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Abstract

An often-useful addition to many programming languages is a generic type or param-
eterized type system. I have added support for a parameterized type system to the
programming language “GOO”. Besides the standard functionality, I have allowed the
programmer to express some unique relationships between parameterized types that
are generally inexpressible in a standard type system, in order to make the system
applicable to a wider variety of situations. I have also added a unification system to
the method dispatch in GOO in order to allow the relationship between the types of
multiple arguments in a method signature to be expressed.
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Chapter 1

Introduction

Parameterized types, also known as generic types, are a fairly common extension to

standard class-based type systems. In a class-based type system, one of the major

deficiencies is the inability to precisely describe container types, such as an “Array

of integers”. Unless one manually creates distinct classes of Array for holding each

type of object, it is impossible for the compiler to know the type of object returned

when retrieving an object from the array. This lack of information is an issue for

both the compiler, since it does not have as much information with which to generate

optimizations, and for the programmer, as no compile-time guarantees about type

safety are possible. By adding the ability to parameterize classes with additional

arguments, it is possible to specify more precise types, without substantially bloating

the class hierarchy.

GOO[Bac02] is a new language being developed by Jonathan Bachrach. GOO’s

design is influenced heavily influenced both by Dylan and CLOS. It supports multiple

dispatch, with all parameters participating in the dispatch. GOO also has a fairly

rich type system, including singletons, unions, and product types.

My work has been to add a parameterized type system to GOO. In my imple-

mentation, I have tried to keep to the ideals of GOO—that is, to be as dynamic and

extensible as possible, while keeping the interface simple and concise. It is based on

the substantial amount of prior work in this area, but goes beyond that already done

in its flexibility and usefulness.
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CHAPTER 1. INTRODUCTION

Because of the rich multimethod dispatching available in GOO, adding parame-

terized types to the language also necessitates adding type unification to the dispatch

system in order for the parameterized types to actually be useful. The unification sys-

tem introduces free type variables which allow type information to be shared amongst

different arguments in the signature, so that the type of one argument can be related

to the type of another. This unification system comprises half of the work.

With the GOO implementation, however, more complex relationships can be ex-

pressed, e.g. that an “Array of integer” is a subtype of “Array of (subtype-of num-

ber)”. These relationships are important in many real scenarios. This addition to the

type system comprises the other half of the work.
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Chapter 2

Related Work

There are a few varieties of parameterized types in use today. The most well-known

form of parameterization is the primitive array type in C and Java. In these languages,

you can create an array containing objects of a specific type using special square

bracket syntax. However, it is not possible to create your own parameterized types.

In Java, it feels a lot more limiting, as there is a strange disconnect between the

primitive array type which can be parameterized, but cannot be resized, and the

“Vector” and “ArrayList” types which cannot be parameterized, but can be resized.

Dylan[Sha96] has a similar concept called “limited types” which allows parameter-

ization of the built-in collection classes. Unlike Java, the limited type system covers

all the built-in collections types. However, it cannot do more than that. It is simply

a special case in the compiler which cannot be extended to cover user-created types.

C++[Str91] has a very powerful templating system. It allows parameterizing on

types and on primitive values, such as true, false, integers, and characters. However,

after going through a sophisticated compile-time system for determining template

parameters (it can do integer arithmetic and also has a type inference system for

deducing the function template parameters when they are unspecified), all it really

ends up doing is a simple textual substitution of the parameters into the class def-

inition. Each substitution creates a new actual class in the compiled output. This

has two advantages: there is no special runtime support needed, and the code can be

optimized for every set of parameters. However, there are also disadvantages. While

11



CHAPTER 2. RELATED WORK

good for optimization, compiling a separate copy of the code for every set of parame-

ters mentioned in the code can result in significant bloat, especially if there are many

parameters. The other major disadvantage is that C++ does not provide any way to

relate two instantiations of a template in the type-hierarchy.

ML[Pau91] has a form of parameterization based on modules. Essentially, by

filling in missing bindings in a module, you can create a new module with customized

behavior. This is very similar to C++’s templating system, and is similarly lacking in

expressiveness in the type hierarchy. ML also has a concept called parametric types,

which is the only way you can have methods which operate on more than one type of

object. As ML has no subtyping, it is impossible to create a List which can contain

any type. What you can do, however, is define a List implementation which has a

type parameter. The type parameter cannot be used to change the behavior of the

implementation in any way, and also cannot be restricted in any way. It can, however,

be used to define an implementation of a List which can be instantiated into a List

of any concrete type.

Generic Java[BOSW98] is an extension to Java which attempts to add ML-style

parametric types. This extension only modifies the compiler to allow the compile-

time propagation of types through the collections library and other similar APIs.

The runtime is not impacted at all, as the extra type information is erased during

compilation. This makes the extension both very appealing from a compatibility

standpoint, and very limited from a functionality standpoint.

In all the above examples, two parameterized classes with different parameters are

unrelated. For example, List<Number> is not related to List<Integer>, even though

Integer is a subtype of Number. A function that wants to read numbers out of a

List<Number> cannot accept a List<Integer> as an argument. Logically, asking to

be able to do this is entirely sensible — if a function is only reading numbers from

the list, it does not care what further restrictions there are on the contents of the list.

In general, it is not true that List<Integer> is a subtype of List<Number>, but, as

described later, they are related.

The other advantage my system has many of the others is that it is part of a
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CHAPTER 2. RELATED WORK

dynamic language. That gives it the ability to do things such as create new parame-

terizations at runtime, and defer all the type checks until runtime, if necessary. Thus,

even if the compiler cannot determine the correct type to give to a unifying type vari-

able at compile time (which is, in general, often hard to do), it can always fall back

on the runtime implementation. In a statically typed language, fallback on a runtime

type system would generally not be possible, so a failure to analyze the program at

compile time would be a problem.

There are some other systems similar to mine. One notable one is described

in the paper “Unifying Genericity: Combining the Benefits of Virtual Types and

Parameterized Classes”[TT99]. My system similarly has the benefits of structural

subtyping and those of virtual types. The major difference is that the described

system is implemented for a statically type-checked non-multimethod dispatched lan-

guage. Implementing a system within the framework of a language like GOO creates

some different issues from the ones they deal with. I additionally added the ability to

have contravariant subtyping of type parameters, and the ability to use parameters

which are not types. I do not however have support for the F-bounded recursive type

parameters.
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Chapter 3

Specification

3.1 Road map

The specification that follows assumes a basic knowledge of the GOO language. While

GOO’s syntax is fairly similar to that of Lisp, there are quite a few differences. To help

readers who are familiar with Lisp, but may not know about GOO, I have attached

a summary of some of the more unique features in Appendix A which you may find

useful.

The eventual goal is to be able to declare and use parameterized types, but in

order to do so, some more basic functionality must first be present. My system is

divided into three sections, each one necessary for the next:

• Type modifiers

• Unification System

• Parameterized Type system

First type modifiers are introduced. These are introduced in order to allow some

flexibility in what is required of a parameterized type. Many functions may not care

exactly what type a sequence is parameterized on, as long as it’s at least restricted

to be a number. The type modifiers allow this, among other things.

15



3.2. GOO’S TYPES CHAPTER 3. SPECIFICATION

The unification system and type variables are an essential part of the parameter-

ized type system, and are present in some form in most other implementations (in

C++, for instance, as “template parameters”). They allow a function signature to

express that two arguments have related types. The add method for adding an ele-

ment to a vector is a good example of a signature that requires this kind of constraint.

It must check to ensure that the vector can hold the new element that will be added.

Finally, the syntax to declare, create, and instantiate parameterized types is de-

scribed. Each of these sections is an important part of the functionality.

3.2 GOO’s types

Before getting into the main part of the system I’d like to first discuss the type

constructors currently in GOO, and propose a slight change.

GOO has the following type constructors:

• (t+ type1 type2 ...) - type union. All types passed as arguments are a

subtype of this.

e.g. (subtype? <int> (t+ <int> <flo>)) => #t, and (isa? 3.1415 (t+

<str> <flo>)) => #t

• (t* type1 type2) - product type. Used for multiple values.

e.g. (isa? #(1 2) (t* <int> <int>)) => #t

• (t= instance) - singleton type. Creates a type of which only the one instance

is a member.

e.g. (isa? 5 (t= 5)) => #t

• (t< type) - subtype-singleton. All types (the types themselves, not instances

of those types) which are a subtype of type are a member of this.

e.g. (isa? <int> (t< <num>)) => #t

I first propose to rename the t= and t< operations to o= and o<, and they will

be referred to by their new names throughout the rest of this paper. These existing
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CHAPTER 3. SPECIFICATION 3.3. TYPE MODIFIERS

operations can be characterized by the relationships in Figure 3-1 in pseudo-GOO. If

multiple rules apply, use the first one.

