkiller’s Extension Type Description
language allows extension authors to participate fully in the type inference
process. While many research systems exist that make use of programmer
supplied annotations, the combination of writing annotations in the original
source language along with the notion of supporting mixed language execution
constitute a novel contribution. The former gives extension authors the ability
to extend the type inferencer in a very powerful way; code written as part of an
extension type description has full access to Starkiller’s internals in addition to
the Python runtime library.

Tainted containers The notion of tainted lists as external type descriptions demon-
strates another significant contribution to the development of CPA–like algo-
rithms. Such lists preserve maximal precision in the face of uncertainty while
degrading gracefully as new information emerges that necessitates falling back
to less precise behavior. More importantly, tainted lists do this all without ever
violating the monotonicity invariant that CPA relies on.

Data polymorphism Agesen’s original work had no support for data polymor-
phism, concentrating instead on parametric polymorphism. Starkiller’s type
inference algorithm handles data polymorphism reasonably well. Specifically,
if two instances of a class have different types assigned to the same attribute,
Starkiller will correctly infer the types for each without commingling them, en-
suring maximal precision. This precision comes at the cost of analysis time and
memory, however, empirical evidence suggests this is not overly significant and,
in any event, that aspect of Starkiller’s type inference algorithm is amenable to
optimization. The core idea is that object types are duplicated at each creation
site, so that objects created in different places (or different templates of the
same function) are analyzed separately and do not interfere with one another.

Closures Starkiller handling of closures differs substantially from Agesen’s, in large
part because closures in Python cannot issue nonlocal returns. Whereas Age-
sen’s algorithm tracks closure types using references back to templates, Starkiller’s
algorithm tracks closures by taking the cartesian product of the list of type sets
they depend on. This approach is much simpler and and works without having
to engage in the block fusion efforts that Agesen’s algorithm must in order to
work efficiently in the face of closures. The result is that in Starkiller’s type
inference algorithm, closure support is better integrated with CPA.

The notion of improving performance by excising interesting features from a lan-
guage is (unfortunately) hardly novel, but Starkiller’s restriction on dynamic code
insertion is novel in other ways. Among dynamic languages, the Python community
is unique in its insistence that language evolution be dictated by the demands of real
world usage and experience rather than more abstract goals like amenability to anal-
ysis, conceptual unification, or, worst of all, elegance. In much the same spirit, the

78

decision not to support dynamic code insertion was made based on an analysis of how
Python programmers in the real world work and what they need. That decision is
justified by a compelling workflow narrative which shows that many developers who
work in compute-intensive problem domains will benefit from using Starkiller, even
if they lose access to the dynamic code insertion functionality that Python normally
provides.

Beyond the type inferencer, Starkiller also includes contributions from its compiler.
Most significant is the analysis of polymorphic function dispatch. Contributions in
this area include the notion of reducing dynamic dispatch of polymorphic functions to
simpler and faster single dispatch using signature hashing. Furthermore, the adaption
of perfect hashing to fast polymorphic dispatch is another novel contribution. Both
of these techniques are made possible by the elimination of dynamic code insertion.
That restriction makes Starkiller rather unusual since there are no widely deployed
languages that are both dynamic enough to need fast dynamic polymorphic function
dispatch while at the same time being sufficiently static to ban dynamic code insertion.

Starkiller’s most significant contribution may be its most mundane: the slow ad-
vancement of the state of the art made possible by changes in the world around us. In
order to understand how Starkiller improves on existing technology, one must under-
stand why its design outperforms CPython. One reason that Starkiller outperforms
CPython is that the latter suffered from “Naive Implementor’s Syndrome” initially
leading to design defects that were compounded and crystallized by many years of
incremental development [40]. A more significant reason is that Starkiller is a special
purpose system and thus need not appeal to everyone; those that do not care for the
design tradeoffs it represents can always return to CPython without losing anything.
But the most significant difference is that the technology landscape in 2004 is vastly
different from what it was in the early 1990s. There has been vast consolidations in
markets for operating systems, compilers, and architectures. gcc now dominates; it is
not as fast as the fastest compilers, but it is respectable and it is higher quality than
most. More importantly, it is utterly pervasive, available on every architecture one
can imagine. As a result, language implementors need not dumb down their imple-
mentation to the lowest common denominator since they can rely on the existence of
the same high performance standards compliant compiler on every platform. Other
compiler vendors such as Green Hills and Intel have been forced to implement gcc
extensions. In a similar manner, GNU/Linux is everywhere. Proprietary Unix still
lives, but looks increasingly like Linux as Solaris, AIX, and HP-UX rapidly adopt
Linux compatibility layers. The same story unfolds in hardware. Since most archi-
tecture vendors have committed suicide, the scientific computing market has been
ceded almost entirely to IA-32, x86-64, and PPC. For scientific computing, no other
platforms matter statistically. No one outside of Intel believes that IA-64 is anything
but dead on arrival. Alpha is dead. MIPS is dead. Cray is dead. PA-RISC is dead.
Sparc is on life support since Sun canceled UltraSparc V and then UltraSparc VI
development amid serious financial trouble.

