
GOO Reference Manual v46

Jonathan Bachrach
MIT AI Lab

November 19, 2003

1 Introduction

GOO is a dynamic type-based object-oriented language. It is de-
signed to be simple, productive, powerful, extensible, dynamic,
efficient and real-time. It heavily leverages features from many
earlier languages. In particular, it attempts to be a simpler,
more dynamic, lisp-syntaxed Dylan [4] and an object-oriented
Scheme [3]. GOO’s main goal is to offer the best of both scripting
and delivery languages while at the same time incorporating an
extreme back-to-basics philosophy. GOO is freely available from
www.googoogaga.org under GPL. This manual is preliminary and re-
lies on an understanding of Scheme and Dylan.

1.1 Notation

Throughout this document GOO objects are described with defi-
nitions of the following form:

Name Signature N

Documentation

where the rightmost kind field has a one letter code as follows:
N Notation N

L Lexical N

S Syntax N

G Generic N

M Method N

F Function N

C Class N

P Property N

I Instance N

K Command N

1.2 Lexical Structure

The lexical structure is mostly the same as Scheme [3] with the no-
table exceptions being that identifiers can start with numeric dig-
its if they are clearly distinguishable from floating point numbers
and no syntax is provided for specifying improper lists. Further-
more, vertical bars are tokenized immediately and separately and
have special meaning within lists, providing syntactic sugar for
typed variables.
The following is a very brief and incomplete description of how
characters are tokenized into s-expressions, where s-expressions
are either tokens or lists of s-expressions:

; ... Line comment N

#/ ... /# Nested comment N
. + - [0-9]+ Number N

#e #i #b
#o #d #x Special number N

#t #f Logical N
#\name Character N

[a-zA-Z0-9]+ Identifier N
( ... ) List N

#( ... ) Tuple N
#[ ... ] Vector N

" ... " String N
\c Special character’s within strings N
x|t Typed variable within list≡ (x t) . N
#| Escaped vertical bar. N
{ ... } Lightweight function syntax. N

’[’ ... ’]’ Collection indexing and slicing. N

1.3 Meta Syntax

GOO’s syntax is described almost entirely as GOO patterns. GOO
patterns in turn are defined with a quasiquote metasyntax. Pat-
tern variables are prefixed with a “, ” or “,@” to indicate the match-
ing of one or many elements respectively. The default is for a
pattern variable to match one or many s-expressions. Alterna-
tively, a pattern variable’s shape may be defined with another pat-
tern. The ,name shape is builtin and matches only identifiers. The
’[’...’]’ metasyntax is used to indicate optional patterns, ’...’ is
used to indicate zero or more of the preceding pattern element,
and ## is used to denote infix string concatenation. Finally, in this
manual, uppercase indicates a special form or macro.

1.4 Conventions

The following naming conventions are used throughout this man-
ual:

’<’...’>’ Type variable N

’*’...’*’ Global variable N

...’?’ Predicate N

...’!’ Destructive function N

...’-setter’ Setter N

2 Expressions

Once tokenized, GOO evaluates s-expressions in the usual lisp
manner:

1



var ,name S

returns the value of binding named ,name in the current environment.

lit ,lit S

syntactic literals that are self-evaluating.

QUOTE (QUOTE ,form) S

with ’,form ≡ (QUOTE ,form) (cf., Scheme’s QUOTE)

special (,special ,@args) S

GOO defines a number of identifiers as the names of special forms, which if
seen in function call position cause special form specific evaluation.

call (,f ,@args) S

otherwise lists represent function calls.

3 Namespaces and Bindings

GOO is a lexically scoped language. Bindings contain values and
are looked up by name. Lexical bindings are visible from only
particular textual ranges in a program. Lexical bindings shadow
visible bindings of the same name.
At the topmost level, GOO provides simple modules that map
from names to bindings. Each file introduces a new module with
the same name as the file. Nested modules are supported by way
of slashes in module names. Modules can import bindings ex-
ported by other modules, but currently there is no way to selec-
tively exclude or rename imported bindings. Furthermore, no cy-
cles can occur in the module use heterarchy.

D. (D. ,var ,form) S

defines a global constant named (var-name ,var) with an initial value ,form

(cf. Dylan’s DEFINE CONSTANT).

DV (DV ,var ,form) S

defines a global variable named (var-name ,var) with an initial value ,form

(cf. Dylan’s DEFINE VARIABLE).

DEF (DEF ,var ,val) S

locally binds ,var to ,val and evaluates remainder of current body in the
context of that binding.

(DEF (TUP ,var ...) ,val) S

parallel binding can also be specified using TUP on the lhs of a DEF binding.
For example (DEF (TUP x y) (TUP 1 2))

LET (LET ((,var ,val) ...) ,@body) S

≡ (SEQ (DEF ,var ,val) ... ,@body)

where
,var ≡ ,name | (,name ,type) L

with ,name | ,type ≡ (,name ,type) within lists.

SET (SET ,name ,form) S

sets ,name binding to value of evaluating ,form (cf. Scheme’s SET! )

(SET (,name ,@args) ,form) S

≡ (,name ## -setter ,form ,@args)

USE (USE ,name) S

loads the module ,name (if it hasn’t been loaded already) and aliases all the
exported bindings into the current namespace.

EXPORT (EXPORT ,name) S

makes the binding ,name available to code which uses this module in the
future.

USE/EXPORT (USE/EXPORT ,name) S

same as USEplus reexports all imported bindings.

4 Program Control

GOO provides a variety of program control constructs including
function calls, conditional execution, and nonlocal control flow.

SEQ (SEQ ,@forms) S

evaluates forms sequentially and returns values of evaluating last form (cf.
Scheme’s BEGIN)

(SEQ) S

returns false

{ ... } { ,@body } S

SEQabbreviation ≡ (SEQ ,@body) .

IF (IF ,test ,then [ ,else ]) S

evaluates either ,then if ,test is non-false otherwise evaluates ,else (cf.
Scheme’s IF ). The ,else expression defaults to false.

AND (AND ,form ,@forms) S

≡ (IF ,form (AND ,@FORMS))

(AND ,form) S

≡ ,form

OR (OR ,form ,@forms) S

≡ (SEQ (DEF x ,form) (IF x x (OR ,@FORMS)))

(OR ,form) S

≡ ,form

UNLESS (UNLESS ,test ,@body) S

≡ (IF (NOT ,test) (SEQ ,@body))

WHEN (WHEN ,test ,@body) S

≡ (IF ,test (SEQ ,@body))

COND (COND (,test ,@body) ...) S

evaluates (SEQ ,@body) of first clause whose ,test evaluates to non-false (cf.
Dylan’s CASEand Scheme’s COND).

CASE[-BY]

(CASE[-BY] ,value [ ,test ]

((,@keys) ,@body)

...) S

evaluates ,value and then evaluates (SEQ ,@body) of first clause for which
(,test ,value ,key) returns non-false (cf. Dylan’s SELECT and Scheme’s
CASE). N.B., each key is evaluated, thus symbols must be quoted. The default
,test for the CASEform is ==.

OPF (OPF ,place ,expr) S

≡ (SEQ (DEF ,place) (SET ,place ,expr)) , where ,place is evaluated
only once. For example, (OPF x (+ 1)) ≡ (SET x (+ x 1)) .

SWAPF (SWAPF ,x ,y) S

≡ (SEQ (DEF tmp ,x) (SET ,x ,y) (SET ,y tmp)) , where ,x and ,y are
evaluated only once.

ROTF (ROTF ,x ,y ,@places) S

≡ (SET (TUP ,x ,y ,@places) (TUP ,y ,@places ,x)) where ,x , ,y , and
,@places) are evaluated only once and (SET (TUP ...) val) stands for
parallel assignment.

call (,f ,@args) S

2



evaluates ,f and then ,@args in left to right order and then calls ,f with the
evaluated arguments.

REP (REP ,name ((,var ,init) ...) ,@body) S

defines a recursive loop (cf., Dylan’s ITERATE or Scheme’s (LET ,var ...) ).

ESC (ESC ,name ,@body) S

evaluates (SEQ ,@body) with an exit function of a single parameter, x , bound
to ,name that if called, will cause ESC to return the value of x (cf. Dylan’s
BLOCK/RETURN). It is illegal to call the exit function after the execution of the
creating ESCform (i.e., no upward continuations).

FIN (FIN ,protected ,@cleanups) S

ensures that (SEQ ,@cleanups) is evaluated whether or not an ESC up-
wards exit is taken during the dynamic-extent of ,protected (cf. Dylan’s
BLOCK/CLEANUPform and CL’s UNWIND-PROTECT). The result of a FIN form is
the result of evaluating its protected form.

ASSERT (ASSERT ,test ,message ,@args) S

≡ (UNLESS ,test (ERROR ,message ,@args))

5 Types, Classes and Properties

GOO types categorize objects. Types are first class. They are used
to annotate bindings. Binding types restrict the type of objects
bindable to associated bindings.
GOO supports the following types in order of specificity (with the
exact ordering defined in Appendix B):
• Singleton types specify a unique instance,
• Classes and properties specify the structure, inheritance, and

initialization of objects. Every object is a direct instance of a
particular class,
• Product types specify a cross product of types,
• Subclass types specify a lineage of classes, and
• Union types specify a union of types.

The basic type protocol is:
<type> (<any>) C

isa? (x|<any> y|<type> => <log>) G

subtype? (x|<type> y|<type> => <log>) G

returns true iff x is a subtype of y.

new (type|<type> prop-inits|...) G

creation protocol taking type and creation options where prop-inits con-
tains getter / initial value pairs.