3.3 Type modifiers

The type modifiers allow unique relationships between types that are often inexpress-

ible in a type system. For example, often a function may take a <vec> as an argument,

but never writes to it. It wants only to read data from the vector, and it requires that

the data be a subtype of <num> (e.g. <int> or <flo>). Thus, the passed in vector

may be parameterized on any subtype: <num>, <flo>, or <int>. The argument type

for this function will be written (of <vec> type (t< <num>)).1

Another function may take a <vec> as an argument, but only writes a subclass of

<num> to it. Therefore, the passed in vector can be parameterized on any supertype

of <num> (namely <num>, <mag> and <any>). This is written (of <vec> type (t>

<num>)).

Yet another function may wish to read and write, and thus requires that the passed

in <vec> be parameterized on exactly <num>. In this case, the type is written simply

(of <vec> type <num>), or (of <vec> type (t= <num>)), which is identical.

To enable this functionality, I propose the addition of the the following type modifiers:

• t= - type equivalence: (isa? 5 (t= <int>)), but not (isa? 5 (t= <num>))

• t< - subtype: (isa? 5 (t< <num>)) and (subtype? <int> (t< <num>)).

• t> - supertype: (subtype? <num> (t> <int>))

When used with subtype?, the t< operator is not useful, as it is essentially a

no-op. However, a new type comparator called istype? is introduced to embody the

question that must be asked when comparing type parameters of a parametric type.

For example, when asking if an object of type (of <vec> type <int>) is a sub-

type of (of <vec> type <num>), the correct answer is “no”, as a vector of integers

cannot contain floats, but a vector of numbers can. Thus, clearly, the types <int> and

1The of syntax is introduced on page 29.
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3.3. TYPE MODIFIERS CHAPTER 3. SPECIFICATION

(subtype? (t+ t1 t2 ... t#) x)
=> (and (subtype? t1 x) (subtype? t2 x) ... (subtype? t# x))

(subtype? x (t+ t1 t2 ... t#))
=> (or (subtype? x t1) (subtype? x t2) ... (subtype? x t#))

(subtype? (t* t1 t2) (t* t3 t4))
=> (and (subtype? t1 t3) (subtype? t2 t4))

(subtype? (o= l|<tup>) (t* t1 ... t#))
=> with l as (v1 ... v#):

(and (subtype? (o= v1) t1) ... (subtype? (o= v#) t#))

(subtype? (t* t1 t2) x)
=> #f

(subtype? x (t* t1 t2))
=> #f

(subtype? (o= x|<class>) (o< t))
=> (subtype? x t)

(subtype? (o< t1) (o< t2))
=> (subtype? t1 t2)

(subtype? (o= x) (o= y))
=> (== x y)

(subtype? (o= x) t)
=> (subtype? (class-of x) t)

(subtype? x|<class> y|<class>)
=> (member? y (class-ancestors x))

(subtype? x y)
=> #f

(isa? x t)
=> (subtype? (o= x) t)

Figure 3-1: Subtype rules for standard GOO types
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CHAPTER 3. SPECIFICATION 3.3. TYPE MODIFIERS

<num> cannot be compared with subtype?. Without the added type modifiers, the

correct question to ask when comparing parametric type parameters is type equality.

This is easily defined as:

(df eqtype? (x y)

(and (subtype? x y) (subtype? y x)))

With the addition of the t<, t>, and t= modifiers, type equality is no longer the

correct question to ask, as those modifiers are supposed to override the default of

equality, and provide other options for the comparison.

The istype? is defined in Figure 3-2 with the new type modifiers. As before, if

more than one rule matches, apply the first one.

The subtype? method is also extended so that if one of the new type modifiers

is passed to it, it calls through to istype?. This has the effect of causing subtype?

and istype? to be exactly equivalent, except when no type modifier is present on

the second argument. In that case, istype? behaves as if t= were specified, and

subtype? behaves as if t< were specified. Even though subtype? calls istype?, and

istype? calls subtype?, no circularity can occur, as istype? always unwraps the

type modifiers before calling subtype?.

A piece of the type hierarchy that the new type modifiers combined with the

istype? method create is shown in Figure 3-3. Some examples of method calls from

that hierarchy are:

• (istype? <int> <int>) => #t

• (istype? (t< <int>) (t< <any>)) => #t

• (istype? <int> (t> <any>)) => #f

• (istype? <int> <any>) => #f

• (istype? <int> (t< <any>)) => #t

19



3.3. TYPE MODIFIERS CHAPTER 3. SPECIFICATION

(istype? (t= t1) (t= t2))
=> (and (subtype? t1 t2) (subtype? t2 t1))

(istype? (t= t1) (t< t2))
=> (subtype? t1 t2)

(istype? (t< t1) (t= t2))
=> #f

(istype? (t< t1) (t< t2))
=> (subtype? t1 t2)

(istype? (t= t1) (t> t2))
=> (subtype? t2 t1)

(istype? (t> t1) (t= t2))
=> #f)

(istype? (t> t1) (t> t2))
=> (subtype? t2 t1)

(istype? (t> t1) (t< t2))
=> (istype? t2 <any>)

(istype? (t< t1) (t> t2))
=> #f

;; from here out creates the implicit t= when a type without a
;; modifier is passed in because istype? defaults to type equality

(istype? (t= t1) t2)
=> (istype? (t= t1) (t= t2))

(istype? t1 (t= t2))
=> (istype? (t= t1) (t= t2))

(istype? t1 (t< t2))
=> (istype? (t= t1) (t< t2))

(istype? (t< t1) t2)
=> (istype? (t< t1) (t= t2))

(istype? t1 (t> t2))
=> (istype? (t= t1) (t> t2))

(istype? (t> t1) t2)
=> (istype? (t> t1) (t= t2))

(istype? t1 t2)
=> (istype? (t= t1) (t= t2))

Figure 3-2: Definition of istype? and type modifiers

20



CHAPTER 3. SPECIFICATION 3.4. UNIFICATION SYSTEM

Figure 3-3: A simple type hierarchy illustrating istype? relationships

3.4 Unification system

The unification system is an addition to the type checking system that adds the ability

to do a type check against an unknown or partially unknown type, and if the type

check succeeds, the conditions under which it was possible to succeed are recorded.

The ultimate goal of this addition is to make it possible to express a method

signature such as “takes two arguments, ‘a’ and ‘b’ which can be any type, and returns

a value of the same type as ‘a’, whatever that may be.” or “takes two arguments ‘a’,

and ‘b’, and ‘b’ must be an instance of ‘a’.”

I propose the new syntax:

(? name)

This creates a type variable whose scope is the current function. One can do type

checks against it, e.g.

(isa? 3 (? t))

(subtype? (? t) <str>)

21



3.4. UNIFICATION SYSTEM CHAPTER 3. SPECIFICATION

The type variable starts out with no restrictions. After each type check, the

range of possible values the type variable can take on is recorded. Taking the above

example, (isa? 3 (? t)) would succeed and return true, as this is the first mention

of (? t), and thus it has no restrictions. Then, (? t) is restricted such that from

then on, it can only take on a type that would not violate the check (isa? 3 (? t)).

This implies the constraint “t is a supertype of <int>”, or, in GOO, one would say t

must be a supertype of <int>. Thus, <int>, <num>, and <any> would be the simple

types that t is restricted to. Of course, complex types such as (t+ <int> <str>)

are also possible.

Now, executing the second check, (subtype? (? t) <str>) will check the previ-

ous restrictions on t (that it must be a supertype of <int>), and then return false,

as there is no possible way for (? t) to be both a supertype of <int>, and a subtype

of <str>. In this case, as the type check failed, no restrictions are added to (? t).

Executing (isa? "some string" (? t)) would return true, as (? t) can be a

supertype of both <str> and of <int>, namely the type <any>, or the type (t+ <int>

<str>). As a side-effect of the type check succeeding, t will get further restricted to

this type.

When checking subtype? with a type variable, ensure that there is a type for the

type variable such that all past checks will remain true and the current check returns

true as well. If the new constraint can be added, return true, otherwise, return false

and do not modify the type-variable state. These rules can be concisely expressed in

pseudo-code as shown in Figure 3-4.