79

5.2 Future Work

Despite the significant contributions this work represents, it has inspired more ques-
tions than answers, suggesting numerous lines of inquiry that future researchers might
pursue. Before such research can begin however, construction of the current imple-
mentation must be completed. Starkiller must be, if not production ready, at least
capable of analyzing and compiling the majority of Python programs available that do
not use eval and its ilk. Completing Starkiller allows us to compare its performance
on standard benchmarks like PyStone and Pybench, as well as analyze how well it
performs on programs from different application domains. More importantly, getting
Starkiller to the point where it understands all of Python enables us to determine
how well Starkiller scales given large input programs. Until now, the answers have
been purely conjectural.

Once Starkiller has matured sufficiently, it will provide an excellent substrate from
which to experiment with dynamic language implementation techniques. Experiment-
ing with different dynamic dispatch mechanisms on several different architectures is
one example of useful research that may follow. The interactions between code size
and branch prediction performance makes this problem particularly challenging and
unlikely to be resolved by anything short of direct experimental observations. Several
other pertinent areas of research are outlined below.

5.2.1 False Numeric Polymorphism

Consider again the basic polymorphic factorial program shown in Figure 2-4. Starkiller’s
analysis of this program will be flawed: it will determine that the return value of
factorial(5) will be an integer but that the return value of factorial(3.14) will
be either an integer or a floating point number. The problem here is that even given a
floating point argument, factorial really will return the integer value 1 for some values
of the argument n. This result is unintuitive because programmers expect that inte-
ger values are coerced into floats whenever the two types appear together in a binary
operation. The fact that Starkiller will generate slower polymorphic code for this
function is thus also not expected. An astute programmer can work around the is-
sue by replacing the statement return 1 with return type(n)(1) which coerces the
constant one to the type of the argument n; unfortunately, Starkiller is not yet sophis-
ticated to properly infer the result, although it easily could be in the future. Another
workaround replaces the problematic return statement with return 1 + (n - n);
this workaround has the benefit of working with Starkiller right now while also being
more likely to be optimized away.

Ideally, one would not have to resort to awkward workarounds in order to get in-
ference results that match intuitive expectations. Indeed, in more elegant languages
like Haskell, numbers are overloaded to prevent precisely this sort of problem. The
crux of the problem here is that programmers’ intuition does not match the seman-
tics of the language; since Starkiller rigorously implements Python’s semantics (at
least in this case), confusion results. Future work is needed to uncover mechanisms
for either automatically detecting problems like this or providing programmers with

80

better means of informing the compiler of their intentions.

5.2.2 Static Error Detection

The standard Python implementation provides a consistent model for handling errors.
A small class of errors, mostly syntactic in nature, is detected by the byte compiler
when a program is compiled or run for the first time. These errors typically abort
compilation or execution entirely. All other errors are detected at runtime and are
dealt with using Python’s exception handling mechanism. In practice, this means
that many errors that are detected statically in other languages, such as calling a
function with more arguments than are expected, become run time errors that are only
detected upon execution. This error handling model poses a problem for Starkiller:
what should one do with potential errors detected statically by the type inferencer?

x = "hi there"
x = 4
y = x + 3

Figure 5-1: An example of static detection of run time errors.

To illustrate the problem, consider the simple program in Figure 5-1. This code
will compile and execute correctly in the standard Python implementation without
issue. But when Starkiller analyzes this code, it will conclude that the variable x

can have a type of either string or integer. Since x is then used as an operand for an
addition with an integer, Starkiller cannot blindly invoke the addition without resolv-
ing the x’s polymorphism. Because it is flow insensitive (see Section 2.1), Starkiller
cannot determine that the string value of x will not be present by the time control
reaches the addition expression. Having failed to statically resolve x’s polymorphism,
we must do so dynamically by inserting a run time type check on x before proceeding
with the addition. If x is an integer, then the addition can proceed without harm.
But if x is a string, we have a problem, since the addition operator is not defined for
operand types of string and integer.

What should the type inferencer due at this point? Aborting compilation because
an error is possible would be unwise in this case since we know that the string type
associated with x is a spurious artifact of the type inference algorithm and not some-
thing that will hinder the addition operation. At the same time, we cannot simply
ignore the issue since it could truly be a programmer error. Consider the same case as
before, but with the first two lines swapped. That program would compile correctly
but would generate a runtime exception when fed into the standard Python imple-
mentation. Python’s inability to statically detect errors like this as well as simpler
errors such as typographic errors in variable names has been a major complaint from
its user base since its inception. That suggests that Starkiller should make static
errors visible to the user so they can check and repair incorrect code. Unfortunately,
doing so would also produce spurious warnings as seen in the first example. More-

81

over, due to the effects of templating, the same error may be detected many times,
drowning the user in a sea of meaningless errors with no easy way to separate the
spurious from the legitimate.