5.1 Singletons

Singleton types match exactly one value using ==. Singletons are
the most specific types.

<singleton> (<type>) C

t= (x|<any> => <singleton>) G

returns singleton constrained to x.

type-object (x|<singleton> => <any>) G

object that singleton type matches.

5.2 Subclasses

Subclass types match classes and their subclasses. They are quite
useful in situations that involve class arguments that need to be
further constrained.

<subclass> (<type>) C

t< (x|<class> => <subclass>) G

returns subclass type constrained to subclasses of x .

type-class (x|<subclass> => <class>) G

object that subclass type matches.

5.3 Unions

Union types represent the disjunction of types. In conjunction
with singleton types, they can be used to represent C-style enum’s.

<union> (<type>) C

t+ (types|... => <union>) G

returns union type representing disjunction of types .

union-elts (x|<union> => <seq>) G

types that union type matches.

t? (type|<type> => <union>) F

≡ (t+ (t= #f) type) (cf., Dylan’s false-or ). This is often used to widen a
type to include the convenient false null.

5.4 Product

Product types represent tuples formed as the cartesian product
of types. They are often used to describe multiple value return
types.

<product> (<type>) C

t* (types|... => <product>) G

returns product type specifying the cross product of types .

product-elts (x|<product> => <seq>) G

types that product type matches.

5.5 Classes

Classes are types that specify an inheritance relationship and can
have associated structured data through properties.

<class> (<type>) C

class-name (x|<class> => (t? <sym>)) G

returns class name or false otherwise.

class-
parents (x|<class> => <seq>) G

direct superclasses.

class-
ancestors (x|<class> => <seq>) G

class precedence list including this class. See Appendix A for details.

class-
direct-props (x|<class> => <seq>) G

properties defined directly on this class.

class-props (x|<class> => <seq>) G

properties defined on this class or any superclass.

class-
children (x|<class> => <seq>) G

direct subclasses.

DC (DC ,name (,@parents)) S

3



defines a class named ,name with direct parents ,@parents

new (type|<class> prop-inits|...) M

creates an instance of type type and prop initialized as specified by prop-

inits . For example, (new <point> point-x 1 point-y 2) creates a point
with x=1 and y=2 .

5.5.1 Properties

Properties are named data associated with classes. Their values
are accessed exclusively through generic functions, called get-
ters and setters. Descriptions of properties are instances of <prop> .
Property values can either be specified at creation time with key-
word arguments, by calling a property setter, or through a prop-
erty initialization function called lazily the first time a getter is
called if the property is otherwise uninitialized. Property initial-
ization functions are called with a single argument, the object un-
der construction.

<prop> (<any>) C

prop-owner (x|<prop> => <any>) P

class on which property was directly defined.

prop-getter (x|<prop> => <gen>) P

reader accessor generic.

prop-setter (x|<prop> => <gen>) P

writer accessor generic.

prop-type (x|<prop> => <type>) P

type constraining property value.

prop-init (x|<prop> => <fun>) P

lazy initialization function.

find-getter (c|<class> getter|<gen> => <met>) G

finds getter method defined on given class.

find-setter (c|<class> setter|<gen> => <met>) G

finds setter method defined on given class.

prop-bound? (x g|<gen> => <log>) P

returns true if property with getter g is bound in instance x .

add-prop

(owner getter|<gen> setter|<gen>

type|<type> init|<fun>) M

where init is a one parameter function that returns the initial value for the
prop and gets called lazily with the new instance as the argument.

DP (DP ,name (,oname|,owner => ,type) [,@init]) S

add’s an immutable property to ,owner with getter named ,name , type ,type ,
and optionally initial value ,init . The initial value function is evaluated
lazily when prop’s value is first requested.

DP! (DP! ,name (,oname|,owner => ,type) [,@init]) S

same as DPbut mutable with setter named ,name ## "-setter"

6 Functions

All operations in GOO are functions.
Functions accept zero or more arguments, and return one value.
The parameter list of the function describes the number and types
of the arguments that the function accepts, and the type of the
value it returns.

There are two kinds of functions, methods and generic functions.
Both are invoked in the same way. The caller does not need to
know whether the function it is calling is a method or a generic
function.

A method is the basic unit of executable code. A method accepts
a number of arguments, creates local bindings for them, executes
an implicit body in the scope of these bindings, and then returns
a value.

A generic function contains a number of methods. When a generic
function is called, it compares the arguments it received with the
parameter lists of the methods it contains. It selects the most ap-
propriate method and invokes it on the arguments. This tech-
nique of method dispatch is the basic mechanism of polymor-
phism in GOO.

All GOO functions are objects, instances of <fun> . Generic func-
tions are instances of <gen> and methods are instances of <met> .

<fun> (<any>) C

fun-name (x|<fun> => (t? <sym>)) P

returns the name of function or false if unavailable.

fun-names (x|<fun> => <lst>) P

returns the names of parameters of x or () if unavailable.

fun-specs (x|<fun> => <lst>) P

returns the specializers of x.

fun-nary? (x|<fun> => <log>) P

returns true iff the function takes optional arguments.

fun-arity (x|<fun> => <int>) P

returns x’s number of required arguments.

fun-val (x|<fun> => <type>) P

returns the return type of x .

FUN (FUN ,sig ,@body) S

creates an anonymous method with signature ,sig and when called eval-
uates ,@body as (SEQ ,@body) (cf. Scheme’s LAMBDA). The following a few
example functions and their application:

((fun (x) x) 1) ==> 1
((fun (x|<int> => <int>) x) 2) ==> 2
((fun (x|...) x) 1 2 3) ==> (1 2 3)
((fun (x y|...) y) 1 2 3) ==> (2 3)
((fun (x => (tup <int>))) (tup x)) 1)
≡ (tup 1)

{ ... } { [ ,@sig ’ \’ ] ,@body } S

FUN abbreviation ≡ (fun (,@sig) ,@body) . This is particularly useful for
lightweight thunks (e.g., {(+ x 1) } ≡ (fun () (+ x 1)) ). N.B. this is an
experimental syntax and might change in the future.

where

,sig ≡ (,@params) | (,@params => ,ret) L
,params ≡ (,@vars [(,name ’...’)]) L

where parameter lists can include an optional nary parameter which binds
to all arguments beyond required arguments.

,ret ≡ ,var | (TUP ,@ret-vars) L

with TUPturning into corresponding t* function return type.

,ret-var ≡ (,name ,type) L

LOC (LOC ((,name ,sig ,@fbody)) ,@body) S

4



≡
(LET ((,name #f) ...)
(SET ,name (fun ,sig ,@fbody)) ...
,@body)

LOC introduces local functions that can recursively call each other (cf.
Scheme’s LETREC).

DF (DF ,name ,sig ,@body) S

≡ (DV ,name (FUN ,sig ,@body)) followed by setting the function’s name.

zipped (x|<fun> => <fun>) G

≡ (fun (y|...) (app x y)) . This is useful when mapping over zipped
multiple sequences (e.g., (map (zipped +) (zip ’(1 2) ’(2 3))) .

OP (OP ,op-arg ...) S

creates an anonymous function with implicitly defined arguments, where
,op-arg is either an implicit required parameter “ ” or rest parameter “... ”
or an s-expression potentially containing further op-args. The required pa-
rameters are found ordered according to a depth-first walk of the op-args.
The following are typical examples:
((op ) 1) ==> 1
((op 2) 1) ==> 2
((op + 1) 3) ==> 4
((op lst ... 1) 3 2) ==> (3 2 1)
((op tail (tail )) ’(1 2 3)) ==> (3)

app (f|<fun> args|... => <any>) G

calls f with arguments (cat (sub args 0 (- (len args) 2)) (elt args

(- (len args) 1))) .

6.1 Generics

Generic functions provide a form of polymorphism allowing
many implementation methods with varying parameter types,
called specializers. Methods on a given generic function are chosen
according to applicability and are then ordered by specificity. A
method is applicable if each argument is an instance of each cor-
responding specializer. A method A is more specific than method
B if all of A’s specializers are subtypes of B’s. During method dis-
patch three cases can occur:
• if no methods are applicable then a no-applicable-method er-

ror is signaled,
• if methods are applicable but are not orderable then an

ambiguous-method error is signaled,
• if methods are applicable and are orderable then the most

specific method is called and the next methods are estab-
lished.

<gen> (<fun>) C

fun-mets (x|<gen> => <lst>) P

returns x’s methods.

gen-add-met (x|<gen> y|<met> => <gen>) G

adds method y to generic x .

ord-app-mets

(x|<gen> args|...

=> (tup ord|<lst> amb|<lst>)) G

returns both the list of sorted applicable methods and any ambiguous meth-
ods when generic x is called with arguments args.

DG (DG ,name ,sig) S

defines a binding with name ,name bound to a generic with signature ,sig .

6.2 Methods

Methods are GOO’s code objects. Methods can optionally be
added to generics.

<met> (<fun>) C

met-app? (x|<met> args|<lst> => <log>) G

determines whether x is applicable when called with args .

DM (DM ,name ,sig ,@body) S

first ensures that a generic exists named ,name and with a minimally con-
gruent to signature ,sig and then adds a method with signature ,sig and
body ,@body (cf., Dylan’s DEFINE METHOD).

SUP (SUP ,@args) S

calls next most applicable method. N.B., all arguments must be supplied.