Type variables can also be used in a function signature. The easiest way to think

about the semantics of this is to pretend that the signature checking occurs inside the

function body and translate the type check of the signature to code in the body.2 The

scope of the type variable is the entire body of the function, plus the signature check,

plus the return type check. Note that when I say the scope includes the function

body, I mean just that: you may use the type variable inside the function. I do not

2This translation only works for non-generic functions, so it cannot be used in practice, but is
useful for descriptive purposes
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CHAPTER 3. SPECIFICATION 3.4. UNIFICATION SYSTEM

(subtype? int num)
(typevar-possible? tv a)

=> (there exists a type "t" for tv s.t.
(for all restrictions on tv

(if (== (restriction-type restriction) ’subtype)
(subtype? t (restriction-val restriction))
(subtype? (restriction-val restriction) t)))

(subtype? (? tv) a)
=> (seq

(add-restriction tv ’subtype a)
(typevar-possible? tv))

(subtype? a (? tv))
=> (seq

(add-restriction tv ’supertype a)
(typevar-possible? tv))

(subtype? (? tv1) (? tv2))
=> (error "Cannot compare type variables")

Place this wrapper around all subtype? calls:
(subtype? t1 t2)

=> (seq
(def old-tv-state (dup *tv-state*))
(def result (subtype? t1 t2))
(if (== result #f)

(set *tv-state* old-tv-state))
result)

Figure 3-4: Subtyping rules for type variables
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3.4. UNIFICATION SYSTEM CHAPTER 3. SPECIFICATION

mean that a use of the type variable in the function will affect whether the function

is applicable to a set of arguments. Doing so would require analyzing the body of the

function which is undesirable as well having questionable usefulness.

An example of this:

(df return-self (v|(o= (? x)) => (o= (? x)))

v)

becomes

(df return-self (v)

(if (not (isa? v (o= (? x))))

(error "Invalid type")) ;; never happens in this case

;; done with argument checks, now run the code in the method

(def result v)

;; done with body, now check result type

(if (not (isa? result (o= (? x))))

(error "Invalid return type")))

This has the expected meaning: the method can take any argument, and it returns

the argument itself.

3.4.1 Interaction with type constructors

So far, I’ve only described type variables used in isolation. However, they can also be

combined with any of the other type modifiers and constructors.

The interaction of type variables and t+ is especially interesting, as the order of

the arguments to t+ is now significant. Take the following example:

(isa? 5 (t+ (? x) <int>))

This translates to essentially: (or (isa? 5 (? x)) (isa? 5 <int>))

Now compare that with:

(isa? 5 (t+ <int> (? x)))

which translates to:

(or (isa? 5 <int>) (isa? 5 (? x)))
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At first glance they may seem identical, but remember: or will stop evaluating con-

ditions as soon as it finds condition that isn’t false, and doing a type check against a

type variable creates side effects. Thus, in the first example, (? x) will have had the

restriction that it is a supertype of <int> added, while, in the second case, a type

check against (? x) was never even performed (the first test in or succeeded, so it

doesn’t evaluate the rest), and thus no restriction was added.3

The t* type constructor is akin to and, and thus does not cause the same issue. If

the type check succeeds, then all of the sub parts must have succeeded. If one of the

sub parts did not succeed, the type check fails, and thus, none of the type variables

are modified (partial side-effecting is not allowed - the implementation must make

sure either all the modifications are done, or none are.).

The o= operator has a dual role: it can either be used with a type as its argument,

or with a non-type. For example (isa? <int> (o= <int>)), and (isa? 5 (o= 5)).

In the case where it is used with a type, (isa? x (o= y )) is equivalent to (istype?

x y ). Thus, if x is a type, and y is a type variable, it will just work out.

However, if x is not a type, then the type variable must take on a value which

is not a type as well. Therefore, when evaluating a condition like (isa? 5 (o= (?

t))), (? t) will be restricted to be exactly 5. If a type variable is set to a value

which is not a type, and then used in a position which requires it to be a type, the

type check will always fail.

The o< operator can only take a type as its argument, so there are no complications

with type variables. The expression (isa? x (o< y )) translates to (subtype? x

y ) via the previously defined rules in Figure 3-1.

The type modifiers t<, t>, and t= do not affect the type variable code, as each

type modifier is implemented in terms of an appropriate more primitive subtype?

call. Thus, the type variable code can be blissfully ignorant that the type modifiers

even exist.

3I’m not entirely sure if these semantics are the most sensible, but it follows from the standard
definition of or. One possible solution to this problem is to restrict the t+ operator to only allow
one type variable, and always attempt to type check against the base types first.
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3.4.2 Dispatcher

As briefly stated above, the ultimate purpose to this extension is to make the generic

method dispatcher more powerful. Type variables are not particularly necessary in

a method body, as you can easily write equivalent code without them. The main

advantage is as an extension to the method dispatcher system. However, inclusion in

the dispatcher is not as simple an extension of the stand-alone semantics as might be

hoped. To understand how this extension to the type system behaves, it will help to

first know how GOO’s standard dispatcher works.

GOO currently has a fairly standard multimethod dispatch system. This provides

the ability to declare multiple functions with the same name and differing parameter

types. Unlike languages such as C++ and Java, where only the first argument (the

implicit ‘self’ argument) is dispatched on at runtime, in a multimethod dispatch

system, all the arguments are used at runtime in determining which of the multiple

methods to call. No behavior is determined from the declared type of a variable being

passed to the function, only the actual runtime type. Dispatch consists of two steps:

1. finding all the methods applicable to the actual arguments, and

2. finding the most specific of those methods.

For example, take a generic with three methods signatures (the function body is

not relevant to dispatch):

(dm + (a|<num> b|<num> => <num>) ...) ;; #1

(dm + (a|<flo> b|<flo> => <flo>) ...) ;; #2

(dm + (a|<int> b|<int> => <int>) ...) ;; #3

When executing a call (+ 1 2), it would first figure out which signatures are con-

sistent with the arguments, using the isa? method. 1 is a <int>, and <int> is a

subtype of <num>, so both methods #1 and #3 are applicable.

This algorithm to test the applicability of a method is essentially:

For every actual argument x and specified type t, ensure (isa? x t).

The second step is to test which method is most specific. The general idea is that

method A is more specific than method B, if A is applicable to a pure subset of the
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values B is applicable to.4 In this case, we have to decide between method 1 and

method 3. As <int> is a subtype of <num>, method 3 will be more specific, and thus

the method that will be called.

The algorithm for this is approximately:

(order-specs (T1 T2)):

(if (subtype? T1 T2)

(if (subtype? T2 T1)

’=

’<)

(if (subtype? T2 T1)

’<

’<>))

(compare-methods (M1 M2)):

(def spec-ordering

(map order-specs (argument-types M1) (argument-types M2)))

If all elts of spec-ordering are ’= or ’<:

M1 more specific

Else If all elts of spec-ordering are ’= or ’>:

M2 more specific

Else:

Ambiguous

Then, find the one method which is more specific than all the others, by sorting

the methods based on the compare-methods function. If there is no one methods

which is most specific because of ambiguous methods, an error occurs.

This may seem much more complex and costly at runtime than single argument

dispatch, and it can indeed be. However, in a sophisticated system, much of the over-

head will be removed at compile-time as the optimizer can often pre-sort the methods,

and eliminate choices that are never possible given some amount of information about

the argument values at a certain call site. Thus, the cost can be minimized, and the

additional functionality is worth the slight slowdown.

4That is not entirely true, as multiple inheritance introduces a slight twist, but, for the most part
it is a reasonable approximation
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3.4.3 Interaction with dispatcher

Type variables

In the specification for how to evaluate type-variables in a function signature above,

I stated that you can think of the type checks as being part of the function body.

While this actually works as an implementation strategy for normal functions, this

will not work for a generic method, as the dispatcher has to check method applicability

before calling the function. To make matters even worse, it has to determine method

applicability for possibly many functions, before figuring out which is most applicable.

As the semantics require that the scope of the type variable includes the method

body and the return type check, the type-variable state information must be stored

for every method the dispatcher might possibly call. Then, when the call occurs, that

information must be passed in to the method.

Method sorting

Checking whether one method is more specific than another when type variables are

involved is somewhat more complex. For example, which is most specific:

(dm test (a|<int>) ...) ;; #1

(dm test (a|(t= (? y)) ...) ;; #2

Trying to use the same algorithm that the normal dispatcher uses would yield the

following: the first method is more specific if

(subtype? <int> (t= (? y)))

Clearly there is a binding for (? y) that will succeed, namely <int>. However,

the same claim can be made when checking if the second method is more specific.

Checking (subtype? (t= (? y)) <int>) will also return true and bind (? y) to

<int>. Thus, neither appears more specific than the other.