The core of the problem is that some of the errors that Starkiller statically detects
represent real errors that the standard Python implementation cannot statically de-
tect while others represent artifacts of the type inferencer’s imprecision and are com-
pletely harmless. There is no way, a priori, to discriminate between the two. Because
Starkiller focuses on improving run time performance and not necessarily run time
safety, it foregoes reporting statically detected errors such as those described above to
the user. However, it does not ignore possible error cases. Instead, it inserts code to
raise run time exceptions as needed when it statically detects that an error is possi-
ble and dynamically determines that an error has occurred. This approach preserves
the standard Python semantics while bypassing the need to build an extensive error
reporting and filtering system. Nevertheless, future research would be well directed
at improving static error detection and presentation to developers.

5.2.3 Integer Promotion

Python offers two builtin integer datatypes: a standard “machine” integer that must
be at least 32-bits wide and a long integer that can have unbounded length. Tradi-
tionally, these two datatypes were kept distinct and isolated from one another. This
meant that when a machine integer value overflowed, the Python Virtual Machine
would raise an OverflowError exception. Long integers, of course, cannot overflow
since they use arbitrary precision arithmetic to grow as needed. Starkiller’s problem
stems from the fact that recent Python releases have adopted a change in semantics
[51] designed to eventually unify the machine and long integer types. Newer Python
releases now respond to overflow of a machine integer by silently promoting it into
a long integer. The eventual goal of these changes is to eliminate machine integers
completely, but that is not expected to happen for quite some time.

While unifying the two integer datatypes does solve some very real problems in
the language, it introduces a new problems for Starkiller, namely how one efficiently
implements silent coercion semantics without ruining performance in the common
case where overflow does not occur. Note that this problem is orthogonal to the issue
of detecting overflow at runtime as described in Section 3.2.1. Regardless of which
version of Python’s semantics Starkiller implements, it must detect overflow. The
question to be addressed here is what to do once integer overflow is detected. Agesen
faced precisely this same problem when working on type inference for Self [1], but
the only solution he suggested was offering users an option to treat integer overflow
as a hard error rather than silently coercing to BigInts. This is the same choice that
Starkiller makes.

There are four options for Starkiller to implement Python’s newer integer seman-
tics. The first approach requires that Starkiller mirror the language definition pre-
cisely. The second option would be to implement sophisticated techniques for range
analysis and propagation associated with previous work in using unboxed integers
in higher level languages. The third option would be to uniformly use long integers

82

everywhere, while the fourth option would be to retain the integer semantics found in
older versions of Python. At the moment, Starkiller uses the fourth option, opting for
high performance and limited implementation complexity at the cost of conformance
with the language specification.

Precisely mirroring the language definition means that machine and long integers
remain distinct types but that all operations that could overflow a machine integer
must be checked at runtime for overflow and promoted to long integers as needed.
From a type inference perspective, this means that all primitive integer operations
such as addition and multiplication may return either machine integers or long inte-
gers. As a result, almost all integer variables will be polymorphic since they must
hold machine integers as well as long integers. Making all integer variables poly-
morphic cripples the performance of generated code by inhibiting the use of unboxed
arithmetic. The standard Python Virtual Machine does not face this problem since
it uniformly uses boxed integers anyway, and, in any case, it has enough overhead to
mask that caused by integer promotions.

The literature associated with compiler optimization for dynamic languages is
full of techniques for partially reclaiming the performance lost to integer boxing [16,
46]. Unfortunately, many of these strategies necessitate a degree of implementation
sophistication that is not presently available to Starkiller. Recent work on unboxing
in statically typed languages [27] such as Haskell and the ML family of languages may
prove more appropriate to Starkiller’s static compilation model while posing less of
an implementation hazard.

In contrast, using long integers exclusively offers somewhat better performance
than is possible with strict conformance to the standard since all integer variables can
be at least monomorphic. Long integers could even be implemented in an unboxed
manner, if they were implemented as a linked list of machine words. In that imple-
mentation, long integers would contain one word of the integer data and a pointer to
the succeeding word. For most integers, the next pointer would be NULL, signifying
that this was the last word comprising the integer. As a result, long integers would
be twice the size of machine integers in the common case and could be stack allocated
but would incur extra overhead needed to constantly check if the next pointer was
null. This overhead would manifest itself in repeated branch points inserted into the
instruction stream for code that was heavily laden with arithmetic operations. Excess
branching hinders performance by confounding processor pipelining in modern archi-
tectures [20]. Some of this overhead could probably be ameliorated by judiciously
marking such branches using the GCC extension function __builtin_expect, which
directs the compiler to insert a hint to the target processor’s branch prediction unit
that one end of the branch is unlikely to be taken. The primary problem with this
approach is that while it does represent the direction in which the Python language
is moving towards, Python is not there yet, so it would represent a divergence from
the official language definition.