(APP-SUP ,@args) S

applies next most applicable method. N.B., all arguments must be supplied.

7 Macros

Macros provide a facility for extending the base syntax of GOO.
The design is based on quasiquote code templates and a simple
list pattern matching facility. Macros are currently unhygienic,
and users are required to use gensym to avoid name collisions.

QUASIQUOTE (QUASIQUOTE ,@qq-forms) S

QUOTEwith selective evaluation using UNQUOTEand SPLICING-UNQUOTE(cf.
Lisp and Scheme’s QUASIQUOTE), abbreviated “‘ ”.

UNQUOTE (UNQUOTE ,form) S

evaluates ,form in the midst of a QUASIQUOTEexpression, abbreviated “, ”.

SPLICING-
UNQUOTE (SPLICING-UNQUOTE ,form) S

evaluates ,form in the midst of a QUASIQUOTEexpression and splices it in,
abbreviated “,@”.

MATCH (MATCH ,exp (,pat ,val) ...) S

evaluates ,val corresponding to first ,pat matching ,exp . The pattern is
much the same as QUASIQUOTEand can contain either UNQUOTE’d variables or
UNQUOTE-SPLICINGvariables. For example,
(MATCH ’(1 2) ((,a ,b) (lst a b))) → (1 2)
(MATCH ’(1 2) ((,a ,@b) (lst a b))) → (1 (2))

DS (DS ,name (,pattern) ,@body) S

defines a macro matching pattern ,pattern and expanding according to
,@body . The pattern matching occurs as in MIF and makes available pattern
variables during the evaluation of (SEQ ,@body) . For example,
(DS unless (,test ,@body)
‘(if (not ,test) (seq ,@body)))

defines the when macro in GOO.

where
pattern ≡ (,@qq-forms) L

CT (CT ,@body) S

evaluates (SEQ ,@body) at compile-time allowing a user to make available
computations for the purpose of macro-expansion.

CT-ALSO (CT-ALSO ,@body) S

equivalent to CT, but also includes a copy of ,@body in compiled images. Sim-
ilar to (eval-when (:compile-toplevel :execute) ...) in Common LISP.
The return value of CT-ALSO is undefined.

MACRO-EXPAND (MACRO-EXPAND ,form) S

5



recursively expands macros in expression ,form .

8 Scalars

GOO provide a rich set of simple objects.

8.1 Any

All objects are derived from <any> .
<any> (<any>) C

as (x|<any> y|<any> => <any>) G

coerces y to an instance of x.

class-of (x|<any> => <class>) G

returns concrete class of x .

== (x|<any> y|<any> => <log>) G

returns true iff x and y are computationally equivalent.

= (x|<any> y|<any> => <log>) G

returns true iff x and y are equal, where equality is user defined and defaults
to ==.

˜= (x|<any> y|<any> => <log>) G

≡ (not (= x y)) .

˜== (x|<any> y|<any> => <log>) G

≡ (not (== x y)) .

to-str (x|<any> => <str>) G

returns string representation of object.

8.2 Booleans

In GOO, for convenience sake, true is often represented by any-
thing that is not false, but #t is reserved for the canonical true
value. False is often used to represent null.

<log> (<any>) C

#f <log> I

#t <log> I

not (x|<any> => <log>) M

≡ (if x #f x)

8.3 Magnitudes

Magnitudes are totally orderable objects. Users are only required
to implement < and =.

<mag> (<any>) C

< (x|<mag> y|<mag> => <log>) G

returns iff x is less than y .

> (x|<mag> y|<mag> => <log>) G

≡ (not (or (< x y) (= x y))) .

<= (x|<mag> y|<mag> => <log>) G

≡ (or (< x y) (= x y)) .

>= (x|<mag> y|<mag> => <log>) G

≡ (not (< x y)) .

min (x|<mag> y|<mag> => <mag>) G

returns the smallest of x and y .

max (x|<mag> y|<mag> => <mag>) G

returns the largest of x and y.

8.4 Locatives

Locatives are word aligned pointers to memory. They are meant
to be used to represent pointers to foreign data and not to point
to interior GOO object data.

<loc> (<mag>) C

loc-val (x|<loc> => <any>) G

returns the object pointed to by x .

address-of (x|<any> => <loc>) G

returns address of particular object.

8.5 Characters

GOO currently supports 8 bit ASCII characters.
<chr> (<mag>) C

alpha? (x|<chr> => <log>) G

returns true iff x is one of the ASCII upper or lowercase characters.

digit? (x|<chr> => <log>) G

returns true iff x is one of the ten ASCII numeric characters.

lower? (x|<chr> => <log>) G

returns true iff x is one of the ASCII lowercase characters.

upper? (x|<chr> => <log>) G

returns true iff x is one of the ASCII uppercase characters.

to-digit (x|<chr> => <int>) G

converts ascii representation of digit to an integer one.

to-lower (x|<chr> => <chr>) G

returns lowercase version of uppercase alphabetic characters otherwise re-
turns x.

to-upper (x|<chr> => <chr>) G

returns uppercase version of lowercase alphabetic characters otherwise re-
turns x.

8.6 Numbers

<num> (<mag>) C

+ (x|<num> y|<num> => <num>) G

returns the sum of its arguments.

- (x|<num> y|<num> => <num>) G

returns the difference of its arguments.

* (x|<num> y|<num> => <num>) G

returns the product of its arguments.

/ (x|<num> y|<num> => <num>) G

returns the quotient of its arguments.

6



round (x|<num> => <int>) G

returns closest integer to x . If x is exactly between two integers then the
implementation is free to return either integer.

round-to (x|<num> n|<int> => <flo>) G

returns x to closest flo n digits precision.

floor (x|<num> => (tup <int> rem|<num>)) G

returns an integer by truncating x towards negative infinity.

ceil (x|<num> => (tup <int> rem|<num>)) G

returns an integer by truncating x towards positive infinity.

trunc (x|<num> => (tup <int> rem|<num>)) G

returns an integer by truncating x towards zero.

mod (x|<num> y|<num> => <num>) G

returns the remainder after taking the floor of the quotient of x and y .

div (x|<num> y|<num> => <num>) G

returns the trunc of the quotient of x and y.

rem (x|<num> y|<num> => <num>) G

returns remainder after dividing x by y .

pow (x|<num> e|<num> => <num>) G

returns x raised to the e power.

exp (x|<num> => <num>) G

≡ (pow $e x)

sqrt (x|<num> => <num>) G

returns the square root of x .

pos? (x|<num> => <log>) G

≡ (> x 0)

zero? (x|<num> => <log>) G

≡ (= x 0)

neg? (x|<num> => <log>) G

≡ (< x 0)

neg (x|<num> => <num>) G

≡ (- 0 x)

abs (x|<num> => <num>) G

≡ (if (neg? x) (neg x) x)

num-to-str-
base (x|<num> b|<int> => <str>) G

returns string representation of x in base b.

num-to-str (x|<num> => <str>) G

equiv (num-to-str-base x 10)

str-to-num (x|<str> => <num>) G

returns closest number corresponding to string x.

INCF (INCF ,name) S

≡ (SET ,name (+ ,name 1))

(INCF (,name ,@rest)) S

≡ (SET (,name ,@rest) (+ (,name ,@rest) 1))

DECF (DECF ,name) S

≡ (SET ,name (+ ,name 1))

(DECF (,name ,@rest)) S

≡ (SET (,name ,@rest) (+ (,name ,@rest) 1))

$e <flo> I
$pi <flo> I

sqrt (x|<num> => <num>) G

log (x|<num> => <num>) G

logn (x|<num> b|<num> => <num>) G

sin (x|<num> => <num>) G

cos (x|<num> => <num>) G

tan (x|<num> => <num>) G

asin (x|<num> => <num>) G

acos (x|<num> => <num>) G

atan (x|<num> => <num>) G

atan2 (y|<num> x|<num> => <num>) G

sinh (x|<num> => <num>) G

cosh (x|<num> => <num>) G

tanh (x|<num> => <num>) G

8.6.1 Integers

GOO currently represents integers as 30 bit fixnums.

<int> (<num>) C
| (x|<int> y|<int> => <int>) G

returns the logical inclusive or of its arguments.

& (x|<int> y|<int> => <int>) G

returns the logical and or of its arguments.

ˆ ((x|<int> y|<int> => <int>)) G

≡ (| (& x (˜ y)) (& (˜ x) y))

˜ (x|<int> => <int>) G

returns the logical complement of its argument.

bit? (x|<int> n|<int> => <log>) G

returns true iff nth bit is 1.

even? (x|<int> => <log>) G

odd? (x|<int> => <log>) G

gcd (x|<int> y|<int> => <int>) G

greatest common denominator.

lcm (x|<int> y|<int> => <int>) G

least common multiple.

<< (x|<int> n|<int> => <int>) G

returns n bit shift left of x .

>> (x|<int> n|<int> => <int>) G

returns signed n bit shift right of x .

>>> (x|<int> n|<int> => <int>) G

returns unsigned n bit shift right of x.

7



8.6.2 Floats

GOO currently only supports single-precision floating point
numbers.

<flo> (<num>) C

flo-bits (x|<flo> => <int>) G

returns bit representation as an integer.

9 Collections

Collections are aggregate data structures mapping keys to values.
Collections can be almost entirely defined in terms of an enumer-
ation class.