However, this is not the correct answer. To correctly sort the methods, the fol-

lowing procedure should be followed:
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• First, given the actual parameters to the method call unification should be

performed on each method separately.

• Now the possible values for each type variable are known. Keeping the type

variables constant, apply the usual method sorting rules.

For example, if the above method test is called with an argument of 1, after

type variable substitution, the method signatures become: (a|<int>) and (a|(t=

<int>)). Since (t= <int>) is more specific than <int>, the second method wins. In

this particular case, method #1 is actually never going to be the most applicable.

Note that some methods cannot be sorted. For example:

(dm foo (a|(t= (? x)) b|(t= (? y))))

(dm foo (a|(t= (? z)) b|(t= (? z))))

You might expect that the second method is more specific than the first, but, if

you actually call (foo 1 1), both methods will be equally applicable, as the type

variables in both cases will be <int>. Calling the method with arguments of different

types, like (foo 1 1.2) will make the first method the only applicable method, and

thus the most applicable.

3.5 Parameterized type system

3.5.1 Creating parameterized types

There is no special syntax to declare a parameterized class. One simply declares

a regular class and adds parameters to it. Using the base class type on its own is

equivalent to instantiating the type with no parameters specified.

To add a parameter slot to a class:

(dparam ,name (,owner => ,type) ,default)

This creates a parameter for class owner called name. All existing instances of owner

get the parameter set to default. Like dp (the syntax for defining a property on an

object) it adds a method to the generic name. However, unlike dp, the method is
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applicable to the owner class itself and concrete parameterizations of the class, not

instances of the class. This slot is read-only, as mutating the type parameter would

change the type of the object, and that is not allowable.

For example, to add parameters to the GOO hashtable type:

(dparam type (<tab> => <type>) <any>)

(dparam hash-fun (<tab> => <fun>) id-hash)

(dparam eq-fun (<tab> => <fun>) ==)

This creates a type parameter of type <type> to specify the type of the values in the

hashtable, a hash-fun parameter of type <fun> to specify what hashing-function to

use, and a eq-fun parameter of type <fun> to specify what equality function to use.

The defaults are, respectively, <any>, id-hash, and ==. Note that parameters are

not required to be types, but can be any object.

3.5.2 Instantiating a parameterized type

To instantiate a parameterized type with specified parameters:

(of base-class|<parambase> parameter-inits|...)

where parameter-inits is groups of parameter|<gen> parameter-value|<any>. For

example, to create a hashtable which will contain integers, and has a custom hash

function:

(of <tab> type <int> hash-fun my-hasher)

This is similar to the syntax for new, but creates a new class, not a new instance.

The syntax is designed to look similar to keyword syntax, if GOO had such a thing.

In this example, the eq-fun parameter is not specified. Creating a type with some

parameters unspecified is allowable and extremely useful. Parameters which are not

specified in the call to of are treated as a wildcard for the purposes of type checking.

Thus, if you parameterize <tab> with only type specified, a table with any value for

eq-fun and hash-fun will be a subtype of it.

Note that calling of multiple times with equal (==) arguments will return the

same type twice, and will not construct a unique type each time.
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To create an instance of the new parameterized type you could do:

(dv my-table (new (of <tab> type <int> hash-fun my-hasher)))

Any unspecified parameters are given the default value when the object is instan-

tiated. For example,

(new (of <tab> type <int> hash-fun my-hasher))

is equivalent to

(new (of <tab> type <int> hash-fun my-hasher eq-fun ==))

The lack of a strong difference between parameterized types and non-parameterized

types is to allow simple interoperability with non-parameterized GOO code. If user

code uses the <tab> class and completely ignores the fact that it is parameterized, it

will work in most cases just as if parameterized types did not exist. Creating a new

<tab> will use the defaults, and doing a type check against <tab> will succeed no

matter what the parameter arguments are. The only place ignorance of parameter-

ized types breaks down is if you need to call a library function that takes a restricted

type, or if you want to make your own type in the collections hierarchy.

3.5.3 Mutable types

To ensure program correctness, the type system usually guarantees that any type

check on an object will be forever valid. It is not possible to mutate an object’s class

so that something you previously thought was a mutable list is now an immutable

list, for instance. If this was possible, then variables with restricted types could be

confused into holding an incorrect type by mutating it after the object reference was

inserted into the variable.

The parameterized type system does prevent you from modifying any of the type

parameters directly by making them read-only. However, it is possible to pass arbi-

trary objects to of, such as a mutable array. Unfortunately, there is no way in the

GOO type system to specify that a given parameter must be immutable. Thus, it is
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possible to confuse the type system badly if you do indeed use a mutable array as a

type parameter and then mutate it. All I can say is: you must not mutate objects

used as parameters, as doing so could confuse the type system and cause all sorts of

bad things to happen.

3.5.4 Type relationships

Parameterized types have the following type relationships:

• (of base-class ...) is a subtype of base-class.

• (of base-class some-param1 value1 some-param2 value2 ...) is a sub-

type of

(of base-class some-param1 value1 ...)

• (of base-class some-param value1) is a subtype of

(of base-class some-param value2) ⇔ (istype? value1 value2)

• (of base-class1 some-param value) is a subtype of

(of base-class2 some-param value)⇔ (subtype? base-class1 base-class2).

Taking the “my-table” example from above:

(dv my-table (new (of <tab> type <int> hash-fun my-hasher)))

(isa? my-table <tab>) => #t

(isa? my-table (of <tab> type <int>)) => #t

(isa? my-table (of <tab> type <num>)) => #f

(isa? my-table (of <tab> type (t< <num>))) => #t
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Examples

The following example introduces a simplified version of the GOO collections hier-

archy. First the basic types are introduced, and then some essential methods are

defined for the types. Note that <chr-vec> can be defined in order to create a more

compact encoding for that particular case.

;; a collection is some kind of key->value mapping

(dc <col> (<any>))

(dparam key-type (<col> => <type>) <any>)

(dparam val-type (<col> => <type>) <any>)

;; a sequence is a collection with contiguous nonnegative integer keys

(dc <seq> ((of <col> key-type <int>)))

;; Vector - a concrete type of sequence

(dc <vec> (<seq>))

;; an abstract type which can hold arbitrary key->value mappings

(dc <map> (<col>))

;; Hashtable - a concrete type of map

(dc <tab> (<map>))

(dparam eq-fun (<tab> => <fun>) ==)

(dparam hash-fun (<tab> => <fun>) id-hash)

;;; now add some methods..

(dm elt ( c|(of <vec> val-type (t< (? x)))

index|<int> => (? x))
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...)

(dm elt ( c|(of <tab> val-type (t< (? x)) key-type (t> (? y)))

key|(? y)

=> (? x))

...)

(dm elt-setter ( val|(? x)

c|(of <vec> val-type (t> (? x)))

index|<int>)

...)

(dm elt-setter (val|(? x)

c|(of <tab> val-type (t> (? x)) key-type (t> (? y)))

key|(? y))

...)

(dm add! (c|(of <vec> val-type (t> (? x))) e|(? x))

...)

(dm add-all! ( col|(of <col!> val-type (t> (? t)))

new-elts|(of <col> val-type (t< (? t))))

(for ((e new-elts))

(add! col e)))

(dg fill (col|(of <col> val-type (t> (? t)))

x|(? t)

=> (of <col> val-type (? t)))

...)

(dc <chr-vec> ((of <vec> val-type <chr>)))

;; special elt setter and getter for <chr-vec> which optimizes storage.

(dm elt (c|(of <vec> val-type <chr>) index|<int> => <chr>)

...)

(dm elt-setter (val|<chr> c|(of <vec> val-type <chr>) key|<int>)

...)

(dm new (parent|(o= (of <vec> val-type <chr>)) inits|...)

(app new <chr-vec> inits))

Now that a set of basic operations is defined, some examples of the usage:
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(dv x (new (of <vec> val-type <num>)))

(subtype? x (of <vec> val-type <any>))

=> #f

(subtype? x <vec>)

=> #t

(subtype? x (of <vec> val-type (t< <any>)))

=> #t

(subtype? x (of <col> key-type (t< <num>)))

=> #t

(add x 5)

(add x 6.0)

(elt x 0)

=> 5

(elt x 1)

=> 6.0

(add x "foo")

=> ERROR: no applicable method

(df foo (v|(of <vec> val-type (t< <num>)) => <num>)

(+ (elt v 0) (elt v 1)))

(foo x)

=> 11.0
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Implementation

5.1 Overview

The goal of this project was not to create an efficient implementation, but rather, to

create a set of reasonable and powerful semantics. However, to be useful, there must

be some hope of a fast implementation, and I will discuss that afterwards.