A related solution involves boxing integers directly, where all integers are repre-
sented by a machine word that contains either a pointer to a long integer, or a 31-bit
integer. This representation uses one bit of the integer to determine whether the
object is a machine integer or a pointer. While well accepted in the Smalltalk com-

83

munity, this approach has been harshly criticized in the Python community, making
its introduction into Starkiller problematic. Much of the criticism has centered on
difficulties achieving efficient implementations across many different processor archi-
tectures; the Alpha architecture in particular imposes a severe performance penalty
on the bit twiddling operations required to support this approach. Many of the other
concerns raised center around implementation complexity and would not be relevant
to Starkiller.

An even greater divergence from the language specification is implied by the third
option, namely keeping the original Python semantics of isolating machine from long
integers. Machine integer overflow would result in an exception rather than silent pro-
motion to long. This option offers the best performance while introducing significant
semantic differences compared to the Python language specification.

Regardless of how integer overflow is handled, performance can be improved by not
using overflow recovery mechanisms wherever static analysis determines that integer
overflow is impossible. Fortunately, there are a number of powerful algorithms that
perform just such an analysis, such as those described in [19, 49, 17, 26]. These
algorithms determine the integer ranges which variables and expressions can take
during the program’s lifetime. Static knowledge of variable ranges allows one to
easily see that some arithmetic operations cannot overflow under any circumstances;
these operations can be safely performed using unsafe arithmetic operations with no
provision for handling overflow. Range analysis enables another optimization, bounds
check elimination. Indeed, bounds check elimination is often the primary motivation
for range analysis research since languages like Java mandate bounds checked array
access but lack automatic coercion to long integers in response to overflow.

The bad news is that none of the range analysis algorithms surveyed mesh par-
ticularly well with Starkiller’s type inference algorithm. The good news, however, is
that many of them are amenable to application on the typed intermediate language
that Starkiller’s type inferencer produces as output. The better news is that, when it
comes to range analysis, a little goes a long way. Kolte and Wolfe report in [26] that
performing the simplest of range analysis algorithms removes 98% of bounds checks
in a program while the more sophisticated algorithms yielded only minor incremental
improvements. Since Python’s builtin containers can only have lengths that are rep-
resented in a machine word, that result suggests that such simple algorithms should
also eliminate many overflow checks.

The problem we face then is how to integrate type inference with range analy-
sis given that the two are mutually interdependent problems. Range analysis should
come after type inference since without type inference, we cannot know what variables
represent containers and what variables represent integers. However, in the absence
of range analysis, type inference must conservatively assume that all arithmetic op-
erations on integers can overflow and thus return long integers as well as machine
integers. Even if a later range analysis pass deduces that many of these arithmetic
operations cannot overflow, it is too late to undo the effects of the overflowed long
integers once they have propagated into the constraint network. CPA relies entirely
on the monotonicity of the type sets, so removing types after they have been inserted
is impossible.

84

When Agesen was faced with a similar challenge involving two mutually interde-
pendent problems, he was clever and created CPA [1]. Lacking cleverness, at least for
the moment, I opt instead for a less efficient but simpler brute force solution. The al-
gorithm that results is a three pass effort in which type inference is followed by range
analysis followed by another type inference round. The initial type inference round
makes pessimistic assumptions that all integer operations can overflow and generate
longs. When the range analysis pass runs, it notes which variables the previous pass
marked as having integer (either machine or long) type and which variables were
marked as containers. The resulting range analysis is used to mark some container
accesses as safe, enabling the compiler to omit bounds checks. In addition, arith-
metic operations that range analysis indicates cannot overflow are marked specially.
On the second type inference pass, integer arithmetic operations that are marked as
being incapable of overflow generate only integer result types. This algorithm eas-
ily generalizes to multiple rounds, but given the nature of the information passed
between rounds, there seems no additional benefit to performing additional range
analysis passes. Note that tuples and untainted lists benefit most from the bounds
check elimination since their length is statically known. Integrating the bounds check
elimination into the External Type Description Language in a more general way so
that authors of extension containers (such as Numeric Python or NumArray) can
benefit by eliminating unneeded bounds checks for provably safe container accesses
remains an open problem.

5.2.4 Eval, Exec, and Dynamic Module Loading

The most glaring deficiency in Starkiller’s type inference algorithm is its inability
to handle dynamic code generation. Starkiller needs to be able to see all the code
that could be executed at runtime in order to perform complete inference. As a
result, constructs such as eval and exec which evaluate and execute source code
potentially made available only at run time are problematic. For the same reason,
Python’s module system can theoretically be used to import code that does not exist
at compile time since import statements are evaluated only at run time.

While Python offers several methods to execute code generated at runtime, in
practice, eval, exec, and module imports that cannot be resolves statically are rarely
used. In part, this is because dynamic code generation introduces security risks for
the same reason that it makes static type inference difficult: code that has not been
audited and verified prior to distribution cannot be trusted, especially if that code
could have been contaminated by untrusted user data. Another reason is that code
generated dynamically often runs slower than comparable static code. This slowdown
is due to the fact that the dynamically generated code must be byte compiled before
execution, while static code is byte compiled only once on application startup and
then cached for successive executions.