<col> (<any>) C

<col.> (<col>) C

immutable collections.

fab (t|(t< <col>) n|<int> => <col>) G

returns a new instance of collection type t of len n.

col (t|(t< <col>) key-vals|... => <col>) G

returns new collection of type t with initial key values key-vals .

fabs (t|(t< <col>) elts|... => <col>) G

returns new collection of type t with initial values elts and keys (below

(len elts)) .

len (x|<col> => <int>) G

returns number of collection elements.

col-res-type (x|<col> => <type>) G

appropriate instantiable type for creating collection results, where the de-
fault is (class-of x) .

nul? (x|<col> => <log>) G

≡ (= (len x) 0)

nul (x|(t< <col>) => <col>) G

returns collection specific unique empty value.

key-test (x|<col> => test|<fun>) G

returns collection’s key equality function.

(x|<col> => (t= ==)) M

default key-test is identity function.

key-type (x|<col> => <type>) G

returns collection x’s key type.

elt-type (x|<col> => <type>) G

returns collection x’s element type.

elt (x|<col> k|<any> => <any>) G

returns collection x’s element associated with key k .

’[’ ... ’]’ ’[’ ,x ,k ’]’ S

≡ (elt ,x ,k)

elt-or (x|<col> k d => <any>) G

returns collection x’s element associated with key k or default d if it doesn’t
exist.

mem? (x|<col> y|<any> => <log>) G

returns true iff y is an element of x .

add (x|<col> y|<any> => <col>) G

returns collection with y added to x.

elts (x|<col> keys|<seq> => <col>) G

subset of elements of x corresponding to keys keys .

dup (x|<col> => <col>) G

returns shallow copy of x.

keys (x|<col> => <seq>) G

returns x’s keys.

items (x|<col> => <seq>) G

returns a sequence of x’s key/val tuples.

del (x|<col> key|<any> => <col>) G

returns copy of x’s without element corresponding to key .

zap (x|<col> => <col>) G

returns empty copy of x.

fill (x|<col> y|<any> => <col>) G

returns copy of x with all values being y.

any? (f|<fun> x|<col> => <log>) G

returns true iff any of x’s element satisfies given predicate f .

find (f|<fun> x|<col> => <any>) G

returns key associated with first of x’s values to satisfy predicate f .

find-or (f|<fun> x|<col> default => <any>) G

returns key associated with first of x’s values to satisfy predicate f or default

if not found.

all? (f|<fun> x|<col> => <log>) G

returns true iff all of x’s elements satisfies given predicate f .

fold

(f|<fun> init|<any> x|<col>

=> <col>) G

≡ (f (f ... (f init (elt x 0)) (elt x (- n 2))) (elt x (- n 1)))

fold+ (f|<fun> x|<col> => <any>) G
≡ (f (f ... (f (elt x 0) (elt x 1)) (elt x (- n 2))) (elt x (- n

1)))

do (f|<fun> x|<col>) G

iterates function f over values of x for side-effect.

map (f|<fun> x|<col> => <col>) G

iterates function f over values of given collections and collects the results.

9.1 Mutable Collections

Mutation is seen as a necessary evil and is supported but segre-
gated in hopes of trying to isolate and optimize the nondestruc-
tive cases. Mutation includes the notion of modifying values and
adding/removing keys. The hope is that functional (nondestruc-
tive) programs will be both more succinct, understandable, and
efficient than equivalent destructive programs. Only core collec-
tion operators are given destructive versions. All others can be
built out of nondestructive operators followed by into

1.
<col!> (<any>) C

elt-setter (v|<any> x|<col!> k|<any>) G

1When optimization is in place, the ! suffixed functions will be deprecated.

8



sets collection x’s element associated with key k to v .

into (x|<col!> y|<col> => <col!>) G

replaces elements of x with elements of y .

elt! (x|<col!> y|<any default|<fun> => <any>) G

≡ (or (elt-or c k #f) (set (elt c k) (default))) but uses unique de-
fault key for elt-or instead of false.

fill! (x|<col!> y|<any> => <col!>) G

fills x with y’s.

add! (x|<seq!> y|<any => <seq!>) G

adds y to x .

del! (x|<col!> key|<any> => <col!>) G

removes key from x .

zap! (x|<col!> => <col!>) G

removes all of x’s elements.

9.2 Enumerators

Enumerations are the foundation of collections and are designed
to provide the convenience of Lisp’s list interface (e.g., null , car ,
cdr ) for all collections. In defining a new collection class, a user
must implement at minimum an enumerator class and the enu-
meration protocol: enum, fin? , nxt , and now. For efficiency, users
might choose to override more methods such as len , elt , elt-setter ,
etc. Enumeration behavior is undefined if an enumerator is mod-
ified during enumeration.

<enum> (<any>) C

enum (x|<any> => <enum>) G

returns initial enum for iterating over x .

fin? (x|<enum> => <log>) G

returns true iff no more elements exist from given enum x.

nxt (x|<enum> => <enum>) G

returns enum pointing to next element in enum x .

now (x|<enum> => <any>) G

returns current element given enum x .

now-setter (v x|<enum>) G

sets current element given enum x to v.

now-key (x|<enum> => <any>) G

returns current key given enum x.

enum (x|<enum> => <enum>) M

returns x allowing enumerators to be enumerated.

FOR (FOR (,for-clause ...) ,@body) S

parallel iteration over collections using enumerations.

where

,for-clause ≡ (,var ,col) | ((tup ,keyvar ,var) ,col) L

specifies one parallel iteration over a collection ,col binding successive val-
ues to ,var and optionally keys to ,keyvar .

9.3 Packers
Packers are the complement of enumerators and are the impera-
tive version of fold . The default packer returns a list of all accu-
mulated values:
(packing (for ((e ’(1 2 3 4 5)))

(when (odd? e) (pack e))))
==> (1 3 5)

They can also be used for summing values etc:
(packing-in (x|<int>)

(for ((e ’(1 2 3 4 5)))
(when (odd? e) (pack-in x e)))

(packed x))
==> 9

<packer> (<any>) C

packer-add (p|<packer> x => <packer>) G

returns a copy packer p augmented with element x.

packer-res (p|<packer> => <any>) G

returns result of packings over p.

packer (init add|<fun> res|<fun>) G

returns a simple packer that starts its value out with init , is augmented
with add , and whose final value is computed with res .

packer-fab (t|<type> => <packer>) G

returns a new type t specific packer.

packer-fab (t|(t< <seq>) => <packer>) M

≡ (packer ’() pair (op as t (rev! )))

packer-fab (t|(t= <int>) => <packer>) M

≡ (packer 0 + (op ))

PACKING-WITH (PACKING-WITH ((,var ,pack) ...) ,@body) S

mechanism for packing objects using given packer into ,var .

PACKING-IN (PACKING-IN (,name ’|’ ,type ...) ,@body) S

≡ (PACKING-WITH (,name (packer-fab ,type)) ,@body) .

(PACKING-IN (,name) ,@body) S

≡ (PACKING-IN (,name ’|’ <lst>) ,@body) .

PACKING (PACKING ,@body) S

≡ (PACKING-IN (packer-) ,@body (packed packer-)) .

PACK-IN (PACK-IN ,pack ,x) S

folds ,x into packer in ,pack .

PACK (PACK ,x) S

≡ (PACK packer- ,name) .

PACKED (PACKED ,name) S

≡ (packer-res ,name) .

9.4 Maps

Maps represent collections with explicit keys.
<map> (<col>) C

<tab> (<map> <col!>) C

Tables are near constant-time aggregate data structures. Users can define
their own tables by subclassing and overriding the key-test and tab-hash

methods.
tab-growth-
factor (x|<tab> => <flo>) P

factor by which to grow capacity.

9



tab-growth-
threshold (x|<tab> => <flo>) P

when to grow based on proportion of total table capacity.

tab-shrink-
threshold (x|<tab> => <flo>) P

when to shrink based on proportion of total table capacity.

tab-hash (x|<tab> => <fun>) G

returns hash function.

id-hash (x|<tab> => <int>) G

hash function based on identity.

9.5 Sequences

Sequences are collections with nonnegative integer keys.
<seq> (<col>) C
<seq.> (<seq> <col.>) C

immutable sequence.

1st (x|<seq> => <any>) G

≡ (elt x 0)

2nd (x|<seq> => <any>) G

≡ (elt x 1)

3rd (x|<seq> => <any>) G

≡ (elt x 2)

last (x|<seq> => <any>) G

≡ (elt x (- (len x) 1))

pos (x|<seq> v|<any> => (t? <int>)) G

finds position of v in x else returns false.

finds (x|<seq> y|<seq> => (t? <int>)) G

finds position of y in x else returns false.

add (x|<seq> y|<any> => <seq>) M

returns sequence with y added to the end of x .

push (x|<seq> y|<any> => <seq>) G

returns sequence with y added to x .

pop (x|<seq> => (tup <any> <seq>)) G

returns last pushed element of x and new sequence with that element re-
moved from x .

rev (x|<seq> => <seq>) G

returns reversed sequence.

cat (x|<seq> more|... => <seq>) G

returns concatenated sequences.

sub (x|<seq> from|<int> below|<int> => <seq>) G

subsequence of x between from and below .