GOO is an evolving project, and thus it is likely that some form of this system

will eventually make it into the core of the language, and be used in core libraries

like the collections. However, in order for the system to be used to implement the

core functionality like <vec>, <lst>, etc., this code has to not depend on that same

functionality it is implementing. To avoid all these issues, and make the initial design

of the code simpler, I have written the code in high-level GOO, and made as few

modifications to the core of GOO as possible. This makes it a lot more straightforward

and easier to understand, but it does introduce a number of compromises. I will note

these discrepancies between the implementation and the specification as they come

up. It is expected that at a future point in time, this implementation can be rewritten

in low-level GOO, and integrated into the language.

The implementation for the new type modifiers consists of defining new functions

for the type modifiers, and defining the correct istype?, subtype?, and eqtype?

methods to operate on them. The code is quite simple, and follows directly from the

definition of istype? shown in Figure 3-2.
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The type variable changes are more substantial, and includes the (? t) macro,

functions to calculate the intersection and union of types, new methods on subtype?

to side-effect the type variables, and hooks into dispatch to coordinate the type vari-

able state.

The last section, parametric types, introduces the dparam and of syntax, and

more extensions to subtype? to support the relationships between parameterized

types. After all this, you can finally build a describe a method which takes an object

and a vector which must be able to contain that type.

5.2 Type modifiers

First the three new type modifiers need to be declared. The type modifiers are

themselves subclasses of the type <typemod>:

(dc <typemod> (<type>))

(dp type-val (<typemod> => <type>))

(dc <type-equal> (<typemod>))

(dc <type-sub> (<typemod>))

(dc <type-super> (<typemod>))

The functions t=, t<, and t> are simply constructors for those types.

The major change to the type system is implementing the istype? method to

operate on these new types. istype? is in turn implemented by a combination of

subtype? and eqtype?. The subtype? method is canonical except in the case where

either argument is a <typemod>, in which case it calls through to istype?.

Here is a small sample of the methods defined for istype?; the rest are similar:

(dm istype? (t1|<type-super> t2|<type-sub> => <log>)

(eqtype? (type-val t2) <any>))

(dm istype? (t1|<type-equal> t2|<type-sub> => <log>)

(subtype? (type-val t1) (type-val t2)))

(dm istype? (t1|<type-sub> t2|<type-equal> => <log>)

#f)

(dm istype? (t1|<type-equal> t2|<type-super> => <log>)

(subtype? (type-val t2) (type-val t1)))

(dm istype? (t1|<type-super> t2|<type-equal> => <log>)

#f)
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The eqtype? function is implemented simply by checking if both types are sub-

types of each other. In a future version, a more efficient version of this method can

be written for specific cases.

(dm eqtype? (t1|<type> t2|<type> => <log>)

(and (subtype? t1 t2) (subtype? t2 t1)))

The subtype? function is extended with the following methods:

(dm subtype? (t1|<type> t2|<typemod> => <log>)

(istype? t1 t2))

(dm subtype? (t1|<typemod> t2|<type> => <log>)

(istype? t1 t2))

(dm subtype? (t1|<typemod> t2|<typemod> => <log>)

(istype? t1 t2))

to pass all forms with a type modifier as an argument to istype?.

This implementation does not currently handle singleton (o=) and subclass (o<)

types properly. Currently in GOO it is assumed that singletons cannot appear nested

inside of arbitrary types, and this assumption is hard coded into the method dis-

patcher. Therefore, without doing some significant work to fix the method dispatcher,

I must currently omit support for singleton types.

5.3 Unification system

5.3.1 Type variables

Every type variable consists of two types: the maximal type it can take on, and the

minimal type. An unrestricted type variable has as its minimal type <any> and its

maximal type a new type <type-bot>. The <type-bot> type is the analog of <any>

at the other side of the hierarchy: it is a subtype of every other type. This type is used

only to denote no restriction on the maximal type of a type variable. No object is an

instance of <type-bot>. The functions typevar-min-type and typevar-max-type

return the minimal and maximal types for a type variable.
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As type checks are performed on these type variables, additional restrictions are

added to them. These restrictions are done by determining the intersection or union

of the tested against type with either the maximal type, the minimal type, or both.

5.3.2 Adding restrictions

The union of type types is determined by the type-union function. The union of

two types can be very simply represented just by the result of applying t+ to them.

This function tries to be a little smarter than that in order to minimize the size of the

union type as much as possible. Thus, it first checks to see if either type is completely

enclosed by the other and returns it if so.

(dm type-union (t1|<type> t2|<type> => <type>)

(if (subtype? t1 t2)

t1

(if (subtype? t2 t1)

t2

(t+ t1 t2))))

More methods could be added to the type-union generic to eliminate common terms

if one of the arguments is itself a union type which is partially subsumed by the other

type.

The intersection is determined by the type-intersection method. Intersecting

two types is slightly more complicated. When dealing simply with classes, this is an

easy problem, as the inheritance tree is explicit. All it has to do is get a list of all the

ancestors of both classes, and find all the common elements. Then, take the union of

those.

However, when dealing with non-class types, the algebraic relationship to other

types is not explicitly known to the system. Given any two types, subtype? will tell

you their relationship, but there is no way to search for all the common types and

find the most specific one. Also, unlike the union operation, the intersection cannot

simply return an “intersection type” as no such thing exists. As the intersection

should always be representable without one, no such type need exist. However, this
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means that methods for type-intersection must be created for all the types in the

system in order to encode the knowledge of their relationships.

One mitigating factor is that type-intersection will never get called for any of

the type-modifier types, as those have been transformed ahead of time into standard

subtype? calls. It will also never get called with a type-variable type, as it is not

allowable for one type variable to depend on another. Thus, methods must be written

for <class>, <singleton>, <subclass>, and <union>.

5.3.3 Subtype rules

With type-intersection and type-union declared, the implementation of subtype?

is relatively simple. There are three interesting base cases:

1. checking if a normal type is a subtype of a <typevar>:

(dm subtype? (t1|<type> t2|<typevar> => <log>) ...)

2. checking if a <typevar> is a subtype of a normal type

(dm subtype? (t1|<typevar> t2|<type> => <log>) ...)

3. checking if a <typevar> is a subtype of another

<typevar>:

(dm subtype? (t1|<typevar> t2|<typevar> => <log>) ...

In the first case, t1 must be a subtype of the minimum value for the typevar t2. If

it is, the maximum for t2 is updated to (type-intersection (typevar-max-type

t2) t1). In the second case, the maximum value for the typevar t1 must be a subtype

of t2. If it is, the minimum for t1 is updated to (type-union (typevar-min-type

t1) t2). The third case causes an error, as it is not allowable per the specification

to compare two type variables.

5.3.4 Issues

To implement type variables as fully specified requires that the method dispatcher be

able to pass the type variable state into the body of the method. However, there is
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currently no mechanism by which to accomplish this in GOO.

I expect this to eventually be done through some sort of auxiliary parameter

functionality, which the method dispatcher can pass the values of the type variables

through. Then, the type variables would be stored in the function’s activation frame

like a normal local variable, until the return type is checked and the frame is destroyed.

However, as I did not wish to get too deep into the core of GOO, I opted for

a much simpler approach at the moment: the value of the type variables is simply

kept in a global variable “*typevar-states*”. As there is no simple way to tell the

compiler to make all mentions of (? t) in one function and its specializers point to

the same object, the type variable objects themselves do not point to storage - they

are simply names that are looked up in the “*typevar-states*” table. This means

all mentions of (? t) will have the same storage globally, instead of each function’s

(? t) being separate. Thus, to make dispatch work, the values are all reset for each

method applicability check.

Therefore, currently, using type variables inside a method body will give you

arbitrary and incorrect results, but they function in the signature. For the same

reason, the return type check is inoperative.

5.4 Parameterized type system

The parameterized type system extends the type “<class>” to have new attributes:

• class-direct-params contains the parameters declared on this class itself.

• class-params contains the parameters declared on this class or one of its an-

cestors.

• class-param-value contains the values of the parameters defined for this class.

• class-param-default contains the default values for parameters used when an

explicit value was not provided.
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A small amount of complication arises in the present implementation, as it is not

possible to cleanly subclass <class>, and thus, I could not add attributes directly on

it. This is a minor issue, however, and does cause any serious problems.

The parameter declaration syntax (dparam name (owner => type) default) is

a straightforward macro which adds the parameter to class-direct-params and

creates a method “name” which retrieves the value of the parameter on a class.