Finally, dynamic code generation is infrequently used in the Python world be-
cause Python makes it easy to accomplish the same ends as achieved with dynamic
code generation using other means. For example, in order to convert the string
"1" into the corresponding integer, one could use the eval function or one could

85

simply use the int function. The latter has the advantage that its return value
will always be an integer should it return at all. In addition, the developer can
rest secure in the knowledge that no extraneous code can be invoked by a call to
int, regardless of the value of the input string. As another example, consider the
case of a developer attempting to read an attribute from an object instance where
the attribute name is derived from run time data. Solutions to this problem us-
ing eval such as eval(‘‘instance.’’ + userInput()) compare poorly in secu-
rity, performance, and aesthetics when compared to more traditional solutions such
as getattr(instance, userInput()) or even instance.__dict__[userInput()].
This is especially true when one considers the fact that the return value of userInput()
could include parenthesis, triggering a method call when evaluated.

To determine how serious a problem Starkiller’s inability to support dynamic code
generation may be, I performed a survey of the library code written in Python that
was shipped with release 2.3 of Python. I examined all instances where eval and
exec where used and recorded the difficulty involved in working around their use.
The results are shown in the following table. One immediate observation is that
eval and exec are infrequently used: there were less than 25 occurrences of both
functions in over 123,000 lines of source code. Moreover, many of those occurrences
can be easily removed in favor of alternative facilities afforded by the language. All
of the remaining uses occur in programs or libraries that are simply not suited for
Starkiller’s target audience. These programs include heavily interactive applications
like the Python Debugger and the interface to libreadline in addition to more esoteric
applications, like the compiler infrastructure. The foregoing analysis is meant to be
illustrative rather than authoritative; dynamic code insertion is more prevalent than
the prevalence of eval alone would suggest. Alternative forms such as dynamic class
loading and some applications of serialization are arguably more prevalent but also
more difficult to measure.

bdb.py, pdb.py
Debugger support
Not applicable for Starkiller. Implements run time support for the Python debugger,
and uses eval to modify variables at run time after stopping at a breakpoint.

dumbdbm.py

Dumb DBM Clone
Trivial to work around. Uses eval to cheaply parse string into three numbers. Secu-
rity hazard since that allows arbitrary code execution.

gettext.py

Internationalization and Localization support
Trivial to work around using named functions.

86

gopherlib.py

Gopher protocol support
Easy to work around using dictionaries instead of module variables as a static map-
ping, or, alternatively, a call to globals.

mhlib.py

Unix Mail Handling
Not applicable to Starkiller since eval is only used in testing code.

os.py

Generic Operating System interface
Moderately difficult to work around. eval is used to support conditional compilation.
eval could be eliminated if os.py was better modularized with autoconf, but this is
not for the faint of heart. Alternatively, globals could be used.

random.py

Random number generator
Not applicable to Starkiller since eval is only used in testing code.

reconvert.py

Conversion between old and new regular expressions
Not applicable to Starkiller since this code is only used during development.

rexec.py

Deprecated restricted execution framework
Very difficult to work around, but this code is going to be removed soon since it is
terminally insecure.

rlcompleter.py

Word completion for libreadline
Not applicable to Starkiller since this code is only used in interactive applications.

tzparse.py

Experimental parser for timezone specifications
Trivial to work around. Uses eval to parse simple strings into numbers.

warnings.py

Generic warning framework
Moderately difficult to work around. Uses eval to check if user supplied names are
defined. Could probably be replaced with dictionary mapping or a much safer call to
getattr.

87

compiler/ transformer.py

Experimental Python parser
Moderately difficult to work around. Uses eval to parse literals in a way that precisely
matches the C implementation of Python’s parser. eval could probably be replaced
if a more detailed literal parser was written in Python.

logging/ config.py

Configuration parser for logging system
Moderately difficult to work around. Uses eval to map class name strings to the
corresponding class objects. eval could probably be replaced by an explicit dictionary
mapping or a call to getattr. This is also a potential security vulnerability allowing
arbitrary code execution.

idlelib/ CallTrips.py, ObjectBrowser.py, PyShell.py
Integrated Development Environment
Not applicable to Starkiller since this code uses eval to support dynamic introspection
and live object modification for an IDE.