’[’ ... ’]’ ’[’ ,x ,from ,below ’]’ S

≡ (sub ,x ,from ,below)

sub* (x|<seq> from|<int> => <seq>) G

≡ (sub x from (len x))

’[’ ... ’]’ ’[’ ,x ,from * ’]’ S

≡ (sub* ,x ,from)

ins (x|<seq> val i|<int> => <seq>) G

returns copy of x’s with val inserted before i .

del-dups (x|<seq> => <seq>) G

returns sequence with all duplicates removed.

del-vals (s|<seq> val => <seq>) G

returns sequence with all copies of val removed.

sort-by (s|<seq> f|<fun> => <seq>) G

returns a sorted copy of s using f as a comparator.

sort (s|<seq> => <seq>) G

≡ (sort-by s <)

pick (f|<fun> x|<seq> => <seq>) G

returns new sequence with elements corresponding to non-false results
when calling predicate f .

prefix? (x|<seq> prefix|<seq> => <log>) G

returns true iff sequence x starts with sequence prefix .

suffix? (x|<seq> suffix|<seq> => <log>) G

returns true iff sequence x ends with sequence suffix .

repeat (x|<seq> n|<int> => <seq>) G

returns sequence with n concatenated copies of x .

split (x|<seq> sep => <seq>) G

returns sequence of subsequences of x separated by sep .

join (xs|<seq> sep|<seq> => <seq>) G

returns sequence composed of sequences in xs joined with sep .

9.5.1 Mutable Sequences

<seq!> (<seq> <col!>) C

rev! (x|<seq!> => <seq!>) G

returns destructively reversed sequence.

cat! (x|<seq!> more|... => <seq!>) G

returns destructively concatenated sequences.

add! (x|<seq!> y|<any> => <seq!>) G

returns collection with y added to the end of x .

push! (x|<seq!> y|<any> => <seq!>) G

returns collection with y added to the front of x .

pop! (x|<seq!> => (tup val|<any> <seq!>)) G

pops element from front of sequence.

PUSHF (PUSHF ,place ,val) S

pushes ,val onto the sequence stored in ,place , updates ,place to contain
the new sequence, and returns the new sequence.

POPF (POPF ,place) S

pops a value from the sequence stored in ,place , replaces the sequence with
an updated sequence, and returns the value.

ins! (x|<seq!> v|<any> i|<int> => <seq!>) G

inserts v before i in x.

sub-setter (dst|<seq!> src|<seq> from|<int> below|<int>) G

10



replaces subsequence in range between from and below of dst with contents
of src . Provides insertion, deletion, and replacement operations rolled into
one.

sub*-setter (dst|<seq!> src|<seq> from|<int>) G

≡ (sub-setter dst src from (len dst))

del-vals! (x|<seq!> v|<any> => <seq!>) G

removes all v’s from x .

del-dups! (x|<seq!> => <seq!>) G

removes all duplicates from x.

sort-by! (s|<seq> f|<fun> => <seq>) G

destructively sorts s using f as a comparator.

sort! (s|<seq> => <seq>) G

≡ (sort-by! s <)

9.5.2 Lists

Lists are always “proper” lists, that is, the tail of a list is always a
list. Lists might be deprecated in future releases of GOO.

<lst> (<seq!>) C

<list> <lst> A

head (x|<lst> => <any>) P

tail (x|<lst> => <lst>) P

lst (elts|... => <lst>) G

returns list of arguments.

list lst A

lst* (elts|... => <lst>) G

returns list of arguments with last argument tacked onto end.

nil <lst> I

aka () .

pair (x|<any> y|<lst> => <lst>) G

returns new list with x as head and y as tail.

9.5.3 Zips

A zip is a sequence of tuples of sucessive elements of sequences.
A zip has the length of its shortest constituent sequence.

<zip> (<seq.>) C

zip (cs|(... <seq>) => <zip>) G

returns a zip over sequences cs .

unzip (z|<zip> => <tup>) G

returns a tuple of z’s constituent sequences.

9.5.4 Flat Sequences

Flats represents sequences with constant access time. Flat enum
provides an enum implementation of all but now and now-setter .

<flat> (<seq>) C

<flat-enum> (<enum>) C
<tup> (<flat> <seq.>) C

Tuples are immutable flat sequences and represents multiple values in
GOO.

tup (elts|... => <tup>) G

creates a tuple with elements being elts .

<vec> (<flat> <seq!>) C

Stretchy vectors resize when needed.

vec (elts|... => <sec>) G

returns new vector with elements elts .

Strings

GOO currently implements ASCII strings.

<str> (<flat> <mag> <seq.>) C

str (elts|... => <str>) G

returns new string with elements elts .

case-
insensitive-
string-hash (x|<tab> => (tup hash|<any> gc-state|<any>)) G
case-
insensitive-
string-equal (x|<str> y|<str> => <log>) G

9.6 Lazy Series’

Represents an immutable sequence of numbers specified using a
start number from , a step amount by , and an inclusive bound to .

<range> (<seq.>) C

range-by

(from|<num> test|<fun> lim|<num> by|<fun>

=> <range>) G

returns a range starting from , updated with by , and continuing until (test

x lim) is false.

range (from|<num> test|<fun> lim|<fun> => <range>) G

≡ (range-by from test lim (op + 1))

from (from|<num> => <range>) G

≡ (range from (always #t) 0)

below (lim|<num> => <range>) G

≡ (range 0 < lim)

<step> (<seq.>) C

Steps represent step functions.

first-then (first|<fun> then|<fun> => <step>) G

returns a new step object, calling thunks first to retrieve initial value and
then to retrieve subsequent values.

each (f|<fun> => <each>) G

returns a new each object, calling f thunk to retrieve each value.

<cycle> (<seq.>) C

Cycles provide a mechanism to create infinite sequences repeating a certain
sequence over and over again.

cycle (x|... => <cycle>) G

returns a cycles that repeats elements of x.

11



10 Symbols

Symbols are uniquified (aka interned) strings.
<sym> (<any>) C
<sym-tab> (<tab>) C

symbol table class.

as ( |(t= <sym>) x|<str> => <sym>) M

coerces a string to a symbol.

cat-sym (elts|... => <sym>) G

returns a symbol formed by concatenating the string representations of elts .

gensym (=> <sym>) G

returns a system specific unique symbol.

fab-setter-
name (x|<sym> => <sym>) G

≡ (as <sym> (cat (as <str> x) "-setter")) .

11 Conditions

Conditions are objects representing exceptional situations. GOO
provides restartable conditions as well as the more traditional
stack unwinding conditions. A condition is an object used to pro-
vide information to a handler. A handler is an object with a han-
dler function used to take care of conditions of a particular type.
Signalling is a mechanism for finding the most appropriate han-
dler for a given condition. See DRM [4] for more information.

<condition> (<any>) C
default-
handler (x|<condition> => <fun>) G

called if no appropriate handler is in force.

default-
handler-
description (c|<condition> => <str>) G

return a string describing an anonymous handler for this type of condition.

build-
condition-
interactively (type|<condition> in out => <condition>) G

construct a condition of the specified type and interactively prompt the user
to fill in any important props. Called by the debugger. Methods should call
next-method to build the condition, then set the props for their own class.

sig (x|<condition> args|...) G

signals a condition with optional arguments args.

<simple-
condition> (<condition>) C

a condition consisting of a msg message and arguments.

condition-
message (x|<simple-condition> => <str>) P

returns msg string.

condition-
arguments (x|<simple-condition> => <lst>) P

returns msg string arguments.

<serious-
condition> (<condition>) C

a condition that can not be safely ignored.

<error> (<serious-condition>) C

a condition that indicates something is invalid about the program.

error (x|<any> args|...) G

signals an error.

error (x|<str> args|...) M

signals a simple error.

<simple-
error> (<error> <simple-condition>) C

an error that consists of a msg message and arguments.

<restart> (<condition>) C

used for restarting a computation.

<handler> (<any>) C

object used for handling a signaled condition.

handler-
function (x|<handler> => <fun>) G

fab-handler (x|<fun> => <handler>) G

creates a handler from a handler function.

handler-
matches? (x|<handler> y|<condition> => <log>) G

protocol for determining whether a handler handles a particular condition.

TRY (TRY ,try-options ,handler ,@body) S

installs ,handler as a condition handler for the duration of (SEQ ,@body) ,
using the instructions provided by ,try-options . ,try-options should ei-
ther be the name of the condition type to handle , or a ,try-option-list with
zero or more of the following options:
• (TYPE ,expr) => An expression returning the type of condition to

handle.
• (TEST ,@body) => Code which returns #t if the condition is applicable,

and #f otherwise. This may be called at arbitrary times by the runtime,
so it shouldn’t do anything too alarming.

• (DESCRIPTION ,message ,@arguments) => A human-readable descrip-
tion of this handler. Used by the debugger.

The handler function should take two arguments: the ,condition to be han-
dled, and a ,resume function. if a matching condition is signaled then the
handler function is called with the signaled condition and a resume function
to be called if the handler wants to return a value to be used as the result of
the signaling SIG call. the handler has three possibilities: (1) it can handle
the condition by taking an exit using ESC, (2) it can resume to the original
SIG call using the resume function called with the value to be returned, or
(3) it can do neither, that is, it can choose not to handle the condition by
just falling through to the end of the handler (cf., Dylan’s BLOCK/EXCEPTION

and LET HANDLER) and the next available handler will be invoked. Note that
GOO does not unwind the stack before calling handlers!

where
handler ≡ (fun (,condition ,resume) ,@body) L

,try-options ≡ ,condition-type-name | ,try-option-list L
,try-option-
list ≡ (,try-option* ) L
,try-option ≡ (,option-name ,@option-value) L

11.1 Conditions Hierarchy

GOO has a builtin hierarchy of conditions.
<arithmetic-
error> (<error>) C
<stack-
overflow-
error> (<error>) C
<keyboard-
interrupt> (<error>) C

user hit interrupt key.