The syntax to create a parameterization of a type, of, essentially creates a new

subclass of the parameter base class with the specified values filled in the parame-

ter slots. However, this new class is actually of type “<param>”, a subclass of the

“<class>” type.

The subtype rules for parameterized types are simple:

• First check if the first type is a declared subclass of the second. This would be

the case for instance in (subtype? (of <vec>) <vec>) because of creates the

new type as a subclass.

• If that fails, make sure the “parameter base” of the first is a subclass of the

parameter base of the second. Parameter base is defined as the first parent

class which is not defined with of and thus does not follow parameterization

subtyping rules.

• Next, if that succeeded, make sure that for every parameter declared on the

second type, the first one has a compatible parameter value. Compatible means

that if the parameters are <type>s, comparing them using istype? will return

true, or, if the parameters are not <type>s, that they are equal.

The algorithm can be somewhat more clearly explained with the code:

(dm param-subtype? (t1 t2)

(or (subclass? t1 t2)

(and (subtype? (param-base t1) (param-base t2))

(all? (fun (f)

(param-compat? (f t1) (f t2))

(class-params t2)))))
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The major issue with the current implementation of parameterized types is that

they cannot be used in the signature for most of the standard GOO methods. Thus,

defining a new parameterized vector type cannot actually be done unless all the

methods are given a different name from the standard GOO name (for instance,

prefix every method name with p-). This problem occurs because all of the code for

dealing with parameterized types, type variables, and modifiers depends on the core

generic methods such as elt, add, del, etc. If a method containing a parameterized

type in its signature is added to elt, then an infinite loop will result, as the code to

determine whether that method is applicable will itself call elt.

This problem can be solved by writing the code to not depend on any generic

method dispatch except in tightly controlled conditions that are guaranteed to not

cause problems. It also could possibly be solved by significantly modifying GOO

and making it use a protected layer model, where nothing done in a higher-level

layer can break code running in a lower-level layer. Then, the dispatch done inside

the parameterized type code will use the lower-level dispatcher and thus bypass the

possibility for an infinite loop.
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Chapter 6

Future Directions

6.1 Additional Constraints

Currently my system does not allow type variables to be bound by by static con-

straints, but only by passed-in variables. It can be useful to supply additional con-

straints on the type variable. For instance, take the following method:

(dm rest (col|(? x) => (? x))

(sub col 1 (len col)))

Perhaps you want to make a specialized version of this for subtypes of <num>. You

want to be able to do something like:

(dm rest (col|(? x) => (? x) where (? x)|(t< <col>))

(sub col 1 (len col)))

This system does not yet provide such a mechanism, although it ought to in a future

implementation. There is no core problem preventing such constraints from being

added, just a lack of appropriate syntax in GOO to be able to express it.

6.2 Function Types

One feature that is related to parameterized types is function types. It is often useful

to be able to specify the required signature of a function. For example, take the map
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function, which takes a function and a collection, and returns the result of applying

the function to each element in the collection. The current signature is:

(dg map (f|<fun> x|<col> => <col>))

A signature such as the following would be appropriate:

(dg map (f|(of <fun> specs (t* (t> (? x))) => (t< (? y)))

x|(of <col> val-type (? x))

=> (of <col> val-type (? y)))

...)

This would precisely define the function which map takes and its relationship with

the collection passed in and the collection returned. Notice that it requires very few

changes to the parameterized type system, as the multiple types in the signature can

be easily represented by the t* operator, and the relationships are defined using the

existing type variables.

6.3 Method ordering

One thing that is somewhat bothersome is that, under my system, method ordering

on a generic method can change depending on the actual arguments passed in. This

occurs because the t> modifier changes the sort order. Having a non-static ordering

is somewhat undesirable, as it will reduce the compile-time optimization capabilities.

It may perhaps be possible to come up with some set of restrictions on when the

modifiers may be used in order to bypass this problem.

The type union t+ rule is also similarly bothersome, as (t+ <num> (? x)) and

(t+ (? x) <num>) are very different types. One could restrict t+ to only allow a type

variable on one branch, and always evaluate that branch last. With that restriction,

ordering under t+ will again cease to matter. As I was not sure how much of a

problem this would pose I did not propose that solution in the main body of the

paper.
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6.4 Parameterized Generics

So far I have not touched upon the concept of the generic function signature itself

(as opposed to the signature of the methods on the generic function. The signature

of the generic function restricts the signatures of the methods added to it such that

they must be more constrained. How this applies to signatures with type variables is

not completely clear.

6.5 Static Analysis

The two major reasons for wanting to have more expressive types in a language are:

1) safety, and 2) increased speed. However, it is a perverse fact that in a dynamically

type language, adding additional types can actually slow down the program. With

an unoptimizing compiler, every time a type is used, the compiler must check the

actual value against the specified type. All these type checks can cause significant

slowdowns. Unfortunately, the compiler cannot just ignore the types at it’s leisure,

as it must guarantee that the type constraints are not violated.

Adding types can dramatically improve the speed, however, when the compiler

uses the additional information to eliminate some type checks and precompute the

appropriate method of a generic function to call. Adding parameterized types and

type variables magnifies both the good and bad effects. Because there is more type

information available, the compiler has more concrete information on which to base

its analysis. However, if the analysis fails, the speed hit is even higher.

One situation where parameterized types really help out is analyzing collections

operations. It is often infeasible to analyze the entire program and determine that

a certain <vec> will only ever contain <int>s. However, if the programmer specifies

that, then the compiler knows immediately what method to call for + when running

something like (+ (elt v 0) (elt v 2)).
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6.6 Dynamic Behavior

Sometimes, the code cannot be statically analyzed, and type checks and method

dispatch must remain at runtime. Thus, it is also very important for the runtime

performance to be as fast as possible. One optimization trick that can often be

performed is to assume the class hierarchy of the program is going to be mostly static,

and pre-generate a custom dispatcher for each function with the minimal number of

type checks to find the most applicable method to call.

For example, given:

;; elt-met-1

(dm elt ( c|(of <vec> val-type (t< (? x)))

index|<int> => (? x))

...)

;; elt-met-2

(dm elt ( c|(of <tab> val-type (t< (? x)) key-type (t> (? y)))

key|(? y)

=> (? x))

...)

a sufficiently smart compiler could create a custom dispatch method as shown in

Figure 6-1 which would be very much faster than running the general algorithm.
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(df elt-dispatch (arg1 arg2)

(if (isa? arg1 <vec>)

(seq

;; doesn’t need to do any type variable checks as that is only

;; used for the return value, and if the function needs to check

;; it’s return value, it can figure out the value of (? x) itself.

(elt-met-1 arg1 arg2))

(if (isa? arg1 <tab>)

(seq

;; (? y) can be between the key-type of the <tab> and the type

;; of the key.

(def q-y-min (key-type (class-of arg1)))

(def q-y-max (class-of arg2))

;; if the type-variable range isn’t negative

(if (subtype? q-y-max q-y-min)

(elt-met-2 arg1 arg2)

(error "No applicable methods")))

(error "No applicable methods"))))

Figure 6-1: An example of a custom dispatch function
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Appendix A

GOO Mini-tutorial

The following is a brief introduction to GOO. It is intended to explain enough of the

syntax and operation of the language to give readers already familiar with Scheme

and Lisp the background necessary to understand the examples given in the rest of the

paper. Most of the material in this section is directly quoted from the GOO manual

by Jonathan Bachrach, which is available online at http://www.googoogaga.org/.

For more detailed information, please refer to the manual.

GOO is a dynamic type-based object-oriented language. It is designed to be

simple, productive, powerful, extensible, dynamic, efficient and real-time. It heavily

leverages features from many earlier languages. In particular, it attempts to be a

simpler, more dynamic, lisp-syntaxed Dylan [Sha96] and an object-oriented Scheme.

GOO’s main goal is to offer the best of both scripting and delivery languages while

at the same time incorporating an extreme back-to-basics philosophy.

A.1 Functions

All operations in GOO are functions.

Functions accept zero or more arguments, and return one value. The parameter

list of the function describes the number and types of the arguments that the function
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accepts, and the type of the value it returns.

There are two kinds of functions, methods and generic functions. Both are invoked

in the same way. The caller does not need to know whether the function it is calling

is a method or a generic function.

A method is the basic unit of executable code. A method accepts a number of

arguments, creates local bindings for them, executes an implicit body in the scope of

these bindings, and then returns a value.