Even if dynamic code insertion is not used very often in production programs, its
loss may still be sharply felt if many developers utilize a workflow that depends on
it. For example, one of Python’s most touted benefits is the ability to develop code
interactively, modifying code in an editor while periodically reloading the code into
a running interpreter. This approach speeds development by offering the developer
immediate real–time feedback to source code changes. Python’s introspection and
reflection features coupled with its lack of object access controls give developers the
ability to interrogate and modify all objects at run time, which only further increases
the benefits of interactive development. Moreover, this style of interactive develop-
ment can proceed much faster if the ability to simply reload and test new code allows
developers to bypass time consuming initialization functionality. This is particularly
relevant in cases where development requires establishing a connection to a database
in which starting the connection might be extremely slow while retrieving data on
an existing connection is fast. Another example in which interactive development
proceeds faster is the case of scientific computing programs that perform simple ma-
nipulations on large datasets. Due to the growing disparities between CPU and IO
performance, reading the data from disk can take much longer than actually manipu-
lating it. In such cases, development can be much faster if the dataset can be retained
in memory without needing to be reread from disk every time a code modification is
made and tested.

Despite the productivity benefits, Starkiller’s current inability to support inter-
active development is unlikely to prove a major hindrance to its adoption for several
reasons. For example, not all application domains and development philosophies ben-
efit from this workflow. Arguably, adoption of test–first development methodologies
greatly diminishes the benefits associated with interactive development. In addition,

88

many developers highly value the simplicity and reliability that come from certainty
in knowing that the system started in a known state with no stale objects lingering
from previous runs. This is especially true when developers use the interpreter to
make changes in the running system so that the state of the program in the editor
does not reflect the state of the system. Moreover, Starkiller can support a limited
form of interactive development, namely the ability to inspect objects interactively
in an application shell, for example, after an exception has occurred. Such inspec-
tion has no impact on type inference and requires far less support than supporting
dynamic code insertion in general.

Finally, lack of interactive development is not a major impediment to Starkiller’s
adoption because there already exists an excellent interactive development environ-
ment that supports the Python language: it is called CPython. Developers can
prototype their applications in CPython with small datasets for testing and then
move to Starkiller when the simple bugs have been worked out and they are ready
to work on large datasets. This gives them the best of both worlds, and is especially
appropriate for scientific computing applications where the analysis of a large dataset
can take hours or days to complete. Scientific computing environments have already
adopted a similar workflow because they develop programs on an individual desktop
but eventually test them on large compute clusters where debugging is more difficult
and interactive development is impractical if not altogether impossible.

Between the current workflow model in which all interactive development is foisted
onto CPython and full blown support of dynamic code insertion lies an intermediate
option. Starkiller could offer the option of compiling to modules to C++ library
files that support CPython’s extension API. In effect, Starkiller would utilize the
same workflow as Python2C originally intended: develop in CPython until things
get too slow, then compile performance critical modules into extensions and continue
developing in CPython. The resulting code could not interact completely freely with
arbitrary Python code since Starkiller could not have analyzed how arbitrary code
interacted with compiled modules. Consequently, such modules operate under restric-
tions. For example, classes defined in compiled modules would be sealed to prevent
Python code outside the extension from simply replacing methods with new function
blocks that Starkiller has not seen, cannot analyze, and may have already inlined in
other parts of the module. The result is something like extension types in CPython
right now: one cannot reassign the methods on the builtin type int even though one
can subclass int. This intermediate approach brings with it a raft of new challenges
that must be addressed in future research. One significant primary challenge is how
to integrate CPython objects with Starkiller objects. If Starkiller adopts CPython’s
object library and representation, it may lose a significant performance benefit. Alter-
native approaches require judicious conversions whenever objects cross the boundary
layer between CPython and Starkiller code.

Despite the problems inherent in supporting dynamic code insertion in a high
performance static compilation environment, Starkiller will eventually support some
(perhaps limited) form of dynamic code insertion. We describe possible implementa-
tion strategies presently. The most immediate problem faced in implementing eval is
the need for a parser and interpreter or compiler at run time. Once the dynamic code

89

has been parsed and interpretation begins, other problems quickly emerge. Consider
the following possibilities:

1. the evaluated code could call functions with argument types that do not match
any existing template

2. the evaluated code could assign a value with a type not seen before as an object’s
attribute

3. the evaluated code could replace code or data that had previously been assumed
to be constant and thus inlined

The first problem is easily solvable if we mandate that the compiler generate a
generic template for each function and method in addition to whatever specialized
templates the type inferencer indicates are required. Such generalized templates treat
all arguments as polymorphic and perform explicit type checks throughout in much
the same manner as the current implementation of Python does today. Including them
imposes no performance overhead beyond increased executable size. Starkiller needs
to be able to generate such polymorphic templates when compiling megamorphic
functions in order to avoid combinatorial explosion. The second and third problems
are interrelated and pose far more difficult challenges. In and of itself, the second
problem is not insurmountable since any data member could easily be replaced with a
pointer to new tagged data. The larger difficulty stems from the existence of (possibly
inlined) code throughout the system that accesses that data.

