
Bootstrapping an OODL

Jonathan Bachrach
MIT AI Lab

So You Want to Write a New OODL

• But, your language G doesn’t exist to write
it in?

• Of course it doesn’t, but why would you
want to write G in G anyways?
– Because it’s a superior language
– To Grove it’s a capable language
– Need a G runtime anyways

Start with Interpreter in D

• Write an interpreter for G in D
• Advantages

– D has a complete IDE
– D is a powerful language

• Disadvantages
– It will only run on machines that D runs on
– It will never be faster than an interpreter

How about the
runtime and libraries?

• Start by writing most of runtime and
support libraries in D
– Leverage D as much as possible

Stuck in D-land

• Write a cross compiler G2C_D
– But still have most of G system written in D

• Rewrite G runtime & interpreter in C and G
– Can’t assume anything cause it’s C
– Build all runtime objects by hand
– Objects must be constructed in order

G2C_D

• Still want to write G2C in D because of
– Speed debuggability and interactivity

• Will have an entire G system in D including
– Runtime
– Object System
– Libraries
– Interpreter
– G2C

G2C_G

• Finally port G2C to G
• Ensure that

– G2C_G.G => G2C_D => G2C_G
– G2C_G.G => G2C_G => G2C_G’
– G2C_G.G => G2C_G’ => G2C_G’’
– ...

Break Even Point

• G is now
– Free of D
– Powerful enough to write a G compiler in it

• You can now write new versions of G in G
• You have reached the break-even point

– congratulations

Standard MFTL Putdown

• “Has it been used for anything besides its
own compiler?”*
– On the other hand, a language that cannot even

be used to write its own compiler is beneath
contempt.*

• *From hacker’s dictionary

Bootstrapping

• Boot from Dylan
• Boot steady State

Native Boot Steady State

• Goals
– Simple
– Reduce throw away code

• Purely dynamic boot
– no reliance on compiler -- sequential execution
– Macros

• Keep object definitions looking as they do
• Define mappers that extract needed info

– Ordering
• Slowly build up world
• Finally original code can get pushed through

Boot Order

• Define boot objects in macro
• Build empty prototype objects
• Setup <lst> basics
• Setup hierarchy
• Define tagged and boxed objects
• Make slots and accessors
• Finalize slots
• Patch instances
• Define repeated objects
• prepare for functions
• Define functions
• Patch early generics
• Define object system