A generic function contains a number of methods. When a generic function is

called, it compares the arguments it received with the parameter lists of the methods

it contains. It selects the most appropriate method and invokes it on the arguments.

This technique of method dispatch is the basic mechanism of polymorphism in GOO.

All GOO functions are objects, instances of <fun>. Generic functions are instances

of <gen> and methods are instances of <met>.

The form (FUN ,sig ,@body) creates an anonymous method, where ,sig ≡

(,@vars) or (,@vars => ,ret), and where ,var ≡ ,name or ,name|,type. When

called, the method evaluates ,@body (cf. Scheme’s LAMBDA). The following a few

example functions and their application:

((fun (x) x) 1) ==> 1

((fun (x|<int> => <int>) x) 2) ==> 2

((fun (x|...) x) 1 2 3) ==> (1 2 3)

((fun (x y|...) y) 1 2 3) ==> (2 3)

((fun (x => (tup <int>))) (tup x)) 1) ==> (tup 1)

The form (DF ,name ,sig ,@body) defines a function and binds it to the global variable

,name.

A.2 Generics

Generic functions provide a form of polymorphism allowing many implementation methods

with varying parameter types, called specializers. Methods on a given generic function

are chosen according to applicability and are then ordered by specificity. A method is
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applicable if each argument is an instance of each corresponding specializer. A method A

is more specific than method B if all of A’s specializers are subtypes of B’s. During method

dispatch three cases can occur:

• if no methods are applicable then a no-applicable-method error is signaled,

• if methods are applicable but are not orderable then an ambiguous-method error is

signaled,

• if methods are applicable and are orderable then the most specific method is called

and the next methods are established.

The form (DG ,name ,sig) defines a global binding with name ,name bound to a generic

with signature ,sig. The form (DM ,name ,sig ,@body) adds a method with signature

,sig and body ,@body to the generic ,name, creating it if it does not exist. (cf., Dylan’s

DEFINE METHOD).

A.3 Classes and Types

Classes in GOO are by convention surrounded with angle brackets: < and >. The form (DC

,name (,@parents)) creates a new class with the specified parents (note: GOO supports

multiple inheritance).

Data fields on a class, called “properties” are added to a class after creation using the

DP form. (DP ,name (,oname|,owner => ,type) [,@init]) add’s a property to class

,owner with getter named ,name, setter named ,name ## ‘‘-setter’’, type ,type, and

optionally initial value ,init.

All classes are first class objects and have a type <class>, which is a subclass of <type>.

There are a variety of other types described in the main body of this paper which are all

also subclasses of <type>.

New objects can be created from a <class> using the generic function new (type|<type>

prop-inits|...). This creates an instance of type with the specified properties.

Testing if a certain instance belongs to a type is accomplished via the isa? method;

e.g. (isa? 5 <num>) ==> #t. Similarly, testing if a type is a subtype of another type is

performed using the subtype? method; e.g. (subtype? <int> <num>) ==> #t.
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A.4 Other data types

GOO has a variety of classes defined. Some of the important ones used in this document

are:

<any> – all objects are derived from <any>

<type> – the abstract type of all types in GOO. Subclass of <any>.

<class> – a type which specifies an explicit inheritance relationship and can have instances

created. Subclass of <type>.

<mag> – a magnitude. Totally orderable object. Subclass of <any>.

<num> – an abstract number. Subclass of <mag>.

<int> – an integer. Subclass of <num>.

<flo> – a floating point number. Subclass of <num>.

<fun> – an abstract function. Subclass of <any>.

<met> – a concrete method. Subclass of <fun>.

<gen> – a generic function. Dispatches to the most specific method. Subclass of <fun>.

<col> – an abstract collection of key/value pairs. Subclass of <any>.

<seq> – an abstract ordered collection of values. Subclass of <col>.

<vec> – a mutable constant-access-time sequence of values. Subclass of <seq>.

<tup> – an immutable constant-access-time sequence of values. Subclass of <seq>.

<map> – an abstract collection with explicit keys. Subclass of <col>.

<tab> – a hashtable. Subclass of <map>.
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System Source Code

;; ================= A. =================
;; =========== type relations ===========
;; ======================================

(dc <typemod> (<type>))
(dp type-val (<typemod> => <type>))

(dc <type-equal> (<typemod>))
(dc <type-sub> (<typemod>))
(dc <type-super> (<typemod>))

(df y= (x) (new <type-equal> type-val x))
(df y< (x) (new <type-sub> type-val x))
(df y> (x) (new <type-super> type-val x))
(dv o= t=)
(dv o< t<)

;;; EQTYPE?
(dg eqtype? (t1|<type> t2|<type> => <log>))
(dm eqtype? (t1|<type> t2|<type> => <log>)

(and (subtype? t1 t2) (subtype? t2 t1)))

;;; ISTYPE?
(dg istype? (t1|<type> t2|<type> => <log>))

(dm istype? (t1|<type> t2|<type> => <log>)
(eqtype? t1 t2))

(dm istype? (t1|<type> t2|<type-sub> => <log>)
(subtype? t1 (type-val t2)))

(dm istype? (t1|<type-sub> t2|<type> => <log>)
#f)

(dm istype? (t1|<type-sub> t2|<type-sub> => <log>)
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(subtype? (type-val t1) (type-val t2)))

(dm istype? (t1|<type> t2|<type-super> => <log>)
(subtype? (type-val t2) t1))

(dm istype? (t1|<type-super> t2|<type> => <log>)
#f)

(dm istype? (t1|<type-super> t2|<type-super> => <log>)
(subtype? (type-val t2) (type-val t1)))

(dm istype? (t1|<type-super> t2|<type-sub> => <log>)
(eqtype? (type-val t2) <any>))

(dm istype? (t1|<type-sub> t2|<type-super> => <log>)
#f)

(dm istype? (t1|<type-equal> t2|<type> => <log>)
(eqtype? (type-val t1) t2))

(dm istype? (t1|<type> t2|<type-equal> => <log>)
(eqtype? t1 (type-val t2)))

(dm istype? (t1|<type-equal> t2|<type-equal> => <log>)
(eqtype? (type-val t1) (type-val t2)))

(dm istype? (t1|<type-equal> t2|<type-sub> => <log>)
(subtype? (type-val t1) (type-val t2)))

(dm istype? (t1|<type-sub> t2|<type-equal> => <log>)
#f)

(dm istype? (t1|<type-equal> t2|<type-super> => <log>)
(subtype? (type-val t2) (type-val t1)))

(dm istype? (t1|<type-super> t2|<type-equal> => <log>)
#f)

(dm subtype? (t1|<type> t2|<typemod> => <log>)
(istype? t1 t2))

(dm subtype? (t1|<union> t2|<typemod> => <log>)
(istype? t1 t2))

(dm isa? (o t|<typemod> => <log>)
(istype? (class-of o) t))

;; ================= B. =================
;; =========== type variables ===========
;; ======================================

;; <type-bot> is the type at the bottom of the type hierarchy.
;; It is a subtype of every type.
;; Parallels <any>, which every type is a subtype of.
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;; can’t use t= in the method signature for subtype?
;; so manually create a singleton.
(dc <type-bot-type> (<type>))
(dv <type-bot> (new <type-bot-type>))

(dm subtype? (t1|<type-bot-type> t2|<type> => <log>)
#t)

(dm subtype? (t1|<type> t2|<type-bot-type> => <log>)
#f)

(dm subtype? (t1|<type-bot-type> t2|<type-bot-type> => <log>)
#t)

;====

;; the typevar type, and associated machinery.
(dv *typevars-pegged* #f)

(dv *typevar-states* (fab <tab> 5))

(df typevar-value-setter (z tv|<typevar>)
(set (elt *typevar-states* tv) z)

(df typevar-value (tv|<typevar>)
(elt-or *typevar-states* tv nul))

(dc <typevar> (<type>))
(dp name (x|<typevar> => <sym>) ’?)

(dm == (o1|<typevar> o2|<typevar> => <log>) (= (name o1) (name o2)))
(dm id-hash (o|<typevar>)

(id-hash (name o)))

(df typevar-min-type (x) (if (== x nul) <any> (1st x)))
(df typevar-max-type (x) (if (== x nul) <type-bot> (2nd x)))

;; special syntax to construct type variables
(ds (? ,name)

‘(new <typevar> name ’,name))

;; FIXME: this code has to run in the evaluator because of a bug in the
;; compiler that keeps it from working otherwise..
(eval
(read-from-string "(seq

;; make order-mets use a pristene typevar state
(unless (bound? old-order-mets)
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(dv old-order-mets goo/boot:order-mets))

(df new-order-mets (m1|<met> m2|<met> args|<opts> => <sym>)
(if (or (goo/boot:@fun-unification-vars m1) (goo/boot:@fun-unification-vars m2))

(dlet ((*typevar-states* (fab <tab> 5))
(*typevar-pegged* #t))

(into *typevar-states* (goo/boot:@fun-unification-vars m1))
(into *typevar-states* (goo/boot:@fun-unification-vars m2))
(old-order-mets m1 m2 args))

(old-order-mets m1 m2 args)))

(set goo/boot:order-mets new-order-mets)

;; same with met-app
(unless (bound? old-met-app?)