There are two possible solutions to this problem. One solution would involve
placing layers of indirection so that any code or data that could be modified by
dynamically inserted code could be easily replaced. This would impose a severe per-
formance penalty unless developers were given some method to declare code “sealed”
from further changes. The second solution requires that Starkiller recompile the en-
tire world image while running whenever it needs to handle dynamically inserted
code. The overhead involved in this recompilation would be substantial, making it
unsuitable for frequent uses of the eval function and practical for little more than
updating modules in the field. However, this recompilation process is amenable to
several optimizations. For example, recompilation might only be used as a last resort
if the evaluation interpreter ran into any of the three problems described above. In
the common case, evaluation would proceed without incident. Once recompilation
was triggered, the resulting world image would be generalized in ways that would
make recompilation less likely to be needed again. Another optimization requires
that Starkiller track dependencies between different functions, methods, and data
definitions so that it can recompile only the parts of the program that are affected by
the evaluated code. However, this approach presents further performance challenges
since it requires that Starkiller take full control of inlining away from the target com-
piler. Moreover, it necessitates either keeping most of the type inferencer’s internal
state from compile time accessible at run time in order to handle new code or running
the type inferencer over the entire program for each new change.

In general, the need to perform run time code patching is difficult to reconcile
with the peak performance since very high performance compilation techniques make

90

heavy use of inlining and other techniques that destroy program modularity. The
conflict between high performance and dynamic code generation is not impossible to
reconcile, but it remains quite challenging.

91

92

Bibliography

[1] Ole Agesen. Concrete Type Inference: Delivering Object-Oriented Applications.
PhD thesis, Stanford University, 1996.

[2] John Aycock. Converting Python Virtual Machine Code to C. In
The Seventh International Python Conference, November 1998. Avail-
able at http://www.foretec.com/python/workshops/1998-11/proceedings/
papers/ayco%ck-211/aycock211.html.

[3] Jonathan Bachrach and Glenn Burke. Partial Dispatch: Optimizing
Dynamically–Dispatched Multimethod Calls with Compile–Time Types and
Runtime Feedback, 1999. Available at http://www.ai.mit.edu/~jrb/

Projects/pd.pdf.

[4] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,
1999.

[5] H. Boehm and M. Weiser. Garbage Collection in an Uncooperative Environment.
Software Practice and Experience, pages 807–820, September 1988. Also see
http://www.hpl.hp.com/personal/Hans_Boehm/gc/.

[6] Frederick Brooks. The Mythical Man Month. Addison Wesley, 1995.

[7] Luca Cardelli. Basic Polymorphic Typechecking. Science of Computer Program-
ming, 8(2):147–172, 1987.

[8] Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C. Sreedhar,
and Samuel P. Midkiff. Escape Analysis for Java. In Proceedings of the Con-
ference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), pages 1–19, 1999.

[9] Stephen Cleary. Boost Pool Library, 2001. Available at http://www.boost.

org/libs/pool/doc/.

[10] Tom DeMarco and Timothy Lister. Peopleware: Productive Projects and Teams.
Dorset House Publishing, 1999.

[11] Abrahams et al. Technical Report on C++ Performance. Technical report,
ISO International Standardization Working Group for the C++ Programming

93

Langauge, August 2003. Available at http://anubis.dkuug.dk/jtc1/sc22/

wg21/docs/PDTR18015.pdf.

[12] D.G. Bobrow et al. Common LISP Object System Specification X3J13 Document
88-002R. ACM SIGPLAN Notices, 23, Sep 1988.

[13] Ittai Anati et al. The Intel Pentium M Processor: Microarchitecture and Perfor-
mance. Intel Technology Journal, 7(2), May 2003.

[14] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements od Reusable Object-Oriented Software. Addison-Wesley Profes-
sional Computing Series. Addison-Wesley Publishing Company, New York, NY,
1995.

[15] David Gay and Bjarne Steensgaard. Fast Escape Analysis and Stack Alloca-
tion for Object-Based Programs. In th International Conference on Compiler
Construction (CC’2000), volume 1781. Springer-Verlag, 2000.

[16] Jean Goubault. Generalized Boxings, Congruences and Partial Inlining.

[17] John Gough and Herbert Klaeren. Eliminating Range Checks Using Static Single
Assignment Form. In Proceedings of the 19th Australasian Computer Conference,
1996.

[18] Ralph E. Griswold and Madge T. Griswold. The Icon Programming Language.
Prentice Hall, 1990.

[19] Rajiv Gupta. Optimizing Array Bound Checks Using Flow Analysis. ACM Let-
ters on Programming Languages and Systems, 2(1-4):135–150, March–December
1993.

[20] John L. Hennessey and David A. Patterson. Computer Organization and Design:
The Hardware/Software Interface. Morgan Kaufmann, 1998.

[21] Jim Hugunin. Python and Java: The Best of Both Worlds. In 6th In-
ternational Python Conference. Corporation for National Research Initiatives,
October 1997. Available at http://www.python.org/workshops/1997-10/

proceedings/hugunin.html.

[22] Jim Hugunin. IronPython: A fast Python implementation for .NET and Mono.
In PyCon. Python Software Foundation, March 2004. Available at http://www.
python.org/pycon/dc2004/papers/9/IronPython_PyCon2004.html.