<internal-
error> (<simple-error>) C

a system fault was detected.

12



<assert-
error> (<simple-error>) C

an assertion failure occurred.

<unbound-
error> (<error>) C

an binding or property was found to be unbound.

<unbound-
variable-
error> (<unbound-error>) C

a binding was found to be unbound.

unbound-
variable-
error-
variable (<unbound-variable-error> => <any>) P
<property-
error> (<error>) C
property-
error-
generic (<property-error> => <any>) P

property accessor if available.

property-
error-owner (<property-error> => <any>) P

property owner if available.

<property-
unbound-
error> (<property-error> <unbound-error>) C

unbound property was discovered.

<property-
type-error> (<property-error> <type-error>) C

attempt was made to store an invalid object in a property.

<property-
not-found-
error> (<property-error>) C

attempt was made to find a missing property, most likely during a call to
new.

<as-error> (<type-error>) C

no as method was found.

<range-
error> (<error>) C

a key lookup on a collection failed.

range-error-
collection (<range-error> => <col>) P
range-error-
key (<range-error> => <any>) P
<type-error> (<error>) C

a type check has failed.

type-error-
value (<type-error> => <any>) P

returns value on which type check failed.

type-error-
type (<type-error> => <any>) P

returns type on which type check failed.

<call-error> (<error>) C

an function call failed.

call-error-
function (<call-error> => <fun>) P

returns function on which call failed.

call-error-
arguments (<call-error> => <fun>) P

returns arguments on which call failed.

<arity-
error> (<call-error>) C

wrong number of arguments supplied in function call.

<narity-
error> (<arity-error>) C

too few arguments supplied in nary function call.

<unknown-
function-
error> (<call-error>) C

too few arguments supplied in nary function call.

<argument-
type-error> (<type-error> <call-error>) C

invalid argument used function call.

<return-
type-error> (<type-error> <call-error>) C

invalid result returned from function call.

<ambiguous-
method-
error> (<call-error>) C

unable to sort applicable methods.

<no-
applicable-
methods-
error> (<call-error>) C

no methods were applicable.

<no-next-
methods-
error> (<call-error>) C

no next-methods were found during a sup or app-sup call.

<incongruent-
method-
error> (<error>) C

a method is incongruent with a generic.

incongruent-
method-
error-
generic (<incongruent-method-error> => <gen>) P
incongruent-
method-
error-method (<incongruent-method-error> => <met>) P
<cpl-error> (<error>) C

unable to find a consistent class precedence list.

<io-error> (<error>) C

an input/output operation failure.

<file-
opening-
error> (<io-error>) C

unable to open a file.

file-
opening-
error-
filename (<file-opening-error> => <str>) P
<directory-
error> (<file-opening-error>) C
<compiler-
error> (<error>) C
<syntax-
error> (<compiler-error>) C
<macro-
error> (<syntax-error>) C

a macro expansion failure.

<ast-error> (<compiler-error> <simple-error>) C

an ast conversion failure.

<namespace-
error> (<compiler-error> <simple-error>) C

a namespace form failure.

13



12 Input / Output

This is a very preliminary I/O system and is mostly just enough
with which to write a compiler.

12.1 Ports

Ports represent character-oriented input/output devices.

<port> (<seq>) C

open (t|(t< <port>) x|<str> => <port>) G

creates port given port specific spec x.

close (x|<port>) G

closes and cleanups port.

(x|<port>) M

noop default.

WITH-PORT (WITH-PORT (,name ,port) ,@body) S

binds ,name to the value of ,port during the evaluation of (seq ,@body) and
finally ensures that the port is closed at the end of evaluation.

eof-object? (x|<chr> => <log>) G

<in-port> (<port>) C

input port.

in <in-port> I

standard input.

get (x|<in-port> => <chr>) G

returns next available character or eof-object.

gets (x|<in-port> => <str>) G

returns a line until either reading a newline or eof-object.

peek (x|<in-port> => <chr>) G

returns next available character if any without advancing pointer or eof-
object.

ready? (x|<in-port> => <log>) G

returns true iff a character is available.

<out-port> (<port>) C

output port.

out <out-port> I

standard output.

force-out (x|<out-port>) G

ensures that buffers are forced and pending output is completed.

put (x|<out-port> e|<chr>) G

outputs a single character.

puts (x|<out-port> e|<str>) G

outputs string.

newline (x|<out-port>) G

outputs a newline sequence.

say (x|<out-port> args|...) G

≡ (do (op puts x (to-str )) args)

12.1.1 File Ports

File ports are ports which map to files.
<file-port> (<port>) C

close (x|<file-port>) M

closes port and finishes pending output.

<file-in-
port> (<file-port> <in-port>) C

open

(t|(t= <file-in-port>) name|<str>

=> <file-in-port>) M

creates file in port mapped to a file with filename name.

<file-out-
port> (<file-port> <out-port>) C

open

(t|(t= <file-out-port>) name|<str>

=> <file-out-port>) M

creates file out port mapped to a file with filename name.

12.1.2 String Ports

String ports provide port interface mapped onto strings.
<str-port> (<any>) C
port-
contents (x|<str-port> => <str>) P

returns underlying string.

<str-in-
port> (<str-port> <out-port>) C

open

(t|(t= <str-in-port>) dat|<str>

=> <str-in-port>) M

creates string in port mapped to string dat .

port-index (x|<str-port> => <int>) P

returns index from which next character will be read.

<str-out-
port> (<str-port> <in-port>) C

open

(t|(t= <str-out-port>) dat|<str>

=> <str-out-port>) M

creates string out port mapped to string dat .

PORT-TO-STR (PORT-TO-STR ,name ,@body) S
≡ (let ((,name (open <str-out-port> ""))) ,@body (port-contents

,name))

12.2 Formatted I/O

GOO provides convenient s-expression reading/writing facilities.

read (x|<in-port> => <any>) G

returns sexpr result of parsing characters in a sequence.

write (x|<out-port> y|<any>) G

verbose printing. prints strings with double quotes etc.

writeln (x|<out-port> y|<any>) G

≡ (seq (write x y) (newline x))

emit (x|<out-port> y|<any>) G

concise printing (e.g., prints strings without double quotes).

msg (x|<out-port> message|<seq> args|...) G

14



formatted output using special commands embedded in message. supported
commands are:
• %=→ (write x arg)

• %s → (display x arg)

• %d→ (write x arg)

• %%→ (write-char x # \%)

which consume one argument at a time. otherwise subsequent message
characters are printed to port x (cf. Dylan’s and CL’s format ).

post (message|<seq> args|...) G

≡ (app msg out message args)

13 System

This is a very rudimentary portable interface to an underlying
operating system.

app-filename (=> <str>) M

returns the filename of the application.

app-args (=> <lst>) M

returns a list of argument strings with which the application was called.

os-name (=> <str>) M

returns name of current operating-system.

os-val (s|<str> => <str>) M

returns OS environment variable value.
os-val-
setter (v|<str> s|<str> => <str>) M

sets OS environment variable value.

process-id (=> <int>) M

returns the process id of the current GOO process.

13.1 Files and Directories

A preliminary set of file and directory facilities are provided.

file-mtime (filename|<str> => <flo>) M

return the last modification time of a file in seconds (relative to the n
GOOepoch) as a floating point number.

file-exists? (filename|<str> => <log>) M

return true if and only if a file (or a directory, etc.) exists with the given
name.

file-type (filename|<str> => <sym>) M

return ’file , ’directory or some other symbol, depending on the type of
the file.

create-
directory (filename|<str> => <sym>) M

create a directory with the given name. The parent directory must already
exist, and must contain no item with the given name.

parent-
directory (name|<str> => <str>) M

find the parent directory of the current filename.

probe-
directory (name|<str> => <str>) M

make sure that the named directory exists.

13.2 Pathnames

Pathnames allow you to work with hierarchical, structured path-
names in a reasonably portable fashion.

pathname-to-
components (pathname|<str> => <lst>) M

given a pathname, split it into a list of individual directories, etc. Three
special values are returned as symbols:
• root → This path starts in the root directory
• up→ Go up a directory
• current → Remain in the current directory

Volume labels, drive letters, and other non-path information should be
stored in a single tagged list at the head. Note that the hierarchical por-
tion of this pathname (everything but the label) must be non-empty at all
times.

components-
to-pathname (components|<lst> => <str>) M

reassemble components created by the above function.

label-
components (components|<lst> => <lst>) M

get any leading directory label.

hierarchical-
components (components|<lst> => <lst>) M

get rid of any leading directory label, etc.

components-
last (components|<lst> => <any>) M

return the last item in a list of components.

components-
basename (components|<lst> => <lst>) M

return all but the last item of a bunch of components. Do some magic to
handle cases like ’foo.txt’ => ’./’ If you call this function enough times,
you are eventually guaranteed to get components list ending in root, up or
current. Requires the last item to be a string.

components-
parent-
directory (components|<lst> => <lst>) M

calculate the parent directory of a pathname.

<pathname-
error> (<simple-error>) C

14 Threads

Threads allow for expressing concurrent programs. The assumed
model is shared memory with explicit synchronization and sym-
metric multiprocessing and is based heavily upon pthreads This
section is preliminary and might change in the future. There are
several limitations in the current implementation. It represents a
rudimentary but usable subset of typical thread operations. Ta-
bles and vectors require user locks to ensure thread safety and
no out of language crashes. Finally, the compiler, interpreter, and
(re)definition machinery are thread unsafe and can only reliably
be run in one thread.