(dv old-order-mets goo/boot:met-app?))

(df new-met-app? (met|<met> args|<opts> => <log>)
(if (goo/boot:@fun-unification-vars met)

(dlet ((*typevar-states* (fab <tab> 5)))
(old-met-app? met args)
(set (goo/boot:@fun-unification-vars met) *typevar-states*))

(old-met-app? met args)))

(set goo/boot:met-app? new-met-app?)
)")
’goo/user)

;====

;; intersection of two types - returns the supertypes in common.
;; can either return a single type, or a type union.
;; e.g.
;; (type-intersection <int> <flo>) => <num>
;; (type-intersection <tup> <str>) => (t+ <flat> <seq.>)

(dg type-intersection (t1|<type> t2|<type> => <type>))

;; quite unoptimal, but works.
(dm type-intersection (t1|<class> t2|<class> => <type>)

(let ((cl (rev (pick (fun (x) (mem? (class-ancestors t2) x))
(class-ancestors t1))))) ;remove rev when pick is fixed

;; find the minimal union all the common supertypes
;; assumes they are sorted from most specific to least specific
;; which is what class-ancestors conveniently returns
(rep loop ((res ’()) (in (enum cl)))
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(if (fin? in)
(if (== (len res) 1)

(1st res)
(new <union> union-elts (rev res)))

(let ((check (now in)))
(if (any? (fun (x) (subtype? x check)) res)

(loop res (nxt in))
(loop (add res check) (nxt in))))))))

(dm type-intersection (t1|<type-su
;; FIXME: insert other type-intersection methods here...

(dm type-intersection (t1|<type-bot-type> t2|<type> => <type>)
t2)

(dm type-intersection (t1|<type> t2|<type-bot-type> => <type>)
t2)

;; union of two types - return a type encompassing both
;; can either return a single type, or a type union.
;; e.g.
;; (type-union <int> <flo>) => (t+ <int> <flo>)
;; (type-union <int> <num>) => <int>
;; should this be the default behavior for "t+"?

(dg type-union (t1|<type> t2|<type> => <type>))

(dm type-union (t1|<type> t2|<type> => <type>)
(if (subtype? t1 t2)

t1
(if (subtype? t2 t1)

t2
(t+ t1 t2))))

;====

;; can t1 be a subtype of type variable t2?
;; if yes, adds a restriction to t2: must be supertype of t1.
;; ie set t2 to the intersection of t1 with t2

(dm subtype? (t1|<type> t2|<typevar> => <log>)
(def val (typevar-value t2))
;; first make sure the new type is above the minimum of the type-var.
(if (subtype? t1 (typevar-min-type val))

(seq
(unless *typevars-pegged*
;; now intersect the maximum of the typevar and the new type.
(def new-type-max (type-intersection (typevar-max-type val) t1))
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(set (typevar-value t2) (tup
(typevar-min-type val)
new-type-max)))

#t)
#f))

;; can type variable t1 be a subtype of t2?
;; if yes, add restriction to t1: must be a subtype of t2.
(dm subtype? (t1|<typevar> t2|<type> => <log>)

(def val (typevar-value t1))
;; first make sure the new type is below the maximum of the type-var.
(if (subtype? (typevar-max-type val) t2)

(seq
(unless *typevars-pegged*

;; now union the minimum of the typevar and the new type.
(def new-type-min (type-union (typevar-min-type val) t2))
(set (typevar-value t1) (tup

new-type-min
(typevar-max-type val))))

#t)
#f))

;; we don’t allow asking if one typevar is a subtype of another,
;; unless the typevars are pegged
;; doing so doesn’t make it clear *which* type variable should be
;; side effected...
(dm subtype? (t1|<typevar> t2|<typevar> => <log>)

(if *typevars-pegged*
(subtype? (typevar-min-type (typevar-value t1))

(typevar-min-type (typevar-value t2)))
(error "subtype? comparison between type-variables is undefined.")))

(dm subtype? (t1|<union> t2|<typevar> => <log>)
(def saved-typevar-states (dup *typevar-states*))
(if (all? (fun (t) (subtype? t t2)) (union-elts t1))

#t
(seq

(set *typevar-states* saved-typevar-states)
#f)))

(dm subtype? (t1|<typevar> t2|<union> => <log>)
(any? (fun (t) (subtype? t1 t)) (union-elts t2)))

(dm isa? (o t|<typevar> => <log>)
(subtype? (class-of o) t))
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;; ================= C. =================
;; ========== parametric types ==========
;; ======================================
(dv *class-param-table* (fab <tab> 10))

(dv *default-param-value* (gensym))

(dv *class-param-values* (fab <tab> 10))

(dv *class-param-defaults* (fab <tab> 10))

(dc <param> (<class>))

(df class-direct-params (x|<class> => <seq>)
(elt-or *class-param-table* x ’()))

(df class-direct-params-setter (z|<col> x|<class>)
(set (elt *class-param-table* x) z))

(df class-params (x|<class> => <seq>)
(del-dups
(fold cat2 ’() (map class-direct-params (rev (class-ancestors x))))))

(dv *empty-tab* (fab <tab> 0))
(df class-param-value-or (c|<class> k|<fun> default)

(elt-or (elt-or *class-param-values* c *empty-tab*) k default))

(df class-param-value-setter (z c|<class> k|<fun>)
(dv t (elt-or *class-param-values* c #f))
(when (not t)

(set t (fab <tab> 5))
(set (elt *class-param-values* c) t))

(set (elt t k) z))

(df class-param-value (c|<class> k|<fun>)
(def v (class-param-value-or c k *default-param-value*))
(if (== v *default-param-value*)

(class-param-default k)
v))

(df class-param-default (k|<fun>)
(elt-or *class-param-defaults* k #f))

(df class-param-default-setter (z k|<fun>)
(set (elt *class-param-defaults* k) z))
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(ds (dparam ,name (,owner => ,type) ,default)
‘(seq

(unless (bound? ,name)
(dv ,name (goo/boot:fab-gen ’,name ’() (lst <any>) #f <any> ’())))

(def f (fun (x|(o< ,owner) => ,type) (class-param-value x ,name)))
(set ,name (gen-add-met ,name f))
(set (class-direct-params ,owner) (add (class-direct-params ,owner) ,name))
(set (class-param-default ,name) ,default)
)

)

(ds (of ,name ,@args)
(let ((newclassname (gensym)))

‘(seq
(fun ()) ;; makes nasty hack work by forcing g2c on
(dc ,newclassname (,name))
;; nasty hack! change the type of the new class from <class> to <param>
(set (goo/boot:%object-class ,newclassname) <param>)
,(rep loop ((x (enum args)))

(def key (now x))
(def val (now (nxt x)))
‘(set (class-param-value ,newclassname ,key) ,val))

,newclassname)))

;; this form should not be necessary to use in the future
(ds (pdm ,name ,args ,code)
‘(seq

(def f (fun ,args ,code))
(unless (bound? ,name)

(dv ,name (goo/boot:gen-from-met f)))

(set (goo/boot:fun-unification-vars f) ’(#t))
(gen-add-met ,name f)))

(dm param-base (x|<param>)
(param-base (1st (class-parents x))))

(dm param-base (x|<any>)
x)

(dm param-compat? (x1|<type> x2|<type>)
(istype? x1 x2))

(dm param-compat? (x1 x2)
(== x1 x2))
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(df param-subtype? (t1 t2)
(or (@subclass t1 t2)

(and (subtype? (param-base t1) (param-base t2))
(all? (fun (f)

(param-compat? (f t1) (f t2))
(class-params t2)))))

(dm subtype? (t1|<param> t2|<class> => <log>)
(param-subtype t1 t2 ))

(dm subtype? (t1|<class> t2|<param> => <log>)
(param-subtype t1 t2))

(dm subtype? (t1|<param> t2|<param> => <log>)
(param-subtype t1 t2))

(dm isa? (o t|<param> => <log>)
(subtype? (class-of o) t))
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