[23] Bob Jenkins. Minimal Perfect Hashing, 1999. Available at http://

burtleburtle.net/bob/hash/perfect.html.

[24] Eric Jones. Weave User’s Guide, 2003. Available at http://www.scipy.org/

documentation/weave/weaveusersguide.html.

94

[25] Eric Kidd. Efficient Compression of Generic Function Dispatch Tables. Technical
Report TR2001-404, Dartmouth College, Computer Science, Hanover, NH, June
2001.

[26] Priyadarshan Kolte and Michael Wolfe. Elimination of Redundant Array Sub-
script Range Checks. In Proceedings of the ACM SIGPLAN 1995 conference on
Programming language design and implementation, pages 270–278. ACM Press,
1995.

[27] Xavier Leroy. The effectiveness of type-based unboxing. In Workshop Types
in Compilation ’97. Technical report BCCS-97-03, Boston College, Computer
Science Department, June 1997.

[28] David Mertz. Charming Python: Make Python run as fast as C with Psyco,
October 2002. Available at http://www-106.ibm.com/developerworks/linux/
library/l-psyco.html.

[29] Stephan Murer, Stephen Omohundro, David Stoutamire, and Clemens Szyperski.
Iteration abstraction in Sather. ACM Trans. Program. Lang. Syst., 18(1):1–15,
1996.

[30] Lutz Prechelt. An Empirical Comparison of Seven Programming Languages.
Technical Report 2000-5, University of Karlsruhe, March 2000.

[31] Armin Rigo. Representation-based Just-in-time Specialization and the Psyco pro-
totype for Python, 2004. Available at http://psyco.sourceforge.net/theory_
psyco.pdf.

[32] Neil Schemenauer, Tim Peters, and Magnus Lie Hetland. Simple Generators.
Python Enhancement Proposal 255, May 2001.

[33] Bruce Schneier. Computer Security: Will We Ever Learn? Cryptogram, May
2000.

[34] Bruce Schneier. Phone Hacking: The Next Generation. Cryptogram, July 2001.

[35] Andrew Shalit, David Moon, and Orca Starbuck. The Dylan Reference Manual:
The Definitive Guide to the New Object-Oriented Dynamic Language. Addison-
Wesley, 1996.

[36] Stephen Shankland and Ben Charny. Linux to power most Motorola phones,
February 2003. Available at http://news.com.com/2100-1001-984424.html.

[37] Olin Shivers. The semantics of Scheme control-flow analysis. In Proceedings of the
Symposium on Partial Evaluation and Semantics-Based Program Manipulation,
volume 26, pages 190–198, New Haven, CN, June 1991.

[38] Y.N. Srikant and P Shankar, editors. The Compiler Design Handbook: Opti-
mizations and Machine Code Generation. CRC Press, 2003.

95

[39] Bruce Sterling. The Hacker Crackdown: Law and Disorder on the Electronic
Frontier. Bantam Books, 1993.

[40] Dan Sugalski. Performance problems in perl, python, and parrot. Private com-
munication on April 5 and May 16–19, 2004.

[41] Allison Taylor. AT&T to invest $3 billion in 2003 for global network,
September 2003. Available at http://www.infoworld.com/article/03/09/11/
HNattnetwork_1.html?source=rs%s.

[42] Computer Emergency Response Team. CERT Advisory CA-2001-19 “Code Red”
Worm Exploiting Buffer Overflow In IIS Indexing Service DLL, 2001.

[43] Computer Emergency Response Team. CERT Advisory CA-2001-26 Nimda
Worm, 2001.

[44] Computer Emergency Response Team. CERT Advisory CA-2003-04 MS-SQL
Server Worm, 2003.

[45] Computer Emergency Response Team. CERT Advisory CA-2003-16 Buffer Over-
flow in Microsoft RPC, 2003.

[46] Peter J. Thiemann. Unboxed values and polymorphic typing revisited. In Pro-
ceedings of the seventh international conference on Functional programming lan-
guages and computer architecture, pages 24–35. ACM Press, 1995.

[47] Guido van Rossum. Subtyping Built-in Types. Python Enhancement Proposal
252, May 2001.

[48] Guido van Rossum and Fracis L. Drake, editors. Python Language Reference.
PythonLabs, 2003.

[49] Hongwei Xi and Songtao Xia. Towards Array Bound Check Elimination in Java
Virtual Machine Language. In Proceedings of the 1999 conference of the Centre
for Advanced Studies on Collaborative research, page 14. IBM Press, 1999.

[50] Ka-Ping Yee and Guido van Rossum. Iterators. Python Enhancement Proposal
234, January 2001.

[51] Moshe Zadka and Guido van Rossum. Unifying Long Integers and Integers.
Python Enhancement Proposal 237, March 2001.

[52] Olivier Zendra, Dominique Colnet, and Suzanne Collin. Efficient Dynamic Dis-
patch without Virtual Function Tables: The SmallEiffel Compiler. pages 125–
141.

96