<thread> (<any>) C

Represents a thread of executation schedulable across multiple processors.
Upon creation executes thread-function in separate thread.

thread-name (thread|<thread> => (t? <sym>)) P
thread-
priority (thread|<thread> => <int>) P
thread-
function (thread|<thread> => <fun>) P

new (x|(t< <thread>) inits|... => <thread>) M

Creates thread and runs thread-function of created thread in separate
OS thread.

15



SPAWN (SPAWN ,@body) S

≡ (FAB <thread> thread-function (fun () ,@body))

thread-yield () M

Surrenders processor to another thread.

thread-join (thread|<thread>) M

Causes current thread to wait for the termination of thread .

thread-
current (=> <thread>) M

all-threads (=> <tup>) M

sleep (secs|<flo>) M

Pauses current thread for secs seconds.

<lock> (<any>) C

Represents a mutex.

lock-name (lock|<lock> => (t? <sym>)) P

new (x|(t< <lock>) inits|... => <lock>) M

lock-lock (lock|<lock>) M

Obtain exclusive access to lock waiting if necessary.

lock-unlock (lock|<lock>) M

Free up exclusive access to lock potentially allowing another thread access.

WITH-LOCK (WITH-LOCK ,lock ,@body) S

≡ (FIN (SEQ (lock-lock ,lock) ,@body) (lock-unlock ,lock))

<event> (<any>) C

Represents a condition variable used for interthread notification.

event-name (event|<event> => (t? <sym>)) P

new (x|(t< <event>) inits|... => <event>) M

event-signal (event|<event> lock|<lock>) M

Unblocks at least one thread waiting on event .

event-
broadcast (event|<event> lock|<lock>) M

Unblocks all threads waiting on event .

event-wait (event|<event> lock|<lock> => <log>) M

Unlocks lock and places thread in waiting state to be resumed when
event is signaled or broadcasted upon which time lock is reacquired and
thread resumed.

event-wait-
timed (event|<event> lock|<lock> secs|<flo> => <log>) M

Unlocks lock and places thread in waiting state to be resumed when
event is signaled or broadcasted or timeout secs is reached upon which
time lock is reacquired and thread resumed.

DDV (DDV ,var ,form) S

Defines a thread local variable named (var-name ,var) with an initial value
,form .

DLET (DLET ((,var ,val) ...) ,@body) S
≡ (LET ((,old-var ,var) ...) (FIN (SEQ (SET ,var ,val) ...

,@body) (SET ,var ,old-var) ...))

<pipe> (<flat> <seq!>) C

Represents a synchronized FIFO queue allowing multiple readers and writ-
ers in separate threads.

enq! (pipe|<pipe> x => <pipe>) M

Adds x to pipe .

deq! (pipe|<pipe> => <any>) M

Removes and returns element from pipe or waits for one to be available.

15 C Interface

A simple mechanism (available through the goo/x module) is pro-
vided to inline C code directly into GOO, escaping back into GOO
when necessary, and relying on C for its type system instead of
having to mirror it in GOO. On the downside, there is no static
checking, and errors can occur during C compilation.

#" ... "# Liberal String S

Allows for the easy specification of strings (especially C code snippets) with
special character escaping turned off.

C-MENT (C-MENT [,c-snippet ,goo-form]*) S

Specifies a C statement formed as the concatenation of c-snippets (goo
strings) and GOO forms 2. The GOO forms are evaluated at runtime as
embedded C expressions in the lexical context of the c-ment expression. If
specified at top level, then the c-ment form will be evaluated prior to the
evaluation of non c-ment top level forms.

C-EXPR (C-EXPR [,c-snippet ,goo-form]*) S

Same as c-ment but specifies a value producing C expression instead.

to-c (x) G

user extensible protocol for converting a GOO object to a C value. Methods
are provided for <int> , <flo> , <str> , <chr> , <log> , and <loc> .

#{ ... } Inlined C Statement S

Shorthand for c-ment allowing GOO forms to be specified with a $ prefix
and the conversion of GOO objects into C values specified with an @prefix,
with @x≡ $(to-c x) . For example,
(df f (x) # { printf("Got %lx", $x); })
prints out the GOO value x . A callback can be defined at top level as follows:
#{ int gl idle(int x) { $(gl-idle); } }
C headers can be included similarly:
#{ #include "GL.h" }
C expressions can be nested within embedded GOO expressions as follows:
#{ int gl idle(int x) { $(gl-idle #ei { x }); } }
in order to access lexical apparent C variables etc.

#ec{ ... } Inlined C Expression S

Similar shorthand for c-expr also allowing a single character code c for
specifying the conversion of C values back to GOO objects. The valid codes
are i for <int> , f for <flo> , s for <str> , c for <chr> , b for <log> , l for <loc> ,
g for none. For example,
(d. $gl-line-loop #ei { GL LINE LOOP })
defines a top-level OpenGL constant.

USE/LIBRARY (USE/LIBRARY ,name) S

adds ,name to list of libraries to be linked against.

USE/INCLUDE (USE/INCLUDE ,name) S

adds ,name to include directory search path.

16 Compiler

GOO’s compiler, g2c, compiles GOO source code to C. It lives
within the eval module. During a given session, g2c recompiles
only used modules that are either modified or use modified mod-
ules.

16



<g2c-module-
loader> (<module-loader>) C

a g2c module loader used in g2c builds.

g2c-def-app

(appname|<str> modname|<str>

=> <g2c-module-loader>) M

constructs a g2c module loader to be used in future g2c builds.

g2c-build-
app (loader|<g2c-module-loader>) M

translates GOO app into C in subdirectory of GOO’s toplevel C directory
named after loader’s top modname.

g2c-goo () M

builds entire goo world.

g2c-test (name) M

changes destination directory to be (cat "g2c-" (to-str name)) . This is
useful for bootstrapping.

17 Top Level

Functions which load code at runtime require a symbol specifying
the module name to use.

load (filename|<str> modname|<sym> => <any>) G

returns the result of evaluating the result of reading file named filename

into module modname.

eval (x|<any> modname|<sym> => <any>) G

return’s result of evaluating x .

top (modname|<sym>) G

runs top-level read-eval-print loop which reads from in and writes to out.

save-image (filename|<str>) G

saves an image of the current GOO process to a file named filename .

$ $$ $$$ <any> I

refers respectively to last, second to last, and third to last values returned in
top-level listener.

18 Installation

Unpack a GOO development or platform specific binary tarball
into an appropriate staging directory. In the case of a binary tar-
ball, there will be five directories: doc , bin , c, src , and emacs. You can
just run GOO from the bin subdirectory.
In the case of a development tarball, you must install
it. After unpacking, there will be five directories: doc ,
bin , c, src , and emacs. On windows, installation must
be conducted from within a cygwin shell. GOO re-
quires Boehm’s GC to be installed as a shared library on
linux or under the source dir GOODIR/gc downloadable from
http://www.hpl.hp.com/personal/Hans Boehm/gc/gc source/gc.tar.gz . GOO
also requires gmp to be installed as a library downloadable from
http://www.swox.com/gmp/ .
Generate makefiles by executing ./configure . Configure takes a --

prefix argument which sets the installation root, GOOROOT. Normally
GOOROOTis set to /usr/local but can be set to staging directory for
a personal installation. Configure also takes a --with-threads ar-
gument which enables threads support on linux. The rest of the
configure arguments can be found by executing ./configure --help .
Execute make to build GOO and make install to install it. Executing
make install will build GOOwith the proper roots, creating lib and

mods directories, and installing GOO in bin and setting up doc . On
windows, it is necessary to add GOOBIN to your PATH.
You can override the default GOOROOTby setting up your OS envi-
ronment variable. For example, my GOOROOTon linux is: setenv

GOOROOT /home/ai/jrb/goo . Environment variable setting depends on
the shell you’re using. In order to run g2c-goo you need to set
GOOBUILD ROOTto the directory which includes the src directory.
During start up, GOO will load two patch files:

${GOO_ROOT}/init.goo
${HOME}/.goo/init.goo

You can customize your GOO by adding forms to these files.

19 Usage

Typing goo at your shell will start up a GOO read-eval-print loop,
which accepts sexpressions and top-level commands commenc-
ing with a comma. The following is a list of available commands:

,quit K

exits from GOO.

C-c K

invokes a recursive read-eval-print loop.

,g2c-eval K

to change to dynamic compilation evaluation.

,ast-eval K

to change to ast evaluation.

GOOEVAL MODE <str> I

environment variable for setting goo’s evaluation mode. Valid settings are
“ast” or “g2c”.

,in ,name K

changes to module ,name .

mod:name ≡ L

accesses an unexported binding from another module.

19.1 Development

To batch compile GOO to C:

goo/user 0<= (use eval/g2c)
goo/user 0=> #f
goo/user 0<= (g2c-goo)

To then compile the C:

cd ${GOO_ROOT}/c
make

To run the test suites:

goo/user 0<= (use tests)
goo/user 0=> #f
goo/user 0<= (run-all-tests)

19.2 Debugger

A keyboard interrupt or any error enters the user into the debug-
ger which provides a superset of the commands available at top-
level. The following are debugger specific commands:

,up K

goes up one level.

,top K

17



goes to top level.

,restarts K

lists available restarts

,restart ,n K

chooses available restart.

,handlers ,n K

shows available handlers.

,backtrace K

prints out called functions and their arguments.

,bt K

prints out called functions.

,frame ,n K

prints out nth called function and its arguments.

,frame-var ,n ,name K

prints out nth called function’s parameter name.

frame-var (n|<int> name|<sym>) F

returns nth called function’s parameter name.

19.3 Emacs Support

A rudimentary emacs-based development system is provided.

19.3.1 Emacs Mode

Put emacs/goo.el in your emacs lisp directory. Add the following to
your .emacs file:
(autoload ’goo-mode "goo" "Major mode for editing Goo source." t)
(setq auto-mode-alist

(cons ’("\\.goo\\’" . goo-mode) auto-mode-alist))

Useful features include the following. You can add “font-lock”
mode by adding (global-font-lock-mode t) to your .emacs : In a given
buffer, you can toggle font-lock with M-x font-lock-mode . Finally,
check out the “Index” menu item in a GOO buffer for other op-
tions.
For even more fun, load emacs/goo-font-lock.el for a color coded
parenthesis nesting aid 3.

19.3.2 Emacs Shell

Put emacs/goo-shell.el in your emacs lisp directory. Add the follow-
ing to your .emacs :
(autoload ’run-goo "goo-shell" "Run an inferior Goo process." t)
(setq auto-mode-alist

(cons ’("\\.goo\\’" . goo-mode) auto-mode-alist))
(setq goo-program-name "/home/ai/jrb/goo/goo")

make sure to set up the goo-program-name to correspond to your
installation area.
Useful command / key-bindings are:
M-C-x goo-send-definition
C-c C-e goo-send-definition
C-c M-e goo-send-definition-and-go
C-c C-r goo-send-region
C-c M-r goo-send-region-and-go
C-c C-z switch-to-goo

Check out goo-shell.el for the complete list of command / key-
bindings. I doubt the compile commands do anything useful
cause there isn’t a compiler.

3The original idea was dreamed up and first implemented by Andrew Sutherland
and then improved by James Knight.

19.3.3 TAGS

Emacs TAGS files can be generated by typing make all-tags in the
src directory. Useful tags commands / key-bindings are:

M-. find-tag
M-, tags-loop-continue

tags-search
tags-query-replace

20 Caveats

This is the first release of GOO. GOO is relatively slow at this
point. There are no compiler optimizations in place. The error
reporting is minimal and no source locations are tracked. Also
hygiene is not implemented and there are some potential hy-
giene leaks. Dynamic compilation and image saving work only
on Linux.
This manual is preliminary. Please consult the runtime libraries in
the src directory. Also check out Scheme and Dylan’s manuals for
information on their lexical structure and special form behavior
respectively.
Please, please, please send bug reports to jrb@googoogaga.org . I will
fix your bugs asap. The GOO website www.googoogaga.org will have
papers, releases, FAQS, etc.

21 Future

The plan is for GOO to evolve in a number of dimensions. First
of all, GOO’s design is incomplete. Parameter lists and dispatch
will be improved to allow methods of differing numbers of re-
quired parameters and named parameters. Lisp lists will most
likely be deprecated and program fragments will be represented
by a richer data structure which can capture source locations and
hygiene information. This will be accomplished with minimal im-
pact on macro definitions and WYSIWYG program construction
and destructuring facilities. The module system will be improved
to include in the very least renaming and selective imports. Fi-
nally, GOO will support a more complete loopless programming
protocol inspired by Waters’ series [5].
Secondly, the overall mission is to crank the implementation un-
til its performance is competitive with Java while at the same
time maintaining low-latency interactivity. The basic approach
involves incremental whole program optimization using simple
dynamic compilation combined with partial evaluation. One im-
portant optimization will be side effect analysis combined with a
generalized box/unbox optimization to remove unnecessary cre-
ation of immutable enumerators and packers for instance. Similar
analyses and optimizations will be employed to optimize loopless
programming patterns involving map and fold .

22 History and Acknowledgements

GOO has greatly benefitted from the help of others. During the
winter of 2001, I briefly discussed the early design of Proto, a
Prototype-based precursor to GOO, with Paul Graham and his
feedback was very useful. From there, I bootstrapped the first ver-
sion of Proto for a seminar, called Advanced Topics in Dynamic
Object-Oriented Language Design and Compilation (6.894), that
I cotaught with Greg Sullivan and Kostas Arkoudas. The 6.894
students were very patient and gave me many helpful sugges-
tions that greatly improved Proto. During and after the seminar,
Greg Sullivan reviewed many ideas and helped tremendously, in-
cluding by writing the Emacs goo-mode . James Knight was one of

18



the 6.894 students and became my MEng student after the course.
He has helped in many many ways including the writing of the
save-image facility, the speeding up of the runtime, and the improv-
ing of the non local exit facility. Eric Kidd worked with me during
the summer of 2001 implementing the module system, restarts,
and the dependency tracking system. During that summer I de-
cided that a Prototype-based object system was inadequate for the
type system I was interested in supporting and changed over to
the present type-based system. I presented my ideas on Proto at
LL1 in the Fall of 2001. Many stimulating conversations on the fol-
low on LL1 discussion list inpired me. In fact, during the course
of defending Proto’s form of object-orientation on that list I came
up with its current name, GOO, and it stuck. Andrew Sutherland
became my MEng student in the winter of 2002, wrote a GOO
SWIG [2] backend, and has provided useful feedback on GOO’s
design. I also wish to thank Boehm, Demers, and Weiser for writ-
ing the conservative GC upon which this initial version of GOO
is based. Finally, I would like to thank Keith Playford for his con-
tinued guidance in language design and implementation and for
his ever present and rare sense of good taste.

References

[1] Kim Barrett, Bob Cassels, Paul Haahr, David A. Moon, Keith
Playford, Andrew L. M. Shalit, and P. Tucker Withington. A
monotonic superclass linearization for Dylan. In Proceedings
of the Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, volume 31, 10 of ACM SIGPLAN No-
tices, pages 69–82, New York, October 6–10 1996. ACM Press.

[2] David M. Beazley. SWIG: An easy to use tool for integrating
scripting languages with C and C++. In Proceedings of the 4th
USENIX Tcl/Tk Workshop, pages 129–139, 1996.

[3] R. Kelsey, W. Clinger, and J. Rees. Revised5 report on the al-
gorithmic language scheme. Higher-Order and Symbolic Com-
putation, 11(1):7–105, 1998.

[4] A. Shalit. The Dylan Reference Manual. Addison Wesley, 1996.

[5] Richard C. Waters. Automatic transformation of series expres-
sions into loops. ACM Transactions on Programming Languages
and Systems, 13(1):52–98, January 1991.

A Class Precedence List

This section defines the algorithm for computing a class’s lin-
earized ancesters from its parents, its parent’s parents, etc. GOO
uses the C3 class linearization rule [1]. The following is the GOO
implementation of this algorithm:
(dm class-ordered-ancestors (c|<class> => <lst>)

(def parents (class-parents c))
(rep merge-lists

((partial-cpl|<lst>
(lst c))

(remaining-lists|<lst>
(add (map class-ancestors parents) parents)))

(if (all? nul? remaining-lists)
(rev! partial-cpl)
(loc ((candidate (c)

(loc ((tail? (l|<lst>) (mem? (tail l) c)))
(and (not (any? tail? remaining-lists)) c)))

(candidate-at-head (l|<lst>)
(and (not (nul? l)) (candidate (head l)))))

(def next (any? candidate-at-head remaining-lists))
(if next

(loc ((del-next (l|<lst>)
(if (== (head l) next) (tail l) l)))

(merge-lists
(pair next partial-cpl)
(map del-next remaining-lists)))

(error "inconsistent precedence graph"))))))

B Subtyping Rules

This section defines the subtyping rules for GOO in terms of sub-
type methods.

(dm subtype? (t1|<union> t2|<type> => <log>)
(all? (op subtype? _ t2) (type-elts t1)))

(dm subtype? (t1|<type> t2|<union> => <log>)
(any? (op subtype? t1 _)) (type-elts t2)))

(dm subtype? (t1|<union> t2|<union> => <log>)
(all? (op subtype? _ t2)) (type-elts t1)))

(dm subtype? (t1|<class> t2|<class> => <log>)
(subclass? t1 t2))

(dm subtype? (t1|<singleton> t2|<class> => <log>)
(isa? (type-object t1) t2))

(dm subtype? (t1|<subclass> t2|<class> => <log>)
(subclass? <class> t2))

(dm subtype? (t1|<class> t2|<singleton> => <log>) #f)
(dm subtype? (t1|<singleton> t2|<singleton> => <log>)

(== (type-object t1) t2))
(dm subtype? (t1|<subclass> t2|<singleton> => <log>) #f)
(dm subtype? (t1|<class> t2|<subclass> => <log>)

(and (== t1 <class>) (== (type-class t2) <class>)))
(dm subtype? (t1|<subclass> t2|<subclass> => <log>)

(subclass? (type-class t1) (type-class t2)))
(dm subtype? (t1|<singleton> t2|<subclass> => <log>)

(and (isa? (type-object t1) <class>)
(subclass? (type-object t1) (type-class t2))))

(dm subtype? (t1|<product> t2|<type> => <log>) #f)
(dm subtype? (t1|<type> t2|<product> => <log>) #f)
(dm subtype? (t1|<product> t2|<product> => <log>)

(and (== (len (type-elts t1)) (len (type-elts t2)))
(all? (zipped subtype?) (zip (type-elts t1) (type-elts t2)))))

(dm subtype? (t1|<product> t2|<class> => <log>)
(subtype? <tup> t2))

19


